Commit | Line | Data |
---|---|---|
ab31aa69 | 1 | /* Handle SVR4 shared libraries for GDB, the GNU Debugger. |
2f4950cd | 2 | |
e2882c85 | 3 | Copyright (C) 1990-2018 Free Software Foundation, Inc. |
13437d4b KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
13437d4b KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
13437d4b | 19 | |
13437d4b KB |
20 | #include "defs.h" |
21 | ||
13437d4b | 22 | #include "elf/external.h" |
21479ded | 23 | #include "elf/common.h" |
f7856c8f | 24 | #include "elf/mips.h" |
13437d4b KB |
25 | |
26 | #include "symtab.h" | |
27 | #include "bfd.h" | |
28 | #include "symfile.h" | |
29 | #include "objfiles.h" | |
30 | #include "gdbcore.h" | |
13437d4b | 31 | #include "target.h" |
13437d4b | 32 | #include "inferior.h" |
45741a9c | 33 | #include "infrun.h" |
fb14de7b | 34 | #include "regcache.h" |
2020b7ab | 35 | #include "gdbthread.h" |
76727919 | 36 | #include "observable.h" |
13437d4b KB |
37 | |
38 | #include "solist.h" | |
bba93f6c | 39 | #include "solib.h" |
13437d4b KB |
40 | #include "solib-svr4.h" |
41 | ||
2f4950cd | 42 | #include "bfd-target.h" |
cc10cae3 | 43 | #include "elf-bfd.h" |
2f4950cd | 44 | #include "exec.h" |
8d4e36ba | 45 | #include "auxv.h" |
695c3173 | 46 | #include "gdb_bfd.h" |
f9e14852 | 47 | #include "probe.h" |
2f4950cd | 48 | |
e5e2b9ff | 49 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); |
d5a921c9 | 50 | static int svr4_have_link_map_offsets (void); |
9f2982ff | 51 | static void svr4_relocate_main_executable (void); |
f9e14852 | 52 | static void svr4_free_library_list (void *p_list); |
1c4dcb57 | 53 | |
13437d4b KB |
54 | /* On SVR4 systems, a list of symbols in the dynamic linker where |
55 | GDB can try to place a breakpoint to monitor shared library | |
56 | events. | |
57 | ||
58 | If none of these symbols are found, or other errors occur, then | |
59 | SVR4 systems will fall back to using a symbol as the "startup | |
60 | mapping complete" breakpoint address. */ | |
61 | ||
bc043ef3 | 62 | static const char * const solib_break_names[] = |
13437d4b KB |
63 | { |
64 | "r_debug_state", | |
65 | "_r_debug_state", | |
66 | "_dl_debug_state", | |
67 | "rtld_db_dlactivity", | |
4c7dcb84 | 68 | "__dl_rtld_db_dlactivity", |
1f72e589 | 69 | "_rtld_debug_state", |
4c0122c8 | 70 | |
13437d4b KB |
71 | NULL |
72 | }; | |
13437d4b | 73 | |
bc043ef3 | 74 | static const char * const bkpt_names[] = |
13437d4b | 75 | { |
13437d4b | 76 | "_start", |
ad3dcc5c | 77 | "__start", |
13437d4b KB |
78 | "main", |
79 | NULL | |
80 | }; | |
13437d4b | 81 | |
bc043ef3 | 82 | static const char * const main_name_list[] = |
13437d4b KB |
83 | { |
84 | "main_$main", | |
85 | NULL | |
86 | }; | |
87 | ||
f9e14852 GB |
88 | /* What to do when a probe stop occurs. */ |
89 | ||
90 | enum probe_action | |
91 | { | |
92 | /* Something went seriously wrong. Stop using probes and | |
93 | revert to using the older interface. */ | |
94 | PROBES_INTERFACE_FAILED, | |
95 | ||
96 | /* No action is required. The shared object list is still | |
97 | valid. */ | |
98 | DO_NOTHING, | |
99 | ||
100 | /* The shared object list should be reloaded entirely. */ | |
101 | FULL_RELOAD, | |
102 | ||
103 | /* Attempt to incrementally update the shared object list. If | |
104 | the update fails or is not possible, fall back to reloading | |
105 | the list in full. */ | |
106 | UPDATE_OR_RELOAD, | |
107 | }; | |
108 | ||
109 | /* A probe's name and its associated action. */ | |
110 | ||
111 | struct probe_info | |
112 | { | |
113 | /* The name of the probe. */ | |
114 | const char *name; | |
115 | ||
116 | /* What to do when a probe stop occurs. */ | |
117 | enum probe_action action; | |
118 | }; | |
119 | ||
120 | /* A list of named probes and their associated actions. If all | |
121 | probes are present in the dynamic linker then the probes-based | |
122 | interface will be used. */ | |
123 | ||
124 | static const struct probe_info probe_info[] = | |
125 | { | |
126 | { "init_start", DO_NOTHING }, | |
127 | { "init_complete", FULL_RELOAD }, | |
128 | { "map_start", DO_NOTHING }, | |
129 | { "map_failed", DO_NOTHING }, | |
130 | { "reloc_complete", UPDATE_OR_RELOAD }, | |
131 | { "unmap_start", DO_NOTHING }, | |
132 | { "unmap_complete", FULL_RELOAD }, | |
133 | }; | |
134 | ||
135 | #define NUM_PROBES ARRAY_SIZE (probe_info) | |
136 | ||
4d7b2d5b JB |
137 | /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent |
138 | the same shared library. */ | |
139 | ||
140 | static int | |
141 | svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) | |
142 | { | |
143 | if (strcmp (gdb_so_name, inferior_so_name) == 0) | |
144 | return 1; | |
145 | ||
146 | /* On Solaris, when starting inferior we think that dynamic linker is | |
d989b283 PP |
147 | /usr/lib/ld.so.1, but later on, the table of loaded shared libraries |
148 | contains /lib/ld.so.1. Sometimes one file is a link to another, but | |
4d7b2d5b JB |
149 | sometimes they have identical content, but are not linked to each |
150 | other. We don't restrict this check for Solaris, but the chances | |
151 | of running into this situation elsewhere are very low. */ | |
152 | if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 | |
153 | && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) | |
154 | return 1; | |
155 | ||
156 | /* Similarly, we observed the same issue with sparc64, but with | |
157 | different locations. */ | |
158 | if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 | |
159 | && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) | |
160 | return 1; | |
161 | ||
162 | return 0; | |
163 | } | |
164 | ||
165 | static int | |
166 | svr4_same (struct so_list *gdb, struct so_list *inferior) | |
167 | { | |
168 | return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); | |
169 | } | |
170 | ||
a7961323 | 171 | static std::unique_ptr<lm_info_svr4> |
3957565a | 172 | lm_info_read (CORE_ADDR lm_addr) |
13437d4b | 173 | { |
4b188b9f | 174 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
a7961323 | 175 | std::unique_ptr<lm_info_svr4> lm_info; |
3957565a | 176 | |
a7961323 | 177 | gdb::byte_vector lm (lmo->link_map_size); |
3957565a | 178 | |
a7961323 TT |
179 | if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0) |
180 | warning (_("Error reading shared library list entry at %s"), | |
181 | paddress (target_gdbarch (), lm_addr)); | |
3957565a JK |
182 | else |
183 | { | |
f5656ead | 184 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
13437d4b | 185 | |
a7961323 | 186 | lm_info.reset (new lm_info_svr4); |
3957565a JK |
187 | lm_info->lm_addr = lm_addr; |
188 | ||
189 | lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset], | |
190 | ptr_type); | |
191 | lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type); | |
192 | lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset], | |
193 | ptr_type); | |
194 | lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset], | |
195 | ptr_type); | |
196 | lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset], | |
197 | ptr_type); | |
198 | } | |
199 | ||
3957565a | 200 | return lm_info; |
13437d4b KB |
201 | } |
202 | ||
cc10cae3 | 203 | static int |
b23518f0 | 204 | has_lm_dynamic_from_link_map (void) |
cc10cae3 AO |
205 | { |
206 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
207 | ||
cfaefc65 | 208 | return lmo->l_ld_offset >= 0; |
cc10cae3 AO |
209 | } |
210 | ||
cc10cae3 | 211 | static CORE_ADDR |
f65ce5fb | 212 | lm_addr_check (const struct so_list *so, bfd *abfd) |
cc10cae3 | 213 | { |
d0e449a1 SM |
214 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
215 | ||
216 | if (!li->l_addr_p) | |
cc10cae3 AO |
217 | { |
218 | struct bfd_section *dyninfo_sect; | |
28f34a8f | 219 | CORE_ADDR l_addr, l_dynaddr, dynaddr; |
cc10cae3 | 220 | |
d0e449a1 | 221 | l_addr = li->l_addr_inferior; |
cc10cae3 | 222 | |
b23518f0 | 223 | if (! abfd || ! has_lm_dynamic_from_link_map ()) |
cc10cae3 AO |
224 | goto set_addr; |
225 | ||
d0e449a1 | 226 | l_dynaddr = li->l_ld; |
cc10cae3 AO |
227 | |
228 | dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
229 | if (dyninfo_sect == NULL) | |
230 | goto set_addr; | |
231 | ||
232 | dynaddr = bfd_section_vma (abfd, dyninfo_sect); | |
233 | ||
234 | if (dynaddr + l_addr != l_dynaddr) | |
235 | { | |
28f34a8f | 236 | CORE_ADDR align = 0x1000; |
4e1fc9c9 | 237 | CORE_ADDR minpagesize = align; |
28f34a8f | 238 | |
cc10cae3 AO |
239 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
240 | { | |
241 | Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; | |
242 | Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; | |
243 | int i; | |
244 | ||
245 | align = 1; | |
246 | ||
247 | for (i = 0; i < ehdr->e_phnum; i++) | |
248 | if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) | |
249 | align = phdr[i].p_align; | |
4e1fc9c9 JK |
250 | |
251 | minpagesize = get_elf_backend_data (abfd)->minpagesize; | |
cc10cae3 AO |
252 | } |
253 | ||
254 | /* Turn it into a mask. */ | |
255 | align--; | |
256 | ||
257 | /* If the changes match the alignment requirements, we | |
258 | assume we're using a core file that was generated by the | |
259 | same binary, just prelinked with a different base offset. | |
260 | If it doesn't match, we may have a different binary, the | |
261 | same binary with the dynamic table loaded at an unrelated | |
262 | location, or anything, really. To avoid regressions, | |
263 | don't adjust the base offset in the latter case, although | |
264 | odds are that, if things really changed, debugging won't | |
5c0d192f JK |
265 | quite work. |
266 | ||
267 | One could expect more the condition | |
268 | ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0) | |
269 | but the one below is relaxed for PPC. The PPC kernel supports | |
270 | either 4k or 64k page sizes. To be prepared for 64k pages, | |
271 | PPC ELF files are built using an alignment requirement of 64k. | |
272 | However, when running on a kernel supporting 4k pages, the memory | |
273 | mapping of the library may not actually happen on a 64k boundary! | |
274 | ||
275 | (In the usual case where (l_addr & align) == 0, this check is | |
4e1fc9c9 JK |
276 | equivalent to the possibly expected check above.) |
277 | ||
278 | Even on PPC it must be zero-aligned at least for MINPAGESIZE. */ | |
5c0d192f | 279 | |
02835898 JK |
280 | l_addr = l_dynaddr - dynaddr; |
281 | ||
4e1fc9c9 JK |
282 | if ((l_addr & (minpagesize - 1)) == 0 |
283 | && (l_addr & align) == ((l_dynaddr - dynaddr) & align)) | |
cc10cae3 | 284 | { |
701ed6dc | 285 | if (info_verbose) |
ccf26247 JK |
286 | printf_unfiltered (_("Using PIC (Position Independent Code) " |
287 | "prelink displacement %s for \"%s\".\n"), | |
f5656ead | 288 | paddress (target_gdbarch (), l_addr), |
ccf26247 | 289 | so->so_name); |
cc10cae3 | 290 | } |
79d4c408 | 291 | else |
02835898 JK |
292 | { |
293 | /* There is no way to verify the library file matches. prelink | |
294 | can during prelinking of an unprelinked file (or unprelinking | |
295 | of a prelinked file) shift the DYNAMIC segment by arbitrary | |
296 | offset without any page size alignment. There is no way to | |
297 | find out the ELF header and/or Program Headers for a limited | |
298 | verification if it they match. One could do a verification | |
299 | of the DYNAMIC segment. Still the found address is the best | |
300 | one GDB could find. */ | |
301 | ||
302 | warning (_(".dynamic section for \"%s\" " | |
303 | "is not at the expected address " | |
304 | "(wrong library or version mismatch?)"), so->so_name); | |
305 | } | |
cc10cae3 AO |
306 | } |
307 | ||
308 | set_addr: | |
d0e449a1 SM |
309 | li->l_addr = l_addr; |
310 | li->l_addr_p = 1; | |
cc10cae3 AO |
311 | } |
312 | ||
d0e449a1 | 313 | return li->l_addr; |
cc10cae3 AO |
314 | } |
315 | ||
6c95b8df | 316 | /* Per pspace SVR4 specific data. */ |
13437d4b | 317 | |
