Move "watchdog" to remote.c
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
7905fc35 53static void probes_table_remove_objfile_probes (struct objfile *objfile);
1c4dcb57 54
13437d4b
KB
55/* On SVR4 systems, a list of symbols in the dynamic linker where
56 GDB can try to place a breakpoint to monitor shared library
57 events.
58
59 If none of these symbols are found, or other errors occur, then
60 SVR4 systems will fall back to using a symbol as the "startup
61 mapping complete" breakpoint address. */
62
bc043ef3 63static const char * const solib_break_names[] =
13437d4b
KB
64{
65 "r_debug_state",
66 "_r_debug_state",
67 "_dl_debug_state",
68 "rtld_db_dlactivity",
4c7dcb84 69 "__dl_rtld_db_dlactivity",
1f72e589 70 "_rtld_debug_state",
4c0122c8 71
13437d4b
KB
72 NULL
73};
13437d4b 74
bc043ef3 75static const char * const bkpt_names[] =
13437d4b 76{
13437d4b 77 "_start",
ad3dcc5c 78 "__start",
13437d4b
KB
79 "main",
80 NULL
81};
13437d4b 82
bc043ef3 83static const char * const main_name_list[] =
13437d4b
KB
84{
85 "main_$main",
86 NULL
87};
88
f9e14852
GB
89/* What to do when a probe stop occurs. */
90
91enum probe_action
92{
93 /* Something went seriously wrong. Stop using probes and
94 revert to using the older interface. */
95 PROBES_INTERFACE_FAILED,
96
97 /* No action is required. The shared object list is still
98 valid. */
99 DO_NOTHING,
100
101 /* The shared object list should be reloaded entirely. */
102 FULL_RELOAD,
103
104 /* Attempt to incrementally update the shared object list. If
105 the update fails or is not possible, fall back to reloading
106 the list in full. */
107 UPDATE_OR_RELOAD,
108};
109
110/* A probe's name and its associated action. */
111
112struct probe_info
113{
114 /* The name of the probe. */
115 const char *name;
116
117 /* What to do when a probe stop occurs. */
118 enum probe_action action;
119};
120
121/* A list of named probes and their associated actions. If all
122 probes are present in the dynamic linker then the probes-based
123 interface will be used. */
124
125static const struct probe_info probe_info[] =
126{
127 { "init_start", DO_NOTHING },
128 { "init_complete", FULL_RELOAD },
129 { "map_start", DO_NOTHING },
130 { "map_failed", DO_NOTHING },
131 { "reloc_complete", UPDATE_OR_RELOAD },
132 { "unmap_start", DO_NOTHING },
133 { "unmap_complete", FULL_RELOAD },
134};
135
136#define NUM_PROBES ARRAY_SIZE (probe_info)
137
4d7b2d5b
JB
138/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
139 the same shared library. */
140
141static int
142svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
143{
144 if (strcmp (gdb_so_name, inferior_so_name) == 0)
145 return 1;
146
147 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
148 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
149 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
150 sometimes they have identical content, but are not linked to each
151 other. We don't restrict this check for Solaris, but the chances
152 of running into this situation elsewhere are very low. */
153 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
154 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
155 return 1;
156
7307a73a 157 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 158 different locations. */
7307a73a
RO
159 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
160 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
161 return 1;
162
4d7b2d5b
JB
163 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
165 return 1;
166
167 return 0;
168}
169
170static int
171svr4_same (struct so_list *gdb, struct so_list *inferior)
172{
173 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
174}
175
a7961323 176static std::unique_ptr<lm_info_svr4>
3957565a 177lm_info_read (CORE_ADDR lm_addr)
13437d4b 178{
4b188b9f 179 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 180 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 181
a7961323 182 gdb::byte_vector lm (lmo->link_map_size);
3957565a 183
a7961323
TT
184 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
185 warning (_("Error reading shared library list entry at %s"),
186 paddress (target_gdbarch (), lm_addr));
3957565a
JK
187 else
188 {
f5656ead 189 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 190
a7961323 191 lm_info.reset (new lm_info_svr4);
3957565a
JK
192 lm_info->lm_addr = lm_addr;
193
194 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
195 ptr_type);
196 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
197 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
198 ptr_type);
199 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
200 ptr_type);
201 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
202 ptr_type);
203 }
204
3957565a 205 return lm_info;
13437d4b
KB
206}
207
cc10cae3 208static int
b23518f0 209has_lm_dynamic_from_link_map (void)
cc10cae3
AO
210{
211 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
212
cfaefc65 213 return lmo->l_ld_offset >= 0;
cc10cae3
AO
214}
215
cc10cae3 216static CORE_ADDR
f65ce5fb 217lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 218{
d0e449a1
SM
219 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
220
221 if (!li->l_addr_p)
cc10cae3
AO
222 {
223 struct bfd_section *dyninfo_sect;
28f34a8f 224 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 225
d0e449a1 226 l_addr = li->l_addr_inferior;
cc10cae3 227
b23518f0 228 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
229 goto set_addr;
230
d0e449a1 231 l_dynaddr = li->l_ld;
cc10cae3
AO
232
233 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
234 if (dyninfo_sect == NULL)
235 goto set_addr;
236
237 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
238
239 if (dynaddr + l_addr != l_dynaddr)
240 {
28f34a8f 241 CORE_ADDR align = 0x1000;
4e1fc9c9 242 CORE_ADDR minpagesize = align;
28f34a8f 243
cc10cae3
AO
244 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
245 {
246 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
247 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
248 int i;
249
250 align = 1;
251
252 for (i = 0; i < ehdr->e_phnum; i++)
253 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
254 align = phdr[i].p_align;
4e1fc9c9
JK
255
256 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
257 }
258
259 /* Turn it into a mask. */
260 align--;
261
262 /* If the changes match the alignment requirements, we
263 assume we're using a core file that was generated by the
264 same binary, just prelinked with a different base offset.
265 If it doesn't match, we may have a different binary, the
266 same binary with the dynamic table loaded at an unrelated
267 location, or anything, really. To avoid regressions,
268 don't adjust the base offset in the latter case, although
269 odds are that, if things really changed, debugging won't
5c0d192f
JK
270 quite work.
271
272 One could expect more the condition
273 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
274 but the one below is relaxed for PPC. The PPC kernel supports
275 either 4k or 64k page sizes. To be prepared for 64k pages,
276 PPC ELF files are built using an alignment requirement of 64k.
277 However, when running on a kernel supporting 4k pages, the memory
278 mapping of the library may not actually happen on a 64k boundary!
279
280 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
281 equivalent to the possibly expected check above.)
282
283 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 284
02835898
JK
285 l_addr = l_dynaddr - dynaddr;
286
4e1fc9c9
JK
287 if ((l_addr & (minpagesize - 1)) == 0
288 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 289 {
701ed6dc 290 if (info_verbose)
ccf26247
JK
291 printf_unfiltered (_("Using PIC (Position Independent Code) "
292 "prelink displacement %s for \"%s\".\n"),
f5656ead 293 paddress (target_gdbarch (), l_addr),
ccf26247 294 so->so_name);
cc10cae3 295 }
79d4c408 296 else
02835898
JK
297 {
298 /* There is no way to verify the library file matches. prelink
299 can during prelinking of an unprelinked file (or unprelinking
300 of a prelinked file) shift the DYNAMIC segment by arbitrary
301 offset without any page size alignment. There is no way to
302 find out the ELF header and/or Program Headers for a limited
303 verification if it they match. One could do a verification
304 of the DYNAMIC segment. Still the found address is the best
305 one GDB could find. */
306
307 warning (_(".dynamic section for \"%s\" "
308 "is not at the expected address "
309 "(wrong library or version mismatch?)"), so->so_name);
310 }
cc10cae3
AO
311 }
312
313 set_addr:
d0e449a1
SM
314 li->l_addr = l_addr;
315 li->l_addr_p = 1;
cc10cae3
AO
316 }
317
d0e449a1 318 return li->l_addr;
cc10cae3
AO
319}
320
6c95b8df 321/* Per pspace SVR4 specific data. */
13437d4b 322
1a816a87
PA
323struct svr4_info
324{
c378eb4e 325 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
326
327 /* Validity flag for debug_loader_offset. */
328 int debug_loader_offset_p;
329
330 /* Load address for the dynamic linker, inferred. */
331 CORE_ADDR debug_loader_offset;
332
333 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
334 char *debug_loader_name;
335
336 /* Load map address for the main executable. */
337 CORE_ADDR main_lm_addr;
1a816a87 338
6c95b8df
PA
339 CORE_ADDR interp_text_sect_low;
340 CORE_ADDR interp_text_sect_high;
341 CORE_ADDR interp_plt_sect_low;
342 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
343
344 /* Nonzero if the list of objects was last obtained from the target
345 via qXfer:libraries-svr4:read. */
346 int using_xfer;
347
348 /* Table of struct probe_and_action instances, used by the
349 probes-based interface to map breakpoint addresses to probes
350 and their associated actions. Lookup is performed using
935676c9 351 probe_and_action->prob->address. */
f9e14852
GB
352 htab_t probes_table;
353
354 /* List of objects loaded into the inferior, used by the probes-
355 based interface. */
356 struct so_list *solib_list;
6c95b8df 357};
1a816a87 358
6c95b8df
PA
359/* Per-program-space data key. */
360static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 361
f9e14852
GB
362/* Free the probes table. */
363
364static void
365free_probes_table (struct svr4_info *info)
366{
367 if (info->probes_table == NULL)
368 return;
369
370 htab_delete (info->probes_table);
371 info->probes_table = NULL;
372}
373
374/* Free the solib list. */
375
376static void
377free_solib_list (struct svr4_info *info)
378{
379 svr4_free_library_list (&info->solib_list);
380 info->solib_list = NULL;
381}
382
6c95b8df
PA
383static void
384svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 385{
19ba03f4 386 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
387
388 free_probes_table (info);
389 free_solib_list (info);
390
6c95b8df 391 xfree (info);
1a816a87
PA
392}
393
d70cc3ba
SM
394/* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
395 This function always returns a valid object. */
34439770 396
6c95b8df 397static struct svr4_info *
d70cc3ba 398get_svr4_info (program_space *pspace)
1a816a87 399{
6c95b8df 400 struct svr4_info *info;
1a816a87 401
d70cc3ba 402 info = (struct svr4_info *) program_space_data (pspace,
19ba03f4 403 solib_svr4_pspace_data);
6c95b8df
PA
404 if (info != NULL)
405 return info;
34439770 406
41bf6aca 407 info = XCNEW (struct svr4_info);
d70cc3ba 408 set_program_space_data (pspace, solib_svr4_pspace_data, info);
6c95b8df 409 return info;
1a816a87 410}
93a57060 411
13437d4b
KB
412/* Local function prototypes */
413
bc043ef3 414static int match_main (const char *);
13437d4b 415
97ec2c2f 416/* Read program header TYPE from inferior memory. The header is found
17658d46 417 by scanning the OS auxiliary vector.
97ec2c2f 418
09919ac2
JK
419 If TYPE == -1, return the program headers instead of the contents of
420 one program header.
