Commit | Line | Data |
---|---|---|
ab31aa69 | 1 | /* Handle SVR4 shared libraries for GDB, the GNU Debugger. |
2f4950cd | 2 | |
b811d2c2 | 3 | Copyright (C) 1990-2020 Free Software Foundation, Inc. |
13437d4b KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
13437d4b KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
13437d4b | 19 | |
13437d4b KB |
20 | #include "defs.h" |
21 | ||
13437d4b | 22 | #include "elf/external.h" |
21479ded | 23 | #include "elf/common.h" |
f7856c8f | 24 | #include "elf/mips.h" |
13437d4b KB |
25 | |
26 | #include "symtab.h" | |
27 | #include "bfd.h" | |
28 | #include "symfile.h" | |
29 | #include "objfiles.h" | |
30 | #include "gdbcore.h" | |
13437d4b | 31 | #include "target.h" |
13437d4b | 32 | #include "inferior.h" |
45741a9c | 33 | #include "infrun.h" |
fb14de7b | 34 | #include "regcache.h" |
2020b7ab | 35 | #include "gdbthread.h" |
76727919 | 36 | #include "observable.h" |
13437d4b KB |
37 | |
38 | #include "solist.h" | |
bba93f6c | 39 | #include "solib.h" |
13437d4b KB |
40 | #include "solib-svr4.h" |
41 | ||
2f4950cd | 42 | #include "bfd-target.h" |
cc10cae3 | 43 | #include "elf-bfd.h" |
2f4950cd | 44 | #include "exec.h" |
8d4e36ba | 45 | #include "auxv.h" |
695c3173 | 46 | #include "gdb_bfd.h" |
f9e14852 | 47 | #include "probe.h" |
2f4950cd | 48 | |
e5e2b9ff | 49 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); |
d5a921c9 | 50 | static int svr4_have_link_map_offsets (void); |
9f2982ff | 51 | static void svr4_relocate_main_executable (void); |
f9e14852 | 52 | static void svr4_free_library_list (void *p_list); |
7905fc35 | 53 | static void probes_table_remove_objfile_probes (struct objfile *objfile); |
626ca2c0 CB |
54 | static void svr4_iterate_over_objfiles_in_search_order ( |
55 | struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb, | |
56 | void *cb_data, struct objfile *objfile); | |
57 | ||
1c4dcb57 | 58 | |
13437d4b KB |
59 | /* On SVR4 systems, a list of symbols in the dynamic linker where |
60 | GDB can try to place a breakpoint to monitor shared library | |
61 | events. | |
62 | ||
63 | If none of these symbols are found, or other errors occur, then | |
64 | SVR4 systems will fall back to using a symbol as the "startup | |
65 | mapping complete" breakpoint address. */ | |
66 | ||
bc043ef3 | 67 | static const char * const solib_break_names[] = |
13437d4b KB |
68 | { |
69 | "r_debug_state", | |
70 | "_r_debug_state", | |
71 | "_dl_debug_state", | |
72 | "rtld_db_dlactivity", | |
4c7dcb84 | 73 | "__dl_rtld_db_dlactivity", |
1f72e589 | 74 | "_rtld_debug_state", |
4c0122c8 | 75 | |
13437d4b KB |
76 | NULL |
77 | }; | |
13437d4b | 78 | |
bc043ef3 | 79 | static const char * const bkpt_names[] = |
13437d4b | 80 | { |
13437d4b | 81 | "_start", |
ad3dcc5c | 82 | "__start", |
13437d4b KB |
83 | "main", |
84 | NULL | |
85 | }; | |
13437d4b | 86 | |
bc043ef3 | 87 | static const char * const main_name_list[] = |
13437d4b KB |
88 | { |
89 | "main_$main", | |
90 | NULL | |
91 | }; | |
92 | ||
f9e14852 GB |
93 | /* What to do when a probe stop occurs. */ |
94 | ||
95 | enum probe_action | |
96 | { | |
97 | /* Something went seriously wrong. Stop using probes and | |
98 | revert to using the older interface. */ | |
99 | PROBES_INTERFACE_FAILED, | |
100 | ||
101 | /* No action is required. The shared object list is still | |
102 | valid. */ | |
103 | DO_NOTHING, | |
104 | ||
105 | /* The shared object list should be reloaded entirely. */ | |
106 | FULL_RELOAD, | |
107 | ||
108 | /* Attempt to incrementally update the shared object list. If | |
109 | the update fails or is not possible, fall back to reloading | |
110 | the list in full. */ | |
111 | UPDATE_OR_RELOAD, | |
112 | }; | |
113 | ||
114 | /* A probe's name and its associated action. */ | |
115 | ||
116 | struct probe_info | |
117 | { | |
118 | /* The name of the probe. */ | |
119 | const char *name; | |
120 | ||
121 | /* What to do when a probe stop occurs. */ | |
122 | enum probe_action action; | |
123 | }; | |
124 | ||
125 | /* A list of named probes and their associated actions. If all | |
126 | probes are present in the dynamic linker then the probes-based | |
127 | interface will be used. */ | |
128 | ||
129 | static const struct probe_info probe_info[] = | |
130 | { | |
131 | { "init_start", DO_NOTHING }, | |
132 | { "init_complete", FULL_RELOAD }, | |
133 | { "map_start", DO_NOTHING }, | |
134 | { "map_failed", DO_NOTHING }, | |
135 | { "reloc_complete", UPDATE_OR_RELOAD }, | |
136 | { "unmap_start", DO_NOTHING }, | |
137 | { "unmap_complete", FULL_RELOAD }, | |
138 | }; | |
139 | ||
140 | #define NUM_PROBES ARRAY_SIZE (probe_info) | |
141 | ||
4d7b2d5b JB |
142 | /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent |
143 | the same shared library. */ | |
144 | ||
145 | static int | |
146 | svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) | |
147 | { | |
148 | if (strcmp (gdb_so_name, inferior_so_name) == 0) | |
149 | return 1; | |
150 | ||
151 | /* On Solaris, when starting inferior we think that dynamic linker is | |
d989b283 PP |
152 | /usr/lib/ld.so.1, but later on, the table of loaded shared libraries |
153 | contains /lib/ld.so.1. Sometimes one file is a link to another, but | |
4d7b2d5b JB |
154 | sometimes they have identical content, but are not linked to each |
155 | other. We don't restrict this check for Solaris, but the chances | |
156 | of running into this situation elsewhere are very low. */ | |
157 | if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 | |
158 | && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) | |
159 | return 1; | |
160 | ||
7307a73a | 161 | /* Similarly, we observed the same issue with amd64 and sparcv9, but with |
4d7b2d5b | 162 | different locations. */ |
7307a73a RO |
163 | if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0 |
164 | && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0) | |
165 | return 1; | |
166 | ||
4d7b2d5b JB |
167 | if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 |
168 | && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) | |
169 | return 1; | |
170 | ||
171 | return 0; | |
172 | } | |
173 | ||
174 | static int | |
175 | svr4_same (struct so_list *gdb, struct so_list *inferior) | |
176 | { | |
177 | return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); | |
178 | } | |
179 | ||
a7961323 | 180 | static std::unique_ptr<lm_info_svr4> |
3957565a | 181 | lm_info_read (CORE_ADDR lm_addr) |
13437d4b | 182 | { |
4b188b9f | 183 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
a7961323 | 184 | std::unique_ptr<lm_info_svr4> lm_info; |
3957565a | 185 | |
a7961323 | 186 | gdb::byte_vector lm (lmo->link_map_size); |
3957565a | 187 | |
a7961323 TT |
188 | if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0) |
189 | warning (_("Error reading shared library list entry at %s"), | |
190 | paddress (target_gdbarch (), lm_addr)); | |
3957565a JK |
191 | else |
192 | { | |
f5656ead | 193 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
13437d4b | 194 | |
a7961323 | 195 | lm_info.reset (new lm_info_svr4); |
3957565a JK |
196 | lm_info->lm_addr = lm_addr; |
197 | ||
198 | lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset], | |
199 | ptr_type); | |
200 | lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type); | |
201 | lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset], | |
202 | ptr_type); | |
203 | lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset], | |
204 | ptr_type); | |
205 | lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset], | |
206 | ptr_type); | |
207 | } | |
208 | ||
3957565a | 209 | return lm_info; |
13437d4b KB |
210 | } |
211 | ||
cc10cae3 | 212 | static int |
b23518f0 | 213 | has_lm_dynamic_from_link_map (void) |
cc10cae3 AO |
214 | { |
215 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
216 | ||
cfaefc65 | 217 | return lmo->l_ld_offset >= 0; |
cc10cae3 AO |
218 | } |
219 | ||
cc10cae3 | 220 | static CORE_ADDR |
f65ce5fb | 221 | lm_addr_check (const struct so_list *so, bfd *abfd) |
cc10cae3 | 222 | { |
d0e449a1 SM |
223 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
224 | ||
225 | if (!li->l_addr_p) | |
cc10cae3 AO |
226 | { |
227 | struct bfd_section *dyninfo_sect; | |
28f34a8f | 228 | CORE_ADDR l_addr, l_dynaddr, dynaddr; |
cc10cae3 | 229 | |
d0e449a1 | 230 | l_addr = li->l_addr_inferior; |
cc10cae3 | 231 | |
b23518f0 | 232 | if (! abfd || ! has_lm_dynamic_from_link_map ()) |
cc10cae3 AO |
233 | goto set_addr; |
234 | ||
d0e449a1 | 235 | l_dynaddr = li->l_ld; |
cc10cae3 AO |
236 | |
237 | dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
238 | if (dyninfo_sect == NULL) | |
239 | goto set_addr; | |
240 | ||
fd361982 | 241 | dynaddr = bfd_section_vma (dyninfo_sect); |
cc10cae3 AO |
242 | |
243 | if (dynaddr + l_addr != l_dynaddr) | |
244 | { | |
28f34a8f | 245 | CORE_ADDR align = 0x1000; |
4e1fc9c9 | 246 | CORE_ADDR minpagesize = align; |
28f34a8f | 247 | |
cc10cae3 AO |
248 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
249 | { | |
250 | Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; | |
251 | Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; | |
252 | int i; | |
253 | ||
254 | align = 1; | |
255 | ||
256 | for (i = 0; i < ehdr->e_phnum; i++) | |
257 | if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) | |
258 | align = phdr[i].p_align; | |
4e1fc9c9 JK |
259 | |
260 | minpagesize = get_elf_backend_data (abfd)->minpagesize; | |
cc10cae3 AO |
261 | } |
262 | ||
263 | /* Turn it into a mask. */ | |
264 | align--; | |
265 | ||
266 | /* If the changes match the alignment requirements, we | |
267 | assume we're using a core file that was generated by the | |
268 | same binary, just prelinked with a different base offset. | |
269 | If it doesn't match, we may have a different binary, the | |
270 | same binary with the dynamic table loaded at an unrelated | |
271 | location, or anything, really. To avoid regressions, | |
272 | don't adjust the base offset in the latter case, although | |
273 | odds are that, if things really changed, debugging won't | |
5c0d192f JK |
274 | quite work. |
275 | ||
276 | One could expect more the condition | |
277 | ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0) | |
278 | but the one below is relaxed for PPC. The PPC kernel supports | |
279 | either 4k or 64k page sizes. To be prepared for 64k pages, | |
280 | PPC ELF files are built using an alignment requirement of 64k. | |
281 | However, when running on a kernel supporting 4k pages, the memory | |
282 | mapping of the library may not actually happen on a 64k boundary! | |
283 | ||
284 | (In the usual case where (l_addr & align) == 0, this check is | |
4e1fc9c9 JK |
285 | equivalent to the possibly expected check above.) |
286 | ||
287 | Even on PPC it must be zero-aligned at least for MINPAGESIZE. */ | |
5c0d192f | 288 | |
02835898 JK |
289 | l_addr = l_dynaddr - dynaddr; |
290 | ||
4e1fc9c9 JK |
291 | if ((l_addr & (minpagesize - 1)) == 0 |
292 | && (l_addr & align) == ((l_dynaddr - dynaddr) & align)) | |
cc10cae3 | 293 | { |
701ed6dc | 294 | if (info_verbose) |
ccf26247 JK |
295 | printf_unfiltered (_("Using PIC (Position Independent Code) " |
296 | "prelink displacement %s for \"%s\".\n"), | |
f5656ead | 297 | paddress (target_gdbarch (), l_addr), |
ccf26247 | 298 | so->so_name); |
cc10cae3 | 299 | } |
79d4c408 | 300 | else |
02835898 JK |
301 | { |
302 | /* There is no way to verify the library file matches. prelink | |
303 | can during prelinking of an unprelinked file (or unprelinking | |
304 | of a prelinked file) shift the DYNAMIC segment by arbitrary | |
305 | offset without any page size alignment. There is no way to | |
306 | find out the ELF header and/or Program Headers for a limited | |
307 | verification if it they match. One could do a verification | |
308 | of the DYNAMIC segment. Still the found address is the best | |
309 | one GDB could find. */ | |
310 | ||
311 | warning (_(".dynamic section for \"%s\" " | |
312 | "is not at the expected address " | |
313 | "(wrong library or version mismatch?)"), so->so_name); | |
314 | } | |
cc10cae3 AO |
315 | } |
316 | ||
317 | set_addr: | |
d0e449a1 SM |
318 | li->l_addr = l_addr; |
319 | li->l_addr_p = 1; | |
cc10cae3 AO |
320 | } |
321 | ||
d0e449a1 | 322 | return li->l_addr; |
cc10cae3 AO |
323 | } |
324 | ||
6c95b8df | 325 | /* Per pspace SVR4 specific data. */ |
13437d4b | 326 | |
1a816a87 PA |
327 | struct svr4_info |
328 | { | |
09232438 TT |
329 | svr4_info () = default; |
330 | ~svr4_info (); | |
331 | ||
332 | /* Base of dynamic linker structures. */ | |
333 | CORE_ADDR debug_base = 0; | |
1a816a87 PA |
334 | |
335 | /* Validity flag for debug_loader_offset. */ | |
09232438 | 336 | int debug_loader_offset_p = 0; |
1a816a87 PA |
337 | |
338 | /* Load address for the dynamic linker, inferred. */ | |
09232438 | 339 | CORE_ADDR debug_loader_offset = 0; |
1a816a87 PA |
340 | |
341 | /* Name of the dynamic linker, valid if debug_loader_offset_p. */ | |
09232438 | 342 | char *debug_loader_name = nullptr; |
1a816a87 PA |
343 | |
344 | /* Load map address for the main executable. */ | |
09232438 | 345 | CORE_ADDR main_lm_addr = 0; |
1a816a87 | 346 | |
09232438 TT |
347 | CORE_ADDR interp_text_sect_low = 0; |
348 | CORE_ADDR interp_text_sect_high = 0; | |
349 | CORE_ADDR interp_plt_sect_low = 0; | |
350 | CORE_ADDR interp_plt_sect_high = 0; | |
f9e14852 GB |
351 | |
352 | /* Nonzero if the list of objects was last obtained from the target | |
353 | via qXfer:libraries-svr4:read. */ | |
09232438 | 354 | int using_xfer = 0; |
f9e14852 GB |
355 | |
356 | /* Table of struct probe_and_action instances, used by the | |
357 | probes-based interface to map breakpoint addresses to probes | |
358 | and their associated actions. Lookup is performed using | |
935676c9 | 359 | probe_and_action->prob->address. */ |
09232438 | 360 | htab_up probes_table; |
f9e14852 GB |
361 | |
362 | /* List of objects loaded into the inferior, used by the probes- | |
363 | based interface. */ | |
09232438 | 364 | struct so_list *solib_list = nullptr; |
6c95b8df | 365 | }; |
1a816a87 | 366 | |
6c95b8df | 367 | /* Per-program-space data key. */ |
09232438 | 368 | static const struct program_space_key<svr4_info> solib_svr4_pspace_data; |
1a816a87 | 369 | |
f9e14852 GB |
370 | /* Free the probes table. */ |
371 | ||
372 | static void | |
373 | free_probes_table (struct svr4_info *info) | |
374 | { | |
09232438 | 375 | info->probes_table.reset (nullptr); |
f9e14852 GB |
376 | } |
377 | ||
378 | /* Free the solib list. */ | |
379 | ||
380 | static void | |
381 | free_solib_list (struct svr4_info *info) | |
382 | { | |
383 | svr4_free_library_list (&info->solib_list); | |
384 | info->solib_list = NULL; | |
385 | } | |
386 | ||
09232438 | 387 | svr4_info::~svr4_info () |
1a816a87 | 388 | { |
09232438 | 389 | free_solib_list (this); |
1a816a87 PA |
390 | } |
391 | ||
d70cc3ba SM |
392 | /* Get the svr4 data for program space PSPACE. If none is found yet, add it now. |
393 | This function always returns a valid object. */ | |
34439770 | 394 | |
6c95b8df | 395 | static struct svr4_info * |
d70cc3ba | 396 | get_svr4_info (program_space *pspace) |
1a816a87 | 397 | { |
09232438 | 398 | struct svr4_info *info = solib_svr4_pspace_data.get (pspace); |
1a816a87 | 399 | |
09232438 TT |
400 | if (info == NULL) |
401 | info = solib_svr4_pspace_data.emplace (pspace); | |
34439770 | 402 | |
6c95b8df | 403 | return info; |
1a816a87 | 404 | } |
93a57060 | 405 | |
13437d4b KB |
406 | /* Local function prototypes */ |
407 | ||
bc043ef3 | 408 | static int match_main (const char *); |
13437d4b | 409 | |
97ec2c2f | 410 | /* Read program header TYPE from inferior memory. The header is found |
17658d46 | 411 | by scanning the OS auxiliary vector. |
97ec2c2f | 412 | |
09919ac2 JK |
413 | If TYPE == -1, return the program headers instead of the contents of |
414 | one program header. | |
415 | ||
17658d46 SM |
416 | Return vector of bytes holding the program header contents, or an empty |
417 | optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target | |
418 | architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise, | |
419 | the base address of the section is returned in *BASE_ADDR. */ | |
97ec2c2f | 420 | |
17658d46 SM |
421 | static gdb::optional<gdb::byte_vector> |
422 | read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr) | |
97ec2c2f | 423 | { |
f5656ead | 424 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
43136979 | 425 | CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0; |
97ec2c2f UW |
426 | int arch_size, sect_size; |
427 | CORE_ADDR sect_addr; | |
43136979 | 428 | int pt_phdr_p = 0; |
97ec2c2f UW |
429 | |
430 | /* Get required auxv elements from target. */ | |
8b88a78e | 431 | if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0) |
17658d46 | 432 | return {}; |
8b88a78e | 433 | if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0) |
17658d46 | 434 | return {}; |
8b88a78e | 435 | if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0) |
17658d46 | 436 | return {}; |
97ec2c2f | 437 | if (!at_phdr || !at_phnum) |
17658d46 | 438 | return {}; |