1a816a87 PA |
318 | struct svr4_info |
319 | { | |
c378eb4e | 320 | CORE_ADDR debug_base; /* Base of dynamic linker structures. */ |
1a816a87 PA |
321 | |
322 | /* Validity flag for debug_loader_offset. */ | |
323 | int debug_loader_offset_p; | |
324 | ||
325 | /* Load address for the dynamic linker, inferred. */ | |
326 | CORE_ADDR debug_loader_offset; | |
327 | ||
328 | /* Name of the dynamic linker, valid if debug_loader_offset_p. */ | |
329 | char *debug_loader_name; | |
330 | ||
331 | /* Load map address for the main executable. */ | |
332 | CORE_ADDR main_lm_addr; | |
1a816a87 | 333 | |
6c95b8df PA |
334 | CORE_ADDR interp_text_sect_low; |
335 | CORE_ADDR interp_text_sect_high; | |
336 | CORE_ADDR interp_plt_sect_low; | |
337 | CORE_ADDR interp_plt_sect_high; | |
f9e14852 GB |
338 | |
339 | /* Nonzero if the list of objects was last obtained from the target | |
340 | via qXfer:libraries-svr4:read. */ | |
341 | int using_xfer; | |
342 | ||
343 | /* Table of struct probe_and_action instances, used by the | |
344 | probes-based interface to map breakpoint addresses to probes | |
345 | and their associated actions. Lookup is performed using | |
935676c9 | 346 | probe_and_action->prob->address. */ |
f9e14852 GB |
347 | htab_t probes_table; |
348 | ||
349 | /* List of objects loaded into the inferior, used by the probes- | |
350 | based interface. */ | |
351 | struct so_list *solib_list; | |
6c95b8df | 352 | }; |
1a816a87 | 353 | |
6c95b8df PA |
354 | /* Per-program-space data key. */ |
355 | static const struct program_space_data *solib_svr4_pspace_data; | |
1a816a87 | 356 | |
f9e14852 GB |
357 | /* Free the probes table. */ |
358 | ||
359 | static void | |
360 | free_probes_table (struct svr4_info *info) | |
361 | { | |
362 | if (info->probes_table == NULL) | |
363 | return; | |
364 | ||
365 | htab_delete (info->probes_table); | |
366 | info->probes_table = NULL; | |
367 | } | |
368 | ||
369 | /* Free the solib list. */ | |
370 | ||
371 | static void | |
372 | free_solib_list (struct svr4_info *info) | |
373 | { | |
374 | svr4_free_library_list (&info->solib_list); | |
375 | info->solib_list = NULL; | |
376 | } | |
377 | ||
6c95b8df PA |
378 | static void |
379 | svr4_pspace_data_cleanup (struct program_space *pspace, void *arg) | |
1a816a87 | 380 | { |
19ba03f4 | 381 | struct svr4_info *info = (struct svr4_info *) arg; |
f9e14852 GB |
382 | |
383 | free_probes_table (info); | |
384 | free_solib_list (info); | |
385 | ||
6c95b8df | 386 | xfree (info); |
1a816a87 PA |
387 | } |
388 | ||
6c95b8df PA |
389 | /* Get the current svr4 data. If none is found yet, add it now. This |
390 | function always returns a valid object. */ | |
34439770 | 391 | |
6c95b8df PA |
392 | static struct svr4_info * |
393 | get_svr4_info (void) | |
1a816a87 | 394 | { |
6c95b8df | 395 | struct svr4_info *info; |
1a816a87 | 396 | |
19ba03f4 SM |
397 | info = (struct svr4_info *) program_space_data (current_program_space, |
398 | solib_svr4_pspace_data); | |
6c95b8df PA |
399 | if (info != NULL) |
400 | return info; | |
34439770 | 401 | |
41bf6aca | 402 | info = XCNEW (struct svr4_info); |
6c95b8df PA |
403 | set_program_space_data (current_program_space, solib_svr4_pspace_data, info); |
404 | return info; | |
1a816a87 | 405 | } |
93a57060 | 406 | |
13437d4b KB |
407 | /* Local function prototypes */ |
408 | ||
bc043ef3 | 409 | static int match_main (const char *); |
13437d4b | 410 | |
97ec2c2f UW |
411 | /* Read program header TYPE from inferior memory. The header is found |
412 | by scanning the OS auxillary vector. | |
413 | ||
09919ac2 JK |
414 | If TYPE == -1, return the program headers instead of the contents of |
415 | one program header. | |
416 | ||
97ec2c2f UW |
417 | Return a pointer to allocated memory holding the program header contents, |
418 | or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the | |
419 | size of those contents is returned to P_SECT_SIZE. Likewise, the target | |
a738da3a MF |
420 | architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and |
421 | the base address of the section is returned in BASE_ADDR. */ | |
97ec2c2f UW |
422 | |
423 | static gdb_byte * | |
a738da3a MF |
424 | read_program_header (int type, int *p_sect_size, int *p_arch_size, |
425 | CORE_ADDR *base_addr) | |
97ec2c2f | 426 | { |
f5656ead | 427 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
43136979 | 428 | CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0; |
97ec2c2f UW |
429 | int arch_size, sect_size; |
430 | CORE_ADDR sect_addr; | |
431 | gdb_byte *buf; | |
43136979 | 432 | int pt_phdr_p = 0; |
97ec2c2f UW |
433 | |
434 | /* Get required auxv elements from target. */ | |
435 | if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0) | |
436 | return 0; | |
437 | if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0) | |
438 | return 0; | |
439 | if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0) | |
440 | return 0; | |
441 | if (!at_phdr || !at_phnum) | |
442 | return 0; | |
443 | ||
444 | /* Determine ELF architecture type. */ | |
445 | if (at_phent == sizeof (Elf32_External_Phdr)) | |
446 | arch_size = 32; | |
447 | else if (at_phent == sizeof (Elf64_External_Phdr)) | |
448 | arch_size = 64; | |
449 | else | |
450 | return 0; | |
451 | ||
09919ac2 JK |
452 | /* Find the requested segment. */ |
453 | if (type == -1) | |
454 | { | |
455 | sect_addr = at_phdr; | |
456 | sect_size = at_phent * at_phnum; | |
457 | } | |
458 | else if (arch_size == 32) | |
97ec2c2f UW |
459 | { |
460 | Elf32_External_Phdr phdr; | |
461 | int i; | |
462 | ||
463 | /* Search for requested PHDR. */ | |
464 | for (i = 0; i < at_phnum; i++) | |
465 | { | |
43136979 AR |
466 | int p_type; |
467 | ||
97ec2c2f UW |
468 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
469 | (gdb_byte *)&phdr, sizeof (phdr))) | |
470 | return 0; | |
471 | ||
43136979 AR |
472 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
473 | 4, byte_order); | |
474 | ||
475 | if (p_type == PT_PHDR) | |
476 | { | |
477 | pt_phdr_p = 1; | |
478 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
479 | 4, byte_order); | |
480 | } | |
481 | ||
482 | if (p_type == type) | |
97ec2c2f UW |
483 | break; |
484 | } | |
485 | ||
486 | if (i == at_phnum) | |
487 | return 0; | |
488 | ||
489 | /* Retrieve address and size. */ | |
e17a4113 UW |
490 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
491 | 4, byte_order); | |
492 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
493 | 4, byte_order); | |
97ec2c2f UW |
494 | } |
495 | else | |
496 | { | |
497 | Elf64_External_Phdr phdr; | |
498 | int i; | |
499 | ||
500 | /* Search for requested PHDR. */ | |
501 | for (i = 0; i < at_phnum; i++) | |
502 | { | |
43136979 AR |
503 | int p_type; |
504 | ||
97ec2c2f UW |
505 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
506 | (gdb_byte *)&phdr, sizeof (phdr))) | |
507 | return 0; | |
508 | ||
43136979 AR |
509 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
510 | 4, byte_order); | |
511 | ||
512 | if (p_type == PT_PHDR) | |
513 | { | |
514 | pt_phdr_p = 1; | |
515 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
516 | 8, byte_order); | |
517 | } | |
518 | ||
519 | if (p_type == type) | |
97ec2c2f UW |
520 | break; |
521 | } | |
522 | ||
523 | if (i == at_phnum) | |
524 | return 0; | |
525 | ||
526 | /* Retrieve address and size. */ | |
e17a4113 UW |
527 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
528 | 8, byte_order); | |
529 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
530 | 8, byte_order); | |
97ec2c2f UW |
531 | } |
532 | ||
43136979 AR |
533 | /* PT_PHDR is optional, but we really need it |
534 | for PIE to make this work in general. */ | |
535 | ||
536 | if (pt_phdr_p) | |
537 | { | |
538 | /* at_phdr is real address in memory. pt_phdr is what pheader says it is. | |
539 | Relocation offset is the difference between the two. */ | |
540 | sect_addr = sect_addr + (at_phdr - pt_phdr); | |
541 | } | |
542 | ||
97ec2c2f | 543 | /* Read in requested program header. */ |
224c3ddb | 544 | buf = (gdb_byte *) xmalloc (sect_size); |
97ec2c2f UW |
545 | if (target_read_memory (sect_addr, buf, sect_size)) |
546 | { | |
547 | xfree (buf); | |
548 | return NULL; | |
549 | } | |
550 | ||
551 | if (p_arch_size) | |
552 | *p_arch_size = arch_size; | |
553 | if (p_sect_size) | |
554 | *p_sect_size = sect_size; | |
a738da3a MF |
555 | if (base_addr) |
556 | *base_addr = sect_addr; | |
97ec2c2f UW |
557 | |
558 | return buf; | |
559 | } | |
560 | ||
561 | ||
562 | /* Return program interpreter string. */ | |
001f13d8 | 563 | static char * |
97ec2c2f UW |
564 | find_program_interpreter (void) |
565 | { | |
566 | gdb_byte *buf = NULL; | |
567 | ||
568 | /* If we have an exec_bfd, use its section table. */ | |
569 | if (exec_bfd | |
570 | && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
571 | { | |
572 | struct bfd_section *interp_sect; | |
573 | ||
574 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
575 | if (interp_sect != NULL) | |
576 | { | |
97ec2c2f UW |
577 | int sect_size = bfd_section_size (exec_bfd, interp_sect); |
578 | ||
224c3ddb | 579 | buf = (gdb_byte *) xmalloc (sect_size); |
97ec2c2f UW |
580 | bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size); |
581 | } | |
582 | } | |
583 | ||
584 | /* If we didn't find it, use the target auxillary vector. */ | |
585 | if (!buf) | |
a738da3a | 586 | buf = read_program_header (PT_INTERP, NULL, NULL, NULL); |
97ec2c2f | 587 | |
001f13d8 | 588 | return (char *) buf; |
97ec2c2f UW |
589 | } |
590 | ||
591 | ||
b6d7a4bf SM |
592 | /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is |
593 | found, 1 is returned and the corresponding PTR is set. */ | |
3a40aaa0 UW |
594 | |
595 | static int | |
a738da3a MF |
596 | scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr, |
597 | CORE_ADDR *ptr_addr) | |
3a40aaa0 UW |
598 | { |
599 | int arch_size, step, sect_size; | |
b6d7a4bf | 600 | long current_dyntag; |
b381ea14 | 601 | CORE_ADDR dyn_ptr, dyn_addr; |
65728c26 | 602 | gdb_byte *bufend, *bufstart, *buf; |
3a40aaa0 UW |
603 | Elf32_External_Dyn *x_dynp_32; |
604 | Elf64_External_Dyn *x_dynp_64; | |
605 | struct bfd_section *sect; | |
61f0d762 | 606 | struct target_section *target_section; |
3a40aaa0 UW |
607 | |
608 | if (abfd == NULL) | |
609 | return 0; | |
0763ab81 PA |
610 | |
611 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
612 | return 0; | |
613 | ||
3a40aaa0 UW |
614 | arch_size = bfd_get_arch_size (abfd); |
615 | if (arch_size == -1) | |
0763ab81 | 616 | return 0; |
3a40aaa0 UW |
617 | |
618 | /* Find the start address of the .dynamic section. */ | |
619 | sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
620 | if (sect == NULL) | |
621 | return 0; | |
61f0d762 JK |
622 | |
623 | for (target_section = current_target_sections->sections; | |
624 | target_section < current_target_sections->sections_end; | |
625 | target_section++) | |
626 | if (sect == target_section->the_bfd_section) | |
627 | break; | |
b381ea14 JK |
628 | if (target_section < current_target_sections->sections_end) |
629 | dyn_addr = target_section->addr; | |
630 | else | |
631 | { | |
632 | /* ABFD may come from OBJFILE acting only as a symbol file without being | |
633 | loaded into the target (see add_symbol_file_command). This case is | |
634 | such fallback to the file VMA address without the possibility of | |
635 | having the section relocated to its actual in-memory address. */ | |
636 | ||
637 | dyn_addr = bfd_section_vma (abfd, sect); | |
638 | } | |
3a40aaa0 | 639 | |
65728c26 DJ |
640 | /* Read in .dynamic from the BFD. We will get the actual value |
641 | from memory later. */ | |
3a40aaa0 | 642 | sect_size = bfd_section_size (abfd, sect); |
224c3ddb | 643 | buf = bufstart = (gdb_byte *) alloca (sect_size); |
65728c26 DJ |
644 | if (!bfd_get_section_contents (abfd, sect, |