421
17658d46
SM
422 Return vector of bytes holding the program header contents, or an empty
423 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
424 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
425 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 426
17658d46
SM
427static gdb::optional<gdb::byte_vector>
428read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 429{
f5656ead 430 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 431 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
432 int arch_size, sect_size;
433 CORE_ADDR sect_addr;
43136979 434 int pt_phdr_p = 0;
97ec2c2f
UW
435
436 /* Get required auxv elements from target. */
8b88a78e 437 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 438 return {};
8b88a78e 439 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 440 return {};
8b88a78e 441 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 442 return {};
97ec2c2f 443 if (!at_phdr || !at_phnum)
17658d46 444 return {};
97ec2c2f
UW
445
446 /* Determine ELF architecture type. */
447 if (at_phent == sizeof (Elf32_External_Phdr))
448 arch_size = 32;
449 else if (at_phent == sizeof (Elf64_External_Phdr))
450 arch_size = 64;
451 else
17658d46 452 return {};
97ec2c2f 453
09919ac2
JK
454 /* Find the requested segment. */
455 if (type == -1)
456 {
457 sect_addr = at_phdr;
458 sect_size = at_phent * at_phnum;
459 }
460 else if (arch_size == 32)
97ec2c2f
UW
461 {
462 Elf32_External_Phdr phdr;
463 int i;
464
465 /* Search for requested PHDR. */
466 for (i = 0; i < at_phnum; i++)
467 {
43136979
AR
468 int p_type;
469
97ec2c2f
UW
470 if (target_read_memory (at_phdr + i * sizeof (phdr),
471 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 472 return {};
97ec2c2f 473
43136979
AR
474 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
475 4, byte_order);
476
477 if (p_type == PT_PHDR)
478 {
479 pt_phdr_p = 1;
480 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
481 4, byte_order);
482 }
483
484 if (p_type == type)
97ec2c2f
UW
485 break;
486 }
487
488 if (i == at_phnum)
17658d46 489 return {};
97ec2c2f
UW
490
491 /* Retrieve address and size. */
e17a4113
UW
492 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
493 4, byte_order);
494 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
495 4, byte_order);
97ec2c2f
UW
496 }
497 else
498 {
499 Elf64_External_Phdr phdr;
500 int i;
501
502 /* Search for requested PHDR. */
503 for (i = 0; i < at_phnum; i++)
504 {
43136979
AR
505 int p_type;
506
97ec2c2f
UW
507 if (target_read_memory (at_phdr + i * sizeof (phdr),
508 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 509 return {};
97ec2c2f 510
43136979
AR
511 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
512 4, byte_order);
513
514 if (p_type == PT_PHDR)
515 {
516 pt_phdr_p = 1;
517 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
518 8, byte_order);
519 }
520
521 if (p_type == type)
97ec2c2f
UW
522 break;
523 }
524
525 if (i == at_phnum)
17658d46 526 return {};
97ec2c2f
UW
527
528 /* Retrieve address and size. */
e17a4113
UW
529 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
530 8, byte_order);
531 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
532 8, byte_order);
97ec2c2f
UW
533 }
534
43136979
AR
535 /* PT_PHDR is optional, but we really need it
536 for PIE to make this work in general. */
537
538 if (pt_phdr_p)
539 {
540 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
541 Relocation offset is the difference between the two. */
542 sect_addr = sect_addr + (at_phdr - pt_phdr);
543 }
544
97ec2c2f 545 /* Read in requested program header. */
17658d46
SM
546 gdb::byte_vector buf (sect_size);
547 if (target_read_memory (sect_addr, buf.data (), sect_size))
548 return {};
97ec2c2f
UW
549
550 if (p_arch_size)
551 *p_arch_size = arch_size;
a738da3a
MF
552 if (base_addr)
553 *base_addr = sect_addr;
97ec2c2f
UW
554
555 return buf;
556}
557
558
559/* Return program interpreter string. */
17658d46 560static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
561find_program_interpreter (void)
562{
97ec2c2f
UW
563 /* If we have an exec_bfd, use its section table. */
564 if (exec_bfd
565 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
566 {
567 struct bfd_section *interp_sect;
568
569 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
570 if (interp_sect != NULL)
571 {
97ec2c2f
UW
572 int sect_size = bfd_section_size (exec_bfd, interp_sect);
573
17658d46
SM
574 gdb::byte_vector buf (sect_size);
575 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
576 sect_size);
577 return buf;
97ec2c2f
UW
578 }
579 }
580
17658d46
SM
581 /* If we didn't find it, use the target auxiliary vector. */
582 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
583}
584
585
b6d7a4bf
SM
586/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
587 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
588
589static int
a738da3a
MF
590scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
591 CORE_ADDR *ptr_addr)
3a40aaa0
UW
592{
593 int arch_size, step, sect_size;
b6d7a4bf 594 long current_dyntag;
b381ea14 595 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 596 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
597 Elf32_External_Dyn *x_dynp_32;
598 Elf64_External_Dyn *x_dynp_64;
599 struct bfd_section *sect;
61f0d762 600 struct target_section *target_section;
3a40aaa0
UW
601
602 if (abfd == NULL)
603 return 0;
0763ab81
PA
604
605 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
606 return 0;
607
3a40aaa0
UW
608 arch_size = bfd_get_arch_size (abfd);
609 if (arch_size == -1)
0763ab81 610 return 0;
3a40aaa0
UW
611
612 /* Find the start address of the .dynamic section. */
613 sect = bfd_get_section_by_name (abfd, ".dynamic");
614 if (sect == NULL)
615 return 0;
61f0d762
JK
616
617 for (target_section = current_target_sections->sections;
618 target_section < current_target_sections->sections_end;
619 target_section++)
620 if (sect == target_section->the_bfd_section)
621 break;
b381ea14
JK
622 if (target_section < current_target_sections->sections_end)
623 dyn_addr = target_section->addr;
624 else
625 {
626 /* ABFD may come from OBJFILE acting only as a symbol file without being
627 loaded into the target (see add_symbol_file_command). This case is
628 such fallback to the file VMA address without the possibility of
629 having the section relocated to its actual in-memory address. */
630
631 dyn_addr = bfd_section_vma (abfd, sect);
632 }
3a40aaa0 633
65728c26
DJ
634 /* Read in .dynamic from the BFD. We will get the actual value
635 from memory later. */
3a40aaa0 636 sect_size = bfd_section_size (abfd, sect);
224c3ddb 637 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
638 if (!bfd_get_section_contents (abfd, sect,
639 buf, 0, sect_size))
640 return 0;
3a40aaa0
UW
641
642 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
643 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
644 : sizeof (Elf64_External_Dyn);
645 for (bufend = buf + sect_size;
646 buf < bufend;
647 buf += step)
648 {
649 if (arch_size == 32)
650 {
651 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 652 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
653 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
654 }
65728c26 655 else
3a40aaa0
UW
656 {
657 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 658 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
659 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
660 }
b6d7a4bf 661 if (current_dyntag == DT_NULL)
3a40aaa0 662 return 0;
b6d7a4bf 663 if (current_dyntag == desired_dyntag)
3a40aaa0 664 {
65728c26
DJ
665 /* If requested, try to read the runtime value of this .dynamic
666 entry. */
3a40aaa0 667 if (ptr)
65728c26 668 {
b6da22b0 669 struct type *ptr_type;
65728c26 670 gdb_byte ptr_buf[8];
a738da3a 671 CORE_ADDR ptr_addr_1;
65728c26 672
f5656ead 673 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
674 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
675 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 676 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 677 *ptr = dyn_ptr;
a738da3a
MF
678 if (ptr_addr)
679 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
680 }
681 return 1;
3a40aaa0
UW
682 }
683 }
684
685 return 0;
686}
687
b6d7a4bf
SM
688/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
689 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
690 is returned and the corresponding PTR is set. */
97ec2c2f
UW
691
692static int
a738da3a
MF
693scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
694 CORE_ADDR *ptr_addr)
97ec2c2f 695{
f5656ead 696 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 697 int arch_size, step;
b6d7a4bf 698 long current_dyntag;
97ec2c2f 699 CORE_ADDR dyn_ptr;
a738da3a 700 CORE_ADDR base_addr;
97ec2c2f
UW
701
702 /* Read in .dynamic section. */
17658d46
SM
703 gdb::optional<gdb::byte_vector> ph_data
704 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
705 if (!ph_data)
97ec2c2f
UW
706 return 0;
707
708 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
709 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
710 : sizeof (Elf64_External_Dyn);
17658d46
SM
711 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
712 buf < bufend; buf += step)
97ec2c2f
UW
713 {
714 if (arch_size == 32)
715 {
716 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 717
b6d7a4bf 718 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
719 4, byte_order);
720 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
721 4, byte_order);
97ec2c2f
UW
722 }
723 else
724 {
725 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 726
b6d7a4bf 727 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
728 8, byte_order);
729 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
730 8, byte_order);
97ec2c2f 731 }
b6d7a4bf 732 if (current_dyntag == DT_NULL)
97ec2c2f
UW
733 break;
734
b6d7a4bf 735 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
736 {
737 if (ptr)
738 *ptr = dyn_ptr;
739
a738da3a 740 if (ptr_addr)
17658d46 741 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 742
97ec2c2f
UW
743 return 1;
744 }
745 }
746
97ec2c2f
UW
747 return 0;
748}
749
7f86f058
PA
750/* Locate the base address of dynamic linker structs for SVR4 elf
751 targets.
13437d4b
KB
752
753 For SVR4 elf targets the address of the dynamic linker's runtime
754 structure is contained within the dynamic info section in the
755 executable file. The dynamic section is also mapped into the
756 inferior address space. Because the runtime loader fills in the
757 real address before starting the inferior, we have to read in the
758 dynamic info section from the inferior address space.
759 If there are any errors while trying to find the address, we
7f86f058 760 silently return 0, otherwise the found address is returned. */
13437d4b
KB
761
762static CORE_ADDR
763elf_locate_base (void)
764{
3b7344d5 765 struct bound_minimal_symbol msymbol;
a738da3a 766 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 767
65728c26
DJ
768 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
769 instead of DT_DEBUG, although they sometimes contain an unused
770 DT_DEBUG. */
a738da3a
MF
771 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
772 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 773 {
f5656ead 774 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 775 gdb_byte *pbuf;
b6da22b0 776 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 777
224c3ddb 778 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
779 /* DT_MIPS_RLD_MAP contains a pointer to the address
780 of the dynamic link structure. */
781 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 782 return 0;
b6da22b0 783 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
784 }
785
a738da3a
MF
786 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
787 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
788 in non-PIE. */
789 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
791 {
792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
793 gdb_byte *pbuf;
794 int pbuf_size = TYPE_LENGTH (ptr_type);
795
224c3ddb 796 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
797 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
798 DT slot to the address of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
800 return 0;
801 return extract_typed_address (pbuf, ptr_type);
802 }
803
65728c26 804 /* Find DT_DEBUG. */
a738da3a
MF
805 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
806 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
807 return dyn_ptr;
808
3a40aaa0
UW
809 /* This may be a static executable. Look for the symbol
810 conventionally named _r_debug, as a last resort. */
811 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 812 if (msymbol.minsym != NULL)
77e371c0 813 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
814
815 /* DT_DEBUG entry not found. */
816 return 0;
817}
818
7f86f058 819/* Locate the base address of dynamic linker structs.
13437d4b
KB
820
821 For both the SunOS and SVR4 shared library implementations, if the
822 inferior executable has been linked dynamically, there is a single
823 address somewhere in the inferior's data space which is the key to
824 locating all of the dynamic linker's runtime structures. This
825 address is the value of the debug base symbol. The job of this
826 function is to find and return that address, or to return 0 if there
827 is no such address (the executable is statically linked for example).
828
829 For SunOS, the job is almost trivial, since the dynamic linker and
830 all of it's structures are statically linked to the executable at
831 link time. Thus the symbol for the address we are looking for has
832 already been added to the minimal symbol table for the executable's
833 objfile at the time the symbol file's symbols were read, and all we
834 have to do is look it up there. Note that we explicitly do NOT want
835 to find the copies in the shared library.
836
837 The SVR4 version is a bit more complicated because the address
838 is contained somewhere in the dynamic info section. We have to go
839 to a lot more work to discover the address of the debug base symbol.
840 Because of this complexity, we cache the value we find and return that
841 value on subsequent invocations. Note there is no copy in the
7f86f058 842 executable symbol tables. */
13437d4b
KB
843
844static CORE_ADDR
1a816a87 845locate_base (struct svr4_info *info)
13437d4b 846{
13437d4b
KB
847 /* Check to see if we have a currently valid address, and if so, avoid
848 doing all this work again and just return the cached address. If
849 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
850 section for ELF executables. There's no point in doing any of this
851 though if we don't have some link map offsets to work with. */
13437d4b 852
1a816a87 853 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 854 info->debug_base = elf_locate_base ();
1a816a87 855 return info->debug_base;
13437d4b
KB
856}
857
e4cd0d6a 858/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
859 return its address in the inferior. Return zero if the address
860 could not be determined.