97ec2c2f UW |
439 | |
440 | /* Determine ELF architecture type. */ | |
441 | if (at_phent == sizeof (Elf32_External_Phdr)) | |
442 | arch_size = 32; | |
443 | else if (at_phent == sizeof (Elf64_External_Phdr)) | |
444 | arch_size = 64; | |
445 | else | |
17658d46 | 446 | return {}; |
97ec2c2f | 447 | |
09919ac2 JK |
448 | /* Find the requested segment. */ |
449 | if (type == -1) | |
450 | { | |
451 | sect_addr = at_phdr; | |
452 | sect_size = at_phent * at_phnum; | |
453 | } | |
454 | else if (arch_size == 32) | |
97ec2c2f UW |
455 | { |
456 | Elf32_External_Phdr phdr; | |
457 | int i; | |
458 | ||
459 | /* Search for requested PHDR. */ | |
460 | for (i = 0; i < at_phnum; i++) | |
461 | { | |
43136979 AR |
462 | int p_type; |
463 | ||
97ec2c2f UW |
464 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
465 | (gdb_byte *)&phdr, sizeof (phdr))) | |
17658d46 | 466 | return {}; |
97ec2c2f | 467 | |
43136979 AR |
468 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
469 | 4, byte_order); | |
470 | ||
471 | if (p_type == PT_PHDR) | |
472 | { | |
473 | pt_phdr_p = 1; | |
474 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
475 | 4, byte_order); | |
476 | } | |
477 | ||
478 | if (p_type == type) | |
97ec2c2f UW |
479 | break; |
480 | } | |
481 | ||
482 | if (i == at_phnum) | |
17658d46 | 483 | return {}; |
97ec2c2f UW |
484 | |
485 | /* Retrieve address and size. */ | |
e17a4113 UW |
486 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
487 | 4, byte_order); | |
488 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
489 | 4, byte_order); | |
97ec2c2f UW |
490 | } |
491 | else | |
492 | { | |
493 | Elf64_External_Phdr phdr; | |
494 | int i; | |
495 | ||
496 | /* Search for requested PHDR. */ | |
497 | for (i = 0; i < at_phnum; i++) | |
498 | { | |
43136979 AR |
499 | int p_type; |
500 | ||
97ec2c2f UW |
501 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
502 | (gdb_byte *)&phdr, sizeof (phdr))) | |
17658d46 | 503 | return {}; |
97ec2c2f | 504 | |
43136979 AR |
505 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
506 | 4, byte_order); | |
507 | ||
508 | if (p_type == PT_PHDR) | |
509 | { | |
510 | pt_phdr_p = 1; | |
511 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
512 | 8, byte_order); | |
513 | } | |
514 | ||
515 | if (p_type == type) | |
97ec2c2f UW |
516 | break; |
517 | } | |
518 | ||
519 | if (i == at_phnum) | |
17658d46 | 520 | return {}; |
97ec2c2f UW |
521 | |
522 | /* Retrieve address and size. */ | |
e17a4113 UW |
523 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
524 | 8, byte_order); | |
525 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
526 | 8, byte_order); | |
97ec2c2f UW |
527 | } |
528 | ||
43136979 AR |
529 | /* PT_PHDR is optional, but we really need it |
530 | for PIE to make this work in general. */ | |
531 | ||
532 | if (pt_phdr_p) | |
533 | { | |
534 | /* at_phdr is real address in memory. pt_phdr is what pheader says it is. | |
535 | Relocation offset is the difference between the two. */ | |
536 | sect_addr = sect_addr + (at_phdr - pt_phdr); | |
537 | } | |
538 | ||
97ec2c2f | 539 | /* Read in requested program header. */ |
17658d46 SM |
540 | gdb::byte_vector buf (sect_size); |
541 | if (target_read_memory (sect_addr, buf.data (), sect_size)) | |
542 | return {}; | |
97ec2c2f UW |
543 | |
544 | if (p_arch_size) | |
545 | *p_arch_size = arch_size; | |
a738da3a MF |
546 | if (base_addr) |
547 | *base_addr = sect_addr; | |
97ec2c2f UW |
548 | |
549 | return buf; | |
550 | } | |
551 | ||
552 | ||
553 | /* Return program interpreter string. */ | |
17658d46 | 554 | static gdb::optional<gdb::byte_vector> |
97ec2c2f UW |
555 | find_program_interpreter (void) |
556 | { | |
97ec2c2f UW |
557 | /* If we have an exec_bfd, use its section table. */ |
558 | if (exec_bfd | |
559 | && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
560 | { | |
561 | struct bfd_section *interp_sect; | |
562 | ||
563 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
564 | if (interp_sect != NULL) | |
565 | { | |
fd361982 | 566 | int sect_size = bfd_section_size (interp_sect); |
97ec2c2f | 567 | |
17658d46 SM |
568 | gdb::byte_vector buf (sect_size); |
569 | bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0, | |
570 | sect_size); | |
571 | return buf; | |
97ec2c2f UW |
572 | } |
573 | } | |
574 | ||
17658d46 SM |
575 | /* If we didn't find it, use the target auxiliary vector. */ |
576 | return read_program_header (PT_INTERP, NULL, NULL); | |
97ec2c2f UW |
577 | } |
578 | ||
579 | ||
b6d7a4bf SM |
580 | /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is |
581 | found, 1 is returned and the corresponding PTR is set. */ | |
3a40aaa0 UW |
582 | |
583 | static int | |
a738da3a MF |
584 | scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr, |
585 | CORE_ADDR *ptr_addr) | |
3a40aaa0 UW |
586 | { |
587 | int arch_size, step, sect_size; | |
b6d7a4bf | 588 | long current_dyntag; |
b381ea14 | 589 | CORE_ADDR dyn_ptr, dyn_addr; |
65728c26 | 590 | gdb_byte *bufend, *bufstart, *buf; |
3a40aaa0 UW |
591 | Elf32_External_Dyn *x_dynp_32; |
592 | Elf64_External_Dyn *x_dynp_64; | |
593 | struct bfd_section *sect; | |
61f0d762 | 594 | struct target_section *target_section; |
3a40aaa0 UW |
595 | |
596 | if (abfd == NULL) | |
597 | return 0; | |
0763ab81 PA |
598 | |
599 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
600 | return 0; | |
601 | ||
3a40aaa0 UW |
602 | arch_size = bfd_get_arch_size (abfd); |
603 | if (arch_size == -1) | |
0763ab81 | 604 | return 0; |
3a40aaa0 UW |
605 | |
606 | /* Find the start address of the .dynamic section. */ | |
607 | sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
608 | if (sect == NULL) | |
609 | return 0; | |
61f0d762 JK |
610 | |
611 | for (target_section = current_target_sections->sections; | |
612 | target_section < current_target_sections->sections_end; | |
613 | target_section++) | |
614 | if (sect == target_section->the_bfd_section) | |
615 | break; | |
b381ea14 JK |
616 | if (target_section < current_target_sections->sections_end) |
617 | dyn_addr = target_section->addr; | |
618 | else | |
619 | { | |
620 | /* ABFD may come from OBJFILE acting only as a symbol file without being | |
621 | loaded into the target (see add_symbol_file_command). This case is | |
622 | such fallback to the file VMA address without the possibility of | |
623 | having the section relocated to its actual in-memory address. */ | |
624 | ||
fd361982 | 625 | dyn_addr = bfd_section_vma (sect); |
b381ea14 | 626 | } |
3a40aaa0 | 627 | |
65728c26 DJ |
628 | /* Read in .dynamic from the BFD. We will get the actual value |
629 | from memory later. */ | |
fd361982 | 630 | sect_size = bfd_section_size (sect); |
224c3ddb | 631 | buf = bufstart = (gdb_byte *) alloca (sect_size); |
65728c26 DJ |
632 | if (!bfd_get_section_contents (abfd, sect, |
633 | buf, 0, sect_size)) | |
634 | return 0; | |
3a40aaa0 UW |
635 | |
636 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
637 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
638 | : sizeof (Elf64_External_Dyn); | |
639 | for (bufend = buf + sect_size; | |
640 | buf < bufend; | |
641 | buf += step) | |
642 | { | |
643 | if (arch_size == 32) | |
644 | { | |
645 | x_dynp_32 = (Elf32_External_Dyn *) buf; | |
b6d7a4bf | 646 | current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag); |
3a40aaa0 UW |
647 | dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr); |
648 | } | |
65728c26 | 649 | else |
3a40aaa0 UW |
650 | { |
651 | x_dynp_64 = (Elf64_External_Dyn *) buf; | |
b6d7a4bf | 652 | current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag); |
3a40aaa0 UW |
653 | dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr); |
654 | } | |
b6d7a4bf | 655 | if (current_dyntag == DT_NULL) |
3a40aaa0 | 656 | return 0; |
b6d7a4bf | 657 | if (current_dyntag == desired_dyntag) |
3a40aaa0 | 658 | { |
65728c26 DJ |
659 | /* If requested, try to read the runtime value of this .dynamic |
660 | entry. */ | |
3a40aaa0 | 661 | if (ptr) |
65728c26 | 662 | { |
b6da22b0 | 663 | struct type *ptr_type; |
65728c26 | 664 | gdb_byte ptr_buf[8]; |
a738da3a | 665 | CORE_ADDR ptr_addr_1; |
65728c26 | 666 | |
f5656ead | 667 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
a738da3a MF |
668 | ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8; |
669 | if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0) | |
b6da22b0 | 670 | dyn_ptr = extract_typed_address (ptr_buf, ptr_type); |
65728c26 | 671 | *ptr = dyn_ptr; |
a738da3a MF |
672 | if (ptr_addr) |
673 | *ptr_addr = dyn_addr + (buf - bufstart); | |
65728c26 DJ |
674 | } |
675 | return 1; | |
3a40aaa0 UW |
676 | } |
677 | } | |
678 | ||
679 | return 0; | |
680 | } | |
681 | ||
b6d7a4bf SM |
682 | /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable, |
683 | found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1 | |
684 | is returned and the corresponding PTR is set. */ | |
97ec2c2f UW |
685 | |
686 | static int | |
a738da3a MF |
687 | scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr, |
688 | CORE_ADDR *ptr_addr) | |
97ec2c2f | 689 | { |
f5656ead | 690 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
17658d46 | 691 | int arch_size, step; |
b6d7a4bf | 692 | long current_dyntag; |
97ec2c2f | 693 | CORE_ADDR dyn_ptr; |
a738da3a | 694 | CORE_ADDR base_addr; |
97ec2c2f UW |
695 | |
696 | /* Read in .dynamic section. */ | |
17658d46 SM |
697 | gdb::optional<gdb::byte_vector> ph_data |
698 | = read_program_header (PT_DYNAMIC, &arch_size, &base_addr); | |
699 | if (!ph_data) | |
97ec2c2f UW |
700 | return 0; |
701 | ||
702 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
703 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
704 | : sizeof (Elf64_External_Dyn); | |
17658d46 SM |
705 | for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size (); |
706 | buf < bufend; buf += step) | |
97ec2c2f UW |
707 | { |
708 | if (arch_size == 32) | |
709 | { | |
710 | Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf; | |
433759f7 | 711 | |
b6d7a4bf | 712 | current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
e17a4113 UW |
713 | 4, byte_order); |
714 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
715 | 4, byte_order); | |
97ec2c2f UW |
716 | } |
717 | else | |
718 | { | |
719 | Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf; | |
433759f7 | 720 | |
b6d7a4bf | 721 | current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
e17a4113 UW |
722 | 8, byte_order); |
723 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
724 | 8, byte_order); | |
97ec2c2f | 725 | } |
b6d7a4bf | 726 | if (current_dyntag == DT_NULL) |
97ec2c2f UW |
727 | break; |
728 | ||
b6d7a4bf | 729 | if (current_dyntag == desired_dyntag) |
97ec2c2f UW |
730 | { |
731 | if (ptr) | |
732 | *ptr = dyn_ptr; | |
733 | ||
a738da3a | 734 | if (ptr_addr) |
17658d46 | 735 | *ptr_addr = base_addr + buf - ph_data->data (); |
a738da3a | 736 | |
97ec2c2f UW |
737 | return 1; |
738 | } | |
739 | } | |
740 | ||
97ec2c2f UW |
741 | return 0; |
742 | } | |
743 | ||
7f86f058 PA |
744 | /* Locate the base address of dynamic linker structs for SVR4 elf |
745 | targets. | |
13437d4b KB |
746 | |
747 | For SVR4 elf targets the address of the dynamic linker's runtime | |
748 | structure is contained within the dynamic info section in the | |
749 | executable file. The dynamic section is also mapped into the | |
750 | inferior address space. Because the runtime loader fills in the | |
751 | real address before starting the inferior, we have to read in the | |
752 | dynamic info section from the inferior address space. | |
753 | If there are any errors while trying to find the address, we | |
7f86f058 | 754 | silently return 0, otherwise the found address is returned. */ |
13437d4b KB |
755 | |
756 | static CORE_ADDR | |
757 | elf_locate_base (void) | |
758 | { | |
3b7344d5 | 759 | struct bound_minimal_symbol msymbol; |
a738da3a | 760 | CORE_ADDR dyn_ptr, dyn_ptr_addr; |
13437d4b | 761 | |
65728c26 DJ |
762 | /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this |
763 | instead of DT_DEBUG, although they sometimes contain an unused | |
764 | DT_DEBUG. */ | |
a738da3a MF |
765 | if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL) |
766 | || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL)) | |
3a40aaa0 | 767 | { |
f5656ead | 768 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
3a40aaa0 | 769 | gdb_byte *pbuf; |
b6da22b0 | 770 | int pbuf_size = TYPE_LENGTH (ptr_type); |
433759f7 | 771 | |
224c3ddb | 772 | pbuf = (gdb_byte *) alloca (pbuf_size); |
3a40aaa0 UW |
773 | /* DT_MIPS_RLD_MAP contains a pointer to the address |
774 | of the dynamic link structure. */ | |
775 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | |
e499d0f1 | 776 | return 0; |
b6da22b0 | 777 | return extract_typed_address (pbuf, ptr_type); |
e499d0f1 DJ |
778 | } |
779 | ||
a738da3a MF |
780 | /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form |
781 | because of needing to support PIE. DT_MIPS_RLD_MAP will also exist | |
782 | in non-PIE. */ | |
783 | if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr) | |
784 | || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr)) | |
785 | { | |
786 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
787 | gdb_byte *pbuf; | |
788 | int pbuf_size = TYPE_LENGTH (ptr_type); | |
789 | ||
224c3ddb | 790 | pbuf = (gdb_byte *) alloca (pbuf_size); |
a738da3a MF |
791 | /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the |
792 | DT slot to the address of the dynamic link structure. */ | |
793 | if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size)) | |
794 | return 0; | |
795 | return extract_typed_address (pbuf, ptr_type); | |
796 | } | |
797 | ||
65728c26 | 798 | /* Find DT_DEBUG. */ |
a738da3a MF |
799 | if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL) |
800 | || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL)) | |
65728c26 DJ |
801 | return dyn_ptr; |
802 | ||
3a40aaa0 UW |
803 | /* This may be a static executable. Look for the symbol |
804 | conventionally named _r_debug, as a last resort. */ | |
805 | msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile); | |
3b7344d5 | 806 | if (msymbol.minsym != NULL) |
77e371c0 | 807 | return BMSYMBOL_VALUE_ADDRESS (msymbol); |
13437d4b KB |
808 | |
809 | /* DT_DEBUG entry not found. */ | |
810 | return 0; | |
811 | } | |
812 | ||
7f86f058 | 813 | /* Locate the base address of dynamic linker structs. |
13437d4b KB |
814 | |
815 | For both the SunOS and SVR4 shared library implementations, if the | |
816 | inferior executable has been linked dynamically, there is a single | |
817 | address somewhere in the inferior's data space which is the key to | |
818 | locating all of the dynamic linker's runtime structures. This | |
819 | address is the value of the debug base symbol. The job of this | |
820 | function is to find and return that address, or to return 0 if there | |
821 | is no such address (the executable is statically linked for example). | |
822 | ||
823 | For SunOS, the job is almost trivial, since the dynamic linker and | |
824 | all of it's structures are statically linked to the executable at | |
825 | link time. Thus the symbol for the address we are looking for has | |
826 | already been added to the minimal symbol table for the executable's | |
827 | objfile at the time the symbol file's symbols were read, and all we | |
828 | have to do is look it up there. Note that we explicitly do NOT want | |
829 | to find the copies in the shared library. | |
830 | ||
831 | The SVR4 version is a bit more complicated because the address | |
832 | is contained somewhere in the dynamic info section. We have to go | |
833 | to a lot more work to discover the address of the debug base symbol. | |
834 | Because of this complexity, we cache the value we find and return that | |
835 | value on subsequent invocations. Note there is no copy in the | |
7f86f058 | 836 | executable symbol tables. */ |
13437d4b KB |
837 | |
838 | static CORE_ADDR | |
1a816a87 | 839 | locate_base (struct svr4_info *info) |
13437d4b | 840 | { |
13437d4b KB |
841 | /* Check to see if we have a currently valid address, and if so, avoid |
842 | doing all this work again and just return the cached address. If | |
843 | we have no cached address, try to locate it in the dynamic info | |
d5a921c9 KB |
844 | section for ELF executables. There's no point in doing any of this |
845 | though if we don't have some link map offsets to work with. */ | |
13437d4b | 846 | |
1a816a87 | 847 | if (info->debug_base == 0 && svr4_have_link_map_offsets ()) |
0763ab81 | 848 | info->debug_base = elf_locate_base (); |
1a816a87 | 849 | return info->debug_base; |
13437d4b KB |
850 | } |
851 | ||
e4cd0d6a | 852 | /* Find the first element in the inferior's dynamic link map, and |
6f992fbf JB |
853 | return its address in the inferior. Return zero if the address |
854 | could not be determined. | |
13437d4b | 855 | |
e4cd0d6a MK |
856 | FIXME: Perhaps we should validate the info somehow, perhaps by |
857 | checking r_version for a known version number, or r_state for | |
858 | RT_CONSISTENT. */ | |