645 | buf, 0, sect_size)) | |
646 | return 0; | |
3a40aaa0 UW |
647 | |
648 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
649 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
650 | : sizeof (Elf64_External_Dyn); | |
651 | for (bufend = buf + sect_size; | |
652 | buf < bufend; | |
653 | buf += step) | |
654 | { | |
655 | if (arch_size == 32) | |
656 | { | |
657 | x_dynp_32 = (Elf32_External_Dyn *) buf; | |
b6d7a4bf | 658 | current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag); |
3a40aaa0 UW |
659 | dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr); |
660 | } | |
65728c26 | 661 | else |
3a40aaa0 UW |
662 | { |
663 | x_dynp_64 = (Elf64_External_Dyn *) buf; | |
b6d7a4bf | 664 | current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag); |
3a40aaa0 UW |
665 | dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr); |
666 | } | |
b6d7a4bf | 667 | if (current_dyntag == DT_NULL) |
3a40aaa0 | 668 | return 0; |
b6d7a4bf | 669 | if (current_dyntag == desired_dyntag) |
3a40aaa0 | 670 | { |
65728c26 DJ |
671 | /* If requested, try to read the runtime value of this .dynamic |
672 | entry. */ | |
3a40aaa0 | 673 | if (ptr) |
65728c26 | 674 | { |
b6da22b0 | 675 | struct type *ptr_type; |
65728c26 | 676 | gdb_byte ptr_buf[8]; |
a738da3a | 677 | CORE_ADDR ptr_addr_1; |
65728c26 | 678 | |
f5656ead | 679 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
a738da3a MF |
680 | ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8; |
681 | if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0) | |
b6da22b0 | 682 | dyn_ptr = extract_typed_address (ptr_buf, ptr_type); |
65728c26 | 683 | *ptr = dyn_ptr; |
a738da3a MF |
684 | if (ptr_addr) |
685 | *ptr_addr = dyn_addr + (buf - bufstart); | |
65728c26 DJ |
686 | } |
687 | return 1; | |
3a40aaa0 UW |
688 | } |
689 | } | |
690 | ||
691 | return 0; | |
692 | } | |
693 | ||
b6d7a4bf SM |
694 | /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable, |
695 | found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1 | |
696 | is returned and the corresponding PTR is set. */ | |
97ec2c2f UW |
697 | |
698 | static int | |
a738da3a MF |
699 | scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr, |
700 | CORE_ADDR *ptr_addr) | |
97ec2c2f | 701 | { |
f5656ead | 702 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
97ec2c2f | 703 | int sect_size, arch_size, step; |
b6d7a4bf | 704 | long current_dyntag; |
97ec2c2f | 705 | CORE_ADDR dyn_ptr; |
a738da3a | 706 | CORE_ADDR base_addr; |
97ec2c2f UW |
707 | gdb_byte *bufend, *bufstart, *buf; |
708 | ||
709 | /* Read in .dynamic section. */ | |
a738da3a MF |
710 | buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size, |
711 | &base_addr); | |
97ec2c2f UW |
712 | if (!buf) |
713 | return 0; | |
714 | ||
715 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
716 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
717 | : sizeof (Elf64_External_Dyn); | |
718 | for (bufend = buf + sect_size; | |
719 | buf < bufend; | |
720 | buf += step) | |
721 | { | |
722 | if (arch_size == 32) | |
723 | { | |
724 | Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf; | |
433759f7 | 725 | |
b6d7a4bf | 726 | current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
e17a4113 UW |
727 | 4, byte_order); |
728 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
729 | 4, byte_order); | |
97ec2c2f UW |
730 | } |
731 | else | |
732 | { | |
733 | Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf; | |
433759f7 | 734 | |
b6d7a4bf | 735 | current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
e17a4113 UW |
736 | 8, byte_order); |
737 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
738 | 8, byte_order); | |
97ec2c2f | 739 | } |
b6d7a4bf | 740 | if (current_dyntag == DT_NULL) |
97ec2c2f UW |
741 | break; |
742 | ||
b6d7a4bf | 743 | if (current_dyntag == desired_dyntag) |
97ec2c2f UW |
744 | { |
745 | if (ptr) | |
746 | *ptr = dyn_ptr; | |
747 | ||
a738da3a MF |
748 | if (ptr_addr) |
749 | *ptr_addr = base_addr + buf - bufstart; | |
750 | ||
97ec2c2f UW |
751 | xfree (bufstart); |
752 | return 1; | |
753 | } | |
754 | } | |
755 | ||
756 | xfree (bufstart); | |
757 | return 0; | |
758 | } | |
759 | ||
7f86f058 PA |
760 | /* Locate the base address of dynamic linker structs for SVR4 elf |
761 | targets. | |
13437d4b KB |
762 | |
763 | For SVR4 elf targets the address of the dynamic linker's runtime | |
764 | structure is contained within the dynamic info section in the | |
765 | executable file. The dynamic section is also mapped into the | |
766 | inferior address space. Because the runtime loader fills in the | |
767 | real address before starting the inferior, we have to read in the | |
768 | dynamic info section from the inferior address space. | |
769 | If there are any errors while trying to find the address, we | |
7f86f058 | 770 | silently return 0, otherwise the found address is returned. */ |
13437d4b KB |
771 | |
772 | static CORE_ADDR | |
773 | elf_locate_base (void) | |
774 | { | |
3b7344d5 | 775 | struct bound_minimal_symbol msymbol; |
a738da3a | 776 | CORE_ADDR dyn_ptr, dyn_ptr_addr; |
13437d4b | 777 | |
65728c26 DJ |
778 | /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this |
779 | instead of DT_DEBUG, although they sometimes contain an unused | |
780 | DT_DEBUG. */ | |
a738da3a MF |
781 | if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL) |
782 | || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL)) | |
3a40aaa0 | 783 | { |
f5656ead | 784 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
3a40aaa0 | 785 | gdb_byte *pbuf; |
b6da22b0 | 786 | int pbuf_size = TYPE_LENGTH (ptr_type); |
433759f7 | 787 | |
224c3ddb | 788 | pbuf = (gdb_byte *) alloca (pbuf_size); |
3a40aaa0 UW |
789 | /* DT_MIPS_RLD_MAP contains a pointer to the address |
790 | of the dynamic link structure. */ | |
791 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | |
e499d0f1 | 792 | return 0; |
b6da22b0 | 793 | return extract_typed_address (pbuf, ptr_type); |
e499d0f1 DJ |
794 | } |
795 | ||
a738da3a MF |
796 | /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form |
797 | because of needing to support PIE. DT_MIPS_RLD_MAP will also exist | |
798 | in non-PIE. */ | |
799 | if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr) | |
800 | || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr)) | |
801 | { | |
802 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
803 | gdb_byte *pbuf; | |
804 | int pbuf_size = TYPE_LENGTH (ptr_type); | |
805 | ||
224c3ddb | 806 | pbuf = (gdb_byte *) alloca (pbuf_size); |
a738da3a MF |
807 | /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the |
808 | DT slot to the address of the dynamic link structure. */ | |
809 | if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size)) | |
810 | return 0; | |
811 | return extract_typed_address (pbuf, ptr_type); | |
812 | } | |
813 | ||
65728c26 | 814 | /* Find DT_DEBUG. */ |
a738da3a MF |
815 | if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL) |
816 | || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL)) | |
65728c26 DJ |
817 | return dyn_ptr; |
818 | ||
3a40aaa0 UW |
819 | /* This may be a static executable. Look for the symbol |
820 | conventionally named _r_debug, as a last resort. */ | |
821 | msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile); | |
3b7344d5 | 822 | if (msymbol.minsym != NULL) |
77e371c0 | 823 | return BMSYMBOL_VALUE_ADDRESS (msymbol); |
13437d4b KB |
824 | |
825 | /* DT_DEBUG entry not found. */ | |
826 | return 0; | |
827 | } | |
828 | ||
7f86f058 | 829 | /* Locate the base address of dynamic linker structs. |
13437d4b KB |
830 | |
831 | For both the SunOS and SVR4 shared library implementations, if the | |
832 | inferior executable has been linked dynamically, there is a single | |
833 | address somewhere in the inferior's data space which is the key to | |
834 | locating all of the dynamic linker's runtime structures. This | |
835 | address is the value of the debug base symbol. The job of this | |
836 | function is to find and return that address, or to return 0 if there | |
837 | is no such address (the executable is statically linked for example). | |
838 | ||
839 | For SunOS, the job is almost trivial, since the dynamic linker and | |
840 | all of it's structures are statically linked to the executable at | |
841 | link time. Thus the symbol for the address we are looking for has | |
842 | already been added to the minimal symbol table for the executable's | |
843 | objfile at the time the symbol file's symbols were read, and all we | |
844 | have to do is look it up there. Note that we explicitly do NOT want | |
845 | to find the copies in the shared library. | |
846 | ||
847 | The SVR4 version is a bit more complicated because the address | |
848 | is contained somewhere in the dynamic info section. We have to go | |
849 | to a lot more work to discover the address of the debug base symbol. | |
850 | Because of this complexity, we cache the value we find and return that | |
851 | value on subsequent invocations. Note there is no copy in the | |
7f86f058 | 852 | executable symbol tables. */ |
13437d4b KB |
853 | |
854 | static CORE_ADDR | |
1a816a87 | 855 | locate_base (struct svr4_info *info) |
13437d4b | 856 | { |
13437d4b KB |
857 | /* Check to see if we have a currently valid address, and if so, avoid |
858 | doing all this work again and just return the cached address. If | |
859 | we have no cached address, try to locate it in the dynamic info | |
d5a921c9 KB |
860 | section for ELF executables. There's no point in doing any of this |
861 | though if we don't have some link map offsets to work with. */ | |
13437d4b | 862 | |
1a816a87 | 863 | if (info->debug_base == 0 && svr4_have_link_map_offsets ()) |
0763ab81 | 864 | info->debug_base = elf_locate_base (); |
1a816a87 | 865 | return info->debug_base; |
13437d4b KB |
866 | } |
867 | ||
e4cd0d6a | 868 | /* Find the first element in the inferior's dynamic link map, and |
6f992fbf JB |
869 | return its address in the inferior. Return zero if the address |
870 | could not be determined. | |
13437d4b | 871 | |
e4cd0d6a MK |
872 | FIXME: Perhaps we should validate the info somehow, perhaps by |
873 | checking r_version for a known version number, or r_state for | |
874 | RT_CONSISTENT. */ | |
13437d4b KB |
875 | |
876 | static CORE_ADDR | |
1a816a87 | 877 | solib_svr4_r_map (struct svr4_info *info) |
13437d4b | 878 | { |
4b188b9f | 879 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f5656ead | 880 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
08597104 | 881 | CORE_ADDR addr = 0; |
13437d4b | 882 | |
492d29ea | 883 | TRY |
08597104 JB |
884 | { |
885 | addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset, | |
886 | ptr_type); | |
887 | } | |
492d29ea PA |
888 | CATCH (ex, RETURN_MASK_ERROR) |
889 | { | |
890 | exception_print (gdb_stderr, ex); | |
891 | } | |
892 | END_CATCH | |
893 | ||
08597104 | 894 | return addr; |
e4cd0d6a | 895 | } |
13437d4b | 896 | |
7cd25cfc DJ |
897 | /* Find r_brk from the inferior's debug base. */ |
898 | ||
899 | static CORE_ADDR | |
1a816a87 | 900 | solib_svr4_r_brk (struct svr4_info *info) |
7cd25cfc DJ |
901 | { |
902 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
f5656ead | 903 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
7cd25cfc | 904 | |
1a816a87 PA |
905 | return read_memory_typed_address (info->debug_base + lmo->r_brk_offset, |
906 | ptr_type); | |
7cd25cfc DJ |
907 | } |
908 | ||
e4cd0d6a MK |
909 | /* Find the link map for the dynamic linker (if it is not in the |
910 | normal list of loaded shared objects). */ | |
13437d4b | 911 | |
e4cd0d6a | 912 | static CORE_ADDR |
1a816a87 | 913 | solib_svr4_r_ldsomap (struct svr4_info *info) |
e4cd0d6a MK |
914 | { |
915 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
f5656ead TT |