13437d4b 861
e4cd0d6a
MK
862 FIXME: Perhaps we should validate the info somehow, perhaps by
863 checking r_version for a known version number, or r_state for
864 RT_CONSISTENT. */
13437d4b
KB
865
866static CORE_ADDR
1a816a87 867solib_svr4_r_map (struct svr4_info *info)
13437d4b 868{
4b188b9f 869 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 870 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 871 CORE_ADDR addr = 0;
13437d4b 872
a70b8144 873 try
08597104
JB
874 {
875 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
876 ptr_type);
877 }
230d2906 878 catch (const gdb_exception_error &ex)
492d29ea
PA
879 {
880 exception_print (gdb_stderr, ex);
881 }
492d29ea 882
08597104 883 return addr;
e4cd0d6a 884}
13437d4b 885
7cd25cfc
DJ
886/* Find r_brk from the inferior's debug base. */
887
888static CORE_ADDR
1a816a87 889solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
890{
891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 892 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 893
1a816a87
PA
894 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
895 ptr_type);
7cd25cfc
DJ
896}
897
e4cd0d6a
MK
898/* Find the link map for the dynamic linker (if it is not in the
899 normal list of loaded shared objects). */
13437d4b 900
e4cd0d6a 901static CORE_ADDR
1a816a87 902solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
903{
904 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
905 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
906 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
907 ULONGEST version = 0;
908
a70b8144 909 try
416f679e
SDJ
910 {
911 /* Check version, and return zero if `struct r_debug' doesn't have
912 the r_ldsomap member. */
913 version
914 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
915 lmo->r_version_size, byte_order);
916 }
230d2906 917 catch (const gdb_exception_error &ex)
416f679e
SDJ
918 {
919 exception_print (gdb_stderr, ex);
920 }
13437d4b 921
e4cd0d6a
MK
922 if (version < 2 || lmo->r_ldsomap_offset == -1)
923 return 0;
13437d4b 924
1a816a87 925 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 926 ptr_type);
13437d4b
KB
927}
928
de18c1d8
JM
929/* On Solaris systems with some versions of the dynamic linker,
930 ld.so's l_name pointer points to the SONAME in the string table
931 rather than into writable memory. So that GDB can find shared
932 libraries when loading a core file generated by gcore, ensure that
933 memory areas containing the l_name string are saved in the core
934 file. */
935
936static int
937svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
938{
939 struct svr4_info *info;
940 CORE_ADDR ldsomap;
74de0234 941 CORE_ADDR name_lm;
de18c1d8 942
d70cc3ba 943 info = get_svr4_info (current_program_space);
de18c1d8
JM
944
945 info->debug_base = 0;
946 locate_base (info);
947 if (!info->debug_base)
948 return 0;
949
950 ldsomap = solib_svr4_r_ldsomap (info);
951 if (!ldsomap)
952 return 0;
953
a7961323 954 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 955 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 956
74de0234 957 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
958}
959
bf469271 960/* See solist.h. */
13437d4b
KB
961
962static int
bf469271 963open_symbol_file_object (int from_tty)
13437d4b
KB
964{
965 CORE_ADDR lm, l_name;
e83e4e24 966 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 967 int errcode;
4b188b9f 968 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 969 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 970 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 971 gdb::byte_vector l_name_buf (l_name_size);
d70cc3ba 972 struct svr4_info *info = get_svr4_info (current_program_space);
ecf45d2c
SL
973 symfile_add_flags add_flags = 0;
974
975 if (from_tty)
976 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
977
978 if (symfile_objfile)
9e2f0ad4 979 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 980 return 0;
13437d4b 981
7cd25cfc 982 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
983 info->debug_base = 0;
984 if (locate_base (info) == 0)
a7961323 985 return 0; /* failed somehow... */
13437d4b
KB
986
987 /* First link map member should be the executable. */
1a816a87 988 lm = solib_svr4_r_map (info);
e4cd0d6a 989 if (lm == 0)
a7961323 990 return 0; /* failed somehow... */
13437d4b
KB
991
992 /* Read address of name from target memory to GDB. */
a7961323 993 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 994
cfaefc65 995 /* Convert the address to host format. */
a7961323 996 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 997
13437d4b 998 if (l_name == 0)
a7961323 999 return 0; /* No filename. */
13437d4b
KB
1000
1001 /* Now fetch the filename from target memory. */
1002 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1003
1004 if (errcode)
1005 {
8a3fe4f8 1006 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1007 safe_strerror (errcode));
1008 return 0;
1009 }
1010
13437d4b 1011 /* Have a pathname: read the symbol file. */
e83e4e24 1012 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1013
1014 return 1;
1015}
13437d4b 1016
2268b414
JK
1017/* Data exchange structure for the XML parser as returned by
1018 svr4_current_sos_via_xfer_libraries. */
1019
1020struct svr4_library_list
1021{
1022 struct so_list *head, **tailp;
1023
1024 /* Inferior address of struct link_map used for the main executable. It is
1025 NULL if not known. */
1026 CORE_ADDR main_lm;
1027};
1028
7905fc35
PA
1029/* This module's 'free_objfile' observer. */
1030
1031static void
1032svr4_free_objfile_observer (struct objfile *objfile)
1033{
1034 probes_table_remove_objfile_probes (objfile);
1035}
1036
93f2a35e
JK
1037/* Implementation for target_so_ops.free_so. */
1038
1039static void
1040svr4_free_so (struct so_list *so)
1041{
76e75227
SM
1042 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1043
1044 delete li;
93f2a35e
JK
1045}
1046
0892cb63
DE
1047/* Implement target_so_ops.clear_so. */
1048
1049static void
1050svr4_clear_so (struct so_list *so)
1051{
d0e449a1
SM
1052 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1053
1054 if (li != NULL)
1055 li->l_addr_p = 0;
0892cb63
DE
1056}
1057
93f2a35e
JK
1058/* Free so_list built so far (called via cleanup). */
1059
1060static void
1061svr4_free_library_list (void *p_list)
1062{
1063 struct so_list *list = *(struct so_list **) p_list;
1064
1065 while (list != NULL)
1066 {
1067 struct so_list *next = list->next;
1068
3756ef7e 1069 free_so (list);
93f2a35e
JK
1070 list = next;
1071 }
1072}
1073
f9e14852
GB
1074/* Copy library list. */
1075
1076static struct so_list *
1077svr4_copy_library_list (struct so_list *src)
1078{
1079 struct so_list *dst = NULL;
1080 struct so_list **link = &dst;
1081
1082 while (src != NULL)
1083 {
fe978cb0 1084 struct so_list *newobj;
f9e14852 1085
8d749320 1086 newobj = XNEW (struct so_list);
fe978cb0 1087 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1088
76e75227
SM
1089 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1090 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1091
fe978cb0
PA
1092 newobj->next = NULL;
1093 *link = newobj;
1094 link = &newobj->next;
f9e14852
GB
1095
1096 src = src->next;
1097 }
1098
1099 return dst;
1100}
1101
2268b414
JK
1102#ifdef HAVE_LIBEXPAT
1103
1104#include "xml-support.h"
1105
1106/* Handle the start of a <library> element. Note: new elements are added
1107 at the tail of the list, keeping the list in order. */
1108
1109static void
1110library_list_start_library (struct gdb_xml_parser *parser,
1111 const struct gdb_xml_element *element,
4d0fdd9b
SM
1112 void *user_data,
1113 std::vector<gdb_xml_value> &attributes)
2268b414 1114{
19ba03f4
SM
1115 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1116 const char *name
4d0fdd9b 1117 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1118 ULONGEST *lmp
4d0fdd9b 1119 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1120 ULONGEST *l_addrp
4d0fdd9b 1121 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1122 ULONGEST *l_ldp
4d0fdd9b 1123 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1124 struct so_list *new_elem;
1125
41bf6aca 1126 new_elem = XCNEW (struct so_list);
76e75227 1127 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1128 new_elem->lm_info = li;
1129 li->lm_addr = *lmp;
1130 li->l_addr_inferior = *l_addrp;
1131 li->l_ld = *l_ldp;
2268b414
JK
1132
1133 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1134 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1135 strcpy (new_elem->so_original_name, new_elem->so_name);
1136
1137 *list->tailp = new_elem;
1138 list->tailp = &new_elem->next;
1139}
1140
1141/* Handle the start of a <library-list-svr4> element. */
1142
1143static void
1144svr4_library_list_start_list (struct gdb_xml_parser *parser,
1145 const struct gdb_xml_element *element,
4d0fdd9b
SM
1146 void *user_data,
1147 std::vector<gdb_xml_value> &attributes)
2268b414 1148{
19ba03f4
SM
1149 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1150 const char *version
4d0fdd9b 1151 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1152 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1153
1154 if (strcmp (version, "1.0") != 0)
1155 gdb_xml_error (parser,
1156 _("SVR4 Library list has unsupported version \"%s\""),
1157 version);
1158
1159 if (main_lm)
4d0fdd9b 1160 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1161}
1162
1163/* The allowed elements and attributes for an XML library list.
1164 The root element is a <library-list>. */
1165
1166static const struct gdb_xml_attribute svr4_library_attributes[] =
1167{
1168 { "name", GDB_XML_AF_NONE, NULL, NULL },
1169 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1170 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1172 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1173};
1174
1175static const struct gdb_xml_element svr4_library_list_children[] =
1176{
1177 {
1178 "library", svr4_library_attributes, NULL,
1179 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1180 library_list_start_library, NULL
1181 },
1182 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1183};
1184
1185static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1186{
1187 { "version", GDB_XML_AF_NONE, NULL, NULL },
1188 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1189 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1190};
1191
1192static const struct gdb_xml_element svr4_library_list_elements[] =
1193{
1194 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1195 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1196 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1197};
1198
2268b414
JK
1199/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1200
1201 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1202 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1203 empty, caller is responsible for freeing all its entries. */
1204
1205static int
1206svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1207{
2b6ff1c0
TT
1208 auto cleanup = make_scope_exit ([&] ()
1209 {
1210 svr4_free_library_list (&list->head);
1211 });
2268b414
JK
1212
1213 memset (list, 0, sizeof (*list));
1214 list->tailp = &list->head;
2eca4a8d 1215 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1216 svr4_library_list_elements, document, list) == 0)
1217 {
1218 /* Parsed successfully, keep the result. */
2b6ff1c0 1219 cleanup.release ();
2268b414
JK
1220 return 1;
1221 }
1222
2268b414
JK
1223 return 0;
1224}
1225
f9e14852 1226/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1227
1228 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1229 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1230 empty, caller is responsible for freeing all its entries.
1231
1232 Note that ANNEX must be NULL if the remote does not explicitly allow
1233 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1234 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1235
1236static int
f9e14852
GB
1237svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1238 const char *annex)
2268b414 1239{
f9e14852
GB
1240 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1241
2268b414 1242 /* Fetch the list of shared libraries. */
9018be22 1243 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1244 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1245 annex);
9018be22 1246 if (!svr4_library_document)
2268b414
JK
1247 return 0;
1248
9018be22 1249 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1250}
1251
1252#else
1253
1254static int
f9e14852
GB
1255svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1256 const char *annex)
2268b414
JK
1257{
1258 return 0;
1259}
1260
1261#endif
1262
34439770
DJ
1263/* If no shared library information is available from the dynamic
1264 linker, build a fallback list from other sources. */
1265
1266static struct so_list *
d70cc3ba 1267svr4_default_sos (svr4_info *info)
34439770 1268{
fe978cb0 1269 struct so_list *newobj;
1a816a87 1270
8e5c319d
JK
1271 if (!info->debug_loader_offset_p)
1272 return NULL;
34439770 1273
fe978cb0 1274 newobj = XCNEW (struct so_list);
76e75227 1275 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1276 newobj->lm_info = li;
34439770 1277
3957565a 1278 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1279 li->l_addr = info->debug_loader_offset;
1280 li->l_addr_p = 1;
34439770 1281
fe978cb0
PA
1282 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1283 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1284 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1285
fe978cb0 1286 return newobj;
34439770
DJ
1287}
1288
f9e14852
GB
1289/* Read the whole inferior libraries chain starting at address LM.