13437d4b KB |
859 | |
860 | static CORE_ADDR | |
1a816a87 | 861 | solib_svr4_r_map (struct svr4_info *info) |
13437d4b | 862 | { |
4b188b9f | 863 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f5656ead | 864 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
08597104 | 865 | CORE_ADDR addr = 0; |
13437d4b | 866 | |
a70b8144 | 867 | try |
08597104 JB |
868 | { |
869 | addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset, | |
870 | ptr_type); | |
871 | } | |
230d2906 | 872 | catch (const gdb_exception_error &ex) |
492d29ea PA |
873 | { |
874 | exception_print (gdb_stderr, ex); | |
875 | } | |
492d29ea | 876 | |
08597104 | 877 | return addr; |
e4cd0d6a | 878 | } |
13437d4b | 879 | |
7cd25cfc DJ |
880 | /* Find r_brk from the inferior's debug base. */ |
881 | ||
882 | static CORE_ADDR | |
1a816a87 | 883 | solib_svr4_r_brk (struct svr4_info *info) |
7cd25cfc DJ |
884 | { |
885 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
f5656ead | 886 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
7cd25cfc | 887 | |
1a816a87 PA |
888 | return read_memory_typed_address (info->debug_base + lmo->r_brk_offset, |
889 | ptr_type); | |
7cd25cfc DJ |
890 | } |
891 | ||
e4cd0d6a MK |
892 | /* Find the link map for the dynamic linker (if it is not in the |
893 | normal list of loaded shared objects). */ | |
13437d4b | 894 | |
e4cd0d6a | 895 | static CORE_ADDR |
1a816a87 | 896 | solib_svr4_r_ldsomap (struct svr4_info *info) |
e4cd0d6a MK |
897 | { |
898 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
f5656ead | 899 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
34877895 | 900 | enum bfd_endian byte_order = type_byte_order (ptr_type); |
416f679e SDJ |
901 | ULONGEST version = 0; |
902 | ||
a70b8144 | 903 | try |
416f679e SDJ |
904 | { |
905 | /* Check version, and return zero if `struct r_debug' doesn't have | |
906 | the r_ldsomap member. */ | |
907 | version | |
908 | = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset, | |
909 | lmo->r_version_size, byte_order); | |
910 | } | |
230d2906 | 911 | catch (const gdb_exception_error &ex) |
416f679e SDJ |
912 | { |
913 | exception_print (gdb_stderr, ex); | |
914 | } | |
13437d4b | 915 | |
e4cd0d6a MK |
916 | if (version < 2 || lmo->r_ldsomap_offset == -1) |
917 | return 0; | |
13437d4b | 918 | |
1a816a87 | 919 | return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset, |
b6da22b0 | 920 | ptr_type); |
13437d4b KB |
921 | } |
922 | ||
de18c1d8 JM |
923 | /* On Solaris systems with some versions of the dynamic linker, |
924 | ld.so's l_name pointer points to the SONAME in the string table | |
925 | rather than into writable memory. So that GDB can find shared | |
926 | libraries when loading a core file generated by gcore, ensure that | |
927 | memory areas containing the l_name string are saved in the core | |
928 | file. */ | |
929 | ||
930 | static int | |
931 | svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size) | |
932 | { | |
933 | struct svr4_info *info; | |
934 | CORE_ADDR ldsomap; | |
74de0234 | 935 | CORE_ADDR name_lm; |
de18c1d8 | 936 | |
d70cc3ba | 937 | info = get_svr4_info (current_program_space); |
de18c1d8 JM |
938 | |
939 | info->debug_base = 0; | |
940 | locate_base (info); | |
941 | if (!info->debug_base) | |
942 | return 0; | |
943 | ||
944 | ldsomap = solib_svr4_r_ldsomap (info); | |
945 | if (!ldsomap) | |
946 | return 0; | |
947 | ||
a7961323 | 948 | std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap); |
d0e449a1 | 949 | name_lm = li != NULL ? li->l_name : 0; |
de18c1d8 | 950 | |
74de0234 | 951 | return (name_lm >= vaddr && name_lm < vaddr + size); |
de18c1d8 JM |
952 | } |
953 | ||
bf469271 | 954 | /* See solist.h. */ |
13437d4b KB |
955 | |
956 | static int | |
bf469271 | 957 | open_symbol_file_object (int from_tty) |
13437d4b KB |
958 | { |
959 | CORE_ADDR lm, l_name; | |
e83e4e24 | 960 | gdb::unique_xmalloc_ptr<char> filename; |
13437d4b | 961 | int errcode; |
4b188b9f | 962 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f5656ead | 963 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
b6da22b0 | 964 | int l_name_size = TYPE_LENGTH (ptr_type); |
a7961323 | 965 | gdb::byte_vector l_name_buf (l_name_size); |
d70cc3ba | 966 | struct svr4_info *info = get_svr4_info (current_program_space); |
ecf45d2c SL |
967 | symfile_add_flags add_flags = 0; |
968 | ||
969 | if (from_tty) | |
970 | add_flags |= SYMFILE_VERBOSE; | |
13437d4b KB |
971 | |
972 | if (symfile_objfile) | |
9e2f0ad4 | 973 | if (!query (_("Attempt to reload symbols from process? "))) |
a7961323 | 974 | return 0; |
13437d4b | 975 | |
7cd25cfc | 976 | /* Always locate the debug struct, in case it has moved. */ |
1a816a87 PA |
977 | info->debug_base = 0; |
978 | if (locate_base (info) == 0) | |
a7961323 | 979 | return 0; /* failed somehow... */ |
13437d4b KB |
980 | |
981 | /* First link map member should be the executable. */ | |
1a816a87 | 982 | lm = solib_svr4_r_map (info); |
e4cd0d6a | 983 | if (lm == 0) |
a7961323 | 984 | return 0; /* failed somehow... */ |
13437d4b KB |
985 | |
986 | /* Read address of name from target memory to GDB. */ | |
a7961323 | 987 | read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size); |
13437d4b | 988 | |
cfaefc65 | 989 | /* Convert the address to host format. */ |
a7961323 | 990 | l_name = extract_typed_address (l_name_buf.data (), ptr_type); |
13437d4b | 991 | |
13437d4b | 992 | if (l_name == 0) |
a7961323 | 993 | return 0; /* No filename. */ |
13437d4b KB |
994 | |
995 | /* Now fetch the filename from target memory. */ | |
996 | target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
997 | ||
998 | if (errcode) | |
999 | { | |
8a3fe4f8 | 1000 | warning (_("failed to read exec filename from attached file: %s"), |
13437d4b KB |
1001 | safe_strerror (errcode)); |
1002 | return 0; | |
1003 | } | |
1004 | ||
13437d4b | 1005 | /* Have a pathname: read the symbol file. */ |
e83e4e24 | 1006 | symbol_file_add_main (filename.get (), add_flags); |
13437d4b KB |
1007 | |
1008 | return 1; | |
1009 | } | |
13437d4b | 1010 | |
2268b414 JK |
1011 | /* Data exchange structure for the XML parser as returned by |
1012 | svr4_current_sos_via_xfer_libraries. */ | |
1013 | ||
1014 | struct svr4_library_list | |
1015 | { | |
1016 | struct so_list *head, **tailp; | |
1017 | ||
1018 | /* Inferior address of struct link_map used for the main executable. It is | |
1019 | NULL if not known. */ | |
1020 | CORE_ADDR main_lm; | |
1021 | }; | |
1022 | ||
7905fc35 PA |
1023 | /* This module's 'free_objfile' observer. */ |
1024 | ||
1025 | static void | |
1026 | svr4_free_objfile_observer (struct objfile *objfile) | |
1027 | { | |
1028 | probes_table_remove_objfile_probes (objfile); | |
1029 | } | |
1030 | ||
93f2a35e JK |
1031 | /* Implementation for target_so_ops.free_so. */ |
1032 | ||
1033 | static void | |
1034 | svr4_free_so (struct so_list *so) | |
1035 | { | |
76e75227 SM |
1036 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
1037 | ||
1038 | delete li; | |
93f2a35e JK |
1039 | } |
1040 | ||
0892cb63 DE |
1041 | /* Implement target_so_ops.clear_so. */ |
1042 | ||
1043 | static void | |
1044 | svr4_clear_so (struct so_list *so) | |
1045 | { | |
d0e449a1 SM |
1046 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
1047 | ||
1048 | if (li != NULL) | |
1049 | li->l_addr_p = 0; | |
0892cb63 DE |
1050 | } |
1051 | ||
93f2a35e JK |
1052 | /* Free so_list built so far (called via cleanup). */ |
1053 | ||
1054 | static void | |
1055 | svr4_free_library_list (void *p_list) | |
1056 | { | |
1057 | struct so_list *list = *(struct so_list **) p_list; | |
1058 | ||
1059 | while (list != NULL) | |
1060 | { | |
1061 | struct so_list *next = list->next; | |
1062 | ||
3756ef7e | 1063 | free_so (list); |
93f2a35e JK |
1064 | list = next; |
1065 | } | |
1066 | } | |
1067 | ||
f9e14852 GB |
1068 | /* Copy library list. */ |
1069 | ||
1070 | static struct so_list * | |
1071 | svr4_copy_library_list (struct so_list *src) | |
1072 | { | |
1073 | struct so_list *dst = NULL; | |
1074 | struct so_list **link = &dst; | |
1075 | ||
1076 | while (src != NULL) | |
1077 | { | |
fe978cb0 | 1078 | struct so_list *newobj; |
f9e14852 | 1079 | |
8d749320 | 1080 | newobj = XNEW (struct so_list); |
fe978cb0 | 1081 | memcpy (newobj, src, sizeof (struct so_list)); |
f9e14852 | 1082 | |
76e75227 SM |
1083 | lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info; |
1084 | newobj->lm_info = new lm_info_svr4 (*src_li); | |
f9e14852 | 1085 | |
fe978cb0 PA |
1086 | newobj->next = NULL; |
1087 | *link = newobj; | |
1088 | link = &newobj->next; | |
f9e14852 GB |
1089 | |
1090 | src = src->next; | |
1091 | } | |
1092 | ||
1093 | return dst; | |
1094 | } | |
1095 | ||
2268b414 JK |
1096 | #ifdef HAVE_LIBEXPAT |
1097 | ||
1098 | #include "xml-support.h" | |
1099 | ||
1100 | /* Handle the start of a <library> element. Note: new elements are added | |
1101 | at the tail of the list, keeping the list in order. */ | |
1102 | ||
1103 | static void | |
1104 | library_list_start_library (struct gdb_xml_parser *parser, | |
1105 | const struct gdb_xml_element *element, | |
4d0fdd9b SM |
1106 | void *user_data, |
1107 | std::vector<gdb_xml_value> &attributes) | |
2268b414 | 1108 | { |
19ba03f4 SM |
1109 | struct svr4_library_list *list = (struct svr4_library_list *) user_data; |
1110 | const char *name | |
4d0fdd9b | 1111 | = (const char *) xml_find_attribute (attributes, "name")->value.get (); |
19ba03f4 | 1112 | ULONGEST *lmp |
4d0fdd9b | 1113 | = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get (); |
19ba03f4 | 1114 | ULONGEST *l_addrp |
4d0fdd9b | 1115 | = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get (); |
19ba03f4 | 1116 | ULONGEST *l_ldp |
4d0fdd9b | 1117 | = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get (); |
2268b414 JK |
1118 | struct so_list *new_elem; |
1119 | ||
41bf6aca | 1120 | new_elem = XCNEW (struct so_list); |
76e75227 | 1121 | lm_info_svr4 *li = new lm_info_svr4; |
d0e449a1 SM |
1122 | new_elem->lm_info = li; |
1123 | li->lm_addr = *lmp; | |
1124 | li->l_addr_inferior = *l_addrp; | |
1125 | li->l_ld = *l_ldp; | |
2268b414 JK |
1126 | |
1127 | strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1); | |
1128 | new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0; | |
1129 | strcpy (new_elem->so_original_name, new_elem->so_name); | |
1130 | ||
1131 | *list->tailp = new_elem; | |
1132 | list->tailp = &new_elem->next; | |
1133 | } | |
1134 | ||
1135 | /* Handle the start of a <library-list-svr4> element. */ | |
1136 | ||
1137 | static void | |
1138 | svr4_library_list_start_list (struct gdb_xml_parser *parser, | |
1139 | const struct gdb_xml_element *element, | |
4d0fdd9b SM |
1140 | void *user_data, |
1141 | std::vector<gdb_xml_value> &attributes) | |
2268b414 | 1142 | { |
19ba03f4 SM |
1143 | struct svr4_library_list *list = (struct svr4_library_list *) user_data; |
1144 | const char *version | |
4d0fdd9b | 1145 | = (const char *) xml_find_attribute (attributes, "version")->value.get (); |
2268b414 JK |
1146 | struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm"); |
1147 | ||
1148 | if (strcmp (version, "1.0") != 0) | |
1149 | gdb_xml_error (parser, | |
1150 | _("SVR4 Library list has unsupported version \"%s\""), | |
1151 | version); | |
1152 | ||
1153 | if (main_lm) | |
4d0fdd9b | 1154 | list->main_lm = *(ULONGEST *) main_lm->value.get (); |
2268b414 JK |
1155 | } |
1156 | ||
1157 | /* The allowed elements and attributes for an XML library list. | |
1158 | The root element is a <library-list>. */ | |
1159 | ||
1160 | static const struct gdb_xml_attribute svr4_library_attributes[] = | |
1161 | { | |
1162 | { "name", GDB_XML_AF_NONE, NULL, NULL }, | |
1163 | { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1164 | { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1165 | { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1166 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1167 | }; | |
1168 | ||
1169 | static const struct gdb_xml_element svr4_library_list_children[] = | |
1170 | { | |
1171 | { | |
1172 | "library", svr4_library_attributes, NULL, | |
1173 | GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL, | |
1174 | library_list_start_library, NULL | |
1175 | }, | |
1176 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1177 | }; | |
1178 | ||
1179 | static const struct gdb_xml_attribute svr4_library_list_attributes[] = | |
1180 | { | |
1181 | { "version", GDB_XML_AF_NONE, NULL, NULL }, | |
1182 | { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL }, | |
1183 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1184 | }; | |
1185 | ||
1186 | static const struct gdb_xml_element svr4_library_list_elements[] = | |
1187 | { | |
1188 | { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children, | |
1189 | GDB_XML_EF_NONE, svr4_library_list_start_list, NULL }, | |
1190 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1191 | }; | |
1192 | ||
2268b414 JK |
1193 | /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if |
1194 | ||
1195 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1196 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
1197 | empty, caller is responsible for freeing all its entries. */ | |
1198 | ||
1199 | static int | |
1200 | svr4_parse_libraries (const char *document, struct svr4_library_list *list) | |
1201 | { | |
2b6ff1c0 TT |
1202 | auto cleanup = make_scope_exit ([&] () |
1203 | { | |
1204 | svr4_free_library_list (&list->head); | |
1205 | }); | |
2268b414 JK |
1206 | |
1207 | memset (list, 0, sizeof (*list)); | |
1208 | list->tailp = &list->head; | |
2eca4a8d | 1209 | if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd", |
2268b414 JK |
1210 | svr4_library_list_elements, document, list) == 0) |
1211 | { | |
1212 | /* Parsed successfully, keep the result. */ | |
2b6ff1c0 | 1213 | cleanup.release (); |
2268b414 JK |
1214 | return 1; |
1215 | } | |
1216 | ||
2268b414 JK |
1217 | return 0; |
1218 | } | |
1219 | ||
f9e14852 | 1220 | /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet. |
2268b414 JK |
1221 | |
1222 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1223 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
f9e14852 GB |
1224 | empty, caller is responsible for freeing all its entries. |
1225 | ||
1226 | Note that ANNEX must be NULL if the remote does not explicitly allow | |
1227 | qXfer:libraries-svr4:read packets with non-empty annexes. Support for | |
1228 | this can be checked using target_augmented_libraries_svr4_read (). */ | |
2268b414 JK |
1229 | |
1230 | static int | |
f9e14852 GB |
1231 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, |
1232 | const char *annex) | |
2268b414 | 1233 | { |
f9e14852 GB |
1234 | gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ()); |
1235 | ||
2268b414 | 1236 | /* Fetch the list of shared libraries. */ |
9018be22 | 1237 | gdb::optional<gdb::char_vector> svr4_library_document |
8b88a78e | 1238 | = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4, |
b7b030ad | 1239 | annex); |
9018be22 | 1240 | if (!svr4_library_document) |
2268b414 JK |
1241 | return 0; |
1242 | ||
9018be22 | 1243 | return svr4_parse_libraries (svr4_library_document->data (), list); |
2268b414 JK |
1244 | } |
1245 | ||
1246 | #else | |
1247 | ||
1248 | static int | |
f9e14852 GB |
1249 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, |
1250 | const char *annex) | |
2268b414 JK |
1251 | { |
1252 | return 0; | |
1253 | } | |
1254 | ||
1255 | #endif | |
1256 | ||
34439770 DJ |
1257 | /* If no shared library information is available from the dynamic |
1258 | linker, build a fallback list from other sources. */ | |
1259 | ||
1260 | static struct so_list * | |
d70cc3ba | 1261 | svr4_default_sos (svr4_info *info) |
34439770 | 1262 | { |
fe978cb0 | 1263 | struct so_list *newobj; |
1a816a87 | 1264 | |
8e5c319d JK |
1265 | if (!info->debug_loader_offset_p) |
1266 | return NULL; | |
34439770 | 1267 | |
fe978cb0 | 1268 | newobj = XCNEW (struct so_list); |
76e75227 | 1269 | lm_info_svr4 *li = new lm_info_svr4; |
d0e449a1 | 1270 | newobj->lm_info = li; |
34439770 | 1271 | |
3957565a | 1272 | /* Nothing will ever check the other fields if we set l_addr_p. */ |
d0e449a1 SM |
1273 | li->l_addr = info->debug_loader_offset; |
1274 | li->l_addr_p = 1; | |
34439770 | 1275 | |
fe978cb0 PA |
1276 | strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1); |
1277 | newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
1278 | strcpy (newobj->so_original_name, newobj->so_name); | |
34439770 | 1279 | |
fe978cb0 | 1280 | return newobj; |
34439770 DJ |
1281 | } |
1282 | ||
f9e14852 GB |
1283 | /* Read the whole inferior libraries chain starting at address LM. |
1284 | Expect the first entry in the chain's previous entry to be PREV_LM. | |
1285 | Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the | |
1286 | first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according | |
1287 | to it. Returns nonzero upon success. If zero is returned the | |
1288 | entries stored to LINK_PTR_PTR are still valid although they may | |
1289 | represent only part of the inferior library list. */ | |