916 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
917 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); | |
416f679e SDJ |
918 | ULONGEST version = 0; |
919 | ||
920 | TRY | |
921 | { | |
922 | /* Check version, and return zero if `struct r_debug' doesn't have | |
923 | the r_ldsomap member. */ | |
924 | version | |
925 | = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset, | |
926 | lmo->r_version_size, byte_order); | |
927 | } | |
928 | CATCH (ex, RETURN_MASK_ERROR) | |
929 | { | |
930 | exception_print (gdb_stderr, ex); | |
931 | } | |
932 | END_CATCH | |
13437d4b | 933 | |
e4cd0d6a MK |
934 | if (version < 2 || lmo->r_ldsomap_offset == -1) |
935 | return 0; | |
13437d4b | 936 | |
1a816a87 | 937 | return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset, |
b6da22b0 | 938 | ptr_type); |
13437d4b KB |
939 | } |
940 | ||
de18c1d8 JM |
941 | /* On Solaris systems with some versions of the dynamic linker, |
942 | ld.so's l_name pointer points to the SONAME in the string table | |
943 | rather than into writable memory. So that GDB can find shared | |
944 | libraries when loading a core file generated by gcore, ensure that | |
945 | memory areas containing the l_name string are saved in the core | |
946 | file. */ | |
947 | ||
948 | static int | |
949 | svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size) | |
950 | { | |
951 | struct svr4_info *info; | |
952 | CORE_ADDR ldsomap; | |
74de0234 | 953 | CORE_ADDR name_lm; |
de18c1d8 JM |
954 | |
955 | info = get_svr4_info (); | |
956 | ||
957 | info->debug_base = 0; | |
958 | locate_base (info); | |
959 | if (!info->debug_base) | |
960 | return 0; | |
961 | ||
962 | ldsomap = solib_svr4_r_ldsomap (info); | |
963 | if (!ldsomap) | |
964 | return 0; | |
965 | ||
a7961323 | 966 | std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap); |
d0e449a1 | 967 | name_lm = li != NULL ? li->l_name : 0; |
de18c1d8 | 968 | |
74de0234 | 969 | return (name_lm >= vaddr && name_lm < vaddr + size); |
de18c1d8 JM |
970 | } |
971 | ||
bf469271 | 972 | /* See solist.h. */ |
13437d4b KB |
973 | |
974 | static int | |
bf469271 | 975 | open_symbol_file_object (int from_tty) |
13437d4b KB |
976 | { |
977 | CORE_ADDR lm, l_name; | |
e83e4e24 | 978 | gdb::unique_xmalloc_ptr<char> filename; |
13437d4b | 979 | int errcode; |
4b188b9f | 980 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f5656ead | 981 | struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; |
b6da22b0 | 982 | int l_name_size = TYPE_LENGTH (ptr_type); |
a7961323 | 983 | gdb::byte_vector l_name_buf (l_name_size); |
6c95b8df | 984 | struct svr4_info *info = get_svr4_info (); |
ecf45d2c SL |
985 | symfile_add_flags add_flags = 0; |
986 | ||
987 | if (from_tty) | |
988 | add_flags |= SYMFILE_VERBOSE; | |
13437d4b KB |
989 | |
990 | if (symfile_objfile) | |
9e2f0ad4 | 991 | if (!query (_("Attempt to reload symbols from process? "))) |
a7961323 | 992 | return 0; |
13437d4b | 993 | |
7cd25cfc | 994 | /* Always locate the debug struct, in case it has moved. */ |
1a816a87 PA |
995 | info->debug_base = 0; |
996 | if (locate_base (info) == 0) | |
a7961323 | 997 | return 0; /* failed somehow... */ |
13437d4b KB |
998 | |
999 | /* First link map member should be the executable. */ | |
1a816a87 | 1000 | lm = solib_svr4_r_map (info); |
e4cd0d6a | 1001 | if (lm == 0) |
a7961323 | 1002 | return 0; /* failed somehow... */ |
13437d4b KB |
1003 | |
1004 | /* Read address of name from target memory to GDB. */ | |
a7961323 | 1005 | read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size); |
13437d4b | 1006 | |
cfaefc65 | 1007 | /* Convert the address to host format. */ |
a7961323 | 1008 | l_name = extract_typed_address (l_name_buf.data (), ptr_type); |
13437d4b | 1009 | |
13437d4b | 1010 | if (l_name == 0) |
a7961323 | 1011 | return 0; /* No filename. */ |
13437d4b KB |
1012 | |
1013 | /* Now fetch the filename from target memory. */ | |
1014 | target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
1015 | ||
1016 | if (errcode) | |
1017 | { | |
8a3fe4f8 | 1018 | warning (_("failed to read exec filename from attached file: %s"), |
13437d4b KB |
1019 | safe_strerror (errcode)); |
1020 | return 0; | |
1021 | } | |
1022 | ||
13437d4b | 1023 | /* Have a pathname: read the symbol file. */ |
e83e4e24 | 1024 | symbol_file_add_main (filename.get (), add_flags); |
13437d4b KB |
1025 | |
1026 | return 1; | |
1027 | } | |
13437d4b | 1028 | |
2268b414 JK |
1029 | /* Data exchange structure for the XML parser as returned by |
1030 | svr4_current_sos_via_xfer_libraries. */ | |
1031 | ||
1032 | struct svr4_library_list | |
1033 | { | |
1034 | struct so_list *head, **tailp; | |
1035 | ||
1036 | /* Inferior address of struct link_map used for the main executable. It is | |
1037 | NULL if not known. */ | |
1038 | CORE_ADDR main_lm; | |
1039 | }; | |
1040 | ||
93f2a35e JK |
1041 | /* Implementation for target_so_ops.free_so. */ |
1042 | ||
1043 | static void | |
1044 | svr4_free_so (struct so_list *so) | |
1045 | { | |
76e75227 SM |
1046 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
1047 | ||
1048 | delete li; | |
93f2a35e JK |
1049 | } |
1050 | ||
0892cb63 DE |
1051 | /* Implement target_so_ops.clear_so. */ |
1052 | ||
1053 | static void | |
1054 | svr4_clear_so (struct so_list *so) | |
1055 | { | |
d0e449a1 SM |
1056 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; |
1057 | ||
1058 | if (li != NULL) | |
1059 | li->l_addr_p = 0; | |
0892cb63 DE |
1060 | } |
1061 | ||
93f2a35e JK |
1062 | /* Free so_list built so far (called via cleanup). */ |
1063 | ||
1064 | static void | |
1065 | svr4_free_library_list (void *p_list) | |
1066 | { | |
1067 | struct so_list *list = *(struct so_list **) p_list; | |
1068 | ||
1069 | while (list != NULL) | |
1070 | { | |
1071 | struct so_list *next = list->next; | |
1072 | ||
3756ef7e | 1073 | free_so (list); |
93f2a35e JK |
1074 | list = next; |
1075 | } | |
1076 | } | |
1077 | ||
f9e14852 GB |
1078 | /* Copy library list. */ |
1079 | ||
1080 | static struct so_list * | |
1081 | svr4_copy_library_list (struct so_list *src) | |
1082 | { | |
1083 | struct so_list *dst = NULL; | |
1084 | struct so_list **link = &dst; | |
1085 | ||
1086 | while (src != NULL) | |
1087 | { | |
fe978cb0 | 1088 | struct so_list *newobj; |
f9e14852 | 1089 | |
8d749320 | 1090 | newobj = XNEW (struct so_list); |
fe978cb0 | 1091 | memcpy (newobj, src, sizeof (struct so_list)); |
f9e14852 | 1092 | |
76e75227 SM |
1093 | lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info; |
1094 | newobj->lm_info = new lm_info_svr4 (*src_li); | |
f9e14852 | 1095 | |
fe978cb0 PA |
1096 | newobj->next = NULL; |
1097 | *link = newobj; | |
1098 | link = &newobj->next; | |
f9e14852 GB |
1099 | |
1100 | src = src->next; | |
1101 | } | |
1102 | ||
1103 | return dst; | |
1104 | } | |
1105 | ||
2268b414 JK |
1106 | #ifdef HAVE_LIBEXPAT |
1107 | ||
1108 | #include "xml-support.h" | |
1109 | ||
1110 | /* Handle the start of a <library> element. Note: new elements are added | |
1111 | at the tail of the list, keeping the list in order. */ | |
1112 | ||
1113 | static void | |
1114 | library_list_start_library (struct gdb_xml_parser *parser, | |
1115 | const struct gdb_xml_element *element, | |
4d0fdd9b SM |
1116 | void *user_data, |
1117 | std::vector<gdb_xml_value> &attributes) | |
2268b414 | 1118 | { |
19ba03f4 SM |
1119 | struct svr4_library_list *list = (struct svr4_library_list *) user_data; |
1120 | const char *name | |
4d0fdd9b | 1121 | = (const char *) xml_find_attribute (attributes, "name")->value.get (); |
19ba03f4 | 1122 | ULONGEST *lmp |
4d0fdd9b | 1123 | = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get (); |
19ba03f4 | 1124 | ULONGEST *l_addrp |
4d0fdd9b | 1125 | = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get (); |
19ba03f4 | 1126 | ULONGEST *l_ldp |
4d0fdd9b | 1127 | = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get (); |
2268b414 JK |
1128 | struct so_list *new_elem; |
1129 | ||
41bf6aca | 1130 | new_elem = XCNEW (struct so_list); |
76e75227 | 1131 | lm_info_svr4 *li = new lm_info_svr4; |
d0e449a1 SM |
1132 | new_elem->lm_info = li; |
1133 | li->lm_addr = *lmp; | |
1134 | li->l_addr_inferior = *l_addrp; | |
1135 | li->l_ld = *l_ldp; | |
2268b414 JK |
1136 | |
1137 | strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1); | |
1138 | new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0; | |
1139 | strcpy (new_elem->so_original_name, new_elem->so_name); | |
1140 | ||
1141 | *list->tailp = new_elem; | |
1142 | list->tailp = &new_elem->next; | |
1143 | } | |
1144 | ||
1145 | /* Handle the start of a <library-list-svr4> element. */ | |
1146 | ||
1147 | static void | |
1148 | svr4_library_list_start_list (struct gdb_xml_parser *parser, | |
1149 | const struct gdb_xml_element *element, | |
4d0fdd9b SM |
1150 | void *user_data, |
1151 | std::vector<gdb_xml_value> &attributes) | |
2268b414 | 1152 | { |
19ba03f4 SM |
1153 | struct svr4_library_list *list = (struct svr4_library_list *) user_data; |
1154 | const char *version | |
4d0fdd9b | 1155 | = (const char *) xml_find_attribute (attributes, "version")->value.get (); |
2268b414 JK |
1156 | struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm"); |
1157 | ||
1158 | if (strcmp (version, "1.0") != 0) | |
1159 | gdb_xml_error (parser, | |
1160 | _("SVR4 Library list has unsupported version \"%s\""), | |
1161 | version); | |
1162 | ||
1163 | if (main_lm) | |
4d0fdd9b | 1164 | list->main_lm = *(ULONGEST *) main_lm->value.get (); |
2268b414 JK |
1165 | } |
1166 | ||
1167 | /* The allowed elements and attributes for an XML library list. | |
1168 | The root element is a <library-list>. */ | |
1169 | ||
1170 | static const struct gdb_xml_attribute svr4_library_attributes[] = | |
1171 | { | |
1172 | { "name", GDB_XML_AF_NONE, NULL, NULL }, | |
1173 | { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1174 | { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1175 | { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1176 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1177 | }; | |
1178 | ||
1179 | static const struct gdb_xml_element svr4_library_list_children[] = | |
1180 | { | |
1181 | { | |
1182 | "library", svr4_library_attributes, NULL, | |
1183 | GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL, | |
1184 | library_list_start_library, NULL | |
1185 | }, | |
1186 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1187 | }; | |
1188 | ||
1189 | static const struct gdb_xml_attribute svr4_library_list_attributes[] = | |
1190 | { | |
1191 | { "version", GDB_XML_AF_NONE, NULL, NULL }, | |
1192 | { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL }, | |
1193 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1194 | }; | |
1195 | ||
1196 | static const struct gdb_xml_element svr4_library_list_elements[] = | |
1197 | { | |
1198 | { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children, | |
1199 | GDB_XML_EF_NONE, svr4_library_list_start_list, NULL }, | |
1200 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1201 | }; | |
1202 | ||
2268b414 JK |
1203 | /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if |
1204 | ||
1205 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1206 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
1207 | empty, caller is responsible for freeing all its entries. */ | |
1208 | ||
1209 | static int | |
1210 | svr4_parse_libraries (const char *document, struct svr4_library_list *list) | |
1211 | { | |
1212 | struct cleanup *back_to = make_cleanup (svr4_free_library_list, | |
1213 | &list->head); | |
1214 | ||
1215 | memset (list, 0, sizeof (*list)); | |
1216 | list->tailp = &list->head; | |
2eca4a8d | 1217 | if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd", |
2268b414 JK |
1218 | svr4_library_list_elements, document, list) == 0) |
1219 | { | |