1290 Expect the first entry in the chain's previous entry to be PREV_LM.
1291 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1292 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1293 to it. Returns nonzero upon success. If zero is returned the
1294 entries stored to LINK_PTR_PTR are still valid although they may
1295 represent only part of the inferior library list. */
13437d4b 1296
f9e14852 1297static int
d70cc3ba 1298svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
f9e14852 1299 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1300{
c725e7b6 1301 CORE_ADDR first_l_name = 0;
f9e14852 1302 CORE_ADDR next_lm;
13437d4b 1303
cb08cc53 1304 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1305 {
cb08cc53 1306 int errcode;
e83e4e24 1307 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1308
b3bc8453 1309 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1310
a7961323 1311 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1312 newobj->lm_info = li;
1313 if (li == NULL)
b3bc8453 1314 return 0;
13437d4b 1315
d0e449a1 1316 next_lm = li->l_next;
492928e4 1317
d0e449a1 1318 if (li->l_prev != prev_lm)
492928e4 1319 {
2268b414 1320 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1321 paddress (target_gdbarch (), prev_lm),
d0e449a1 1322 paddress (target_gdbarch (), li->l_prev));
f9e14852 1323 return 0;
492928e4 1324 }
13437d4b
KB
1325
1326 /* For SVR4 versions, the first entry in the link map is for the
1327 inferior executable, so we must ignore it. For some versions of
1328 SVR4, it has no name. For others (Solaris 2.3 for example), it
1329 does have a name, so we can no longer use a missing name to
c378eb4e 1330 decide when to ignore it. */
d0e449a1 1331 if (ignore_first && li->l_prev == 0)
93a57060 1332 {
d0e449a1
SM
1333 first_l_name = li->l_name;
1334 info->main_lm_addr = li->lm_addr;
cb08cc53 1335 continue;
93a57060 1336 }
13437d4b 1337
cb08cc53 1338 /* Extract this shared object's name. */
d0e449a1
SM
1339 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1340 &errcode);
cb08cc53
JK
1341 if (errcode != 0)
1342 {
7d760051
UW
1343 /* If this entry's l_name address matches that of the
1344 inferior executable, then this is not a normal shared
1345 object, but (most likely) a vDSO. In this case, silently
1346 skip it; otherwise emit a warning. */
d0e449a1 1347 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1348 warning (_("Can't read pathname for load map: %s."),
1349 safe_strerror (errcode));
cb08cc53 1350 continue;
13437d4b
KB
1351 }
1352
e83e4e24 1353 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1354 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1355 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1356
cb08cc53
JK
1357 /* If this entry has no name, or its name matches the name
1358 for the main executable, don't include it in the list. */
fe978cb0 1359 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1360 continue;
e4cd0d6a 1361
fe978cb0 1362 newobj->next = 0;
b3bc8453
TT
1363 /* Don't free it now. */
1364 **link_ptr_ptr = newobj.release ();
1365 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1366 }
f9e14852
GB
1367
1368 return 1;
cb08cc53
JK
1369}
1370
f9e14852
GB
1371/* Read the full list of currently loaded shared objects directly
1372 from the inferior, without referring to any libraries read and
1373 stored by the probes interface. Handle special cases relating
1374 to the first elements of the list. */
cb08cc53
JK
1375
1376static struct so_list *
f9e14852 1377svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1378{
1379 CORE_ADDR lm;
1380 struct so_list *head = NULL;
1381 struct so_list **link_ptr = &head;
cb08cc53 1382 int ignore_first;
2268b414
JK
1383 struct svr4_library_list library_list;
1384
0c5bf5a9
JK
1385 /* Fall back to manual examination of the target if the packet is not
1386 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1387 tests a case where gdbserver cannot find the shared libraries list while
1388 GDB itself is able to find it via SYMFILE_OBJFILE.
1389
1390 Unfortunately statically linked inferiors will also fall back through this
1391 suboptimal code path. */
1392
f9e14852
GB
1393 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1394 NULL);
1395 if (info->using_xfer)
2268b414
JK
1396 {
1397 if (library_list.main_lm)
f9e14852 1398 info->main_lm_addr = library_list.main_lm;
2268b414 1399
d70cc3ba 1400 return library_list.head ? library_list.head : svr4_default_sos (info);
2268b414 1401 }
cb08cc53 1402
cb08cc53
JK
1403 /* Always locate the debug struct, in case it has moved. */
1404 info->debug_base = 0;
1405 locate_base (info);
1406
1407 /* If we can't find the dynamic linker's base structure, this
1408 must not be a dynamically linked executable. Hmm. */
1409 if (! info->debug_base)
d70cc3ba 1410 return svr4_default_sos (info);
cb08cc53
JK
1411
1412 /* Assume that everything is a library if the dynamic loader was loaded
1413 late by a static executable. */
1414 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1415 ignore_first = 0;
1416 else
1417 ignore_first = 1;
1418
2b6ff1c0
TT
1419 auto cleanup = make_scope_exit ([&] ()
1420 {
1421 svr4_free_library_list (&head);
1422 });
cb08cc53
JK
1423
1424 /* Walk the inferior's link map list, and build our list of
1425 `struct so_list' nodes. */
1426 lm = solib_svr4_r_map (info);
1427 if (lm)
d70cc3ba 1428 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1429
1430 /* On Solaris, the dynamic linker is not in the normal list of
1431 shared objects, so make sure we pick it up too. Having
1432 symbol information for the dynamic linker is quite crucial
1433 for skipping dynamic linker resolver code. */
1434 lm = solib_svr4_r_ldsomap (info);
1435 if (lm)
d70cc3ba 1436 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
cb08cc53 1437
2b6ff1c0 1438 cleanup.release ();
13437d4b 1439
34439770 1440 if (head == NULL)
d70cc3ba 1441 return svr4_default_sos (info);
34439770 1442
13437d4b
KB
1443 return head;
1444}
1445
8b9a549d
PA
1446/* Implement the main part of the "current_sos" target_so_ops
1447 method. */
f9e14852
GB
1448
1449static struct so_list *
d70cc3ba 1450svr4_current_sos_1 (svr4_info *info)
f9e14852 1451{
f9e14852
GB
1452 /* If the solib list has been read and stored by the probes
1453 interface then we return a copy of the stored list. */
1454 if (info->solib_list != NULL)
1455 return svr4_copy_library_list (info->solib_list);
1456
1457 /* Otherwise obtain the solib list directly from the inferior. */
1458 return svr4_current_sos_direct (info);
1459}
1460
8b9a549d
PA
1461/* Implement the "current_sos" target_so_ops method. */
1462
1463static struct so_list *
1464svr4_current_sos (void)
1465{
d70cc3ba
SM
1466 svr4_info *info = get_svr4_info (current_program_space);
1467 struct so_list *so_head = svr4_current_sos_1 (info);
8b9a549d
PA
1468 struct mem_range vsyscall_range;
1469
1470 /* Filter out the vDSO module, if present. Its symbol file would
1471 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1472 managed by symfile-mem.c:add_vsyscall_page. */
1473 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1474 && vsyscall_range.length != 0)
1475 {
1476 struct so_list **sop;
1477
1478 sop = &so_head;
1479 while (*sop != NULL)
1480 {
1481 struct so_list *so = *sop;
1482
1483 /* We can't simply match the vDSO by starting address alone,
1484 because lm_info->l_addr_inferior (and also l_addr) do not
1485 necessarily represent the real starting address of the
1486 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1487 field (the ".dynamic" section of the shared object)
1488 always points at the absolute/resolved address though.
1489 So check whether that address is inside the vDSO's
1490 mapping instead.
1491
1492 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1493 0-based ELF, and we see:
1494
1495 (gdb) info auxv
1496 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1497 (gdb) p/x *_r_debug.r_map.l_next
1498 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1499
1500 And on Linux 2.6.32 (x86_64) we see:
1501
1502 (gdb) info auxv
1503 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1504 (gdb) p/x *_r_debug.r_map.l_next
1505 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1506
1507 Dumping that vDSO shows:
1508
1509 (gdb) info proc mappings
1510 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1511 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1512 # readelf -Wa vdso.bin
1513 [...]
1514 Entry point address: 0xffffffffff700700
1515 [...]
1516 Section Headers:
1517 [Nr] Name Type Address Off Size
1518 [ 0] NULL 0000000000000000 000000 000000
1519 [ 1] .hash HASH ffffffffff700120 000120 000038
1520 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1521 [...]
1522 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1523 */
d0e449a1
SM
1524
1525 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1526
1527 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1528 {
1529 *sop = so->next;
1530 free_so (so);
1531 break;
1532 }
1533
1534 sop = &so->next;
1535 }
1536 }
1537
1538 return so_head;
1539}
1540
93a57060 1541/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1542
1543CORE_ADDR
1544svr4_fetch_objfile_link_map (struct objfile *objfile)
1545{
93a57060 1546 struct so_list *so;
d70cc3ba 1547 struct svr4_info *info = get_svr4_info (objfile->pspace);
bc4a16ae 1548
93a57060 1549 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1550 if (info->main_lm_addr == 0)
e696b3ad 1551 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1552
93a57060
DJ
1553 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1554 if (objfile == symfile_objfile)
1a816a87 1555 return info->main_lm_addr;
93a57060 1556
df22c1e5
JB
1557 /* If OBJFILE is a separate debug object file, look for the
1558 original object file. */
1559 if (objfile->separate_debug_objfile_backlink != NULL)
1560 objfile = objfile->separate_debug_objfile_backlink;
1561
93a57060
DJ
1562 /* The other link map addresses may be found by examining the list
1563 of shared libraries. */
1564 for (so = master_so_list (); so; so = so->next)
1565 if (so->objfile == objfile)
d0e449a1
SM
1566 {
1567 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1568
1569 return li->lm_addr;
1570 }
93a57060
DJ
1571
1572 /* Not found! */
bc4a16ae
EZ
1573 return 0;
1574}
13437d4b
KB
1575
1576/* On some systems, the only way to recognize the link map entry for
1577 the main executable file is by looking at its name. Return
1578 non-zero iff SONAME matches one of the known main executable names. */
1579
1580static int
bc043ef3 1581match_main (const char *soname)
13437d4b 1582{
bc043ef3 1583 const char * const *mainp;
13437d4b
KB
1584
1585 for (mainp = main_name_list; *mainp != NULL; mainp++)
1586 {
1587 if (strcmp (soname, *mainp) == 0)
1588 return (1);
1589 }
1590
1591 return (0);
1592}
1593
13437d4b
KB
1594/* Return 1 if PC lies in the dynamic symbol resolution code of the
1595 SVR4 run time loader. */
13437d4b 1596
7d522c90 1597int
d7fa2ae2 1598svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1599{
d70cc3ba 1600 struct svr4_info *info = get_svr4_info (current_program_space);
6c95b8df
PA
1601
1602 return ((pc >= info->interp_text_sect_low
1603 && pc < info->interp_text_sect_high)
1604 || (pc >= info->interp_plt_sect_low
1605 && pc < info->interp_plt_sect_high)
3e5d3a5a 1606 || in_plt_section (pc)
0875794a 1607 || in_gnu_ifunc_stub (pc));
13437d4b 1608}
13437d4b 1609
2f4950cd
AC
1610/* Given an executable's ABFD and target, compute the entry-point
1611 address. */
1612
1613static CORE_ADDR
1614exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1615{
8c2b9656
YQ
1616 CORE_ADDR addr;
1617
2f4950cd
AC
1618 /* KevinB wrote ... for most targets, the address returned by
1619 bfd_get_start_address() is the entry point for the start
1620 function. But, for some targets, bfd_get_start_address() returns
1621 the address of a function descriptor from which the entry point
1622 address may be extracted. This address is extracted by
1623 gdbarch_convert_from_func_ptr_addr(). The method
1624 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1625 function for targets which don't use function descriptors. */
8c2b9656 1626 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1627 bfd_get_start_address (abfd),
1628 targ);
8c2b9656 1629 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1630}
13437d4b 1631
f9e14852
GB
1632/* A probe and its associated action. */
1633
1634struct probe_and_action
1635{
1636 /* The probe. */
935676c9 1637 probe *prob;
f9e14852 1638
729662a5
TT
1639 /* The relocated address of the probe. */
1640 CORE_ADDR address;
1641
f9e14852
GB
1642 /* The action. */
1643 enum probe_action action;
7905fc35
PA
1644
1645 /* The objfile where this probe was found. */
1646 struct objfile *objfile;
f9e14852
GB
1647};
1648
1649/* Returns a hash code for the probe_and_action referenced by p. */
1650
1651static hashval_t
1652hash_probe_and_action (const void *p)
1653{
19ba03f4 1654 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1655
729662a5 1656 return (hashval_t) pa->address;
f9e14852
GB
1657}
1658
1659/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1660 are equal. */
1661
1662static int
1663equal_probe_and_action (const void *p1, const void *p2)
1664{
19ba03f4
SM
1665 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1666 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1667
729662a5 1668 return pa1->address == pa2->address;
f9e14852
GB
1669}
1670
7905fc35
PA
1671/* Traversal function for probes_table_remove_objfile_probes. */
1672
1673static int
1674probes_table_htab_remove_objfile_probes (void **slot, void *info)
1675{
1676 probe_and_action *pa = (probe_and_action *) *slot;
1677 struct objfile *objfile = (struct objfile *) info;
1678
1679 if (pa->objfile == objfile)
d70cc3ba 1680 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table, slot);
7905fc35
PA
1681
1682 return 1;
1683}
1684
1685/* Remove all probes that belong to OBJFILE from the probes table. */
1686
1687static void
1688probes_table_remove_objfile_probes (struct objfile *objfile)
1689{
d70cc3ba 1690 svr4_info *info = get_svr4_info (objfile->pspace);
7905fc35
PA
1691 if (info->probes_table != nullptr)
1692 htab_traverse_noresize (info->probes_table,
1693 probes_table_htab_remove_objfile_probes, objfile);
1694}
1695
f9e14852
GB
1696/* Register a solib event probe and its associated action in the
1697 probes table. */
1698
1699static void
d70cc3ba 1700register_solib_event_probe (svr4_info *info, struct objfile *objfile,
7905fc35 1701 probe *prob, CORE_ADDR address,
729662a5 1702 enum probe_action action)
f9e14852 1703{
f9e14852
GB
1704 struct probe_and_action lookup, *pa;
1705 void **slot;
1706
1707 /* Create the probes table, if necessary. */
1708 if (info->probes_table == NULL)
1709 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1710 equal_probe_and_action,
1711 xfree, xcalloc, xfree);
1712
729662a5 1713 lookup.address = address;
f9e14852
GB
1714 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1715 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1716
1717 pa = XCNEW (struct probe_and_action);
935676c9 1718 pa->prob = prob;
729662a5 1719 pa->address = address;
f9e14852 1720 pa->action = action;
7905fc35 1721 pa->objfile = objfile;
f9e14852
GB
1722
1723 *slot = pa;
1724}
1725
1726/* Get the solib event probe at the specified location, and the
1727 action associated with it. Returns NULL if no solib event probe
1728 was found. */
1729
1730static struct probe_and_action *
1731solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1732{
f9e14852
GB
1733 struct probe_and_action lookup;
1734 void **slot;
1735
729662a5 1736 lookup.address = address;
f9e14852
GB
1737 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1738
1739 if (slot == NULL)
1740 return NULL;
1741
1742 return (struct probe_and_action *) *slot;
1743}
1744
1745/* Decide what action to take when the specified solib event probe is
1746 hit. */
1747
1748static enum probe_action
1749solib_event_probe_action (struct probe_and_action *pa)
1750{
1751 enum probe_action action;
73c6b475 1752 unsigned probe_argc = 0;
08a6411c 1753 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1754
1755 action = pa->action;
1756 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1757 return action;
1758
1759 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1760
1761 /* Check that an appropriate number of arguments has been supplied.