13437d4b | 1290 | |
f9e14852 | 1291 | static int |
d70cc3ba | 1292 | svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm, |
f9e14852 | 1293 | struct so_list ***link_ptr_ptr, int ignore_first) |
13437d4b | 1294 | { |
c725e7b6 | 1295 | CORE_ADDR first_l_name = 0; |
f9e14852 | 1296 | CORE_ADDR next_lm; |
13437d4b | 1297 | |
cb08cc53 | 1298 | for (; lm != 0; prev_lm = lm, lm = next_lm) |
13437d4b | 1299 | { |
cb08cc53 | 1300 | int errcode; |
e83e4e24 | 1301 | gdb::unique_xmalloc_ptr<char> buffer; |
13437d4b | 1302 | |
b3bc8453 | 1303 | so_list_up newobj (XCNEW (struct so_list)); |
13437d4b | 1304 | |
a7961323 | 1305 | lm_info_svr4 *li = lm_info_read (lm).release (); |
d0e449a1 SM |
1306 | newobj->lm_info = li; |
1307 | if (li == NULL) | |
b3bc8453 | 1308 | return 0; |
13437d4b | 1309 | |
d0e449a1 | 1310 | next_lm = li->l_next; |
492928e4 | 1311 | |
d0e449a1 | 1312 | if (li->l_prev != prev_lm) |
492928e4 | 1313 | { |
2268b414 | 1314 | warning (_("Corrupted shared library list: %s != %s"), |
f5656ead | 1315 | paddress (target_gdbarch (), prev_lm), |
d0e449a1 | 1316 | paddress (target_gdbarch (), li->l_prev)); |
f9e14852 | 1317 | return 0; |
492928e4 | 1318 | } |
13437d4b KB |
1319 | |
1320 | /* For SVR4 versions, the first entry in the link map is for the | |
1321 | inferior executable, so we must ignore it. For some versions of | |
1322 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
1323 | does have a name, so we can no longer use a missing name to | |
c378eb4e | 1324 | decide when to ignore it. */ |
d0e449a1 | 1325 | if (ignore_first && li->l_prev == 0) |
93a57060 | 1326 | { |
d0e449a1 SM |
1327 | first_l_name = li->l_name; |
1328 | info->main_lm_addr = li->lm_addr; | |
cb08cc53 | 1329 | continue; |
93a57060 | 1330 | } |
13437d4b | 1331 | |
cb08cc53 | 1332 | /* Extract this shared object's name. */ |
d0e449a1 SM |
1333 | target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1, |
1334 | &errcode); | |
cb08cc53 JK |
1335 | if (errcode != 0) |
1336 | { | |
7d760051 UW |
1337 | /* If this entry's l_name address matches that of the |
1338 | inferior executable, then this is not a normal shared | |
1339 | object, but (most likely) a vDSO. In this case, silently | |
1340 | skip it; otherwise emit a warning. */ | |
d0e449a1 | 1341 | if (first_l_name == 0 || li->l_name != first_l_name) |
7d760051 UW |
1342 | warning (_("Can't read pathname for load map: %s."), |
1343 | safe_strerror (errcode)); | |
cb08cc53 | 1344 | continue; |
13437d4b KB |
1345 | } |
1346 | ||
e83e4e24 | 1347 | strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1); |
fe978cb0 PA |
1348 | newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; |
1349 | strcpy (newobj->so_original_name, newobj->so_name); | |
492928e4 | 1350 | |
cb08cc53 JK |
1351 | /* If this entry has no name, or its name matches the name |
1352 | for the main executable, don't include it in the list. */ | |
fe978cb0 | 1353 | if (! newobj->so_name[0] || match_main (newobj->so_name)) |
b3bc8453 | 1354 | continue; |
e4cd0d6a | 1355 | |
fe978cb0 | 1356 | newobj->next = 0; |
b3bc8453 TT |
1357 | /* Don't free it now. */ |
1358 | **link_ptr_ptr = newobj.release (); | |
1359 | *link_ptr_ptr = &(**link_ptr_ptr)->next; | |
13437d4b | 1360 | } |
f9e14852 GB |
1361 | |
1362 | return 1; | |
cb08cc53 JK |
1363 | } |
1364 | ||
f9e14852 GB |
1365 | /* Read the full list of currently loaded shared objects directly |
1366 | from the inferior, without referring to any libraries read and | |
1367 | stored by the probes interface. Handle special cases relating | |
1368 | to the first elements of the list. */ | |
cb08cc53 JK |
1369 | |
1370 | static struct so_list * | |
f9e14852 | 1371 | svr4_current_sos_direct (struct svr4_info *info) |
cb08cc53 JK |
1372 | { |
1373 | CORE_ADDR lm; | |
1374 | struct so_list *head = NULL; | |
1375 | struct so_list **link_ptr = &head; | |
cb08cc53 | 1376 | int ignore_first; |
2268b414 JK |
1377 | struct svr4_library_list library_list; |
1378 | ||
0c5bf5a9 JK |
1379 | /* Fall back to manual examination of the target if the packet is not |
1380 | supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp | |
1381 | tests a case where gdbserver cannot find the shared libraries list while | |
1382 | GDB itself is able to find it via SYMFILE_OBJFILE. | |
1383 | ||
1384 | Unfortunately statically linked inferiors will also fall back through this | |
1385 | suboptimal code path. */ | |
1386 | ||
f9e14852 GB |
1387 | info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list, |
1388 | NULL); | |
1389 | if (info->using_xfer) | |
2268b414 JK |
1390 | { |
1391 | if (library_list.main_lm) | |
f9e14852 | 1392 | info->main_lm_addr = library_list.main_lm; |
2268b414 | 1393 | |
d70cc3ba | 1394 | return library_list.head ? library_list.head : svr4_default_sos (info); |
2268b414 | 1395 | } |
cb08cc53 | 1396 | |
cb08cc53 JK |
1397 | /* Always locate the debug struct, in case it has moved. */ |
1398 | info->debug_base = 0; | |
1399 | locate_base (info); | |
1400 | ||
1401 | /* If we can't find the dynamic linker's base structure, this | |
1402 | must not be a dynamically linked executable. Hmm. */ | |
1403 | if (! info->debug_base) | |
d70cc3ba | 1404 | return svr4_default_sos (info); |
cb08cc53 JK |
1405 | |
1406 | /* Assume that everything is a library if the dynamic loader was loaded | |
1407 | late by a static executable. */ | |
1408 | if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL) | |
1409 | ignore_first = 0; | |
1410 | else | |
1411 | ignore_first = 1; | |
1412 | ||
2b6ff1c0 TT |
1413 | auto cleanup = make_scope_exit ([&] () |
1414 | { | |
1415 | svr4_free_library_list (&head); | |
1416 | }); | |
cb08cc53 JK |
1417 | |
1418 | /* Walk the inferior's link map list, and build our list of | |
1419 | `struct so_list' nodes. */ | |
1420 | lm = solib_svr4_r_map (info); | |
1421 | if (lm) | |
d70cc3ba | 1422 | svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first); |
cb08cc53 JK |
1423 | |
1424 | /* On Solaris, the dynamic linker is not in the normal list of | |
1425 | shared objects, so make sure we pick it up too. Having | |
1426 | symbol information for the dynamic linker is quite crucial | |
1427 | for skipping dynamic linker resolver code. */ | |
1428 | lm = solib_svr4_r_ldsomap (info); | |
1429 | if (lm) | |
d70cc3ba | 1430 | svr4_read_so_list (info, lm, 0, &link_ptr, 0); |
cb08cc53 | 1431 | |
2b6ff1c0 | 1432 | cleanup.release (); |
13437d4b | 1433 | |
34439770 | 1434 | if (head == NULL) |
d70cc3ba | 1435 | return svr4_default_sos (info); |
34439770 | 1436 | |
13437d4b KB |
1437 | return head; |
1438 | } | |
1439 | ||
8b9a549d PA |
1440 | /* Implement the main part of the "current_sos" target_so_ops |
1441 | method. */ | |
f9e14852 GB |
1442 | |
1443 | static struct so_list * | |
d70cc3ba | 1444 | svr4_current_sos_1 (svr4_info *info) |
f9e14852 | 1445 | { |
f9e14852 GB |
1446 | /* If the solib list has been read and stored by the probes |
1447 | interface then we return a copy of the stored list. */ | |
1448 | if (info->solib_list != NULL) | |
1449 | return svr4_copy_library_list (info->solib_list); | |
1450 | ||
1451 | /* Otherwise obtain the solib list directly from the inferior. */ | |
1452 | return svr4_current_sos_direct (info); | |
1453 | } | |
1454 | ||
8b9a549d PA |
1455 | /* Implement the "current_sos" target_so_ops method. */ |
1456 | ||
1457 | static struct so_list * | |
1458 | svr4_current_sos (void) | |
1459 | { | |
d70cc3ba SM |
1460 | svr4_info *info = get_svr4_info (current_program_space); |
1461 | struct so_list *so_head = svr4_current_sos_1 (info); | |
8b9a549d PA |
1462 | struct mem_range vsyscall_range; |
1463 | ||
1464 | /* Filter out the vDSO module, if present. Its symbol file would | |
1465 | not be found on disk. The vDSO/vsyscall's OBJFILE is instead | |
1466 | managed by symfile-mem.c:add_vsyscall_page. */ | |
1467 | if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range) | |
1468 | && vsyscall_range.length != 0) | |
1469 | { | |
1470 | struct so_list **sop; | |
1471 | ||
1472 | sop = &so_head; | |
1473 | while (*sop != NULL) | |
1474 | { | |
1475 | struct so_list *so = *sop; | |
1476 | ||
1477 | /* We can't simply match the vDSO by starting address alone, | |
1478 | because lm_info->l_addr_inferior (and also l_addr) do not | |
1479 | necessarily represent the real starting address of the | |
1480 | ELF if the vDSO's ELF itself is "prelinked". The l_ld | |
1481 | field (the ".dynamic" section of the shared object) | |
1482 | always points at the absolute/resolved address though. | |
1483 | So check whether that address is inside the vDSO's | |
1484 | mapping instead. | |
1485 | ||
1486 | E.g., on Linux 3.16 (x86_64) the vDSO is a regular | |
1487 | 0-based ELF, and we see: | |
1488 | ||
1489 | (gdb) info auxv | |
1490 | 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000 | |
1491 | (gdb) p/x *_r_debug.r_map.l_next | |
1492 | $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...} | |
1493 | ||
1494 | And on Linux 2.6.32 (x86_64) we see: | |
1495 | ||
1496 | (gdb) info auxv | |
1497 | 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000 | |
1498 | (gdb) p/x *_r_debug.r_map.l_next | |
1499 | $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... } | |
1500 | ||
1501 | Dumping that vDSO shows: | |
1502 | ||
1503 | (gdb) info proc mappings | |
1504 | 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso] | |
1505 | (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000 | |
1506 | # readelf -Wa vdso.bin | |
1507 | [...] | |
1508 | Entry point address: 0xffffffffff700700 | |
1509 | [...] | |
1510 | Section Headers: | |
1511 | [Nr] Name Type Address Off Size | |
1512 | [ 0] NULL 0000000000000000 000000 000000 | |
1513 | [ 1] .hash HASH ffffffffff700120 000120 000038 | |
1514 | [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8 | |
1515 | [...] | |
1516 | [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0 | |
1517 | */ | |
d0e449a1 SM |
1518 | |
1519 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | |
1520 | ||
1521 | if (address_in_mem_range (li->l_ld, &vsyscall_range)) | |
8b9a549d PA |
1522 | { |
1523 | *sop = so->next; | |
1524 | free_so (so); | |
1525 | break; | |
1526 | } | |
1527 | ||
1528 | sop = &so->next; | |
1529 | } | |
1530 | } | |
1531 | ||
1532 | return so_head; | |
1533 | } | |
1534 | ||
93a57060 | 1535 | /* Get the address of the link_map for a given OBJFILE. */ |
bc4a16ae EZ |
1536 | |
1537 | CORE_ADDR | |
1538 | svr4_fetch_objfile_link_map (struct objfile *objfile) | |
1539 | { | |
93a57060 | 1540 | struct so_list *so; |
d70cc3ba | 1541 | struct svr4_info *info = get_svr4_info (objfile->pspace); |
bc4a16ae | 1542 | |
93a57060 | 1543 | /* Cause svr4_current_sos() to be run if it hasn't been already. */ |
1a816a87 | 1544 | if (info->main_lm_addr == 0) |
e696b3ad | 1545 | solib_add (NULL, 0, auto_solib_add); |
bc4a16ae | 1546 | |
93a57060 DJ |
1547 | /* svr4_current_sos() will set main_lm_addr for the main executable. */ |
1548 | if (objfile == symfile_objfile) | |
1a816a87 | 1549 | return info->main_lm_addr; |
93a57060 | 1550 | |
df22c1e5 JB |
1551 | /* If OBJFILE is a separate debug object file, look for the |
1552 | original object file. */ | |
1553 | if (objfile->separate_debug_objfile_backlink != NULL) | |
1554 | objfile = objfile->separate_debug_objfile_backlink; | |
1555 | ||
93a57060 DJ |
1556 | /* The other link map addresses may be found by examining the list |
1557 | of shared libraries. */ | |
1558 | for (so = master_so_list (); so; so = so->next) | |
1559 | if (so->objfile == objfile) | |
d0e449a1 SM |
1560 | { |
1561 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | |
1562 | ||
1563 | return li->lm_addr; | |
1564 | } | |
93a57060 DJ |
1565 | |
1566 | /* Not found! */ | |
bc4a16ae EZ |
1567 | return 0; |
1568 | } | |
13437d4b KB |
1569 | |
1570 | /* On some systems, the only way to recognize the link map entry for | |
1571 | the main executable file is by looking at its name. Return | |
1572 | non-zero iff SONAME matches one of the known main executable names. */ | |
1573 | ||
1574 | static int | |
bc043ef3 | 1575 | match_main (const char *soname) |
13437d4b | 1576 | { |
bc043ef3 | 1577 | const char * const *mainp; |
13437d4b KB |
1578 | |
1579 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
1580 | { | |
1581 | if (strcmp (soname, *mainp) == 0) | |
1582 | return (1); | |
1583 | } | |
1584 | ||
1585 | return (0); | |
1586 | } | |
1587 | ||
13437d4b KB |
1588 | /* Return 1 if PC lies in the dynamic symbol resolution code of the |
1589 | SVR4 run time loader. */ | |
13437d4b | 1590 | |
7d522c90 | 1591 | int |
d7fa2ae2 | 1592 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) |
13437d4b | 1593 | { |
d70cc3ba | 1594 | struct svr4_info *info = get_svr4_info (current_program_space); |
6c95b8df PA |
1595 | |
1596 | return ((pc >= info->interp_text_sect_low | |
1597 | && pc < info->interp_text_sect_high) | |
1598 | || (pc >= info->interp_plt_sect_low | |
1599 | && pc < info->interp_plt_sect_high) | |
3e5d3a5a | 1600 | || in_plt_section (pc) |
0875794a | 1601 | || in_gnu_ifunc_stub (pc)); |
13437d4b | 1602 | } |
13437d4b | 1603 | |
2f4950cd AC |
1604 | /* Given an executable's ABFD and target, compute the entry-point |
1605 | address. */ | |
1606 | ||
1607 | static CORE_ADDR | |
1608 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | |
1609 | { | |
8c2b9656 YQ |
1610 | CORE_ADDR addr; |
1611 | ||
2f4950cd AC |
1612 | /* KevinB wrote ... for most targets, the address returned by |
1613 | bfd_get_start_address() is the entry point for the start | |
1614 | function. But, for some targets, bfd_get_start_address() returns | |
1615 | the address of a function descriptor from which the entry point | |
1616 | address may be extracted. This address is extracted by | |
1617 | gdbarch_convert_from_func_ptr_addr(). The method | |
1618 | gdbarch_convert_from_func_ptr_addr() is the merely the identify | |
1619 | function for targets which don't use function descriptors. */ | |
8c2b9656 | 1620 | addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
2f4950cd AC |
1621 | bfd_get_start_address (abfd), |
1622 | targ); | |
8c2b9656 | 1623 | return gdbarch_addr_bits_remove (target_gdbarch (), addr); |
2f4950cd | 1624 | } |
13437d4b | 1625 | |
f9e14852 GB |
1626 | /* A probe and its associated action. */ |
1627 | ||
1628 | struct probe_and_action | |
1629 | { | |
1630 | /* The probe. */ | |
935676c9 | 1631 | probe *prob; |
f9e14852 | 1632 | |
729662a5 TT |
1633 | /* The relocated address of the probe. */ |
1634 | CORE_ADDR address; | |
1635 | ||
f9e14852 GB |
1636 | /* The action. */ |
1637 | enum probe_action action; | |
7905fc35 PA |
1638 | |
1639 | /* The objfile where this probe was found. */ | |
1640 | struct objfile *objfile; | |
f9e14852 GB |
1641 | }; |
1642 | ||
1643 | /* Returns a hash code for the probe_and_action referenced by p. */ | |
1644 | ||
1645 | static hashval_t | |
1646 | hash_probe_and_action (const void *p) | |
1647 | { | |
19ba03f4 | 1648 | const struct probe_and_action *pa = (const struct probe_and_action *) p; |
f9e14852 | 1649 | |
729662a5 | 1650 | return (hashval_t) pa->address; |
f9e14852 GB |
1651 | } |
1652 | ||
1653 | /* Returns non-zero if the probe_and_actions referenced by p1 and p2 | |
1654 | are equal. */ | |
1655 | ||
1656 | static int | |
1657 | equal_probe_and_action (const void *p1, const void *p2) | |
1658 | { | |
19ba03f4 SM |
1659 | const struct probe_and_action *pa1 = (const struct probe_and_action *) p1; |
1660 | const struct probe_and_action *pa2 = (const struct probe_and_action *) p2; | |
f9e14852 | 1661 | |
729662a5 | 1662 | return pa1->address == pa2->address; |
f9e14852 GB |
1663 | } |
1664 | ||
7905fc35 PA |
1665 | /* Traversal function for probes_table_remove_objfile_probes. */ |
1666 | ||
1667 | static int | |
1668 | probes_table_htab_remove_objfile_probes (void **slot, void *info) | |
1669 | { | |
1670 | probe_and_action *pa = (probe_and_action *) *slot; | |
1671 | struct objfile *objfile = (struct objfile *) info; | |
1672 | ||
1673 | if (pa->objfile == objfile) | |
09232438 TT |
1674 | htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (), |
1675 | slot); | |
7905fc35 PA |
1676 | |
1677 | return 1; | |
1678 | } | |
1679 | ||
1680 | /* Remove all probes that belong to OBJFILE from the probes table. */ | |
1681 | ||
1682 | static void | |
1683 | probes_table_remove_objfile_probes (struct objfile *objfile) | |
1684 | { | |
d70cc3ba | 1685 | svr4_info *info = get_svr4_info (objfile->pspace); |
7905fc35 | 1686 | if (info->probes_table != nullptr) |
09232438 | 1687 | htab_traverse_noresize (info->probes_table.get (), |
7905fc35 PA |
1688 | probes_table_htab_remove_objfile_probes, objfile); |
1689 | } | |
1690 | ||
f9e14852 GB |
1691 | /* Register a solib event probe and its associated action in the |
1692 | probes table. */ | |
1693 | ||
1694 | static void | |
d70cc3ba | 1695 | register_solib_event_probe (svr4_info *info, struct objfile *objfile, |
7905fc35 | 1696 | probe *prob, CORE_ADDR address, |
729662a5 | 1697 | enum probe_action action) |
f9e14852 | 1698 | { |
f9e14852 GB |