1220 | /* Parsed successfully, keep the result. */ | |
1221 | discard_cleanups (back_to); | |
1222 | return 1; | |
1223 | } | |
1224 | ||
1225 | do_cleanups (back_to); | |
1226 | return 0; | |
1227 | } | |
1228 | ||
f9e14852 | 1229 | /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet. |
2268b414 JK |
1230 | |
1231 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1232 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
f9e14852 GB |
1233 | empty, caller is responsible for freeing all its entries. |
1234 | ||
1235 | Note that ANNEX must be NULL if the remote does not explicitly allow | |
1236 | qXfer:libraries-svr4:read packets with non-empty annexes. Support for | |
1237 | this can be checked using target_augmented_libraries_svr4_read (). */ | |
2268b414 JK |
1238 | |
1239 | static int | |
f9e14852 GB |
1240 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, |
1241 | const char *annex) | |
2268b414 | 1242 | { |
f9e14852 GB |
1243 | gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ()); |
1244 | ||
2268b414 | 1245 | /* Fetch the list of shared libraries. */ |
9018be22 | 1246 | gdb::optional<gdb::char_vector> svr4_library_document |
b7b030ad TT |
1247 | = target_read_stralloc (¤t_target, TARGET_OBJECT_LIBRARIES_SVR4, |
1248 | annex); | |
9018be22 | 1249 | if (!svr4_library_document) |
2268b414 JK |
1250 | return 0; |
1251 | ||
9018be22 | 1252 | return svr4_parse_libraries (svr4_library_document->data (), list); |
2268b414 JK |
1253 | } |
1254 | ||
1255 | #else | |
1256 | ||
1257 | static int | |
f9e14852 GB |
1258 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, |
1259 | const char *annex) | |
2268b414 JK |
1260 | { |
1261 | return 0; | |
1262 | } | |
1263 | ||
1264 | #endif | |
1265 | ||
34439770 DJ |
1266 | /* If no shared library information is available from the dynamic |
1267 | linker, build a fallback list from other sources. */ | |
1268 | ||
1269 | static struct so_list * | |
1270 | svr4_default_sos (void) | |
1271 | { | |
6c95b8df | 1272 | struct svr4_info *info = get_svr4_info (); |
fe978cb0 | 1273 | struct so_list *newobj; |
1a816a87 | 1274 | |
8e5c319d JK |
1275 | if (!info->debug_loader_offset_p) |
1276 | return NULL; | |
34439770 | 1277 | |
fe978cb0 | 1278 | newobj = XCNEW (struct so_list); |
76e75227 | 1279 | lm_info_svr4 *li = new lm_info_svr4; |
d0e449a1 | 1280 | newobj->lm_info = li; |
34439770 | 1281 | |
3957565a | 1282 | /* Nothing will ever check the other fields if we set l_addr_p. */ |
d0e449a1 SM |
1283 | li->l_addr = info->debug_loader_offset; |
1284 | li->l_addr_p = 1; | |
34439770 | 1285 | |
fe978cb0 PA |
1286 | strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1); |
1287 | newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
1288 | strcpy (newobj->so_original_name, newobj->so_name); | |
34439770 | 1289 | |
fe978cb0 | 1290 | return newobj; |
34439770 DJ |
1291 | } |
1292 | ||
f9e14852 GB |
1293 | /* Read the whole inferior libraries chain starting at address LM. |
1294 | Expect the first entry in the chain's previous entry to be PREV_LM. | |
1295 | Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the | |
1296 | first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according | |
1297 | to it. Returns nonzero upon success. If zero is returned the | |
1298 | entries stored to LINK_PTR_PTR are still valid although they may | |
1299 | represent only part of the inferior library list. */ | |
13437d4b | 1300 | |
f9e14852 GB |
1301 | static int |
1302 | svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm, | |
1303 | struct so_list ***link_ptr_ptr, int ignore_first) | |
13437d4b | 1304 | { |
c725e7b6 | 1305 | CORE_ADDR first_l_name = 0; |
f9e14852 | 1306 | CORE_ADDR next_lm; |
13437d4b | 1307 | |
cb08cc53 | 1308 | for (; lm != 0; prev_lm = lm, lm = next_lm) |
13437d4b | 1309 | { |
cb08cc53 | 1310 | int errcode; |
e83e4e24 | 1311 | gdb::unique_xmalloc_ptr<char> buffer; |
13437d4b | 1312 | |
b3bc8453 | 1313 | so_list_up newobj (XCNEW (struct so_list)); |
13437d4b | 1314 | |
a7961323 | 1315 | lm_info_svr4 *li = lm_info_read (lm).release (); |
d0e449a1 SM |
1316 | newobj->lm_info = li; |
1317 | if (li == NULL) | |
b3bc8453 | 1318 | return 0; |
13437d4b | 1319 | |
d0e449a1 | 1320 | next_lm = li->l_next; |
492928e4 | 1321 | |
d0e449a1 | 1322 | if (li->l_prev != prev_lm) |
492928e4 | 1323 | { |
2268b414 | 1324 | warning (_("Corrupted shared library list: %s != %s"), |
f5656ead | 1325 | paddress (target_gdbarch (), prev_lm), |
d0e449a1 | 1326 | paddress (target_gdbarch (), li->l_prev)); |
f9e14852 | 1327 | return 0; |
492928e4 | 1328 | } |
13437d4b KB |
1329 | |
1330 | /* For SVR4 versions, the first entry in the link map is for the | |
1331 | inferior executable, so we must ignore it. For some versions of | |
1332 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
1333 | does have a name, so we can no longer use a missing name to | |
c378eb4e | 1334 | decide when to ignore it. */ |
d0e449a1 | 1335 | if (ignore_first && li->l_prev == 0) |
93a57060 | 1336 | { |
cb08cc53 JK |
1337 | struct svr4_info *info = get_svr4_info (); |
1338 | ||
d0e449a1 SM |
1339 | first_l_name = li->l_name; |
1340 | info->main_lm_addr = li->lm_addr; | |
cb08cc53 | 1341 | continue; |
93a57060 | 1342 | } |
13437d4b | 1343 | |
cb08cc53 | 1344 | /* Extract this shared object's name. */ |
d0e449a1 SM |
1345 | target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1, |
1346 | &errcode); | |
cb08cc53 JK |
1347 | if (errcode != 0) |
1348 | { | |
7d760051 UW |
1349 | /* If this entry's l_name address matches that of the |
1350 | inferior executable, then this is not a normal shared | |
1351 | object, but (most likely) a vDSO. In this case, silently | |
1352 | skip it; otherwise emit a warning. */ | |
d0e449a1 | 1353 | if (first_l_name == 0 || li->l_name != first_l_name) |
7d760051 UW |
1354 | warning (_("Can't read pathname for load map: %s."), |
1355 | safe_strerror (errcode)); | |
cb08cc53 | 1356 | continue; |
13437d4b KB |
1357 | } |
1358 | ||
e83e4e24 | 1359 | strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1); |
fe978cb0 PA |
1360 | newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; |
1361 | strcpy (newobj->so_original_name, newobj->so_name); | |
492928e4 | 1362 | |
cb08cc53 JK |
1363 | /* If this entry has no name, or its name matches the name |
1364 | for the main executable, don't include it in the list. */ | |
fe978cb0 | 1365 | if (! newobj->so_name[0] || match_main (newobj->so_name)) |
b3bc8453 | 1366 | continue; |
e4cd0d6a | 1367 | |
fe978cb0 | 1368 | newobj->next = 0; |
b3bc8453 TT |
1369 | /* Don't free it now. */ |
1370 | **link_ptr_ptr = newobj.release (); | |
1371 | *link_ptr_ptr = &(**link_ptr_ptr)->next; | |
13437d4b | 1372 | } |
f9e14852 GB |
1373 | |
1374 | return 1; | |
cb08cc53 JK |
1375 | } |
1376 | ||
f9e14852 GB |
1377 | /* Read the full list of currently loaded shared objects directly |
1378 | from the inferior, without referring to any libraries read and | |
1379 | stored by the probes interface. Handle special cases relating | |
1380 | to the first elements of the list. */ | |
cb08cc53 JK |
1381 | |
1382 | static struct so_list * | |
f9e14852 | 1383 | svr4_current_sos_direct (struct svr4_info *info) |
cb08cc53 JK |
1384 | { |
1385 | CORE_ADDR lm; | |
1386 | struct so_list *head = NULL; | |
1387 | struct so_list **link_ptr = &head; | |
cb08cc53 JK |
1388 | struct cleanup *back_to; |
1389 | int ignore_first; | |
2268b414 JK |
1390 | struct svr4_library_list library_list; |
1391 | ||
0c5bf5a9 JK |
1392 | /* Fall back to manual examination of the target if the packet is not |
1393 | supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp | |
1394 | tests a case where gdbserver cannot find the shared libraries list while | |
1395 | GDB itself is able to find it via SYMFILE_OBJFILE. | |
1396 | ||
1397 | Unfortunately statically linked inferiors will also fall back through this | |
1398 | suboptimal code path. */ | |
1399 | ||
f9e14852 GB |
1400 | info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list, |
1401 | NULL); | |
1402 | if (info->using_xfer) | |
2268b414 JK |
1403 | { |
1404 | if (library_list.main_lm) | |
f9e14852 | 1405 | info->main_lm_addr = library_list.main_lm; |
2268b414 JK |
1406 | |
1407 | return library_list.head ? library_list.head : svr4_default_sos (); | |
1408 | } | |
cb08cc53 | 1409 | |
cb08cc53 JK |
1410 | /* Always locate the debug struct, in case it has moved. */ |
1411 | info->debug_base = 0; | |
1412 | locate_base (info); | |
1413 | ||
1414 | /* If we can't find the dynamic linker's base structure, this | |
1415 | must not be a dynamically linked executable. Hmm. */ | |
1416 | if (! info->debug_base) | |
1417 | return svr4_default_sos (); | |
1418 | ||
1419 | /* Assume that everything is a library if the dynamic loader was loaded | |
1420 | late by a static executable. */ | |
1421 | if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL) | |
1422 | ignore_first = 0; | |
1423 | else | |
1424 | ignore_first = 1; | |
1425 | ||
1426 | back_to = make_cleanup (svr4_free_library_list, &head); | |
1427 | ||
1428 | /* Walk the inferior's link map list, and build our list of | |
1429 | `struct so_list' nodes. */ | |
1430 | lm = solib_svr4_r_map (info); | |
1431 | if (lm) | |
f9e14852 | 1432 | svr4_read_so_list (lm, 0, &link_ptr, ignore_first); |
cb08cc53 JK |
1433 | |
1434 | /* On Solaris, the dynamic linker is not in the normal list of | |
1435 | shared objects, so make sure we pick it up too. Having | |
1436 | symbol information for the dynamic linker is quite crucial | |
1437 | for skipping dynamic linker resolver code. */ | |
1438 | lm = solib_svr4_r_ldsomap (info); | |
1439 | if (lm) | |
f9e14852 | 1440 | svr4_read_so_list (lm, 0, &link_ptr, 0); |
cb08cc53 JK |
1441 | |
1442 | discard_cleanups (back_to); | |
13437d4b | 1443 | |
34439770 DJ |
1444 | if (head == NULL) |
1445 | return svr4_default_sos (); | |
1446 | ||
13437d4b KB |
1447 | return head; |
1448 | } | |
1449 | ||
8b9a549d PA |
1450 | /* Implement the main part of the "current_sos" target_so_ops |
1451 | method. */ | |
f9e14852 GB |
1452 | |
1453 | static struct so_list * | |
8b9a549d | 1454 | svr4_current_sos_1 (void) |
f9e14852 GB |
1455 | { |
1456 | struct svr4_info *info = get_svr4_info (); | |
1457 | ||
1458 | /* If the solib list has been read and stored by the probes | |
1459 | interface then we return a copy of the stored list. */ | |
1460 | if (info->solib_list != NULL) | |
1461 | return svr4_copy_library_list (info->solib_list); | |
1462 | ||
1463 | /* Otherwise obtain the solib list directly from the inferior. */ | |
1464 | return svr4_current_sos_direct (info); | |
1465 | } | |
1466 | ||
8b9a549d PA |
1467 | /* Implement the "current_sos" target_so_ops method. */ |
1468 | ||
1469 | static struct so_list * | |
1470 | svr4_current_sos (void) | |
1471 | { | |
1472 | struct so_list *so_head = svr4_current_sos_1 (); | |
1473 | struct mem_range vsyscall_range; | |
1474 | ||
1475 | /* Filter out the vDSO module, if present. Its symbol file would | |
1476 | not be found on disk. The vDSO/vsyscall's OBJFILE is instead | |
1477 | managed by symfile-mem.c:add_vsyscall_page. */ | |
1478 | if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range) | |
1479 | && vsyscall_range.length != 0) | |
1480 | { | |
1481 | struct so_list **sop; | |
1482 | ||
1483 | sop = &so_head; | |
1484 | while (*sop != NULL) | |
1485 | { | |
1486 | struct so_list *so = *sop; | |
1487 | ||
1488 | /* We can't simply match the vDSO by starting address alone, | |
1489 | because lm_info->l_addr_inferior (and also l_addr) do not | |
1490 | necessarily represent the real starting address of the | |
1491 | ELF if the vDSO's ELF itself is "prelinked". The l_ld | |
1492 | field (the ".dynamic" section of the shared object) | |
1493 | always points at the absolute/resolved address though. | |