1762 We expect:
1763 arg0: Lmid_t lmid (mandatory)
1764 arg1: struct r_debug *debug_base (mandatory)
1765 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1766 try
3bd7e5b7 1767 {
935676c9 1768 probe_argc = pa->prob->get_argument_count (frame);
3bd7e5b7 1769 }
230d2906 1770 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1771 {
1772 exception_print (gdb_stderr, ex);
1773 probe_argc = 0;
1774 }
3bd7e5b7 1775
935676c9
SDJ
1776 /* If get_argument_count throws an exception, probe_argc will be set
1777 to zero. However, if pa->prob does not have arguments, then
1778 get_argument_count will succeed but probe_argc will also be zero.
1779 Both cases happen because of different things, but they are
1780 treated equally here: action will be set to
3bd7e5b7 1781 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1782 if (probe_argc == 2)
1783 action = FULL_RELOAD;
1784 else if (probe_argc < 2)
1785 action = PROBES_INTERFACE_FAILED;
1786
1787 return action;
1788}
1789
1790/* Populate the shared object list by reading the entire list of
1791 shared objects from the inferior. Handle special cases relating
1792 to the first elements of the list. Returns nonzero on success. */
1793
1794static int
1795solist_update_full (struct svr4_info *info)
1796{
1797 free_solib_list (info);
1798 info->solib_list = svr4_current_sos_direct (info);
1799
1800 return 1;
1801}
1802
1803/* Update the shared object list starting from the link-map entry
1804 passed by the linker in the probe's third argument. Returns
1805 nonzero if the list was successfully updated, or zero to indicate
1806 failure. */
1807
1808static int
1809solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1810{
1811 struct so_list *tail;
1812 CORE_ADDR prev_lm;
1813
1814 /* svr4_current_sos_direct contains logic to handle a number of
1815 special cases relating to the first elements of the list. To
1816 avoid duplicating this logic we defer to solist_update_full
1817 if the list is empty. */
1818 if (info->solib_list == NULL)
1819 return 0;
1820
1821 /* Fall back to a full update if we are using a remote target
1822 that does not support incremental transfers. */
1823 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1824 return 0;
1825
1826 /* Walk to the end of the list. */
1827 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1828 /* Nothing. */;
d0e449a1
SM
1829
1830 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1831 prev_lm = li->lm_addr;
f9e14852
GB
1832
1833 /* Read the new objects. */
1834 if (info->using_xfer)
1835 {
1836 struct svr4_library_list library_list;
1837 char annex[64];
1838
1839 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1840 phex_nz (lm, sizeof (lm)),
1841 phex_nz (prev_lm, sizeof (prev_lm)));
1842 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1843 return 0;
1844
1845 tail->next = library_list.head;
1846 }
1847 else
1848 {
1849 struct so_list **link = &tail->next;
1850
1851 /* IGNORE_FIRST may safely be set to zero here because the
1852 above check and deferral to solist_update_full ensures
1853 that this call to svr4_read_so_list will never see the
1854 first element. */
d70cc3ba 1855 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
f9e14852
GB
1856 return 0;
1857 }
1858
1859 return 1;
1860}
1861
1862/* Disable the probes-based linker interface and revert to the
1863 original interface. We don't reset the breakpoints as the
1864 ones set up for the probes-based interface are adequate. */
1865
1866static void
d70cc3ba 1867disable_probes_interface (svr4_info *info)
f9e14852 1868{
f9e14852
GB
1869 warning (_("Probes-based dynamic linker interface failed.\n"
1870 "Reverting to original interface.\n"));
1871
1872 free_probes_table (info);
1873 free_solib_list (info);
1874}
1875
1876/* Update the solib list as appropriate when using the
1877 probes-based linker interface. Do nothing if using the
1878 standard interface. */
1879
1880static void
1881svr4_handle_solib_event (void)
1882{
d70cc3ba 1883 struct svr4_info *info = get_svr4_info (current_program_space);
f9e14852
GB
1884 struct probe_and_action *pa;
1885 enum probe_action action;
ad1c917a 1886 struct value *val = NULL;
f9e14852 1887 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1888 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1889
1890 /* Do nothing if not using the probes interface. */
1891 if (info->probes_table == NULL)
1892 return;
1893
1894 /* If anything goes wrong we revert to the original linker
1895 interface. */
d70cc3ba
SM
1896 auto cleanup = make_scope_exit ([info] ()
1897 {
1898 disable_probes_interface (info);
1899 });
f9e14852
GB
1900
1901 pc = regcache_read_pc (get_current_regcache ());
1902 pa = solib_event_probe_at (info, pc);
1903 if (pa == NULL)
d01c5877 1904 return;
f9e14852
GB
1905
1906 action = solib_event_probe_action (pa);
1907 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1908 return;
f9e14852
GB
1909
1910 if (action == DO_NOTHING)
1911 {
d01c5877 1912 cleanup.release ();
f9e14852
GB
1913 return;
1914 }
1915
935676c9 1916 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1917 using find_pc_section. find_pc_section is accelerated by a cache
1918 called the section map. The section map is invalidated every
1919 time a shared library is loaded or unloaded, and if the inferior
1920 is generating a lot of shared library events then the section map
1921 will be updated every time svr4_handle_solib_event is called.
1922 We called find_pc_section in svr4_create_solib_event_breakpoints,
1923 so we can guarantee that the dynamic linker's sections are in the
1924 section map. We can therefore inhibit section map updates across
935676c9 1925 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1926 {
1927 scoped_restore inhibit_updates
1928 = inhibit_section_map_updates (current_program_space);
f9e14852 1929
a70b8144 1930 try
06424eac
TT
1931 {
1932 val = pa->prob->evaluate_argument (1, frame);
1933 }
230d2906 1934 catch (const gdb_exception_error &ex)
06424eac
TT
1935 {
1936 exception_print (gdb_stderr, ex);
1937 val = NULL;
1938 }
f9e14852 1939
06424eac 1940 if (val == NULL)
d01c5877 1941 return;
f9e14852 1942
06424eac
TT
1943 debug_base = value_as_address (val);
1944 if (debug_base == 0)
d01c5877 1945 return;
f9e14852 1946
06424eac
TT
1947 /* Always locate the debug struct, in case it moved. */
1948 info->debug_base = 0;
1949 if (locate_base (info) == 0)
d01c5877 1950 return;
3bd7e5b7 1951
06424eac
TT
1952 /* GDB does not currently support libraries loaded via dlmopen
1953 into namespaces other than the initial one. We must ignore
1954 any namespace other than the initial namespace here until
1955 support for this is added to GDB. */
1956 if (debug_base != info->debug_base)
1957 action = DO_NOTHING;
f9e14852 1958
06424eac
TT
1959 if (action == UPDATE_OR_RELOAD)
1960 {
a70b8144 1961 try
06424eac
TT
1962 {
1963 val = pa->prob->evaluate_argument (2, frame);
1964 }
230d2906 1965 catch (const gdb_exception_error &ex)
06424eac
TT
1966 {
1967 exception_print (gdb_stderr, ex);
06424eac
TT
1968 return;
1969 }
06424eac
TT
1970
1971 if (val != NULL)
1972 lm = value_as_address (val);
1973
1974 if (lm == 0)
1975 action = FULL_RELOAD;
1976 }
f9e14852 1977
06424eac
TT
1978 /* Resume section map updates. Closing the scope is
1979 sufficient. */
1980 }
f9e14852
GB
1981
1982 if (action == UPDATE_OR_RELOAD)
1983 {
1984 if (!solist_update_incremental (info, lm))
1985 action = FULL_RELOAD;
1986 }
1987
1988 if (action == FULL_RELOAD)
1989 {
1990 if (!solist_update_full (info))
d01c5877 1991 return;
f9e14852
GB
1992 }
1993
d01c5877 1994 cleanup.release ();
f9e14852
GB
1995}
1996
1997/* Helper function for svr4_update_solib_event_breakpoints. */
1998
1999static int
2000svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2001{
2002 struct bp_location *loc;
2003
2004 if (b->type != bp_shlib_event)
2005 {
2006 /* Continue iterating. */
2007 return 0;
2008 }
2009
2010 for (loc = b->loc; loc != NULL; loc = loc->next)
2011 {
2012 struct svr4_info *info;
2013 struct probe_and_action *pa;
2014
19ba03f4
SM
2015 info = ((struct svr4_info *)
2016 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2017 if (info == NULL || info->probes_table == NULL)
2018 continue;
2019
2020 pa = solib_event_probe_at (info, loc->address);
2021 if (pa == NULL)
2022 continue;
2023
2024 if (pa->action == DO_NOTHING)
2025 {
2026 if (b->enable_state == bp_disabled && stop_on_solib_events)
2027 enable_breakpoint (b);
2028 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2029 disable_breakpoint (b);
2030 }
2031
2032 break;
2033 }
2034
2035 /* Continue iterating. */
2036 return 0;
2037}
2038
2039/* Enable or disable optional solib event breakpoints as appropriate.
2040 Called whenever stop_on_solib_events is changed. */
2041
2042static void
2043svr4_update_solib_event_breakpoints (void)
2044{
2045 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2046}
2047
2048/* Create and register solib event breakpoints. PROBES is an array
2049 of NUM_PROBES elements, each of which is vector of probes. A
2050 solib event breakpoint will be created and registered for each
2051 probe. */
2052
2053static void
d70cc3ba 2054svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
45461e0d 2055 const std::vector<probe *> *probes,
729662a5 2056 struct objfile *objfile)
f9e14852 2057{
45461e0d 2058 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2059 {
2060 enum probe_action action = probe_info[i].action;
f9e14852 2061
45461e0d 2062 for (probe *p : probes[i])
f9e14852 2063 {
935676c9 2064 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2065
2066 create_solib_event_breakpoint (gdbarch, address);
d70cc3ba 2067 register_solib_event_probe (info, objfile, p, address, action);
f9e14852
GB
2068 }
2069 }
2070
2071 svr4_update_solib_event_breakpoints ();
2072}
2073
2074/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2075 before and after mapping and unmapping shared libraries. The sole
2076 purpose of this method is to allow debuggers to set a breakpoint so
2077 they can track these changes.