1699 | struct probe_and_action lookup, *pa; |
1700 | void **slot; | |
1701 | ||
1702 | /* Create the probes table, if necessary. */ | |
1703 | if (info->probes_table == NULL) | |
09232438 TT |
1704 | info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action, |
1705 | equal_probe_and_action, | |
1706 | xfree, xcalloc, xfree)); | |
f9e14852 | 1707 | |
729662a5 | 1708 | lookup.address = address; |
09232438 | 1709 | slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT); |
f9e14852 GB |
1710 | gdb_assert (*slot == HTAB_EMPTY_ENTRY); |
1711 | ||
1712 | pa = XCNEW (struct probe_and_action); | |
935676c9 | 1713 | pa->prob = prob; |
729662a5 | 1714 | pa->address = address; |
f9e14852 | 1715 | pa->action = action; |
7905fc35 | 1716 | pa->objfile = objfile; |
f9e14852 GB |
1717 | |
1718 | *slot = pa; | |
1719 | } | |
1720 | ||
1721 | /* Get the solib event probe at the specified location, and the | |
1722 | action associated with it. Returns NULL if no solib event probe | |
1723 | was found. */ | |
1724 | ||
1725 | static struct probe_and_action * | |
1726 | solib_event_probe_at (struct svr4_info *info, CORE_ADDR address) | |
1727 | { | |
f9e14852 GB |
1728 | struct probe_and_action lookup; |
1729 | void **slot; | |
1730 | ||
729662a5 | 1731 | lookup.address = address; |
09232438 | 1732 | slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT); |
f9e14852 GB |
1733 | |
1734 | if (slot == NULL) | |
1735 | return NULL; | |
1736 | ||
1737 | return (struct probe_and_action *) *slot; | |
1738 | } | |
1739 | ||
1740 | /* Decide what action to take when the specified solib event probe is | |
1741 | hit. */ | |
1742 | ||
1743 | static enum probe_action | |
1744 | solib_event_probe_action (struct probe_and_action *pa) | |
1745 | { | |
1746 | enum probe_action action; | |
73c6b475 | 1747 | unsigned probe_argc = 0; |
08a6411c | 1748 | struct frame_info *frame = get_current_frame (); |
f9e14852 GB |
1749 | |
1750 | action = pa->action; | |
1751 | if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED) | |
1752 | return action; | |
1753 | ||
1754 | gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD); | |
1755 | ||
1756 | /* Check that an appropriate number of arguments has been supplied. | |
1757 | We expect: | |
1758 | arg0: Lmid_t lmid (mandatory) | |
1759 | arg1: struct r_debug *debug_base (mandatory) | |
1760 | arg2: struct link_map *new (optional, for incremental updates) */ | |
a70b8144 | 1761 | try |
3bd7e5b7 | 1762 | { |
fe01123e | 1763 | probe_argc = pa->prob->get_argument_count (get_frame_arch (frame)); |
3bd7e5b7 | 1764 | } |
230d2906 | 1765 | catch (const gdb_exception_error &ex) |
3bd7e5b7 SDJ |
1766 | { |
1767 | exception_print (gdb_stderr, ex); | |
1768 | probe_argc = 0; | |
1769 | } | |
3bd7e5b7 | 1770 | |
935676c9 SDJ |
1771 | /* If get_argument_count throws an exception, probe_argc will be set |
1772 | to zero. However, if pa->prob does not have arguments, then | |
1773 | get_argument_count will succeed but probe_argc will also be zero. | |
1774 | Both cases happen because of different things, but they are | |
1775 | treated equally here: action will be set to | |
3bd7e5b7 | 1776 | PROBES_INTERFACE_FAILED. */ |
f9e14852 GB |
1777 | if (probe_argc == 2) |
1778 | action = FULL_RELOAD; | |
1779 | else if (probe_argc < 2) | |
1780 | action = PROBES_INTERFACE_FAILED; | |
1781 | ||
1782 | return action; | |
1783 | } | |
1784 | ||
1785 | /* Populate the shared object list by reading the entire list of | |
1786 | shared objects from the inferior. Handle special cases relating | |
1787 | to the first elements of the list. Returns nonzero on success. */ | |
1788 | ||
1789 | static int | |
1790 | solist_update_full (struct svr4_info *info) | |
1791 | { | |
1792 | free_solib_list (info); | |
1793 | info->solib_list = svr4_current_sos_direct (info); | |
1794 | ||
1795 | return 1; | |
1796 | } | |
1797 | ||
1798 | /* Update the shared object list starting from the link-map entry | |
1799 | passed by the linker in the probe's third argument. Returns | |
1800 | nonzero if the list was successfully updated, or zero to indicate | |
1801 | failure. */ | |
1802 | ||
1803 | static int | |
1804 | solist_update_incremental (struct svr4_info *info, CORE_ADDR lm) | |
1805 | { | |
1806 | struct so_list *tail; | |
1807 | CORE_ADDR prev_lm; | |
1808 | ||
1809 | /* svr4_current_sos_direct contains logic to handle a number of | |
1810 | special cases relating to the first elements of the list. To | |
1811 | avoid duplicating this logic we defer to solist_update_full | |
1812 | if the list is empty. */ | |
1813 | if (info->solib_list == NULL) | |
1814 | return 0; | |
1815 | ||
1816 | /* Fall back to a full update if we are using a remote target | |
1817 | that does not support incremental transfers. */ | |
1818 | if (info->using_xfer && !target_augmented_libraries_svr4_read ()) | |
1819 | return 0; | |
1820 | ||
1821 | /* Walk to the end of the list. */ | |
1822 | for (tail = info->solib_list; tail->next != NULL; tail = tail->next) | |
1823 | /* Nothing. */; | |
d0e449a1 SM |
1824 | |
1825 | lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info; | |
1826 | prev_lm = li->lm_addr; | |
f9e14852 GB |
1827 | |
1828 | /* Read the new objects. */ | |
1829 | if (info->using_xfer) | |
1830 | { | |
1831 | struct svr4_library_list library_list; | |
1832 | char annex[64]; | |
1833 | ||
1834 | xsnprintf (annex, sizeof (annex), "start=%s;prev=%s", | |
1835 | phex_nz (lm, sizeof (lm)), | |
1836 | phex_nz (prev_lm, sizeof (prev_lm))); | |
1837 | if (!svr4_current_sos_via_xfer_libraries (&library_list, annex)) | |
1838 | return 0; | |
1839 | ||
1840 | tail->next = library_list.head; | |
1841 | } | |
1842 | else | |
1843 | { | |
1844 | struct so_list **link = &tail->next; | |
1845 | ||
1846 | /* IGNORE_FIRST may safely be set to zero here because the | |
1847 | above check and deferral to solist_update_full ensures | |
1848 | that this call to svr4_read_so_list will never see the | |
1849 | first element. */ | |
d70cc3ba | 1850 | if (!svr4_read_so_list (info, lm, prev_lm, &link, 0)) |
f9e14852 GB |
1851 | return 0; |
1852 | } | |
1853 | ||
1854 | return 1; | |
1855 | } | |
1856 | ||
1857 | /* Disable the probes-based linker interface and revert to the | |
1858 | original interface. We don't reset the breakpoints as the | |
1859 | ones set up for the probes-based interface are adequate. */ | |
1860 | ||
1861 | static void | |
d70cc3ba | 1862 | disable_probes_interface (svr4_info *info) |
f9e14852 | 1863 | { |
f9e14852 | 1864 | warning (_("Probes-based dynamic linker interface failed.\n" |
422186a9 | 1865 | "Reverting to original interface.")); |
f9e14852 GB |
1866 | |
1867 | free_probes_table (info); | |
1868 | free_solib_list (info); | |
1869 | } | |
1870 | ||
1871 | /* Update the solib list as appropriate when using the | |
1872 | probes-based linker interface. Do nothing if using the | |
1873 | standard interface. */ | |
1874 | ||
1875 | static void | |
1876 | svr4_handle_solib_event (void) | |
1877 | { | |
d70cc3ba | 1878 | struct svr4_info *info = get_svr4_info (current_program_space); |
f9e14852 GB |
1879 | struct probe_and_action *pa; |
1880 | enum probe_action action; | |
ad1c917a | 1881 | struct value *val = NULL; |
f9e14852 | 1882 | CORE_ADDR pc, debug_base, lm = 0; |
08a6411c | 1883 | struct frame_info *frame = get_current_frame (); |
f9e14852 GB |
1884 | |
1885 | /* Do nothing if not using the probes interface. */ | |
1886 | if (info->probes_table == NULL) | |
1887 | return; | |
1888 | ||
1889 | /* If anything goes wrong we revert to the original linker | |
1890 | interface. */ | |
d70cc3ba SM |
1891 | auto cleanup = make_scope_exit ([info] () |
1892 | { | |
1893 | disable_probes_interface (info); | |
1894 | }); | |
f9e14852 GB |
1895 | |
1896 | pc = regcache_read_pc (get_current_regcache ()); | |
1897 | pa = solib_event_probe_at (info, pc); | |
1898 | if (pa == NULL) | |
d01c5877 | 1899 | return; |
f9e14852 GB |
1900 | |
1901 | action = solib_event_probe_action (pa); | |
1902 | if (action == PROBES_INTERFACE_FAILED) | |
d01c5877 | 1903 | return; |
f9e14852 GB |
1904 | |
1905 | if (action == DO_NOTHING) | |
1906 | { | |
d01c5877 | 1907 | cleanup.release (); |
f9e14852 GB |
1908 | return; |
1909 | } | |
1910 | ||
935676c9 | 1911 | /* evaluate_argument looks up symbols in the dynamic linker |
f9e14852 GB |
1912 | using find_pc_section. find_pc_section is accelerated by a cache |
1913 | called the section map. The section map is invalidated every | |
1914 | time a shared library is loaded or unloaded, and if the inferior | |
1915 | is generating a lot of shared library events then the section map | |
1916 | will be updated every time svr4_handle_solib_event is called. | |
1917 | We called find_pc_section in svr4_create_solib_event_breakpoints, | |
1918 | so we can guarantee that the dynamic linker's sections are in the | |
1919 | section map. We can therefore inhibit section map updates across | |
935676c9 | 1920 | these calls to evaluate_argument and save a lot of time. */ |
06424eac TT |
1921 | { |
1922 | scoped_restore inhibit_updates | |
1923 | = inhibit_section_map_updates (current_program_space); | |
f9e14852 | 1924 | |
a70b8144 | 1925 | try |
06424eac TT |
1926 | { |
1927 | val = pa->prob->evaluate_argument (1, frame); | |
1928 | } | |
230d2906 | 1929 | catch (const gdb_exception_error &ex) |
06424eac TT |
1930 | { |
1931 | exception_print (gdb_stderr, ex); | |
1932 | val = NULL; | |
1933 | } | |
f9e14852 | 1934 | |
06424eac | 1935 | if (val == NULL) |
d01c5877 | 1936 | return; |
f9e14852 | 1937 | |
06424eac TT |
1938 | debug_base = value_as_address (val); |
1939 | if (debug_base == 0) | |
d01c5877 | 1940 | return; |
f9e14852 | 1941 | |
06424eac TT |
1942 | /* Always locate the debug struct, in case it moved. */ |
1943 | info->debug_base = 0; | |
1944 | if (locate_base (info) == 0) | |
cb736441 GB |
1945 | { |
1946 | /* It's possible for the reloc_complete probe to be triggered before | |
1947 | the linker has set the DT_DEBUG pointer (for example, when the | |
1948 | linker has finished relocating an LD_AUDIT library or its | |
1949 | dependencies). Since we can't yet handle libraries from other link | |
1950 | namespaces, we don't lose anything by ignoring them here. */ | |
1951 | struct value *link_map_id_val; | |
1952 | try | |
1953 | { | |
1954 | link_map_id_val = pa->prob->evaluate_argument (0, frame); | |
1955 | } | |
1956 | catch (const gdb_exception_error) | |
1957 | { | |
1958 | link_map_id_val = NULL; | |
1959 | } | |
1960 | /* glibc and illumos' libc both define LM_ID_BASE as zero. */ | |
1961 | if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0) | |
1962 | action = DO_NOTHING; | |
1963 | else | |
1964 | return; | |
1965 | } | |
3bd7e5b7 | 1966 | |
06424eac TT |
1967 | /* GDB does not currently support libraries loaded via dlmopen |
1968 | into namespaces other than the initial one. We must ignore | |
1969 | any namespace other than the initial namespace here until | |
1970 | support for this is added to GDB. */ | |
1971 | if (debug_base != info->debug_base) | |
1972 | action = DO_NOTHING; | |
f9e14852 | 1973 | |
06424eac TT |
1974 | if (action == UPDATE_OR_RELOAD) |
1975 | { | |
a70b8144 | 1976 | try |
06424eac TT |
1977 | { |
1978 | val = pa->prob->evaluate_argument (2, frame); | |
1979 | } | |
230d2906 | 1980 | catch (const gdb_exception_error &ex) |
06424eac TT |
1981 | { |
1982 | exception_print (gdb_stderr, ex); | |
06424eac TT |
1983 | return; |
1984 | } | |
06424eac TT |
1985 | |
1986 | if (val != NULL) | |
1987 | lm = value_as_address (val); | |
1988 | ||
1989 | if (lm == 0) | |
1990 | action = FULL_RELOAD; | |
1991 | } | |
f9e14852 | 1992 | |
06424eac TT |
1993 | /* Resume section map updates. Closing the scope is |
1994 | sufficient. */ | |
1995 | } | |
f9e14852 GB |
1996 | |
1997 | if (action == UPDATE_OR_RELOAD) | |
1998 | { | |
1999 | if (!solist_update_incremental (info, lm)) | |
2000 | action = FULL_RELOAD; | |
2001 | } | |
2002 | ||
2003 | if (action == FULL_RELOAD) | |
2004 | { | |
2005 | if (!solist_update_full (info)) | |
d01c5877 | 2006 | return; |
f9e14852 GB |
2007 | } |
2008 | ||
d01c5877 | 2009 | cleanup.release (); |
f9e14852 GB |
2010 | } |
2011 | ||
2012 | /* Helper function for svr4_update_solib_event_breakpoints. */ | |
2013 | ||
95da600f CB |
2014 | static bool |
2015 | svr4_update_solib_event_breakpoint (struct breakpoint *b) | |
f9e14852 GB |
2016 | { |
2017 | struct bp_location *loc; | |
2018 | ||
2019 | if (b->type != bp_shlib_event) | |
2020 | { | |
2021 | /* Continue iterating. */ | |
95da600f | 2022 | return false; |
f9e14852 GB |
2023 | } |
2024 | ||
2025 | for (loc = b->loc; loc != NULL; loc = loc->next) | |
2026 | { | |
2027 | struct svr4_info *info; | |
2028 | struct probe_and_action *pa; | |
2029 | ||
09232438 | 2030 | info = solib_svr4_pspace_data.get (loc->pspace); |
f9e14852 GB |
2031 | if (info == NULL || info->probes_table == NULL) |
2032 | continue; | |
2033 | ||
2034 | pa = solib_event_probe_at (info, loc->address); | |
2035 | if (pa == NULL) | |
2036 | continue; | |
2037 | ||
2038 | if (pa->action == DO_NOTHING) | |
2039 | { | |
2040 | if (b->enable_state == bp_disabled && stop_on_solib_events) | |
2041 | enable_breakpoint (b); | |
2042 | else if (b->enable_state == bp_enabled && !stop_on_solib_events) | |
2043 | disable_breakpoint (b); | |
2044 | } | |
2045 | ||
2046 | break; | |
2047 | } | |
2048 | ||
2049 | /* Continue iterating. */ | |
95da600f | 2050 | return false; |
f9e14852 GB |
2051 | } |
2052 | ||
2053 | /* Enable or disable optional solib event breakpoints as appropriate. | |
2054 | Called whenever stop_on_solib_events is changed. */ | |
2055 | ||
2056 | static void | |
2057 | svr4_update_solib_event_breakpoints (void) | |
2058 | { | |
95da600f | 2059 | iterate_over_breakpoints (svr4_update_solib_event_breakpoint); |
f9e14852 GB |
2060 | } |
2061 | ||
2062 | /* Create and register solib event breakpoints. PROBES is an array | |
2063 | of NUM_PROBES elements, each of which is vector of probes. A | |
2064 | solib event breakpoint will be created and registered for each | |
2065 | probe. */ | |
2066 | ||
2067 | static void | |
d70cc3ba | 2068 | svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch, |
45461e0d | 2069 | const std::vector<probe *> *probes, |
729662a5 | 2070 | struct objfile *objfile) |
f9e14852 | 2071 | { |
45461e0d | 2072 | for (int i = 0; i < NUM_PROBES; i++) |
f9e14852 GB |
2073 | { |
2074 | enum probe_action action = probe_info[i].action; | |
f9e14852 | 2075 | |
45461e0d | 2076 | for (probe *p : probes[i]) |
f9e14852 | 2077 | { |
935676c9 | 2078 | CORE_ADDR address = p->get_relocated_address (objfile); |
729662a5 TT |
2079 | |
2080 | create_solib_event_breakpoint (gdbarch, address); | |
d70cc3ba | 2081 | register_solib_event_probe (info, objfile, p, address, action); |
f9e14852 GB |
2082 | } |
2083 | } | |
2084 | ||
2085 | svr4_update_solib_event_breakpoints (); | |
2086 | } | |
2087 | ||
e661ef01 AH |
2088 | /* Find all the glibc named probes. Only if all of the probes are found, then |
2089 | create them and return true. Otherwise return false. If WITH_PREFIX is set | |
2090 | then add "rtld" to the front of the probe names. */ | |
2091 | static bool | |
2092 | svr4_find_and_create_probe_breakpoints (svr4_info *info, | |
2093 | struct gdbarch *gdbarch, | |
2094 | struct obj_section *os, | |
2095 | bool with_prefix) | |
2096 | { | |
2097 | std::vector<probe *> probes[NUM_PROBES]; | |
e661ef01 AH |
2098 | |
2099 | for (int i = 0; i < NUM_PROBES; i++) | |
2100 | { | |
2101 | const char *name = probe_info[i].name; | |
2102 | char buf[32]; | |
2103 | ||
2104 | /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early | |
2105 | version of the probes code in which the probes' names were prefixed | |
2106 | with "rtld_" and the "map_failed" probe did not exist. The locations | |
2107 | of the probes are otherwise the same, so we check for probes with | |
2108 | prefixed names if probes with unprefixed names are not present. */ | |
2109 | if (with_prefix) | |
2110 | { | |
2111 | xsnprintf (buf, sizeof (buf), "rtld_%s", name); | |
2112 | name = buf; | |
2113 | } | |
2114 | ||
2115 | probes[i] = find_probes_in_objfile (os->objfile, "rtld", name); | |
2116 | ||
2117 | /* The "map_failed" probe did not exist in early | |
2118 | versions of the probes code in which the probes' | |
2119 | names were prefixed with "rtld_". */ | |
2120 | if (with_prefix && streq (name, "rtld_map_failed")) | |
2121 | continue; | |
2122 | ||
2123 | /* Ensure at least one probe for the current name was found. */ | |
2124 | if (probes[i].empty ()) | |
2125 | return false; | |
2126 | ||
2127 | /* Ensure probe arguments can be evaluated. */ | |
d90b8f26 | 2128 | for (probe *p : probes[i]) |
e661ef01 | 2129 | { |
e661ef01 AH |
2130 | if (!p->can_evaluate_arguments ()) |
2131 | return false; | |
d90b8f26 AH |
2132 | /* This will fail if the probe is invalid. This has been seen on Arm |
2133 | due to references to symbols that have been resolved away. */ | |
2134 | try | |
2135 | { | |
2136 | p->get_argument_count (gdbarch); | |
2137 | } | |