1494 | So check whether that address is inside the vDSO's | |
1495 | mapping instead. | |
1496 | ||
1497 | E.g., on Linux 3.16 (x86_64) the vDSO is a regular | |
1498 | 0-based ELF, and we see: | |
1499 | ||
1500 | (gdb) info auxv | |
1501 | 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000 | |
1502 | (gdb) p/x *_r_debug.r_map.l_next | |
1503 | $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...} | |
1504 | ||
1505 | And on Linux 2.6.32 (x86_64) we see: | |
1506 | ||
1507 | (gdb) info auxv | |
1508 | 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000 | |
1509 | (gdb) p/x *_r_debug.r_map.l_next | |
1510 | $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... } | |
1511 | ||
1512 | Dumping that vDSO shows: | |
1513 | ||
1514 | (gdb) info proc mappings | |
1515 | 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso] | |
1516 | (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000 | |
1517 | # readelf -Wa vdso.bin | |
1518 | [...] | |
1519 | Entry point address: 0xffffffffff700700 | |
1520 | [...] | |
1521 | Section Headers: | |
1522 | [Nr] Name Type Address Off Size | |
1523 | [ 0] NULL 0000000000000000 000000 000000 | |
1524 | [ 1] .hash HASH ffffffffff700120 000120 000038 | |
1525 | [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8 | |
1526 | [...] | |
1527 | [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0 | |
1528 | */ | |
d0e449a1 SM |
1529 | |
1530 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | |
1531 | ||
1532 | if (address_in_mem_range (li->l_ld, &vsyscall_range)) | |
8b9a549d PA |
1533 | { |
1534 | *sop = so->next; | |
1535 | free_so (so); | |
1536 | break; | |
1537 | } | |
1538 | ||
1539 | sop = &so->next; | |
1540 | } | |
1541 | } | |
1542 | ||
1543 | return so_head; | |
1544 | } | |
1545 | ||
93a57060 | 1546 | /* Get the address of the link_map for a given OBJFILE. */ |
bc4a16ae EZ |
1547 | |
1548 | CORE_ADDR | |
1549 | svr4_fetch_objfile_link_map (struct objfile *objfile) | |
1550 | { | |
93a57060 | 1551 | struct so_list *so; |
6c95b8df | 1552 | struct svr4_info *info = get_svr4_info (); |
bc4a16ae | 1553 | |
93a57060 | 1554 | /* Cause svr4_current_sos() to be run if it hasn't been already. */ |
1a816a87 | 1555 | if (info->main_lm_addr == 0) |
e696b3ad | 1556 | solib_add (NULL, 0, auto_solib_add); |
bc4a16ae | 1557 | |
93a57060 DJ |
1558 | /* svr4_current_sos() will set main_lm_addr for the main executable. */ |
1559 | if (objfile == symfile_objfile) | |
1a816a87 | 1560 | return info->main_lm_addr; |
93a57060 DJ |
1561 | |
1562 | /* The other link map addresses may be found by examining the list | |
1563 | of shared libraries. */ | |
1564 | for (so = master_so_list (); so; so = so->next) | |
1565 | if (so->objfile == objfile) | |
d0e449a1 SM |
1566 | { |
1567 | lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info; | |
1568 | ||
1569 | return li->lm_addr; | |
1570 | } | |
93a57060 DJ |
1571 | |
1572 | /* Not found! */ | |
bc4a16ae EZ |
1573 | return 0; |
1574 | } | |
13437d4b KB |
1575 | |
1576 | /* On some systems, the only way to recognize the link map entry for | |
1577 | the main executable file is by looking at its name. Return | |
1578 | non-zero iff SONAME matches one of the known main executable names. */ | |
1579 | ||
1580 | static int | |
bc043ef3 | 1581 | match_main (const char *soname) |
13437d4b | 1582 | { |
bc043ef3 | 1583 | const char * const *mainp; |
13437d4b KB |
1584 | |
1585 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
1586 | { | |
1587 | if (strcmp (soname, *mainp) == 0) | |
1588 | return (1); | |
1589 | } | |
1590 | ||
1591 | return (0); | |
1592 | } | |
1593 | ||
13437d4b KB |
1594 | /* Return 1 if PC lies in the dynamic symbol resolution code of the |
1595 | SVR4 run time loader. */ | |
13437d4b | 1596 | |
7d522c90 | 1597 | int |
d7fa2ae2 | 1598 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) |
13437d4b | 1599 | { |
6c95b8df PA |
1600 | struct svr4_info *info = get_svr4_info (); |
1601 | ||
1602 | return ((pc >= info->interp_text_sect_low | |
1603 | && pc < info->interp_text_sect_high) | |
1604 | || (pc >= info->interp_plt_sect_low | |
1605 | && pc < info->interp_plt_sect_high) | |
3e5d3a5a | 1606 | || in_plt_section (pc) |
0875794a | 1607 | || in_gnu_ifunc_stub (pc)); |
13437d4b | 1608 | } |
13437d4b | 1609 | |
2f4950cd AC |
1610 | /* Given an executable's ABFD and target, compute the entry-point |
1611 | address. */ | |
1612 | ||
1613 | static CORE_ADDR | |
1614 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | |
1615 | { | |
8c2b9656 YQ |
1616 | CORE_ADDR addr; |
1617 | ||
2f4950cd AC |
1618 | /* KevinB wrote ... for most targets, the address returned by |
1619 | bfd_get_start_address() is the entry point for the start | |
1620 | function. But, for some targets, bfd_get_start_address() returns | |
1621 | the address of a function descriptor from which the entry point | |
1622 | address may be extracted. This address is extracted by | |
1623 | gdbarch_convert_from_func_ptr_addr(). The method | |
1624 | gdbarch_convert_from_func_ptr_addr() is the merely the identify | |
1625 | function for targets which don't use function descriptors. */ | |
8c2b9656 | 1626 | addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
2f4950cd AC |
1627 | bfd_get_start_address (abfd), |
1628 | targ); | |
8c2b9656 | 1629 | return gdbarch_addr_bits_remove (target_gdbarch (), addr); |
2f4950cd | 1630 | } |
13437d4b | 1631 | |
f9e14852 GB |
1632 | /* A probe and its associated action. */ |
1633 | ||
1634 | struct probe_and_action | |
1635 | { | |
1636 | /* The probe. */ | |
935676c9 | 1637 | probe *prob; |
f9e14852 | 1638 | |
729662a5 TT |
1639 | /* The relocated address of the probe. */ |
1640 | CORE_ADDR address; | |
1641 | ||
f9e14852 GB |
1642 | /* The action. */ |
1643 | enum probe_action action; | |
1644 | }; | |
1645 | ||
1646 | /* Returns a hash code for the probe_and_action referenced by p. */ | |
1647 | ||
1648 | static hashval_t | |
1649 | hash_probe_and_action (const void *p) | |
1650 | { | |
19ba03f4 | 1651 | const struct probe_and_action *pa = (const struct probe_and_action *) p; |
f9e14852 | 1652 | |
729662a5 | 1653 | return (hashval_t) pa->address; |
f9e14852 GB |
1654 | } |
1655 | ||
1656 | /* Returns non-zero if the probe_and_actions referenced by p1 and p2 | |
1657 | are equal. */ | |
1658 | ||
1659 | static int | |
1660 | equal_probe_and_action (const void *p1, const void *p2) | |
1661 | { | |
19ba03f4 SM |
1662 | const struct probe_and_action *pa1 = (const struct probe_and_action *) p1; |
1663 | const struct probe_and_action *pa2 = (const struct probe_and_action *) p2; | |
f9e14852 | 1664 | |
729662a5 | 1665 | return pa1->address == pa2->address; |
f9e14852 GB |
1666 | } |
1667 | ||
1668 | /* Register a solib event probe and its associated action in the | |
1669 | probes table. */ | |
1670 | ||
1671 | static void | |
935676c9 | 1672 | register_solib_event_probe (probe *prob, CORE_ADDR address, |
729662a5 | 1673 | enum probe_action action) |
f9e14852 GB |
1674 | { |
1675 | struct svr4_info *info = get_svr4_info (); | |
1676 | struct probe_and_action lookup, *pa; | |
1677 | void **slot; | |
1678 | ||
1679 | /* Create the probes table, if necessary. */ | |
1680 | if (info->probes_table == NULL) | |
1681 | info->probes_table = htab_create_alloc (1, hash_probe_and_action, | |
1682 | equal_probe_and_action, | |
1683 | xfree, xcalloc, xfree); | |
1684 | ||
935676c9 | 1685 | lookup.prob = prob; |
729662a5 | 1686 | lookup.address = address; |
f9e14852 GB |
1687 | slot = htab_find_slot (info->probes_table, &lookup, INSERT); |
1688 | gdb_assert (*slot == HTAB_EMPTY_ENTRY); | |
1689 | ||
1690 | pa = XCNEW (struct probe_and_action); | |
935676c9 | 1691 | pa->prob = prob; |
729662a5 | 1692 | pa->address = address; |
f9e14852 GB |
1693 | pa->action = action; |
1694 | ||
1695 | *slot = pa; | |
1696 | } | |
1697 | ||
1698 | /* Get the solib event probe at the specified location, and the | |
1699 | action associated with it. Returns NULL if no solib event probe | |
1700 | was found. */ | |
1701 | ||
1702 | static struct probe_and_action * | |
1703 | solib_event_probe_at (struct svr4_info *info, CORE_ADDR address) | |
1704 | { | |
f9e14852 GB |
1705 | struct probe_and_action lookup; |
1706 | void **slot; | |
1707 | ||
729662a5 | 1708 | lookup.address = address; |
f9e14852 GB |
1709 | slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT); |
1710 | ||
1711 | if (slot == NULL) | |
1712 | return NULL; | |
1713 | ||
1714 | return (struct probe_and_action *) *slot; | |
1715 | } | |
1716 | ||
1717 | /* Decide what action to take when the specified solib event probe is | |
1718 | hit. */ | |
1719 | ||
1720 | static enum probe_action | |
1721 | solib_event_probe_action (struct probe_and_action *pa) | |
1722 | { | |
1723 | enum probe_action action; | |
73c6b475 | 1724 | unsigned probe_argc = 0; |
08a6411c | 1725 | struct frame_info *frame = get_current_frame (); |
f9e14852 GB |
1726 | |
1727 | action = pa->action; | |
1728 | if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED) | |
1729 | return action; | |
1730 | ||
1731 | gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD); | |
1732 | ||
1733 | /* Check that an appropriate number of arguments has been supplied. | |
1734 | We expect: | |
1735 | arg0: Lmid_t lmid (mandatory) | |
1736 | arg1: struct r_debug *debug_base (mandatory) | |
1737 | arg2: struct link_map *new (optional, for incremental updates) */ | |
3bd7e5b7 SDJ |
1738 | TRY |
1739 | { | |
935676c9 | 1740 | probe_argc = pa->prob->get_argument_count (frame); |
3bd7e5b7 SDJ |
1741 | } |
1742 | CATCH (ex, RETURN_MASK_ERROR) | |
1743 | { | |
1744 | exception_print (gdb_stderr, ex); | |
1745 | probe_argc = 0; | |
1746 | } | |
1747 | END_CATCH | |
1748 | ||
935676c9 SDJ |
1749 | /* If get_argument_count throws an exception, probe_argc will be set |
1750 | to zero. However, if pa->prob does not have arguments, then | |
1751 | get_argument_count will succeed but probe_argc will also be zero. | |
1752 | Both cases happen because of different things, but they are | |
1753 | treated equally here: action will be set to | |
3bd7e5b7 | 1754 | PROBES_INTERFACE_FAILED. */ |
f9e14852 GB |
1755 | if (probe_argc == 2) |
1756 | action = FULL_RELOAD; | |
1757 | else if (probe_argc < 2) | |
1758 | action = PROBES_INTERFACE_FAILED; | |
1759 | ||
1760 | return action; | |
1761 | } | |
1762 | ||
1763 | /* Populate the shared object list by reading the entire list of | |
1764 | shared objects from the inferior. Handle special cases relating | |
1765 | to the first elements of the list. Returns nonzero on success. */ | |
1766 | ||
1767 | static int | |
1768 | solist_update_full (struct svr4_info *info) | |
1769 | { | |
1770 | free_solib_list (info); | |
1771 | info->solib_list = svr4_current_sos_direct (info); | |
1772 | ||
1773 | return 1; | |
1774 | } | |
1775 | ||
1776 | /* Update the shared object list starting from the link-map entry | |
1777 | passed by the linker in the probe's third argument. Returns | |
1778 | nonzero if the list was successfully updated, or zero to indicate | |
1779 | failure. */ | |
1780 | ||
1781 | static int | |
1782 | solist_update_incremental (struct svr4_info *info, CORE_ADDR lm) | |
1783 | { | |
1784 | struct so_list *tail; | |
1785 | CORE_ADDR prev_lm; | |
1786 | ||
1787 | /* svr4_current_sos_direct contains logic to handle a number of | |
1788 | special cases relating to the first elements of the list. To | |
1789 | avoid duplicating this logic we defer to solist_update_full | |
1790 | if the list is empty. */ | |
1791 | if (info->solib_list == NULL) | |
1792 | return 0; | |
1793 | ||
1794 | /* Fall back to a full update if we are using a remote target | |
1795 | that does not support incremental transfers. */ | |
1796 | if (info->using_xfer && !target_augmented_libraries_svr4_read ()) | |
1797 | return 0; | |