2078
2079 Some versions of the glibc dynamic linker contain named probes
2080 to allow more fine grained stopping. Given the address of the
2081 original marker function, this function attempts to find these
2082 probes, and if found, sets breakpoints on those instead. If the
2083 probes aren't found, a single breakpoint is set on the original
2084 marker function. */
2085
2086static void
d70cc3ba 2087svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
f9e14852
GB
2088 CORE_ADDR address)
2089{
2090 struct obj_section *os;
2091
2092 os = find_pc_section (address);
2093 if (os != NULL)
2094 {
2095 int with_prefix;
2096
2097 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2098 {
45461e0d 2099 std::vector<probe *> probes[NUM_PROBES];
f9e14852 2100 int all_probes_found = 1;
25f9533e 2101 int checked_can_use_probe_arguments = 0;
f9e14852 2102
45461e0d 2103 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2104 {
2105 const char *name = probe_info[i].name;
935676c9 2106 probe *p;
f9e14852
GB
2107 char buf[32];
2108
2109 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2110 shipped with an early version of the probes code in
2111 which the probes' names were prefixed with "rtld_"
2112 and the "map_failed" probe did not exist. The
2113 locations of the probes are otherwise the same, so
2114 we check for probes with prefixed names if probes
2115 with unprefixed names are not present. */
2116 if (with_prefix)
2117 {
2118 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2119 name = buf;
2120 }
2121
2122 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2123
2124 /* The "map_failed" probe did not exist in early
2125 versions of the probes code in which the probes'
2126 names were prefixed with "rtld_". */
2127 if (strcmp (name, "rtld_map_failed") == 0)
2128 continue;
2129
45461e0d 2130 if (probes[i].empty ())
f9e14852
GB
2131 {
2132 all_probes_found = 0;
2133 break;
2134 }
25f9533e
SDJ
2135
2136 /* Ensure probe arguments can be evaluated. */
2137 if (!checked_can_use_probe_arguments)
2138 {
45461e0d 2139 p = probes[i][0];
935676c9 2140 if (!p->can_evaluate_arguments ())
25f9533e
SDJ
2141 {
2142 all_probes_found = 0;
2143 break;
2144 }
2145 checked_can_use_probe_arguments = 1;
2146 }
f9e14852
GB
2147 }
2148
2149 if (all_probes_found)
d70cc3ba 2150 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
f9e14852 2151
f9e14852
GB
2152 if (all_probes_found)
2153 return;
2154 }
2155 }
2156
2157 create_solib_event_breakpoint (gdbarch, address);
2158}
2159
cb457ae2
YQ
2160/* Helper function for gdb_bfd_lookup_symbol. */
2161
2162static int
3953f15c 2163cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2164{
2165 return (strcmp (sym->name, (const char *) data) == 0
2166 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2167}
7f86f058 2168/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2169
2170 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2171 debugger interface, support for arranging for the inferior to hit
2172 a breakpoint after mapping in the shared libraries. This function
2173 enables that breakpoint.
2174
2175 For SunOS, there is a special flag location (in_debugger) which we
2176 set to 1. When the dynamic linker sees this flag set, it will set
2177 a breakpoint at a location known only to itself, after saving the
2178 original contents of that place and the breakpoint address itself,
2179 in it's own internal structures. When we resume the inferior, it
2180 will eventually take a SIGTRAP when it runs into the breakpoint.
2181 We handle this (in a different place) by restoring the contents of
2182 the breakpointed location (which is only known after it stops),
2183 chasing around to locate the shared libraries that have been
2184 loaded, then resuming.
2185
2186 For SVR4, the debugger interface structure contains a member (r_brk)
2187 which is statically initialized at the time the shared library is
2188 built, to the offset of a function (_r_debug_state) which is guaran-
2189 teed to be called once before mapping in a library, and again when
2190 the mapping is complete. At the time we are examining this member,
2191 it contains only the unrelocated offset of the function, so we have
2192 to do our own relocation. Later, when the dynamic linker actually
2193 runs, it relocates r_brk to be the actual address of _r_debug_state().
2194
2195 The debugger interface structure also contains an enumeration which
2196 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2197 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2198 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2199
2200static int
268a4a75 2201enable_break (struct svr4_info *info, int from_tty)
13437d4b 2202{
3b7344d5 2203 struct bound_minimal_symbol msymbol;
bc043ef3 2204 const char * const *bkpt_namep;
13437d4b 2205 asection *interp_sect;
7cd25cfc 2206 CORE_ADDR sym_addr;
13437d4b 2207
6c95b8df
PA
2208 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2209 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2210
7cd25cfc
DJ
2211 /* If we already have a shared library list in the target, and
2212 r_debug contains r_brk, set the breakpoint there - this should
2213 mean r_brk has already been relocated. Assume the dynamic linker
2214 is the object containing r_brk. */
2215
e696b3ad 2216 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2217 sym_addr = 0;
1a816a87
PA
2218 if (info->debug_base && solib_svr4_r_map (info) != 0)
2219 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2220
2221 if (sym_addr != 0)
2222 {
2223 struct obj_section *os;
2224
b36ec657 2225 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2226 (target_gdbarch (),
2227 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2228 sym_addr,
2229 current_top_target ()));
b36ec657 2230
48379de6
DE
2231 /* On at least some versions of Solaris there's a dynamic relocation
2232 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2233 we get control before the dynamic linker has self-relocated.
2234 Check if SYM_ADDR is in a known section, if it is assume we can
2235 trust its value. This is just a heuristic though, it could go away
2236 or be replaced if it's getting in the way.
2237
2238 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2239 however it's spelled in your particular system) is ARM or Thumb.
2240 That knowledge is encoded in the address, if it's Thumb the low bit
2241 is 1. However, we've stripped that info above and it's not clear
2242 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2243 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2244 find_pc_section verifies we know about the address and have some
2245 hope of computing the right kind of breakpoint to use (via
2246 symbol info). It does mean that GDB needs to be pointed at a
2247 non-stripped version of the dynamic linker in order to obtain
2248 information it already knows about. Sigh. */
2249
7cd25cfc
DJ
2250 os = find_pc_section (sym_addr);
2251 if (os != NULL)
2252 {
2253 /* Record the relocated start and end address of the dynamic linker
2254 text and plt section for svr4_in_dynsym_resolve_code. */
2255 bfd *tmp_bfd;
2256 CORE_ADDR load_addr;
2257
2258 tmp_bfd = os->objfile->obfd;
2259 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2260 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2261
2262 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2263 if (interp_sect)
2264 {
6c95b8df 2265 info->interp_text_sect_low =
7cd25cfc 2266 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2267 info->interp_text_sect_high =
2268 info->interp_text_sect_low
2269 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2270 }
2271 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2272 if (interp_sect)
2273 {
6c95b8df 2274 info->interp_plt_sect_low =
7cd25cfc 2275 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2276 info->interp_plt_sect_high =
2277 info->interp_plt_sect_low
2278 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2279 }
2280
d70cc3ba 2281 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
7cd25cfc
DJ
2282 return 1;
2283 }
2284 }
2285
97ec2c2f 2286 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2287 into the old breakpoint at symbol code. */
17658d46
SM
2288 gdb::optional<gdb::byte_vector> interp_name_holder
2289 = find_program_interpreter ();
2290 if (interp_name_holder)
13437d4b 2291 {
17658d46 2292 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2293 CORE_ADDR load_addr = 0;
2294 int load_addr_found = 0;
2ec9a4f8 2295 int loader_found_in_list = 0;
f8766ec1 2296 struct so_list *so;
2f4950cd 2297 struct target_ops *tmp_bfd_target;
13437d4b 2298
7cd25cfc 2299 sym_addr = 0;
13437d4b
KB
2300
2301 /* Now we need to figure out where the dynamic linker was
2302 loaded so that we can load its symbols and place a breakpoint
2303 in the dynamic linker itself.
2304
2305 This address is stored on the stack. However, I've been unable
2306 to find any magic formula to find it for Solaris (appears to
2307 be trivial on GNU/Linux). Therefore, we have to try an alternate
2308 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2309
192b62ce 2310 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2311 try
f1838a98 2312 {
97ec2c2f 2313 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2314 }
230d2906 2315 catch (const gdb_exception &ex)
492d29ea
PA
2316 {
2317 }
492d29ea 2318
13437d4b
KB
2319 if (tmp_bfd == NULL)
2320 goto bkpt_at_symbol;
2321
2f4950cd 2322 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2323 well as BFD operations can be used. target_bfd_reopen
2324 acquires its own reference. */
2325 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2326
f8766ec1
KB
2327 /* On a running target, we can get the dynamic linker's base
2328 address from the shared library table. */
f8766ec1
KB
2329 so = master_so_list ();
2330 while (so)
8ad2fcde 2331 {
97ec2c2f 2332 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2333 {
2334 load_addr_found = 1;
2ec9a4f8 2335 loader_found_in_list = 1;
192b62ce 2336 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2337 break;
2338 }
f8766ec1 2339 so = so->next;
8ad2fcde
KB
2340 }
2341
8d4e36ba
JB
2342 /* If we were not able to find the base address of the loader
2343 from our so_list, then try using the AT_BASE auxilliary entry. */
2344 if (!load_addr_found)
8b88a78e 2345 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2346 {
f5656ead 2347 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2348
2349 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2350 that `+ load_addr' will overflow CORE_ADDR width not creating
2351 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2352 GDB. */
2353
d182d057 2354 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2355 {
d182d057 2356 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2357 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2358 tmp_bfd_target);
2359
2360 gdb_assert (load_addr < space_size);
2361
2362 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2363 64bit ld.so with 32bit executable, it should not happen. */
2364
2365 if (tmp_entry_point < space_size
2366 && tmp_entry_point + load_addr >= space_size)
2367 load_addr -= space_size;
2368 }
2369
2370 load_addr_found = 1;
2371 }
8d4e36ba 2372
8ad2fcde
KB
2373 /* Otherwise we find the dynamic linker's base address by examining
2374 the current pc (which should point at the entry point for the
8d4e36ba
JB
2375 dynamic linker) and subtracting the offset of the entry point.
2376
2377 This is more fragile than the previous approaches, but is a good
2378 fallback method because it has actually been working well in
2379 most cases. */
8ad2fcde 2380 if (!load_addr_found)
fb14de7b 2381 {
c2250ad1 2382 struct regcache *regcache
f5656ead 2383 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2384
fb14de7b 2385 load_addr = (regcache_read_pc (regcache)
192b62ce 2386 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2387 }
2ec9a4f8
DJ
2388
2389 if (!loader_found_in_list)
34439770 2390 {
1a816a87
PA
2391 info->debug_loader_name = xstrdup (interp_name);
2392 info->debug_loader_offset_p = 1;
2393 info->debug_loader_offset = load_addr;
e696b3ad 2394 solib_add (NULL, from_tty, auto_solib_add);
34439770 2395 }
13437d4b
KB
2396
2397 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2398 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2399 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2400 if (interp_sect)
2401 {
6c95b8df 2402 info->interp_text_sect_low =
192b62ce 2403 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2404 info->interp_text_sect_high =
2405 info->interp_text_sect_low
192b62ce 2406 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2407 }
192b62ce 2408 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2409 if (interp_sect)
2410 {
6c95b8df 2411 info->interp_plt_sect_low =
192b62ce 2412 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2413 info->interp_plt_sect_high =
2414 info->interp_plt_sect_low
192b62ce 2415 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2416 }
2417
2418 /* Now try to set a breakpoint in the dynamic linker. */
2419 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2420 {
192b62ce
TT
2421 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2422 cmp_name_and_sec_flags,
3953f15c 2423 *bkpt_namep);
13437d4b
KB
2424 if (sym_addr != 0)
2425 break;
2426 }
2427
2bbe3cc1
DJ
2428 if (sym_addr != 0)
2429 /* Convert 'sym_addr' from a function pointer to an address.
2430 Because we pass tmp_bfd_target instead of the current
2431 target, this will always produce an unrelocated value. */
f5656ead 2432 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2433 sym_addr,
2434 tmp_bfd_target);
2435
695c3173
TT
2436 /* We're done with both the temporary bfd and target. Closing
2437 the target closes the underlying bfd, because it holds the
2438 only remaining reference. */
460014f5 2439 target_close (tmp_bfd_target);
13437d4b
KB
2440
2441 if (sym_addr != 0)
2442 {
d70cc3ba 2443 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
f9e14852 2444 load_addr + sym_addr);
13437d4b
KB
2445 return 1;
2446 }
2447
2448 /* For whatever reason we couldn't set a breakpoint in the dynamic
2449 linker. Warn and drop into the old code. */
2450 bkpt_at_symbol:
82d03102
PG
2451 warning (_("Unable to find dynamic linker breakpoint function.\n"
2452 "GDB will be unable to debug shared library initializers\n"
2453 "and track explicitly loaded dynamic code."));
13437d4b 2454 }
13437d4b 2455
e499d0f1
DJ
2456 /* Scan through the lists of symbols, trying to look up the symbol and
2457 set a breakpoint there. Terminate loop when we/if we succeed. */
2458
2459 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2460 {
2461 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2462 if ((msymbol.minsym != NULL)
77e371c0 2463 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2464 {
77e371c0 2465 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2466 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2467 sym_addr,
8b88a78e 2468 current_top_target ());
d70cc3ba
SM
2469 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2470 sym_addr);
e499d0f1
DJ
2471 return 1;
2472 }
2473 }
13437d4b 2474
17658d46 2475 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2476 {
c6490bf2 2477 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2478 {
c6490bf2 2479 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2480 if ((msymbol.minsym != NULL)
77e371c0 2481 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2482 {
77e371c0 2483 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2484 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2485 sym_addr,
8b88a78e 2486 current_top_target ());
d70cc3ba
SM
2487 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2488 sym_addr);
c6490bf2
KB
2489 return 1;
2490 }
13437d4b
KB
2491 }
2492 }
542c95c2 2493 return 0;
13437d4b
KB
2494}
2495
d1012b8e 2496/* Read the ELF program headers from ABFD. */
e2a44558 2497
d1012b8e
SM
2498static gdb::optional<gdb::byte_vector>
2499read_program_headers_from_bfd (bfd *abfd)
e2a44558 2500{
d1012b8e
SM
2501 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2502 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2503 if (phdrs_size == 0)
2504 return {};
09919ac2 2505
d1012b8e 2506 gdb::byte_vector buf (phdrs_size);
09919ac2 2507 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2508 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2509 return {};
09919ac2
JK
2510
2511 return buf;
b8040f19
JK
2512}
2513
01c30d6e
JK
2514/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2515 exec_bfd. Otherwise return 0.