2138 | catch (const gdb_exception_error &ex) | |
2139 | { | |
2140 | exception_print (gdb_stderr, ex); | |
2141 | warning (_("Initializing probes-based dynamic linker interface " | |
2142 | "failed.\nReverting to original interface.")); | |
2143 | return false; | |
2144 | } | |
e661ef01 AH |
2145 | } |
2146 | } | |
2147 | ||
2148 | /* All probes found. Now create them. */ | |
2149 | svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile); | |
2150 | return true; | |
2151 | } | |
2152 | ||
f9e14852 GB |
2153 | /* Both the SunOS and the SVR4 dynamic linkers call a marker function |
2154 | before and after mapping and unmapping shared libraries. The sole | |
2155 | purpose of this method is to allow debuggers to set a breakpoint so | |
2156 | they can track these changes. | |
2157 | ||
2158 | Some versions of the glibc dynamic linker contain named probes | |
2159 | to allow more fine grained stopping. Given the address of the | |
2160 | original marker function, this function attempts to find these | |
2161 | probes, and if found, sets breakpoints on those instead. If the | |
2162 | probes aren't found, a single breakpoint is set on the original | |
2163 | marker function. */ | |
2164 | ||
2165 | static void | |
d70cc3ba | 2166 | svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch, |
f9e14852 GB |
2167 | CORE_ADDR address) |
2168 | { | |
e661ef01 | 2169 | struct obj_section *os = find_pc_section (address); |
f9e14852 | 2170 | |
e661ef01 AH |
2171 | if (os == nullptr |
2172 | || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false) | |
2173 | && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true))) | |
2174 | create_solib_event_breakpoint (gdbarch, address); | |
f9e14852 GB |
2175 | } |
2176 | ||
cb457ae2 YQ |
2177 | /* Helper function for gdb_bfd_lookup_symbol. */ |
2178 | ||
2179 | static int | |
3953f15c | 2180 | cmp_name_and_sec_flags (const asymbol *sym, const void *data) |
cb457ae2 YQ |
2181 | { |
2182 | return (strcmp (sym->name, (const char *) data) == 0 | |
2183 | && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0); | |
2184 | } | |
7f86f058 | 2185 | /* Arrange for dynamic linker to hit breakpoint. |
13437d4b KB |
2186 | |
2187 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
2188 | debugger interface, support for arranging for the inferior to hit | |
2189 | a breakpoint after mapping in the shared libraries. This function | |
2190 | enables that breakpoint. | |
2191 | ||
2192 | For SunOS, there is a special flag location (in_debugger) which we | |
2193 | set to 1. When the dynamic linker sees this flag set, it will set | |
2194 | a breakpoint at a location known only to itself, after saving the | |
2195 | original contents of that place and the breakpoint address itself, | |
2196 | in it's own internal structures. When we resume the inferior, it | |
2197 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
2198 | We handle this (in a different place) by restoring the contents of | |
2199 | the breakpointed location (which is only known after it stops), | |
2200 | chasing around to locate the shared libraries that have been | |
2201 | loaded, then resuming. | |
2202 | ||
2203 | For SVR4, the debugger interface structure contains a member (r_brk) | |
2204 | which is statically initialized at the time the shared library is | |
2205 | built, to the offset of a function (_r_debug_state) which is guaran- | |
2206 | teed to be called once before mapping in a library, and again when | |
2207 | the mapping is complete. At the time we are examining this member, | |
2208 | it contains only the unrelocated offset of the function, so we have | |
2209 | to do our own relocation. Later, when the dynamic linker actually | |
2210 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
2211 | ||
2212 | The debugger interface structure also contains an enumeration which | |
2213 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
2214 | depending upon whether or not the library is being mapped or unmapped, | |
7f86f058 | 2215 | and then set to RT_CONSISTENT after the library is mapped/unmapped. */ |
13437d4b KB |
2216 | |
2217 | static int | |
268a4a75 | 2218 | enable_break (struct svr4_info *info, int from_tty) |
13437d4b | 2219 | { |
3b7344d5 | 2220 | struct bound_minimal_symbol msymbol; |
bc043ef3 | 2221 | const char * const *bkpt_namep; |
13437d4b | 2222 | asection *interp_sect; |
7cd25cfc | 2223 | CORE_ADDR sym_addr; |
13437d4b | 2224 | |
6c95b8df PA |
2225 | info->interp_text_sect_low = info->interp_text_sect_high = 0; |
2226 | info->interp_plt_sect_low = info->interp_plt_sect_high = 0; | |
13437d4b | 2227 | |
7cd25cfc DJ |
2228 | /* If we already have a shared library list in the target, and |
2229 | r_debug contains r_brk, set the breakpoint there - this should | |
2230 | mean r_brk has already been relocated. Assume the dynamic linker | |
2231 | is the object containing r_brk. */ | |
2232 | ||
e696b3ad | 2233 | solib_add (NULL, from_tty, auto_solib_add); |
7cd25cfc | 2234 | sym_addr = 0; |
1a816a87 PA |
2235 | if (info->debug_base && solib_svr4_r_map (info) != 0) |
2236 | sym_addr = solib_svr4_r_brk (info); | |
7cd25cfc DJ |
2237 | |
2238 | if (sym_addr != 0) | |
2239 | { | |
2240 | struct obj_section *os; | |
2241 | ||
b36ec657 | 2242 | sym_addr = gdbarch_addr_bits_remove |
8b88a78e PA |
2243 | (target_gdbarch (), |
2244 | gdbarch_convert_from_func_ptr_addr (target_gdbarch (), | |
2245 | sym_addr, | |
2246 | current_top_target ())); | |
b36ec657 | 2247 | |
48379de6 DE |
2248 | /* On at least some versions of Solaris there's a dynamic relocation |
2249 | on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if | |
2250 | we get control before the dynamic linker has self-relocated. | |
2251 | Check if SYM_ADDR is in a known section, if it is assume we can | |
2252 | trust its value. This is just a heuristic though, it could go away | |
2253 | or be replaced if it's getting in the way. | |
2254 | ||
2255 | On ARM we need to know whether the ISA of rtld_db_dlactivity (or | |
2256 | however it's spelled in your particular system) is ARM or Thumb. | |
2257 | That knowledge is encoded in the address, if it's Thumb the low bit | |
2258 | is 1. However, we've stripped that info above and it's not clear | |
2259 | what all the consequences are of passing a non-addr_bits_remove'd | |
f9e14852 | 2260 | address to svr4_create_solib_event_breakpoints. The call to |
48379de6 DE |
2261 | find_pc_section verifies we know about the address and have some |
2262 | hope of computing the right kind of breakpoint to use (via | |
2263 | symbol info). It does mean that GDB needs to be pointed at a | |
2264 | non-stripped version of the dynamic linker in order to obtain | |
2265 | information it already knows about. Sigh. */ | |
2266 | ||
7cd25cfc DJ |
2267 | os = find_pc_section (sym_addr); |
2268 | if (os != NULL) | |
2269 | { | |
2270 | /* Record the relocated start and end address of the dynamic linker | |
2271 | text and plt section for svr4_in_dynsym_resolve_code. */ | |
2272 | bfd *tmp_bfd; | |
2273 | CORE_ADDR load_addr; | |
2274 | ||
2275 | tmp_bfd = os->objfile->obfd; | |
b3b3bada | 2276 | load_addr = os->objfile->text_section_offset (); |
7cd25cfc DJ |
2277 | |
2278 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | |
2279 | if (interp_sect) | |
2280 | { | |
fd361982 AM |
2281 | info->interp_text_sect_low |
2282 | = bfd_section_vma (interp_sect) + load_addr; | |
2283 | info->interp_text_sect_high | |
2284 | = info->interp_text_sect_low + bfd_section_size (interp_sect); | |
7cd25cfc DJ |
2285 | } |
2286 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
2287 | if (interp_sect) | |
2288 | { | |
fd361982 AM |
2289 | info->interp_plt_sect_low |
2290 | = bfd_section_vma (interp_sect) + load_addr; | |
2291 | info->interp_plt_sect_high | |
2292 | = info->interp_plt_sect_low + bfd_section_size (interp_sect); | |
7cd25cfc DJ |
2293 | } |
2294 | ||
d70cc3ba | 2295 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr); |
7cd25cfc DJ |
2296 | return 1; |
2297 | } | |
2298 | } | |
2299 | ||
97ec2c2f | 2300 | /* Find the program interpreter; if not found, warn the user and drop |
13437d4b | 2301 | into the old breakpoint at symbol code. */ |
17658d46 SM |
2302 | gdb::optional<gdb::byte_vector> interp_name_holder |
2303 | = find_program_interpreter (); | |
2304 | if (interp_name_holder) | |
13437d4b | 2305 | { |
17658d46 | 2306 | const char *interp_name = (const char *) interp_name_holder->data (); |
8ad2fcde KB |
2307 | CORE_ADDR load_addr = 0; |
2308 | int load_addr_found = 0; | |
2ec9a4f8 | 2309 | int loader_found_in_list = 0; |
f8766ec1 | 2310 | struct so_list *so; |
2f4950cd | 2311 | struct target_ops *tmp_bfd_target; |
13437d4b | 2312 | |
7cd25cfc | 2313 | sym_addr = 0; |
13437d4b KB |
2314 | |
2315 | /* Now we need to figure out where the dynamic linker was | |
2316 | loaded so that we can load its symbols and place a breakpoint | |
2317 | in the dynamic linker itself. | |
2318 | ||
2319 | This address is stored on the stack. However, I've been unable | |
2320 | to find any magic formula to find it for Solaris (appears to | |
2321 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
2322 | mechanism to find the dynamic linker's base address. */ | |
e4f7b8c8 | 2323 | |
192b62ce | 2324 | gdb_bfd_ref_ptr tmp_bfd; |
a70b8144 | 2325 | try |
f1838a98 | 2326 | { |
97ec2c2f | 2327 | tmp_bfd = solib_bfd_open (interp_name); |
f1838a98 | 2328 | } |
230d2906 | 2329 | catch (const gdb_exception &ex) |
492d29ea PA |
2330 | { |
2331 | } | |
492d29ea | 2332 | |
13437d4b KB |
2333 | if (tmp_bfd == NULL) |
2334 | goto bkpt_at_symbol; | |
2335 | ||
2f4950cd | 2336 | /* Now convert the TMP_BFD into a target. That way target, as |
192b62ce TT |
2337 | well as BFD operations can be used. target_bfd_reopen |
2338 | acquires its own reference. */ | |
2339 | tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ()); | |
2f4950cd | 2340 | |
f8766ec1 KB |
2341 | /* On a running target, we can get the dynamic linker's base |
2342 | address from the shared library table. */ | |
f8766ec1 KB |
2343 | so = master_so_list (); |
2344 | while (so) | |
8ad2fcde | 2345 | { |
97ec2c2f | 2346 | if (svr4_same_1 (interp_name, so->so_original_name)) |
8ad2fcde KB |
2347 | { |
2348 | load_addr_found = 1; | |
2ec9a4f8 | 2349 | loader_found_in_list = 1; |
192b62ce | 2350 | load_addr = lm_addr_check (so, tmp_bfd.get ()); |
8ad2fcde KB |
2351 | break; |
2352 | } | |
f8766ec1 | 2353 | so = so->next; |
8ad2fcde KB |
2354 | } |
2355 | ||
8d4e36ba JB |
2356 | /* If we were not able to find the base address of the loader |
2357 | from our so_list, then try using the AT_BASE auxilliary entry. */ | |
2358 | if (!load_addr_found) | |
8b88a78e | 2359 | if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0) |
ad3a0e5b | 2360 | { |
f5656ead | 2361 | int addr_bit = gdbarch_addr_bit (target_gdbarch ()); |
ad3a0e5b JK |
2362 | |
2363 | /* Ensure LOAD_ADDR has proper sign in its possible upper bits so | |
2364 | that `+ load_addr' will overflow CORE_ADDR width not creating | |
2365 | invalid addresses like 0x101234567 for 32bit inferiors on 64bit | |
2366 | GDB. */ | |
2367 | ||
d182d057 | 2368 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
ad3a0e5b | 2369 | { |
d182d057 | 2370 | CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit; |
192b62ce | 2371 | CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (), |
ad3a0e5b JK |
2372 | tmp_bfd_target); |
2373 | ||
2374 | gdb_assert (load_addr < space_size); | |
2375 | ||
2376 | /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked | |
2377 | 64bit ld.so with 32bit executable, it should not happen. */ | |
2378 | ||
2379 | if (tmp_entry_point < space_size | |
2380 | && tmp_entry_point + load_addr >= space_size) | |
2381 | load_addr -= space_size; | |
2382 | } | |
2383 | ||
2384 | load_addr_found = 1; | |
2385 | } | |
8d4e36ba | 2386 | |
8ad2fcde KB |
2387 | /* Otherwise we find the dynamic linker's base address by examining |
2388 | the current pc (which should point at the entry point for the | |
8d4e36ba JB |
2389 | dynamic linker) and subtracting the offset of the entry point. |
2390 | ||
2391 | This is more fragile than the previous approaches, but is a good | |
2392 | fallback method because it has actually been working well in | |
2393 | most cases. */ | |
8ad2fcde | 2394 | if (!load_addr_found) |
fb14de7b | 2395 | { |
c2250ad1 | 2396 | struct regcache *regcache |
5b6d1e4f PA |
2397 | = get_thread_arch_regcache (current_inferior ()->process_target (), |
2398 | inferior_ptid, target_gdbarch ()); | |
433759f7 | 2399 | |
fb14de7b | 2400 | load_addr = (regcache_read_pc (regcache) |
192b62ce | 2401 | - exec_entry_point (tmp_bfd.get (), tmp_bfd_target)); |
fb14de7b | 2402 | } |
2ec9a4f8 DJ |
2403 | |
2404 | if (!loader_found_in_list) | |
34439770 | 2405 | { |
1a816a87 PA |
2406 | info->debug_loader_name = xstrdup (interp_name); |
2407 | info->debug_loader_offset_p = 1; | |
2408 | info->debug_loader_offset = load_addr; | |
e696b3ad | 2409 | solib_add (NULL, from_tty, auto_solib_add); |
34439770 | 2410 | } |
13437d4b KB |
2411 | |
2412 | /* Record the relocated start and end address of the dynamic linker | |
d7fa2ae2 | 2413 | text and plt section for svr4_in_dynsym_resolve_code. */ |
192b62ce | 2414 | interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text"); |
13437d4b KB |
2415 | if (interp_sect) |
2416 | { | |
fd361982 AM |
2417 | info->interp_text_sect_low |
2418 | = bfd_section_vma (interp_sect) + load_addr; | |
2419 | info->interp_text_sect_high | |
2420 | = info->interp_text_sect_low + bfd_section_size (interp_sect); | |
13437d4b | 2421 | } |
192b62ce | 2422 | interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt"); |
13437d4b KB |
2423 | if (interp_sect) |
2424 | { | |
fd361982 AM |
2425 | info->interp_plt_sect_low |
2426 | = bfd_section_vma (interp_sect) + load_addr; | |
2427 | info->interp_plt_sect_high | |
2428 | = info->interp_plt_sect_low + bfd_section_size (interp_sect); | |
13437d4b KB |
2429 | } |
2430 | ||
2431 | /* Now try to set a breakpoint in the dynamic linker. */ | |
2432 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
2433 | { | |
192b62ce TT |
2434 | sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), |
2435 | cmp_name_and_sec_flags, | |
3953f15c | 2436 | *bkpt_namep); |
13437d4b KB |
2437 | if (sym_addr != 0) |
2438 | break; | |
2439 | } | |
2440 | ||
2bbe3cc1 DJ |
2441 | if (sym_addr != 0) |
2442 | /* Convert 'sym_addr' from a function pointer to an address. | |
2443 | Because we pass tmp_bfd_target instead of the current | |
2444 | target, this will always produce an unrelocated value. */ | |
f5656ead | 2445 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
2bbe3cc1 DJ |
2446 | sym_addr, |
2447 | tmp_bfd_target); | |
2448 | ||
695c3173 TT |
2449 | /* We're done with both the temporary bfd and target. Closing |
2450 | the target closes the underlying bfd, because it holds the | |
2451 | only remaining reference. */ | |
460014f5 | 2452 | target_close (tmp_bfd_target); |
13437d4b KB |
2453 | |
2454 | if (sym_addr != 0) | |
2455 | { | |
d70cc3ba | 2456 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), |
f9e14852 | 2457 | load_addr + sym_addr); |
13437d4b KB |
2458 | return 1; |
2459 | } | |
2460 | ||
2461 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
2462 | linker. Warn and drop into the old code. */ | |
2463 | bkpt_at_symbol: | |
82d03102 PG |
2464 | warning (_("Unable to find dynamic linker breakpoint function.\n" |
2465 | "GDB will be unable to debug shared library initializers\n" | |
2466 | "and track explicitly loaded dynamic code.")); | |
13437d4b | 2467 | } |
13437d4b | 2468 | |
e499d0f1 DJ |
2469 | /* Scan through the lists of symbols, trying to look up the symbol and |
2470 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
2471 | ||
2472 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
2473 | { | |
2474 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
3b7344d5 | 2475 | if ((msymbol.minsym != NULL) |
77e371c0 | 2476 | && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) |
e499d0f1 | 2477 | { |
77e371c0 | 2478 | sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
f5656ead | 2479 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
de64a9ac | 2480 | sym_addr, |
8b88a78e | 2481 | current_top_target ()); |
d70cc3ba SM |
2482 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), |
2483 | sym_addr); | |
e499d0f1 DJ |
2484 | return 1; |
2485 | } | |
2486 | } | |
13437d4b | 2487 | |
17658d46 | 2488 | if (interp_name_holder && !current_inferior ()->attach_flag) |
13437d4b | 2489 | { |
c6490bf2 | 2490 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) |
13437d4b | 2491 | { |
c6490bf2 | 2492 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); |
3b7344d5 | 2493 | if ((msymbol.minsym != NULL) |
77e371c0 | 2494 | && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) |
c6490bf2 | 2495 | { |
77e371c0 | 2496 | sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
f5656ead | 2497 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
c6490bf2 | 2498 | sym_addr, |