1798 | ||
1799 | /* Walk to the end of the list. */ | |
1800 | for (tail = info->solib_list; tail->next != NULL; tail = tail->next) | |
1801 | /* Nothing. */; | |
d0e449a1 SM |
1802 | |
1803 | lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info; | |
1804 | prev_lm = li->lm_addr; | |
f9e14852 GB |
1805 | |
1806 | /* Read the new objects. */ | |
1807 | if (info->using_xfer) | |
1808 | { | |
1809 | struct svr4_library_list library_list; | |
1810 | char annex[64]; | |
1811 | ||
1812 | xsnprintf (annex, sizeof (annex), "start=%s;prev=%s", | |
1813 | phex_nz (lm, sizeof (lm)), | |
1814 | phex_nz (prev_lm, sizeof (prev_lm))); | |
1815 | if (!svr4_current_sos_via_xfer_libraries (&library_list, annex)) | |
1816 | return 0; | |
1817 | ||
1818 | tail->next = library_list.head; | |
1819 | } | |
1820 | else | |
1821 | { | |
1822 | struct so_list **link = &tail->next; | |
1823 | ||
1824 | /* IGNORE_FIRST may safely be set to zero here because the | |
1825 | above check and deferral to solist_update_full ensures | |
1826 | that this call to svr4_read_so_list will never see the | |
1827 | first element. */ | |
1828 | if (!svr4_read_so_list (lm, prev_lm, &link, 0)) | |
1829 | return 0; | |
1830 | } | |
1831 | ||
1832 | return 1; | |
1833 | } | |
1834 | ||
1835 | /* Disable the probes-based linker interface and revert to the | |
1836 | original interface. We don't reset the breakpoints as the | |
1837 | ones set up for the probes-based interface are adequate. */ | |
1838 | ||
1839 | static void | |
1840 | disable_probes_interface_cleanup (void *arg) | |
1841 | { | |
1842 | struct svr4_info *info = get_svr4_info (); | |
1843 | ||
1844 | warning (_("Probes-based dynamic linker interface failed.\n" | |
1845 | "Reverting to original interface.\n")); | |
1846 | ||
1847 | free_probes_table (info); | |
1848 | free_solib_list (info); | |
1849 | } | |
1850 | ||
1851 | /* Update the solib list as appropriate when using the | |
1852 | probes-based linker interface. Do nothing if using the | |
1853 | standard interface. */ | |
1854 | ||
1855 | static void | |
1856 | svr4_handle_solib_event (void) | |
1857 | { | |
1858 | struct svr4_info *info = get_svr4_info (); | |
1859 | struct probe_and_action *pa; | |
1860 | enum probe_action action; | |
1861 | struct cleanup *old_chain, *usm_chain; | |
ad1c917a | 1862 | struct value *val = NULL; |
f9e14852 | 1863 | CORE_ADDR pc, debug_base, lm = 0; |
08a6411c | 1864 | struct frame_info *frame = get_current_frame (); |
f9e14852 GB |
1865 | |
1866 | /* Do nothing if not using the probes interface. */ | |
1867 | if (info->probes_table == NULL) | |
1868 | return; | |
1869 | ||
1870 | /* If anything goes wrong we revert to the original linker | |
1871 | interface. */ | |
1872 | old_chain = make_cleanup (disable_probes_interface_cleanup, NULL); | |
1873 | ||
1874 | pc = regcache_read_pc (get_current_regcache ()); | |
1875 | pa = solib_event_probe_at (info, pc); | |
1876 | if (pa == NULL) | |
1877 | { | |
1878 | do_cleanups (old_chain); | |
1879 | return; | |
1880 | } | |
1881 | ||
1882 | action = solib_event_probe_action (pa); | |
1883 | if (action == PROBES_INTERFACE_FAILED) | |
1884 | { | |
1885 | do_cleanups (old_chain); | |
1886 | return; | |
1887 | } | |
1888 | ||
1889 | if (action == DO_NOTHING) | |
1890 | { | |
1891 | discard_cleanups (old_chain); | |
1892 | return; | |
1893 | } | |
1894 | ||
935676c9 | 1895 | /* evaluate_argument looks up symbols in the dynamic linker |
f9e14852 GB |
1896 | using find_pc_section. find_pc_section is accelerated by a cache |
1897 | called the section map. The section map is invalidated every | |
1898 | time a shared library is loaded or unloaded, and if the inferior | |
1899 | is generating a lot of shared library events then the section map | |
1900 | will be updated every time svr4_handle_solib_event is called. | |
1901 | We called find_pc_section in svr4_create_solib_event_breakpoints, | |
1902 | so we can guarantee that the dynamic linker's sections are in the | |
1903 | section map. We can therefore inhibit section map updates across | |
935676c9 | 1904 | these calls to evaluate_argument and save a lot of time. */ |
f9e14852 GB |
1905 | inhibit_section_map_updates (current_program_space); |
1906 | usm_chain = make_cleanup (resume_section_map_updates_cleanup, | |
1907 | current_program_space); | |
1908 | ||
3bd7e5b7 SDJ |
1909 | TRY |
1910 | { | |
935676c9 | 1911 | val = pa->prob->evaluate_argument (1, frame); |
3bd7e5b7 SDJ |
1912 | } |
1913 | CATCH (ex, RETURN_MASK_ERROR) | |
1914 | { | |
1915 | exception_print (gdb_stderr, ex); | |
1916 | val = NULL; | |
1917 | } | |
1918 | END_CATCH | |
1919 | ||
f9e14852 GB |
1920 | if (val == NULL) |
1921 | { | |
1922 | do_cleanups (old_chain); | |
1923 | return; | |
1924 | } | |
1925 | ||
1926 | debug_base = value_as_address (val); | |
1927 | if (debug_base == 0) | |
1928 | { | |
1929 | do_cleanups (old_chain); | |
1930 | return; | |
1931 | } | |
1932 | ||
1933 | /* Always locate the debug struct, in case it moved. */ | |
1934 | info->debug_base = 0; | |
1935 | if (locate_base (info) == 0) | |
1936 | { | |
1937 | do_cleanups (old_chain); | |
1938 | return; | |
1939 | } | |
1940 | ||
1941 | /* GDB does not currently support libraries loaded via dlmopen | |
1942 | into namespaces other than the initial one. We must ignore | |
1943 | any namespace other than the initial namespace here until | |
1944 | support for this is added to GDB. */ | |
1945 | if (debug_base != info->debug_base) | |
1946 | action = DO_NOTHING; | |
1947 | ||
1948 | if (action == UPDATE_OR_RELOAD) | |
1949 | { | |
3bd7e5b7 SDJ |
1950 | TRY |
1951 | { | |
935676c9 | 1952 | val = pa->prob->evaluate_argument (2, frame); |
3bd7e5b7 SDJ |
1953 | } |
1954 | CATCH (ex, RETURN_MASK_ERROR) | |
1955 | { | |
1956 | exception_print (gdb_stderr, ex); | |
1957 | do_cleanups (old_chain); | |
1958 | return; | |
1959 | } | |
1960 | END_CATCH | |
1961 | ||
f9e14852 GB |
1962 | if (val != NULL) |
1963 | lm = value_as_address (val); | |
1964 | ||
1965 | if (lm == 0) | |
1966 | action = FULL_RELOAD; | |
1967 | } | |
1968 | ||
1969 | /* Resume section map updates. */ | |
1970 | do_cleanups (usm_chain); | |
1971 | ||
1972 | if (action == UPDATE_OR_RELOAD) | |
1973 | { | |
1974 | if (!solist_update_incremental (info, lm)) | |
1975 | action = FULL_RELOAD; | |
1976 | } | |
1977 | ||
1978 | if (action == FULL_RELOAD) | |
1979 | { | |
1980 | if (!solist_update_full (info)) | |
1981 | { | |
1982 | do_cleanups (old_chain); | |
1983 | return; | |
1984 | } | |
1985 | } | |
1986 | ||
1987 | discard_cleanups (old_chain); | |
1988 | } | |
1989 | ||
1990 | /* Helper function for svr4_update_solib_event_breakpoints. */ | |
1991 | ||
1992 | static int | |
1993 | svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg) | |
1994 | { | |
1995 | struct bp_location *loc; | |
1996 | ||
1997 | if (b->type != bp_shlib_event) | |
1998 | { | |
1999 | /* Continue iterating. */ | |
2000 | return 0; | |
2001 | } | |
2002 | ||
2003 | for (loc = b->loc; loc != NULL; loc = loc->next) | |
2004 | { | |
2005 | struct svr4_info *info; | |
2006 | struct probe_and_action *pa; | |
2007 | ||
19ba03f4 SM |
2008 | info = ((struct svr4_info *) |
2009 | program_space_data (loc->pspace, solib_svr4_pspace_data)); | |
f9e14852 GB |
2010 | if (info == NULL || info->probes_table == NULL) |
2011 | continue; | |
2012 | ||
2013 | pa = solib_event_probe_at (info, loc->address); | |
2014 | if (pa == NULL) | |
2015 | continue; | |
2016 | ||
2017 | if (pa->action == DO_NOTHING) | |
2018 | { | |
2019 | if (b->enable_state == bp_disabled && stop_on_solib_events) | |
2020 | enable_breakpoint (b); | |
2021 | else if (b->enable_state == bp_enabled && !stop_on_solib_events) | |
2022 | disable_breakpoint (b); | |
2023 | } | |
2024 | ||
2025 | break; | |
2026 | } | |
2027 | ||
2028 | /* Continue iterating. */ | |
2029 | return 0; | |
2030 | } | |
2031 | ||
2032 | /* Enable or disable optional solib event breakpoints as appropriate. | |
2033 | Called whenever stop_on_solib_events is changed. */ | |
2034 | ||
2035 | static void | |
2036 | svr4_update_solib_event_breakpoints (void) | |
2037 | { | |
2038 | iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL); | |
2039 | } | |
2040 | ||
2041 | /* Create and register solib event breakpoints. PROBES is an array | |
2042 | of NUM_PROBES elements, each of which is vector of probes. A | |
2043 | solib event breakpoint will be created and registered for each | |
2044 | probe. */ | |
2045 | ||
2046 | static void | |
2047 | svr4_create_probe_breakpoints (struct gdbarch *gdbarch, | |
45461e0d | 2048 | const std::vector<probe *> *probes, |
729662a5 | 2049 | struct objfile *objfile) |
f9e14852 | 2050 | { |
45461e0d | 2051 | for (int i = 0; i < NUM_PROBES; i++) |
f9e14852 GB |
2052 | { |
2053 | enum probe_action action = probe_info[i].action; | |
f9e14852 | 2054 | |
45461e0d | 2055 | for (probe *p : probes[i]) |
f9e14852 | 2056 | { |
935676c9 | 2057 | CORE_ADDR address = p->get_relocated_address (objfile); |
729662a5 TT |
2058 | |
2059 | create_solib_event_breakpoint (gdbarch, address); | |
45461e0d | 2060 | register_solib_event_probe (p, address, action); |
f9e14852 GB |
2061 | } |
2062 | } | |
2063 | ||
2064 | svr4_update_solib_event_breakpoints (); | |
2065 | } | |
2066 | ||
2067 | /* Both the SunOS and the SVR4 dynamic linkers call a marker function | |
2068 | before and after mapping and unmapping shared libraries. The sole | |
2069 | purpose of this method is to allow debuggers to set a breakpoint so | |
2070 | they can track these changes. | |
2071 | ||
2072 | Some versions of the glibc dynamic linker contain named probes | |
2073 | to allow more fine grained stopping. Given the address of the | |
2074 | original marker function, this function attempts to find these | |
2075 | probes, and if found, sets breakpoints on those instead. If the | |
2076 | probes aren't found, a single breakpoint is set on the original | |
2077 | marker function. */ | |
2078 | ||
2079 | static void | |
2080 | svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch, | |
2081 | CORE_ADDR address) | |
2082 | { | |
2083 | struct obj_section *os; | |
2084 | ||
2085 | os = find_pc_section (address); | |
2086 | if (os != NULL) | |
2087 | { | |
2088 | int with_prefix; | |
2089 | ||
2090 | for (with_prefix = 0; with_prefix <= 1; with_prefix++) | |
2091 | { | |
45461e0d | 2092 | std::vector<probe *> probes[NUM_PROBES]; |
f9e14852 | 2093 | int all_probes_found = 1; |
25f9533e | 2094 | int checked_can_use_probe_arguments = 0; |
f9e14852 | 2095 | |
45461e0d | 2096 | for (int i = 0; i < NUM_PROBES; i++) |
f9e14852 GB |
2097 | { |
2098 | const char *name = probe_info[i].name; | |
935676c9 | 2099 | probe *p; |
f9e14852 GB |
2100 | char buf[32]; |
2101 | ||
2102 | /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 | |
2103 | shipped with an early version of the probes code in | |
2104 | which the probes' names were prefixed with "rtld_" | |
2105 | and the "map_failed" probe did not exist. The | |
2106 | locations of the probes are otherwise the same, so | |
2107 | we check for probes with prefixed names if probes | |
2108 | with unprefixed names are not present. */ | |
2109 | if (with_prefix) | |
2110 | { | |
2111 | xsnprintf (buf, sizeof (buf), "rtld_%s", name); | |
2112 | name = buf; | |
2113 | } | |
2114 | ||
2115 | probes[i] = find_probes_in_objfile (os->objfile, "rtld", name); | |
2116 | ||
2117 | /* The "map_failed" probe did not exist in early | |
2118 | versions of the probes code in which the probes' | |
2119 | names were prefixed with "rtld_". */ | |
2120 | if (strcmp (name, "rtld_map_failed") == 0) | |
2121 | continue; | |
2122 | ||
45461e0d | 2123 | if (probes[i].empty ()) |
f9e14852 GB |
2124 | { |
2125 | all_probes_found = 0; | |
2126 | break; | |
2127 | } | |
25f9533e SDJ |
2128 | |
2129 | /* Ensure probe arguments can be evaluated. */ | |