2516
2517 We relocate all of the sections by the same amount. This
c378eb4e 2518 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2519 According to the System V Application Binary Interface,
2520 Edition 4.1, page 5-5:
2521
2522 ... Though the system chooses virtual addresses for
2523 individual processes, it maintains the segments' relative
2524 positions. Because position-independent code uses relative
2525 addressesing between segments, the difference between
2526 virtual addresses in memory must match the difference
2527 between virtual addresses in the file. The difference
2528 between the virtual address of any segment in memory and
2529 the corresponding virtual address in the file is thus a
2530 single constant value for any one executable or shared
2531 object in a given process. This difference is the base
2532 address. One use of the base address is to relocate the
2533 memory image of the program during dynamic linking.
2534
2535 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2536 ABI and is left unspecified in some of the earlier editions.
2537
2538 Decide if the objfile needs to be relocated. As indicated above, we will
2539 only be here when execution is stopped. But during attachment PC can be at
2540 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2541 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2542 regcache_read_pc would point to the interpreter and not the main executable.
2543
2544 So, to summarize, relocations are necessary when the start address obtained
2545 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2546
09919ac2
JK
2547 [ The astute reader will note that we also test to make sure that
2548 the executable in question has the DYNAMIC flag set. It is my
2549 opinion that this test is unnecessary (undesirable even). It
2550 was added to avoid inadvertent relocation of an executable
2551 whose e_type member in the ELF header is not ET_DYN. There may
2552 be a time in the future when it is desirable to do relocations
2553 on other types of files as well in which case this condition
2554 should either be removed or modified to accomodate the new file
2555 type. - Kevin, Nov 2000. ] */
b8040f19 2556
01c30d6e
JK
2557static int
2558svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2559{
41752192
JK
2560 /* ENTRY_POINT is a possible function descriptor - before
2561 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2562 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2563
2564 if (exec_bfd == NULL)
2565 return 0;
2566
09919ac2
JK
2567 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2568 being executed themselves and PIE (Position Independent Executable)
2569 executables are ET_DYN. */
2570
2571 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2572 return 0;
2573
8b88a78e 2574 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2575 return 0;
2576
8f61baf8 2577 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2578
8f61baf8 2579 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2580 alignment. It is cheaper than the program headers comparison below. */
2581
2582 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2583 {
2584 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2585
2586 /* p_align of PT_LOAD segments does not specify any alignment but
2587 only congruency of addresses:
2588 p_offset % p_align == p_vaddr % p_align
2589 Kernel is free to load the executable with lower alignment. */
2590
8f61baf8 2591 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2592 return 0;
2593 }
2594
2595 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2596 comparing their program headers. If the program headers in the auxilliary
2597 vector do not match the program headers in the executable, then we are
2598 looking at a different file than the one used by the kernel - for
2599 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2600
2601 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2602 {
d1012b8e 2603 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2604 really do not match. */
0a1e94c7 2605 int arch_size;
09919ac2 2606
17658d46
SM
2607 gdb::optional<gdb::byte_vector> phdrs_target
2608 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2609 gdb::optional<gdb::byte_vector> phdrs_binary
2610 = read_program_headers_from_bfd (exec_bfd);
2611 if (phdrs_target && phdrs_binary)
0a1e94c7 2612 {
f5656ead 2613 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2614
2615 /* We are dealing with three different addresses. EXEC_BFD
2616 represents current address in on-disk file. target memory content
2617 may be different from EXEC_BFD as the file may have been prelinked
2618 to a different address after the executable has been loaded.
2619 Moreover the address of placement in target memory can be
3e43a32a
MS
2620 different from what the program headers in target memory say -
2621 this is the goal of PIE.
0a1e94c7
JK
2622
2623 Detected DISPLACEMENT covers both the offsets of PIE placement and
2624 possible new prelink performed after start of the program. Here
2625 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2626 content offset for the verification purpose. */
2627
d1012b8e 2628 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2629 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2630 return 0;
3e43a32a 2631 else if (arch_size == 32
17658d46
SM
2632 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2633 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2634 {
2635 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2636 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2637 CORE_ADDR displacement = 0;
2638 int i;
2639
2640 /* DISPLACEMENT could be found more easily by the difference of
2641 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2642 already have enough information to compute that displacement
2643 with what we've read. */
2644
2645 for (i = 0; i < ehdr2->e_phnum; i++)
2646 if (phdr2[i].p_type == PT_LOAD)
2647 {
2648 Elf32_External_Phdr *phdrp;
2649 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2650 CORE_ADDR vaddr, paddr;
2651 CORE_ADDR displacement_vaddr = 0;
2652 CORE_ADDR displacement_paddr = 0;
2653
17658d46 2654 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2655 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2656 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2657
2658 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2659 byte_order);
2660 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2661
2662 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2663 byte_order);
2664 displacement_paddr = paddr - phdr2[i].p_paddr;
2665
2666 if (displacement_vaddr == displacement_paddr)
2667 displacement = displacement_vaddr;
2668
2669 break;
2670 }
2671
17658d46
SM
2672 /* Now compare program headers from the target and the binary
2673 with optional DISPLACEMENT. */
0a1e94c7 2674
17658d46
SM
2675 for (i = 0;
2676 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2677 i++)
0a1e94c7
JK
2678 {
2679 Elf32_External_Phdr *phdrp;
2680 Elf32_External_Phdr *phdr2p;
2681 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2682 CORE_ADDR vaddr, paddr;
43b8e241 2683 asection *plt2_asect;
0a1e94c7 2684
17658d46 2685 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2686 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2687 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2688 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2689
2690 /* PT_GNU_STACK is an exception by being never relocated by
2691 prelink as its addresses are always zero. */
2692
2693 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2694 continue;
2695
2696 /* Check also other adjustment combinations - PR 11786. */
2697
3e43a32a
MS
2698 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2699 byte_order);
0a1e94c7
JK
2700 vaddr -= displacement;
2701 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2702
3e43a32a
MS
2703 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2704 byte_order);
0a1e94c7
JK
2705 paddr -= displacement;
2706 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2707
2708 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2709 continue;
2710
204b5331
DE
2711 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2712 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2713 Strip also modifies memsz of PT_TLS.
204b5331 2714 See PR 11786. */
c44deb73
SM
2715 if (phdr2[i].p_type == PT_GNU_RELRO
2716 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2717 {
2718 Elf32_External_Phdr tmp_phdr = *phdrp;
2719 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2720
2721 memset (tmp_phdr.p_filesz, 0, 4);
2722 memset (tmp_phdr.p_memsz, 0, 4);
2723 memset (tmp_phdr.p_flags, 0, 4);
2724 memset (tmp_phdr.p_align, 0, 4);
2725 memset (tmp_phdr2.p_filesz, 0, 4);
2726 memset (tmp_phdr2.p_memsz, 0, 4);
2727 memset (tmp_phdr2.p_flags, 0, 4);
2728 memset (tmp_phdr2.p_align, 0, 4);
2729
2730 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2731 == 0)
2732 continue;
2733 }
2734
43b8e241
JK
2735 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2736 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2737 if (plt2_asect)
2738 {
2739 int content2;
2740 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2741 CORE_ADDR filesz;
2742
2743 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2744 & SEC_HAS_CONTENTS) != 0;
2745
2746 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2747 byte_order);
2748
2749 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2750 FILESZ is from the in-memory image. */
2751 if (content2)
2752 filesz += bfd_get_section_size (plt2_asect);
2753 else
2754 filesz -= bfd_get_section_size (plt2_asect);
2755
2756 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2757 filesz);
2758
2759 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2760 continue;
2761 }
2762
d1012b8e 2763 return 0;
0a1e94c7
JK
2764 }
2765 }
3e43a32a 2766 else if (arch_size == 64
17658d46
SM
2767 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2768 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2769 {
2770 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2771 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2772 CORE_ADDR displacement = 0;
2773 int i;
2774
2775 /* DISPLACEMENT could be found more easily by the difference of
2776 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2777 already have enough information to compute that displacement
2778 with what we've read. */
2779
2780 for (i = 0; i < ehdr2->e_phnum; i++)
2781 if (phdr2[i].p_type == PT_LOAD)
2782 {
2783 Elf64_External_Phdr *phdrp;
2784 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2785 CORE_ADDR vaddr, paddr;
2786 CORE_ADDR displacement_vaddr = 0;
2787 CORE_ADDR displacement_paddr = 0;
2788
17658d46 2789 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2790 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2791 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2792
2793 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2794 byte_order);
2795 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2796
2797 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2798 byte_order);
2799 displacement_paddr = paddr - phdr2[i].p_paddr;
2800
2801 if (displacement_vaddr == displacement_paddr)
2802 displacement = displacement_vaddr;
2803
2804 break;
2805 }
2806
2807 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2808
17658d46
SM
2809 for (i = 0;
2810 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2811 i++)
0a1e94c7
JK
2812 {
2813 Elf64_External_Phdr *phdrp;
2814 Elf64_External_Phdr *phdr2p;
2815 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2816 CORE_ADDR vaddr, paddr;
43b8e241 2817 asection *plt2_asect;
0a1e94c7 2818
17658d46 2819 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2820 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2821 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2822 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2823
2824 /* PT_GNU_STACK is an exception by being never relocated by
2825 prelink as its addresses are always zero. */
2826
2827 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2828 continue;
2829
2830 /* Check also other adjustment combinations - PR 11786. */
2831
3e43a32a
MS
2832 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2833 byte_order);
0a1e94c7
JK
2834 vaddr -= displacement;
2835 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2836
3e43a32a
MS
2837 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2838 byte_order);
0a1e94c7
JK
2839 paddr -= displacement;
2840 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2841
2842 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2843 continue;
2844
204b5331
DE
2845 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2846 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2847 Strip also modifies memsz of PT_TLS.
204b5331 2848 See PR 11786. */
c44deb73
SM
2849 if (phdr2[i].p_type == PT_GNU_RELRO
2850 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2851 {
2852 Elf64_External_Phdr tmp_phdr = *phdrp;
2853 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2854
2855 memset (tmp_phdr.p_filesz, 0, 8);
2856 memset (tmp_phdr.p_memsz, 0, 8);
2857 memset (tmp_phdr.p_flags, 0, 4);
2858 memset (tmp_phdr.p_align, 0, 8);
2859 memset (tmp_phdr2.p_filesz, 0, 8);
2860 memset (tmp_phdr2.p_memsz, 0, 8);
2861 memset (tmp_phdr2.p_flags, 0, 4);
2862 memset (tmp_phdr2.p_align, 0, 8);
2863
2864 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2865 == 0)
2866 continue;
2867 }
2868
43b8e241
JK
2869 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2870 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2871 if (plt2_asect)
2872 {
2873 int content2;
2874 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2875 CORE_ADDR filesz;
2876
2877 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2878 & SEC_HAS_CONTENTS) != 0;
2879
2880 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2881 byte_order);
2882
2883 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2884 FILESZ is from the in-memory image. */
2885 if (content2)
2886 filesz += bfd_get_section_size (plt2_asect);
2887 else
2888 filesz -= bfd_get_section_size (plt2_asect);
2889
2890 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2891 filesz);
2892
2893 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2894 continue;
2895 }
2896
d1012b8e 2897 return 0;
0a1e94c7
JK
2898 }
2899 }
2900 else
d1012b8e 2901 return 0;
0a1e94c7 2902 }
09919ac2 2903 }
b8040f19 2904
ccf26247
JK
2905 if (info_verbose)
2906 {
2907 /* It can be printed repeatedly as there is no easy way to check
2908 the executable symbols/file has been already relocated to
2909 displacement. */
2910
2911 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2912 "displacement %s for \"%s\".\n"),
8f61baf8 2913 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2914 bfd_get_filename (exec_bfd));
2915 }
2916
8f61baf8 2917 *displacementp = exec_displacement;
01c30d6e 2918 return 1;
b8040f19
JK
2919}
2920
2921/* Relocate the main executable. This function should be called upon
c378eb4e 2922 stopping the inferior process at the entry point to the program.
b8040f19
JK
2923 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2924 different, the main executable is relocated by the proper amount. */
2925
2926static void
2927svr4_relocate_main_executable (void)
2928{
01c30d6e
JK
2929 CORE_ADDR displacement;
2930
4e5799b6
JK
2931 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2932 probably contains the offsets computed using the PIE displacement
2933 from the previous run, which of course are irrelevant for this run.