8b88a78e | 2499 | current_top_target ()); |
d70cc3ba SM |
2500 | svr4_create_solib_event_breakpoints (info, target_gdbarch (), |
2501 | sym_addr); | |
c6490bf2 KB |
2502 | return 1; |
2503 | } | |
13437d4b KB |
2504 | } |
2505 | } | |
542c95c2 | 2506 | return 0; |
13437d4b KB |
2507 | } |
2508 | ||
d1012b8e | 2509 | /* Read the ELF program headers from ABFD. */ |
e2a44558 | 2510 | |
d1012b8e SM |
2511 | static gdb::optional<gdb::byte_vector> |
2512 | read_program_headers_from_bfd (bfd *abfd) | |
e2a44558 | 2513 | { |
d1012b8e SM |
2514 | Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); |
2515 | int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize; | |
2516 | if (phdrs_size == 0) | |
2517 | return {}; | |
09919ac2 | 2518 | |
d1012b8e | 2519 | gdb::byte_vector buf (phdrs_size); |
09919ac2 | 2520 | if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0 |
d1012b8e SM |
2521 | || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size) |
2522 | return {}; | |
09919ac2 JK |
2523 | |
2524 | return buf; | |
b8040f19 JK |
2525 | } |
2526 | ||
01c30d6e JK |
2527 | /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior |
2528 | exec_bfd. Otherwise return 0. | |
2529 | ||
2530 | We relocate all of the sections by the same amount. This | |
c378eb4e | 2531 | behavior is mandated by recent editions of the System V ABI. |
b8040f19 JK |
2532 | According to the System V Application Binary Interface, |
2533 | Edition 4.1, page 5-5: | |
2534 | ||
2535 | ... Though the system chooses virtual addresses for | |
2536 | individual processes, it maintains the segments' relative | |
2537 | positions. Because position-independent code uses relative | |
85102364 | 2538 | addressing between segments, the difference between |
b8040f19 JK |
2539 | virtual addresses in memory must match the difference |
2540 | between virtual addresses in the file. The difference | |
2541 | between the virtual address of any segment in memory and | |
2542 | the corresponding virtual address in the file is thus a | |
2543 | single constant value for any one executable or shared | |
2544 | object in a given process. This difference is the base | |
2545 | address. One use of the base address is to relocate the | |
2546 | memory image of the program during dynamic linking. | |
2547 | ||
2548 | The same language also appears in Edition 4.0 of the System V | |
09919ac2 JK |
2549 | ABI and is left unspecified in some of the earlier editions. |
2550 | ||
2551 | Decide if the objfile needs to be relocated. As indicated above, we will | |
2552 | only be here when execution is stopped. But during attachment PC can be at | |
2553 | arbitrary address therefore regcache_read_pc can be misleading (contrary to | |
2554 | the auxv AT_ENTRY value). Moreover for executable with interpreter section | |
2555 | regcache_read_pc would point to the interpreter and not the main executable. | |
2556 | ||
2557 | So, to summarize, relocations are necessary when the start address obtained | |
2558 | from the executable is different from the address in auxv AT_ENTRY entry. | |
d989b283 | 2559 | |
09919ac2 JK |
2560 | [ The astute reader will note that we also test to make sure that |
2561 | the executable in question has the DYNAMIC flag set. It is my | |
2562 | opinion that this test is unnecessary (undesirable even). It | |
2563 | was added to avoid inadvertent relocation of an executable | |
2564 | whose e_type member in the ELF header is not ET_DYN. There may | |
2565 | be a time in the future when it is desirable to do relocations | |
2566 | on other types of files as well in which case this condition | |
2567 | should either be removed or modified to accomodate the new file | |
2568 | type. - Kevin, Nov 2000. ] */ | |
b8040f19 | 2569 | |
01c30d6e JK |
2570 | static int |
2571 | svr4_exec_displacement (CORE_ADDR *displacementp) | |
b8040f19 | 2572 | { |
41752192 JK |
2573 | /* ENTRY_POINT is a possible function descriptor - before |
2574 | a call to gdbarch_convert_from_func_ptr_addr. */ | |
8f61baf8 | 2575 | CORE_ADDR entry_point, exec_displacement; |
b8040f19 JK |
2576 | |
2577 | if (exec_bfd == NULL) | |
2578 | return 0; | |
2579 | ||
09919ac2 JK |
2580 | /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries |
2581 | being executed themselves and PIE (Position Independent Executable) | |
2582 | executables are ET_DYN. */ | |
2583 | ||
2584 | if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0) | |
2585 | return 0; | |
2586 | ||
8b88a78e | 2587 | if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0) |
09919ac2 JK |
2588 | return 0; |
2589 | ||
8f61baf8 | 2590 | exec_displacement = entry_point - bfd_get_start_address (exec_bfd); |
09919ac2 | 2591 | |
8f61baf8 | 2592 | /* Verify the EXEC_DISPLACEMENT candidate complies with the required page |
09919ac2 JK |
2593 | alignment. It is cheaper than the program headers comparison below. */ |
2594 | ||
2595 | if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
2596 | { | |
2597 | const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd); | |
2598 | ||
2599 | /* p_align of PT_LOAD segments does not specify any alignment but | |
2600 | only congruency of addresses: | |
2601 | p_offset % p_align == p_vaddr % p_align | |
2602 | Kernel is free to load the executable with lower alignment. */ | |
2603 | ||
8f61baf8 | 2604 | if ((exec_displacement & (elf->minpagesize - 1)) != 0) |
09919ac2 JK |
2605 | return 0; |
2606 | } | |
2607 | ||
2608 | /* Verify that the auxilliary vector describes the same file as exec_bfd, by | |
2609 | comparing their program headers. If the program headers in the auxilliary | |
2610 | vector do not match the program headers in the executable, then we are | |
2611 | looking at a different file than the one used by the kernel - for | |
2612 | instance, "gdb program" connected to "gdbserver :PORT ld.so program". */ | |
2613 | ||
2614 | if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
2615 | { | |
d1012b8e | 2616 | /* Be optimistic and return 0 only if GDB was able to verify the headers |
09919ac2 | 2617 | really do not match. */ |
0a1e94c7 | 2618 | int arch_size; |
09919ac2 | 2619 | |
17658d46 SM |
2620 | gdb::optional<gdb::byte_vector> phdrs_target |
2621 | = read_program_header (-1, &arch_size, NULL); | |
d1012b8e SM |
2622 | gdb::optional<gdb::byte_vector> phdrs_binary |
2623 | = read_program_headers_from_bfd (exec_bfd); | |
2624 | if (phdrs_target && phdrs_binary) | |
0a1e94c7 | 2625 | { |
f5656ead | 2626 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
0a1e94c7 JK |
2627 | |
2628 | /* We are dealing with three different addresses. EXEC_BFD | |
2629 | represents current address in on-disk file. target memory content | |
2630 | may be different from EXEC_BFD as the file may have been prelinked | |
2631 | to a different address after the executable has been loaded. | |
2632 | Moreover the address of placement in target memory can be | |
3e43a32a MS |
2633 | different from what the program headers in target memory say - |
2634 | this is the goal of PIE. | |
0a1e94c7 JK |
2635 | |
2636 | Detected DISPLACEMENT covers both the offsets of PIE placement and | |
2637 | possible new prelink performed after start of the program. Here | |
2638 | relocate BUF and BUF2 just by the EXEC_BFD vs. target memory | |
2639 | content offset for the verification purpose. */ | |
2640 | ||
d1012b8e | 2641 | if (phdrs_target->size () != phdrs_binary->size () |
0a1e94c7 | 2642 | || bfd_get_arch_size (exec_bfd) != arch_size) |
d1012b8e | 2643 | return 0; |
3e43a32a | 2644 | else if (arch_size == 32 |
17658d46 SM |
2645 | && phdrs_target->size () >= sizeof (Elf32_External_Phdr) |
2646 | && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0) | |
0a1e94c7 JK |
2647 | { |
2648 | Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | |
2649 | Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | |
2650 | CORE_ADDR displacement = 0; | |
2651 | int i; | |
2652 | ||
2653 | /* DISPLACEMENT could be found more easily by the difference of | |
2654 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
2655 | already have enough information to compute that displacement | |
2656 | with what we've read. */ | |
2657 | ||
2658 | for (i = 0; i < ehdr2->e_phnum; i++) | |
2659 | if (phdr2[i].p_type == PT_LOAD) | |
2660 | { | |
2661 | Elf32_External_Phdr *phdrp; | |
2662 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2663 | CORE_ADDR vaddr, paddr; | |
2664 | CORE_ADDR displacement_vaddr = 0; | |
2665 | CORE_ADDR displacement_paddr = 0; | |
2666 | ||
17658d46 | 2667 | phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2668 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2669 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2670 | ||
2671 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, | |
2672 | byte_order); | |
2673 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
2674 | ||
2675 | paddr = extract_unsigned_integer (buf_paddr_p, 4, | |
2676 | byte_order); | |
2677 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
2678 | ||
2679 | if (displacement_vaddr == displacement_paddr) | |
2680 | displacement = displacement_vaddr; | |
2681 | ||
2682 | break; | |
2683 | } | |
2684 | ||
17658d46 SM |
2685 | /* Now compare program headers from the target and the binary |
2686 | with optional DISPLACEMENT. */ | |
0a1e94c7 | 2687 | |
17658d46 SM |
2688 | for (i = 0; |
2689 | i < phdrs_target->size () / sizeof (Elf32_External_Phdr); | |
2690 | i++) | |
0a1e94c7 JK |
2691 | { |
2692 | Elf32_External_Phdr *phdrp; | |
2693 | Elf32_External_Phdr *phdr2p; | |
2694 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2695 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 2696 | asection *plt2_asect; |
0a1e94c7 | 2697 | |
17658d46 | 2698 | phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2699 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2700 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
d1012b8e | 2701 | phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i]; |
0a1e94c7 JK |
2702 | |
2703 | /* PT_GNU_STACK is an exception by being never relocated by | |
2704 | prelink as its addresses are always zero. */ | |
2705 | ||
2706 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2707 | continue; | |
2708 | ||
2709 | /* Check also other adjustment combinations - PR 11786. */ | |
2710 | ||
3e43a32a MS |
2711 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, |
2712 | byte_order); | |
0a1e94c7 JK |
2713 | vaddr -= displacement; |
2714 | store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr); | |
2715 | ||
3e43a32a MS |
2716 | paddr = extract_unsigned_integer (buf_paddr_p, 4, |
2717 | byte_order); | |
0a1e94c7 JK |
2718 | paddr -= displacement; |
2719 | store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr); | |
2720 | ||
2721 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2722 | continue; | |
2723 | ||
204b5331 DE |
2724 | /* Strip modifies the flags and alignment of PT_GNU_RELRO. |
2725 | CentOS-5 has problems with filesz, memsz as well. | |
be2d111a | 2726 | Strip also modifies memsz of PT_TLS. |
204b5331 | 2727 | See PR 11786. */ |
c44deb73 SM |
2728 | if (phdr2[i].p_type == PT_GNU_RELRO |
2729 | || phdr2[i].p_type == PT_TLS) | |
204b5331 DE |
2730 | { |
2731 | Elf32_External_Phdr tmp_phdr = *phdrp; | |
2732 | Elf32_External_Phdr tmp_phdr2 = *phdr2p; | |
2733 | ||
2734 | memset (tmp_phdr.p_filesz, 0, 4); | |
2735 | memset (tmp_phdr.p_memsz, 0, 4); | |
2736 | memset (tmp_phdr.p_flags, 0, 4); | |
2737 | memset (tmp_phdr.p_align, 0, 4); | |
2738 | memset (tmp_phdr2.p_filesz, 0, 4); | |
2739 | memset (tmp_phdr2.p_memsz, 0, 4); | |
2740 | memset (tmp_phdr2.p_flags, 0, 4); | |
2741 | memset (tmp_phdr2.p_align, 0, 4); | |
2742 | ||
2743 | if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | |
2744 | == 0) | |
2745 | continue; | |
2746 | } | |
2747 | ||
43b8e241 JK |
2748 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
2749 | plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | |
2750 | if (plt2_asect) | |
2751 | { | |
2752 | int content2; | |
2753 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
2754 | CORE_ADDR filesz; | |
2755 | ||
fd361982 | 2756 | content2 = (bfd_section_flags (plt2_asect) |
43b8e241 JK |
2757 | & SEC_HAS_CONTENTS) != 0; |
2758 | ||
2759 | filesz = extract_unsigned_integer (buf_filesz_p, 4, | |
2760 | byte_order); | |
2761 | ||
2762 | /* PLT2_ASECT is from on-disk file (exec_bfd) while | |
2763 | FILESZ is from the in-memory image. */ | |
2764 | if (content2) | |
fd361982 | 2765 | filesz += bfd_section_size (plt2_asect); |
43b8e241 | 2766 | else |
fd361982 | 2767 | filesz -= bfd_section_size (plt2_asect); |
43b8e241 JK |
2768 | |
2769 | store_unsigned_integer (buf_filesz_p, 4, byte_order, | |
2770 | filesz); | |
2771 | ||
2772 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2773 | continue; | |
2774 | } | |
2775 | ||
d1012b8e | 2776 | return 0; |
0a1e94c7 JK |
2777 | } |
2778 | } | |
3e43a32a | 2779 | else if (arch_size == 64 |
17658d46 SM |
2780 | && phdrs_target->size () >= sizeof (Elf64_External_Phdr) |
2781 | && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0) | |
0a1e94c7 JK |
2782 | { |
2783 | Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | |
2784 | Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | |
2785 | CORE_ADDR displacement = 0; | |
2786 | int i; | |
2787 | ||
2788 | /* DISPLACEMENT could be found more easily by the difference of | |
2789 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
2790 | already have enough information to compute that displacement | |
2791 | with what we've read. */ | |
2792 | ||
2793 | for (i = 0; i < ehdr2->e_phnum; i++) | |
2794 | if (phdr2[i].p_type == PT_LOAD) | |
2795 | { | |
2796 | Elf64_External_Phdr *phdrp; | |
2797 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2798 | CORE_ADDR vaddr, paddr; | |
2799 | CORE_ADDR displacement_vaddr = 0; | |
2800 | CORE_ADDR displacement_paddr = 0; | |
2801 | ||
17658d46 | 2802 | phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2803 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2804 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2805 | ||
2806 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, | |
2807 | byte_order); | |
2808 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
2809 | ||
2810 | paddr = extract_unsigned_integer (buf_paddr_p, 8, | |
2811 | byte_order); | |
2812 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
2813 | ||
2814 | if (displacement_vaddr == displacement_paddr) | |
2815 | displacement = displacement_vaddr; | |
2816 | ||
2817 | break; | |
2818 | } | |
2819 | ||
2820 | /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ | |
2821 | ||
17658d46 SM |
2822 | for (i = 0; |
2823 | i < phdrs_target->size () / sizeof (Elf64_External_Phdr); | |
2824 | i++) | |
0a1e94c7 JK |
2825 | { |
2826 | Elf64_External_Phdr *phdrp; | |
2827 | Elf64_External_Phdr *phdr2p; | |
2828 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2829 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 2830 | asection *plt2_asect; |
0a1e94c7 | 2831 | |
17658d46 | 2832 | phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i]; |
0a1e94c7 JK |
2833 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; |
2834 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
d1012b8e | 2835 | phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i]; |
0a1e94c7 JK |
2836 | |
2837 | /* PT_GNU_STACK is an exception by being never relocated by | |
2838 | prelink as its addresses are always zero. */ | |
2839 | ||
2840 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2841 | continue; | |
2842 | ||
2843 | /* Check also other adjustment combinations - PR 11786. */ | |
2844 | ||
3e43a32a MS |
2845 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, |
2846 | byte_order); | |
0a1e94c7 JK |
2847 | vaddr -= displacement; |
2848 | store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr); | |
2849 | ||
3e43a32a MS |
2850 | paddr = extract_unsigned_integer (buf_paddr_p, 8, |
2851 | byte_order); | |
0a1e94c7 JK |
2852 | paddr -= displacement; |
2853 | store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr); | |
2854 | ||
2855 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2856 | continue; | |
2857 | ||
204b5331 DE |
2858 | /* Strip modifies the flags and alignment of PT_GNU_RELRO. |
2859 | CentOS-5 has problems with filesz, memsz as well. | |
be2d111a | 2860 | Strip also modifies memsz of PT_TLS. |
204b5331 | 2861 | See PR 11786. */ |
c44deb73 SM |
2862 | if (phdr2[i].p_type == PT_GNU_RELRO |
2863 | || phdr2[i].p_type == PT_TLS) | |
204b5331 DE |
2864 | { |
2865 | Elf64_External_Phdr tmp_phdr = *phdrp; | |
2866 | Elf64_External_Phdr tmp_phdr2 = *phdr2p; | |
2867 | ||
2868 | memset (tmp_phdr.p_filesz, 0, 8); | |
2869 | memset (tmp_phdr.p_memsz, 0, 8); | |
2870 | memset (tmp_phdr.p_flags, 0, 4); | |
2871 | memset (tmp_phdr.p_align, 0, 8); | |
2872 | memset (tmp_phdr2.p_filesz, 0, 8); | |
2873 | memset (tmp_phdr2.p_memsz, 0, 8); | |
2874 | memset (tmp_phdr2.p_flags, 0, 4); | |
2875 | memset (tmp_phdr2.p_align, 0, 8); | |
2876 | ||
2877 | if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | |
2878 | == 0) | |
2879 | continue; | |
2880 | } | |
2881 | ||
43b8e241 JK |
2882 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
2883 | plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | |
2884 | if (plt2_asect) | |
2885 | { | |
2886 | int content2; | |
2887 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
2888 | CORE_ADDR filesz; | |
2889 | ||
fd361982 | 2890 | content2 = (bfd_section_flags (plt2_asect) |
43b8e241 JK |
2891 | & SEC_HAS_CONTENTS) != 0; |
2892 | ||
2893 | filesz = extract_unsigned_integer (buf_filesz_p, 8, | |
2894 | byte_order); | |
2895 | ||
2896 | /* PLT2_ASECT is from on-disk file (exec_bfd) while | |
2897 | FILESZ is from the in-memory image. */ | |
2898 | if (content2) | |
fd361982 | 2899 | filesz += bfd_section_size (plt2_asect); |
43b8e241 | 2900 | else |
fd361982 | 2901 | filesz -= bfd_section_size (plt2_asect); |
43b8e241 JK |
2902 | |
2903 | store_unsigned_integer (buf_filesz_p, 8, byte_order, | |
2904 | filesz); | |
2905 | ||
2906 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2907 | continue; | |
2908 | } | |
2909 | ||
d1012b8e | 2910 | return 0; |
0a1e94c7 JK |
2911 | } |
2912 | } | |
2913 | else | |
d1012b8e | 2914 | return 0; |
0a1e94c7 | 2915 | } |
09919ac2 | 2916 | } |
b8040f19 | 2917 | |
ccf26247 JK |
2918 | if (info_verbose) |
2919 | { | |
2920 | /* It can be printed repeatedly as there is no easy way to check | |
2921 | the executable symbols/file has been already relocated to | |
2922 | displacement. */ | |
2923 | ||
2924 | printf_unfiltered (_("Using PIE (Position Independent Executable) " | |
2925 | "displacement %s for \"%s\".\n"), | |
8f61baf8 | 2926 | paddress (target_gdbarch (), exec_displacement), |
ccf26247 JK |
2927 | bfd_get_filename (exec_bfd)); |
2928 | } | |
2929 | ||
8f61baf8 | 2930 | *displacementp = exec_displacement; |
01c30d6e | 2931 | return 1; |
b8040f19 JK |
2932 | } |
2933 | ||
2934 | /* Relocate the main executable. This function should be called upon | |
c378eb4e | 2935 | stopping the inferior process at the entry point to the program. |
b8040f19 JK |
2936 | The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are |
2937 | different, the main executable is relocated by the proper amount. */ | |
2938 | ||
2939 | static void | |
2940 | svr4_relocate_main_executable (void) | |
2941 | { | |
01c30d6e JK |
2942 | CORE_ADDR displacement; |
2943 | ||
4e5799b6 JK |
2944 | /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS |
2945 | probably contains the offsets computed using the PIE displacement | |
2946 | from the previous run, which of course are irrelevant for this run. | |
2947 | So we need to determine the new PIE displacement and recompute the | |
2948 | section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS | |
2949 | already contains pre-computed offsets. | |
01c30d6e | 2950 | |
4e5799b6 | 2951 | If we cannot compute the PIE displacement, either: |
01c30d6e | 2952 | |
4e5799b6 JK |
2953 | - The executable is not PIE. |
2954 | ||
2955 | - SYMFILE_OBJFILE does not match the executable started in the target. | |
2956 | This can happen for main executable symbols loaded at the host while | |
2957 | `ld.so --ld-args main-executable' is loaded in the target. | |
2958 | ||
2959 | Then we leave the section offsets untouched and use them as is for | |
2960 | this run. Either: | |
2961 | ||
2962 | - These section offsets were properly reset earlier, and thus | |
2963 | already contain the correct values. This can happen for instance | |
2964 | when reconnecting via the remote protocol to a target that supports | |
2965 | the `qOffsets' packet. | |
2966 | ||
2967 | - The section offsets were not reset earlier, and the best we can | |
c378eb4e | 2968 | hope is that the old offsets are still applicable to the new run. */ |
01c30d6e JK |
2969 | |
2970 | if (! svr4_exec_displacement (&displacement)) | |
2971 | return; | |
b8040f19 | 2972 | |
01c30d6e JK |
2973 | /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file |
2974 | addresses. */ | |
b8040f19 JK |
2975 | |
2976 | if (symfile_objfile) | |
e2a44558 | 2977 | { |
6a053cb1 TT |
2978 | section_offsets new_offsets (symfile_objfile->section_offsets.size (), |
2979 | displacement); | |
b8040f19 | 2980 | objfile_relocate (symfile_objfile, new_offsets); |
e2a44558 | 2981 | } |
51bee8e9 JK |
2982 | else if (exec_bfd) |
2983 | { | |
2984 | asection *asect; | |
2985 | ||
2986 | for (asect = exec_bfd->sections; asect != NULL; asect = asect->next) | |
2987 | exec_set_section_address (bfd_get_filename (exec_bfd), asect->index, | |
fd361982 | 2988 | bfd_section_vma (asect) + displacement); |
51bee8e9 | 2989 | } |
e2a44558 KB |
2990 | } |
2991 | ||
7f86f058 | 2992 | /* Implement the "create_inferior_hook" target_solib_ops method. |
13437d4b KB |
2993 | |
2994 | For SVR4 executables, this first instruction is either the first | |
2995 | instruction in the dynamic linker (for dynamically linked | |
2996 | executables) or the instruction at "start" for statically linked | |
2997 | executables. For dynamically linked executables, the system | |
2998 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
2999 | and starts it running. The dynamic linker maps in any needed | |
3000 | shared libraries, maps in the actual user executable, and then | |
3001 | jumps to "start" in the user executable. | |
3002 | ||
7f86f058 PA |
3003 | We can arrange to cooperate with the dynamic linker to discover the |
3004 | names of shared libraries that are dynamically linked, and the base | |
3005 | addresses to which they are linked. | |
13437d4b KB |
3006 | |
3007 | This function is responsible for discovering those names and | |
3008 | addresses, and saving sufficient information about them to allow | |
d2e5c99a | 3009 | their symbols to be read at a later time. */ |
13437d4b | 3010 | |
e2a44558 | 3011 | static void |
268a4a75 | 3012 | svr4_solib_create_inferior_hook (int from_tty) |
13437d4b | 3013 | { |
1a816a87 PA |
3014 | struct svr4_info *info; |
3015 | ||
d70cc3ba | 3016 | info = get_svr4_info (current_program_space); |
2020b7ab | 3017 | |
f9e14852 GB |
3018 | /* Clear the probes-based interface's state. */ |
3019 | free_probes_table (info); | |
3020 | free_solib_list (info); | |
3021 | ||
e2a44558 | 3022 | /* Relocate the main executable if necessary. */ |
86e4bafc | 3023 | svr4_relocate_main_executable (); |
e2a44558 | 3024 | |
c91c8c16 PA |
3025 | /* No point setting a breakpoint in the dynamic linker if we can't |
3026 | hit it (e.g., a core file, or a trace file). */ | |
3027 | if (!target_has_execution) | |
3028 | return; | |
3029 | ||
d5a921c9 | 3030 | if (!svr4_have_link_map_offsets ()) |
513f5903 | 3031 | return; |
d5a921c9 | 3032 | |
268a4a75 | 3033 | if (!enable_break (info, from_tty)) |
542c95c2 | 3034 | return; |
13437d4b KB |
3035 | } |
3036 | ||
3037 | static void | |
3038 | svr4_clear_solib (void) | |
3039 | { | |
6c95b8df PA |
3040 | struct svr4_info *info; |
3041 | ||
d70cc3ba | 3042 | info = get_svr4_info (current_program_space); |
6c95b8df PA |
3043 | info->debug_base = 0; |
3044 | info->debug_loader_offset_p = 0; | |
3045 | info->debug_loader_offset = 0; | |
3046 | xfree (info->debug_loader_name); | |
3047 | info->debug_loader_name = NULL; | |
13437d4b KB |
3048 | } |
3049 | ||
6bb7be43 JB |
3050 | /* Clear any bits of ADDR that wouldn't fit in a target-format |
3051 | data pointer. "Data pointer" here refers to whatever sort of | |
3052 | address the dynamic linker uses to manage its sections. At the | |
3053 | moment, we don't support shared libraries on any processors where | |
3054 | code and data pointers are different sizes. | |
3055 | ||
3056 | This isn't really the right solution. What we really need here is | |
3057 | a way to do arithmetic on CORE_ADDR values that respects the | |
3058 | natural pointer/address correspondence. (For example, on the MIPS, | |
3059 | converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | |
3060 | sign-extend the value. There, simply truncating the bits above | |
819844ad | 3061 | gdbarch_ptr_bit, as we do below, is no good.) This should probably |
6bb7be43 JB |
3062 | be a new gdbarch method or something. */ |
3063 | static CORE_ADDR | |
3064 | svr4_truncate_ptr (CORE_ADDR addr) | |
3065 | { | |
f5656ead | 3066 | if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) |
6bb7be43 JB |
3067 | /* We don't need to truncate anything, and the bit twiddling below |
3068 | will fail due to overflow problems. */ | |
3069 | return addr; | |
3070 | else | |
f5656ead | 3071 | return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); |
6bb7be43 JB |
3072 | } |
3073 | ||
3074 | ||
749499cb KB |
3075 | static void |
3076 | svr4_relocate_section_addresses (struct so_list *so, | |
0542c86d | 3077 | struct target_section *sec) |
749499cb | 3078 | { |
2b2848e2 DE |
3079 | bfd *abfd = sec->the_bfd_section->owner; |
3080 | ||
3081 | sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd)); | |
3082 | sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd)); | |
749499cb | 3083 | } |
4b188b9f | 3084 | \f |
749499cb | 3085 | |
4b188b9f | 3086 | /* Architecture-specific operations. */ |
6bb7be43 | 3087 | |
4b188b9f MK |
3088 | /* Per-architecture data key. */ |
3089 | static struct gdbarch_data *solib_svr4_data; | |
e5e2b9ff | 3090 | |
4b188b9f | 3091 | struct solib_svr4_ops |
e5e2b9ff | 3092 | { |
4b188b9f MK |
3093 | /* Return a description of the layout of `struct link_map'. */ |
3094 | struct link_map_offsets *(*fetch_link_map_offsets)(void); | |
3095 | }; | |
e5e2b9ff | 3096 | |
4b188b9f | 3097 | /* Return a default for the architecture-specific operations. */ |
e5e2b9ff | 3098 | |
4b188b9f MK |
3099 | static void * |
3100 | solib_svr4_init (struct obstack *obstack) | |
e5e2b9ff | 3101 | { |
4b188b9f | 3102 | struct solib_svr4_ops *ops; |
e5e2b9ff | 3103 | |
4b188b9f | 3104 | ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); |
8d005789 | 3105 | ops->fetch_link_map_offsets = NULL; |
4b188b9f | 3106 | return ops; |
e5e2b9ff KB |
3107 | } |
3108 | ||
4b188b9f | 3109 | /* Set the architecture-specific `struct link_map_offsets' fetcher for |
7e3cb44c | 3110 | GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */ |
1c4dcb57 | 3111 | |
21479ded | 3112 | void |
e5e2b9ff KB |
3113 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, |
3114 | struct link_map_offsets *(*flmo) (void)) | |
21479ded | 3115 | { |
19ba03f4 SM |
3116 | struct solib_svr4_ops *ops |
3117 | = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data); | |
4b188b9f MK |
3118 | |
3119 | ops->fetch_link_map_offsets = flmo; | |
7e3cb44c UW |
3120 | |
3121 | set_solib_ops (gdbarch, &svr4_so_ops); | |
626ca2c0 CB |
3122 | set_gdbarch_iterate_over_objfiles_in_search_order |
3123 | (gdbarch, svr4_iterate_over_objfiles_in_search_order); | |
21479ded KB |
3124 | } |
3125 | ||
4b188b9f MK |
3126 | /* Fetch a link_map_offsets structure using the architecture-specific |
3127 | `struct link_map_offsets' fetcher. */ | |
1c4dcb57 | 3128 | |
4b188b9f MK |
3129 | static struct link_map_offsets * |
3130 | svr4_fetch_link_map_offsets (void) | |
21479ded | 3131 | { |
19ba03f4 SM |
3132 | struct solib_svr4_ops *ops |
3133 | = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | |
3134 | solib_svr4_data); | |
4b188b9f MK |
3135 | |
3136 | gdb_assert (ops->fetch_link_map_offsets); | |
3137 | return ops->fetch_link_map_offsets (); | |
21479ded KB |
3138 | } |
3139 | ||
4b188b9f MK |
3140 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ |
3141 | ||
3142 | static int | |
3143 | svr4_have_link_map_offsets (void) | |
3144 | { | |
19ba03f4 SM |
3145 | struct solib_svr4_ops *ops |
3146 | = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | |
3147 | solib_svr4_data); | |
433759f7 | 3148 | |
4b188b9f MK |
3149 | return (ops->fetch_link_map_offsets != NULL); |
3150 | } | |
3151 | \f | |
3152 | ||
e4bbbda8 MK |
3153 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a |
3154 | `struct r_debug' and a `struct link_map' that are binary compatible | |
85102364 | 3155 | with the original SVR4 implementation. */ |
e4bbbda8 MK |
3156 | |
3157 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
3158 | for an ILP32 SVR4 system. */ | |
d989b283 | 3159 | |
e4bbbda8 MK |
3160 | struct link_map_offsets * |
3161 | svr4_ilp32_fetch_link_map_offsets (void) | |
3162 | { | |
3163 | static struct link_map_offsets lmo; | |
3164 | static struct link_map_offsets *lmp = NULL; | |
3165 | ||
3166 | if (lmp == NULL) | |
3167 | { | |
3168 | lmp = &lmo; | |
3169 | ||
e4cd0d6a MK |
3170 | lmo.r_version_offset = 0; |
3171 | lmo.r_version_size = 4; | |
e4bbbda8 | 3172 | lmo.r_map_offset = 4; |
7cd25cfc | 3173 | lmo.r_brk_offset = 8; |
e4cd0d6a | 3174 | lmo.r_ldsomap_offset = 20; |
e4bbbda8 MK |
3175 | |
3176 | /* Everything we need is in the first 20 bytes. */ | |
3177 | lmo.link_map_size = 20; | |
3178 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 3179 | lmo.l_name_offset = 4; |
cc10cae3 | 3180 | lmo.l_ld_offset = 8; |
e4bbbda8 | 3181 | lmo.l_next_offset = 12; |
e4bbbda8 | 3182 | lmo.l_prev_offset = 16; |
e4bbbda8 MK |
3183 | } |
3184 | ||
3185 | return lmp; | |
3186 | } | |
3187 | ||
3188 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
3189 | for an LP64 SVR4 system. */ | |
d989b283 | 3190 | |
e4bbbda8 MK |
3191 | struct link_map_offsets * |
3192 | svr4_lp64_fetch_link_map_offsets (void) | |
3193 | { | |
3194 | static struct link_map_offsets lmo; | |
3195 | static struct link_map_offsets *lmp = NULL; | |
3196 | ||
3197 | if (lmp == NULL) | |
3198 | { | |
3199 | lmp = &lmo; | |
3200 | ||
e4cd0d6a MK |
3201 | lmo.r_version_offset = 0; |
3202 | lmo.r_version_size = 4; | |
e4bbbda8 | 3203 | lmo.r_map_offset = 8; |
7cd25cfc | 3204 | lmo.r_brk_offset = 16; |
e4cd0d6a | 3205 | lmo.r_ldsomap_offset = 40; |
e4bbbda8 MK |
3206 | |
3207 | /* Everything we need is in the first 40 bytes. */ | |
3208 | lmo.link_map_size = 40; | |
3209 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 3210 | lmo.l_name_offset = 8; |
cc10cae3 | 3211 | lmo.l_ld_offset = 16; |
e4bbbda8 | 3212 | lmo.l_next_offset = 24; |
e4bbbda8 | 3213 | lmo.l_prev_offset = 32; |
e4bbbda8 MK |
3214 | } |
3215 | ||
3216 | return lmp; | |
3217 | } | |
3218 | \f | |
3219 | ||
7d522c90 | 3220 | struct target_so_ops svr4_so_ops; |
13437d4b | 3221 | |
626ca2c0 | 3222 | /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a |
3a40aaa0 UW |
3223 | different rule for symbol lookup. The lookup begins here in the DSO, not in |
3224 | the main executable. */ | |
3225 | ||
626ca2c0 CB |
3226 | static void |
3227 | svr4_iterate_over_objfiles_in_search_order | |
3228 | (struct gdbarch *gdbarch, | |
3229 | iterate_over_objfiles_in_search_order_cb_ftype *cb, | |
3230 | void *cb_data, struct objfile *current_objfile) | |
3a40aaa0 | 3231 | { |
626ca2c0 CB |
3232 | bool checked_current_objfile = false; |
3233 | if (current_objfile != nullptr) | |
61f0d762 | 3234 | { |
626ca2c0 | 3235 | bfd *abfd; |
61f0d762 | 3236 | |
626ca2c0 CB |
3237 | if (current_objfile->separate_debug_objfile_backlink != nullptr) |
3238 | current_objfile = current_objfile->separate_debug_objfile_backlink; | |
61f0d762 | 3239 | |
626ca2c0 CB |
3240 | if (current_objfile == symfile_objfile) |
3241 | abfd = exec_bfd; | |
3242 | else | |
3243 | abfd = current_objfile->obfd; | |
3244 | ||
7ab78ccb SM |
3245 | if (abfd != nullptr |
3246 | && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1) | |
626ca2c0 CB |
3247 | { |
3248 | checked_current_objfile = true; | |
3249 | if (cb (current_objfile, cb_data) != 0) | |
3250 | return; | |
3251 | } | |
3252 | } | |
3a40aaa0 | 3253 | |
626ca2c0 CB |
3254 | for (objfile *objfile : current_program_space->objfiles ()) |
3255 | { | |
3256 | if (checked_current_objfile && objfile == current_objfile) | |
3257 | continue; | |
3258 | if (cb (objfile, cb_data) != 0) | |
3259 | return; | |
3260 | } | |
3a40aaa0 UW |
3261 | } |
3262 | ||
6c265988 | 3263 | void _initialize_svr4_solib (); |
13437d4b | 3264 | void |
6c265988 | 3265 | _initialize_svr4_solib () |
13437d4b | 3266 | { |
4b188b9f MK |
3267 | solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); |
3268 | ||
749499cb | 3269 | svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; |
13437d4b | 3270 | svr4_so_ops.free_so = svr4_free_so; |
0892cb63 | 3271 | svr4_so_ops.clear_so = svr4_clear_so; |
13437d4b KB |
3272 | svr4_so_ops.clear_solib = svr4_clear_solib; |
3273 | svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | |
13437d4b KB |
3274 | svr4_so_ops.current_sos = svr4_current_sos; |
3275 | svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | |
d7fa2ae2 | 3276 | svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; |
831a0c44 | 3277 | svr4_so_ops.bfd_open = solib_bfd_open; |
a7c02bc8 | 3278 | svr4_so_ops.same = svr4_same; |
de18c1d8 | 3279 | svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core; |
f9e14852 GB |
3280 | svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints; |
3281 | svr4_so_ops.handle_event = svr4_handle_solib_event; | |
7905fc35 PA |
3282 | |
3283 | gdb::observers::free_objfile.attach (svr4_free_objfile_observer); | |
13437d4b | 3284 | } |