2934 So we need to determine the new PIE displacement and recompute the
2935 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2936 already contains pre-computed offsets.
01c30d6e 2937
4e5799b6 2938 If we cannot compute the PIE displacement, either:
01c30d6e 2939
4e5799b6
JK
2940 - The executable is not PIE.
2941
2942 - SYMFILE_OBJFILE does not match the executable started in the target.
2943 This can happen for main executable symbols loaded at the host while
2944 `ld.so --ld-args main-executable' is loaded in the target.
2945
2946 Then we leave the section offsets untouched and use them as is for
2947 this run. Either:
2948
2949 - These section offsets were properly reset earlier, and thus
2950 already contain the correct values. This can happen for instance
2951 when reconnecting via the remote protocol to a target that supports
2952 the `qOffsets' packet.
2953
2954 - The section offsets were not reset earlier, and the best we can
c378eb4e 2955 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2956
2957 if (! svr4_exec_displacement (&displacement))
2958 return;
b8040f19 2959
01c30d6e
JK
2960 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2961 addresses. */
b8040f19
JK
2962
2963 if (symfile_objfile)
e2a44558 2964 {
e2a44558 2965 struct section_offsets *new_offsets;
b8040f19 2966 int i;
e2a44558 2967
224c3ddb
SM
2968 new_offsets = XALLOCAVEC (struct section_offsets,
2969 symfile_objfile->num_sections);
e2a44558 2970
b8040f19
JK
2971 for (i = 0; i < symfile_objfile->num_sections; i++)
2972 new_offsets->offsets[i] = displacement;
e2a44558 2973
b8040f19 2974 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2975 }
51bee8e9
JK
2976 else if (exec_bfd)
2977 {
2978 asection *asect;
2979
2980 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2981 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2982 (bfd_section_vma (exec_bfd, asect)
2983 + displacement));
2984 }
e2a44558
KB
2985}
2986
7f86f058 2987/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2988
2989 For SVR4 executables, this first instruction is either the first
2990 instruction in the dynamic linker (for dynamically linked
2991 executables) or the instruction at "start" for statically linked
2992 executables. For dynamically linked executables, the system
2993 first exec's /lib/libc.so.N, which contains the dynamic linker,
2994 and starts it running. The dynamic linker maps in any needed
2995 shared libraries, maps in the actual user executable, and then
2996 jumps to "start" in the user executable.
2997
7f86f058
PA
2998 We can arrange to cooperate with the dynamic linker to discover the
2999 names of shared libraries that are dynamically linked, and the base
3000 addresses to which they are linked.
13437d4b
KB
3001
3002 This function is responsible for discovering those names and
3003 addresses, and saving sufficient information about them to allow
d2e5c99a 3004 their symbols to be read at a later time. */
13437d4b 3005
e2a44558 3006static void
268a4a75 3007svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3008{
1a816a87
PA
3009 struct svr4_info *info;
3010
d70cc3ba 3011 info = get_svr4_info (current_program_space);
2020b7ab 3012
f9e14852
GB
3013 /* Clear the probes-based interface's state. */
3014 free_probes_table (info);
3015 free_solib_list (info);
3016
e2a44558 3017 /* Relocate the main executable if necessary. */
86e4bafc 3018 svr4_relocate_main_executable ();
e2a44558 3019
c91c8c16
PA
3020 /* No point setting a breakpoint in the dynamic linker if we can't
3021 hit it (e.g., a core file, or a trace file). */
3022 if (!target_has_execution)
3023 return;
3024
d5a921c9 3025 if (!svr4_have_link_map_offsets ())
513f5903 3026 return;
d5a921c9 3027
268a4a75 3028 if (!enable_break (info, from_tty))
542c95c2 3029 return;
13437d4b
KB
3030}
3031
3032static void
3033svr4_clear_solib (void)
3034{
6c95b8df
PA
3035 struct svr4_info *info;
3036
d70cc3ba 3037 info = get_svr4_info (current_program_space);
6c95b8df
PA
3038 info->debug_base = 0;
3039 info->debug_loader_offset_p = 0;
3040 info->debug_loader_offset = 0;
3041 xfree (info->debug_loader_name);
3042 info->debug_loader_name = NULL;
13437d4b
KB
3043}
3044
6bb7be43
JB
3045/* Clear any bits of ADDR that wouldn't fit in a target-format
3046 data pointer. "Data pointer" here refers to whatever sort of
3047 address the dynamic linker uses to manage its sections. At the
3048 moment, we don't support shared libraries on any processors where
3049 code and data pointers are different sizes.
3050
3051 This isn't really the right solution. What we really need here is
3052 a way to do arithmetic on CORE_ADDR values that respects the
3053 natural pointer/address correspondence. (For example, on the MIPS,
3054 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3055 sign-extend the value. There, simply truncating the bits above
819844ad 3056 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3057 be a new gdbarch method or something. */
3058static CORE_ADDR
3059svr4_truncate_ptr (CORE_ADDR addr)
3060{
f5656ead 3061 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3062 /* We don't need to truncate anything, and the bit twiddling below
3063 will fail due to overflow problems. */
3064 return addr;
3065 else
f5656ead 3066 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3067}
3068
3069
749499cb
KB
3070static void
3071svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3072 struct target_section *sec)
749499cb 3073{
2b2848e2
DE
3074 bfd *abfd = sec->the_bfd_section->owner;
3075
3076 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3077 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3078}
4b188b9f 3079\f
749499cb 3080
4b188b9f 3081/* Architecture-specific operations. */
6bb7be43 3082
4b188b9f
MK
3083/* Per-architecture data key. */
3084static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3085
4b188b9f 3086struct solib_svr4_ops
e5e2b9ff 3087{
4b188b9f
MK
3088 /* Return a description of the layout of `struct link_map'. */
3089 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3090};
e5e2b9ff 3091
4b188b9f 3092/* Return a default for the architecture-specific operations. */
e5e2b9ff 3093
4b188b9f
MK
3094static void *
3095solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3096{
4b188b9f 3097 struct solib_svr4_ops *ops;
e5e2b9ff 3098
4b188b9f 3099 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3100 ops->fetch_link_map_offsets = NULL;
4b188b9f 3101 return ops;
e5e2b9ff
KB
3102}
3103
4b188b9f 3104/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3105 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3106
21479ded 3107void
e5e2b9ff
KB
3108set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3109 struct link_map_offsets *(*flmo) (void))
21479ded 3110{
19ba03f4
SM
3111 struct solib_svr4_ops *ops
3112 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3113
3114 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3115
3116 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3117}
3118
4b188b9f
MK
3119/* Fetch a link_map_offsets structure using the architecture-specific
3120 `struct link_map_offsets' fetcher. */
1c4dcb57 3121
4b188b9f
MK
3122static struct link_map_offsets *
3123svr4_fetch_link_map_offsets (void)
21479ded 3124{
19ba03f4
SM
3125 struct solib_svr4_ops *ops
3126 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3127 solib_svr4_data);
4b188b9f
MK
3128
3129 gdb_assert (ops->fetch_link_map_offsets);
3130 return ops->fetch_link_map_offsets ();
21479ded
KB
3131}
3132
4b188b9f
MK
3133/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3134
3135static int
3136svr4_have_link_map_offsets (void)
3137{
19ba03f4
SM
3138 struct solib_svr4_ops *ops
3139 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3140 solib_svr4_data);
433759f7 3141
4b188b9f
MK
3142 return (ops->fetch_link_map_offsets != NULL);
3143}
3144\f
3145
e4bbbda8
MK
3146/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3147 `struct r_debug' and a `struct link_map' that are binary compatible
3148 with the origional SVR4 implementation. */
3149
3150/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3151 for an ILP32 SVR4 system. */
d989b283 3152
e4bbbda8
MK
3153struct link_map_offsets *
3154svr4_ilp32_fetch_link_map_offsets (void)
3155{
3156 static struct link_map_offsets lmo;
3157 static struct link_map_offsets *lmp = NULL;
3158
3159 if (lmp == NULL)
3160 {
3161 lmp = &lmo;
3162
e4cd0d6a
MK
3163 lmo.r_version_offset = 0;
3164 lmo.r_version_size = 4;
e4bbbda8 3165 lmo.r_map_offset = 4;
7cd25cfc 3166 lmo.r_brk_offset = 8;
e4cd0d6a 3167 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3168
3169 /* Everything we need is in the first 20 bytes. */
3170 lmo.link_map_size = 20;
3171 lmo.l_addr_offset = 0;
e4bbbda8 3172 lmo.l_name_offset = 4;
cc10cae3 3173 lmo.l_ld_offset = 8;
e4bbbda8 3174 lmo.l_next_offset = 12;
e4bbbda8 3175 lmo.l_prev_offset = 16;
e4bbbda8
MK
3176 }
3177
3178 return lmp;
3179}
3180
3181/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3182 for an LP64 SVR4 system. */
d989b283 3183
e4bbbda8
MK
3184struct link_map_offsets *
3185svr4_lp64_fetch_link_map_offsets (void)
3186{
3187 static struct link_map_offsets lmo;
3188 static struct link_map_offsets *lmp = NULL;
3189
3190 if (lmp == NULL)
3191 {
3192 lmp = &lmo;
3193
e4cd0d6a
MK
3194 lmo.r_version_offset = 0;
3195 lmo.r_version_size = 4;
e4bbbda8 3196 lmo.r_map_offset = 8;
7cd25cfc 3197 lmo.r_brk_offset = 16;
e4cd0d6a 3198 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3199
3200 /* Everything we need is in the first 40 bytes. */
3201 lmo.link_map_size = 40;
3202 lmo.l_addr_offset = 0;
e4bbbda8 3203 lmo.l_name_offset = 8;
cc10cae3 3204 lmo.l_ld_offset = 16;
e4bbbda8 3205 lmo.l_next_offset = 24;
e4bbbda8 3206 lmo.l_prev_offset = 32;
e4bbbda8
MK
3207 }
3208
3209 return lmp;
3210}
3211\f
3212
7d522c90 3213struct target_so_ops svr4_so_ops;
13437d4b 3214
c378eb4e 3215/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3216 different rule for symbol lookup. The lookup begins here in the DSO, not in
3217 the main executable. */
3218
d12307c1 3219static struct block_symbol
efad9b6a 3220elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3221 const char *name,
21b556f4 3222 const domain_enum domain)
3a40aaa0 3223{
61f0d762
JK
3224 bfd *abfd;
3225
3226 if (objfile == symfile_objfile)
3227 abfd = exec_bfd;
3228 else
3229 {
3230 /* OBJFILE should have been passed as the non-debug one. */
3231 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3232
3233 abfd = objfile->obfd;
3234 }
3235
a738da3a 3236 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
6640a367 3237 return {};
3a40aaa0 3238
94af9270 3239 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3240}
3241
13437d4b
KB
3242void
3243_initialize_svr4_solib (void)
3244{
4b188b9f 3245 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3246 solib_svr4_pspace_data
8e260fc0 3247 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3248
749499cb 3249 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3250 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3251 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3252 svr4_so_ops.clear_solib = svr4_clear_solib;
3253 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3254 svr4_so_ops.current_sos = svr4_current_sos;
3255 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3256 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3257 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3258 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3259 svr4_so_ops.same = svr4_same;
de18c1d8 3260 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3261 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3262 svr4_so_ops.handle_event = svr4_handle_solib_event;
7905fc35
PA
3263
3264 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
13437d4b 3265}
This page took 3.300715 seconds and 4 git commands to generate.