2130 | if (!checked_can_use_probe_arguments) | |
2131 | { | |
45461e0d | 2132 | p = probes[i][0]; |
935676c9 | 2133 | if (!p->can_evaluate_arguments ()) |
25f9533e SDJ |
2134 | { |
2135 | all_probes_found = 0; | |
2136 | break; | |
2137 | } | |
2138 | checked_can_use_probe_arguments = 1; | |
2139 | } | |
f9e14852 GB |
2140 | } |
2141 | ||
2142 | if (all_probes_found) | |
729662a5 | 2143 | svr4_create_probe_breakpoints (gdbarch, probes, os->objfile); |
f9e14852 | 2144 | |
f9e14852 GB |
2145 | if (all_probes_found) |
2146 | return; | |
2147 | } | |
2148 | } | |
2149 | ||
2150 | create_solib_event_breakpoint (gdbarch, address); | |
2151 | } | |
2152 | ||
cb457ae2 YQ |
2153 | /* Helper function for gdb_bfd_lookup_symbol. */ |
2154 | ||
2155 | static int | |
3953f15c | 2156 | cmp_name_and_sec_flags (const asymbol *sym, const void *data) |
cb457ae2 YQ |
2157 | { |
2158 | return (strcmp (sym->name, (const char *) data) == 0 | |
2159 | && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0); | |
2160 | } | |
7f86f058 | 2161 | /* Arrange for dynamic linker to hit breakpoint. |
13437d4b KB |
2162 | |
2163 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
2164 | debugger interface, support for arranging for the inferior to hit | |
2165 | a breakpoint after mapping in the shared libraries. This function | |
2166 | enables that breakpoint. | |
2167 | ||
2168 | For SunOS, there is a special flag location (in_debugger) which we | |
2169 | set to 1. When the dynamic linker sees this flag set, it will set | |
2170 | a breakpoint at a location known only to itself, after saving the | |
2171 | original contents of that place and the breakpoint address itself, | |
2172 | in it's own internal structures. When we resume the inferior, it | |
2173 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
2174 | We handle this (in a different place) by restoring the contents of | |
2175 | the breakpointed location (which is only known after it stops), | |
2176 | chasing around to locate the shared libraries that have been | |
2177 | loaded, then resuming. | |
2178 | ||
2179 | For SVR4, the debugger interface structure contains a member (r_brk) | |
2180 | which is statically initialized at the time the shared library is | |
2181 | built, to the offset of a function (_r_debug_state) which is guaran- | |
2182 | teed to be called once before mapping in a library, and again when | |
2183 | the mapping is complete. At the time we are examining this member, | |
2184 | it contains only the unrelocated offset of the function, so we have | |
2185 | to do our own relocation. Later, when the dynamic linker actually | |
2186 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
2187 | ||
2188 | The debugger interface structure also contains an enumeration which | |
2189 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
2190 | depending upon whether or not the library is being mapped or unmapped, | |
7f86f058 | 2191 | and then set to RT_CONSISTENT after the library is mapped/unmapped. */ |
13437d4b KB |
2192 | |
2193 | static int | |
268a4a75 | 2194 | enable_break (struct svr4_info *info, int from_tty) |
13437d4b | 2195 | { |
3b7344d5 | 2196 | struct bound_minimal_symbol msymbol; |
bc043ef3 | 2197 | const char * const *bkpt_namep; |
13437d4b | 2198 | asection *interp_sect; |
001f13d8 | 2199 | char *interp_name; |
7cd25cfc | 2200 | CORE_ADDR sym_addr; |
13437d4b | 2201 | |
6c95b8df PA |
2202 | info->interp_text_sect_low = info->interp_text_sect_high = 0; |
2203 | info->interp_plt_sect_low = info->interp_plt_sect_high = 0; | |
13437d4b | 2204 | |
7cd25cfc DJ |
2205 | /* If we already have a shared library list in the target, and |
2206 | r_debug contains r_brk, set the breakpoint there - this should | |
2207 | mean r_brk has already been relocated. Assume the dynamic linker | |
2208 | is the object containing r_brk. */ | |
2209 | ||
e696b3ad | 2210 | solib_add (NULL, from_tty, auto_solib_add); |
7cd25cfc | 2211 | sym_addr = 0; |
1a816a87 PA |
2212 | if (info->debug_base && solib_svr4_r_map (info) != 0) |
2213 | sym_addr = solib_svr4_r_brk (info); | |
7cd25cfc DJ |
2214 | |
2215 | if (sym_addr != 0) | |
2216 | { | |
2217 | struct obj_section *os; | |
2218 | ||
b36ec657 | 2219 | sym_addr = gdbarch_addr_bits_remove |
f5656ead | 2220 | (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
3e43a32a MS |
2221 | sym_addr, |
2222 | ¤t_target)); | |
b36ec657 | 2223 | |
48379de6 DE |
2224 | /* On at least some versions of Solaris there's a dynamic relocation |
2225 | on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if | |
2226 | we get control before the dynamic linker has self-relocated. | |
2227 | Check if SYM_ADDR is in a known section, if it is assume we can | |
2228 | trust its value. This is just a heuristic though, it could go away | |
2229 | or be replaced if it's getting in the way. | |
2230 | ||
2231 | On ARM we need to know whether the ISA of rtld_db_dlactivity (or | |
2232 | however it's spelled in your particular system) is ARM or Thumb. | |
2233 | That knowledge is encoded in the address, if it's Thumb the low bit | |
2234 | is 1. However, we've stripped that info above and it's not clear | |
2235 | what all the consequences are of passing a non-addr_bits_remove'd | |
f9e14852 | 2236 | address to svr4_create_solib_event_breakpoints. The call to |
48379de6 DE |
2237 | find_pc_section verifies we know about the address and have some |
2238 | hope of computing the right kind of breakpoint to use (via | |
2239 | symbol info). It does mean that GDB needs to be pointed at a | |
2240 | non-stripped version of the dynamic linker in order to obtain | |
2241 | information it already knows about. Sigh. */ | |
2242 | ||
7cd25cfc DJ |
2243 | os = find_pc_section (sym_addr); |
2244 | if (os != NULL) | |
2245 | { | |
2246 | /* Record the relocated start and end address of the dynamic linker | |
2247 | text and plt section for svr4_in_dynsym_resolve_code. */ | |
2248 | bfd *tmp_bfd; | |
2249 | CORE_ADDR load_addr; | |
2250 | ||
2251 | tmp_bfd = os->objfile->obfd; | |
2252 | load_addr = ANOFFSET (os->objfile->section_offsets, | |
e03e6279 | 2253 | SECT_OFF_TEXT (os->objfile)); |
7cd25cfc DJ |
2254 | |
2255 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | |
2256 | if (interp_sect) | |
2257 | { | |
6c95b8df | 2258 | info->interp_text_sect_low = |
7cd25cfc | 2259 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; |
6c95b8df PA |
2260 | info->interp_text_sect_high = |
2261 | info->interp_text_sect_low | |
2262 | + bfd_section_size (tmp_bfd, interp_sect); | |
7cd25cfc DJ |
2263 | } |
2264 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
2265 | if (interp_sect) | |
2266 | { | |
6c95b8df | 2267 | info->interp_plt_sect_low = |
7cd25cfc | 2268 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; |
6c95b8df PA |
2269 | info->interp_plt_sect_high = |
2270 | info->interp_plt_sect_low | |
2271 | + bfd_section_size (tmp_bfd, interp_sect); | |
7cd25cfc DJ |
2272 | } |
2273 | ||
f9e14852 | 2274 | svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr); |
7cd25cfc DJ |
2275 | return 1; |
2276 | } | |
2277 | } | |
2278 | ||
97ec2c2f | 2279 | /* Find the program interpreter; if not found, warn the user and drop |
13437d4b | 2280 | into the old breakpoint at symbol code. */ |
97ec2c2f UW |
2281 | interp_name = find_program_interpreter (); |
2282 | if (interp_name) | |
13437d4b | 2283 | { |
8ad2fcde KB |
2284 | CORE_ADDR load_addr = 0; |
2285 | int load_addr_found = 0; | |
2ec9a4f8 | 2286 | int loader_found_in_list = 0; |
f8766ec1 | 2287 | struct so_list *so; |
2f4950cd | 2288 | struct target_ops *tmp_bfd_target; |
13437d4b | 2289 | |
7cd25cfc | 2290 | sym_addr = 0; |
13437d4b KB |
2291 | |
2292 | /* Now we need to figure out where the dynamic linker was | |
2293 | loaded so that we can load its symbols and place a breakpoint | |
2294 | in the dynamic linker itself. | |
2295 | ||
2296 | This address is stored on the stack. However, I've been unable | |
2297 | to find any magic formula to find it for Solaris (appears to | |
2298 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
2299 | mechanism to find the dynamic linker's base address. */ | |
e4f7b8c8 | 2300 | |
192b62ce | 2301 | gdb_bfd_ref_ptr tmp_bfd; |
492d29ea | 2302 | TRY |
f1838a98 | 2303 | { |
97ec2c2f | 2304 | tmp_bfd = solib_bfd_open (interp_name); |
f1838a98 | 2305 | } |
492d29ea PA |
2306 | CATCH (ex, RETURN_MASK_ALL) |
2307 | { | |
2308 | } | |
2309 | END_CATCH | |
2310 | ||
13437d4b KB |
2311 | if (tmp_bfd == NULL) |
2312 | goto bkpt_at_symbol; | |
2313 | ||
2f4950cd | 2314 | /* Now convert the TMP_BFD into a target. That way target, as |
192b62ce TT |
2315 | well as BFD operations can be used. target_bfd_reopen |
2316 | acquires its own reference. */ | |
2317 | tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ()); | |
2f4950cd | 2318 | |
f8766ec1 KB |
2319 | /* On a running target, we can get the dynamic linker's base |
2320 | address from the shared library table. */ | |
f8766ec1 KB |
2321 | so = master_so_list (); |
2322 | while (so) | |
8ad2fcde | 2323 | { |
97ec2c2f | 2324 | if (svr4_same_1 (interp_name, so->so_original_name)) |
8ad2fcde KB |
2325 | { |
2326 | load_addr_found = 1; | |
2ec9a4f8 | 2327 | loader_found_in_list = 1; |
192b62ce | 2328 | load_addr = lm_addr_check (so, tmp_bfd.get ()); |
8ad2fcde KB |
2329 | break; |
2330 | } | |
f8766ec1 | 2331 | so = so->next; |
8ad2fcde KB |
2332 | } |
2333 | ||
8d4e36ba JB |
2334 | /* If we were not able to find the base address of the loader |
2335 | from our so_list, then try using the AT_BASE auxilliary entry. */ | |
2336 | if (!load_addr_found) | |
2337 | if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0) | |
ad3a0e5b | 2338 | { |
f5656ead | 2339 | int addr_bit = gdbarch_addr_bit (target_gdbarch ()); |
ad3a0e5b JK |
2340 | |
2341 | /* Ensure LOAD_ADDR has proper sign in its possible upper bits so | |
2342 | that `+ load_addr' will overflow CORE_ADDR width not creating | |
2343 | invalid addresses like 0x101234567 for 32bit inferiors on 64bit | |
2344 | GDB. */ | |
2345 | ||
d182d057 | 2346 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
ad3a0e5b | 2347 | { |
d182d057 | 2348 | CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit; |
192b62ce | 2349 | CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (), |
ad3a0e5b JK |
2350 | tmp_bfd_target); |
2351 | ||
2352 | gdb_assert (load_addr < space_size); | |
2353 | ||
2354 | /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked | |
2355 | 64bit ld.so with 32bit executable, it should not happen. */ | |
2356 | ||
2357 | if (tmp_entry_point < space_size | |
2358 | && tmp_entry_point + load_addr >= space_size) | |
2359 | load_addr -= space_size; | |
2360 | } | |
2361 | ||
2362 | load_addr_found = 1; | |
2363 | } | |
8d4e36ba | 2364 | |
8ad2fcde KB |
2365 | /* Otherwise we find the dynamic linker's base address by examining |
2366 | the current pc (which should point at the entry point for the | |
8d4e36ba JB |
2367 | dynamic linker) and subtracting the offset of the entry point. |
2368 | ||
2369 | This is more fragile than the previous approaches, but is a good | |
2370 | fallback method because it has actually been working well in | |
2371 | most cases. */ | |
8ad2fcde | 2372 | if (!load_addr_found) |
fb14de7b | 2373 | { |
c2250ad1 | 2374 | struct regcache *regcache |
f5656ead | 2375 | = get_thread_arch_regcache (inferior_ptid, target_gdbarch ()); |
433759f7 | 2376 | |
fb14de7b | 2377 | load_addr = (regcache_read_pc (regcache) |
192b62ce | 2378 | - exec_entry_point (tmp_bfd.get (), tmp_bfd_target)); |
fb14de7b | 2379 | } |
2ec9a4f8 DJ |
2380 | |
2381 | if (!loader_found_in_list) | |
34439770 | 2382 | { |
1a816a87 PA |
2383 | info->debug_loader_name = xstrdup (interp_name); |
2384 | info->debug_loader_offset_p = 1; | |
2385 | info->debug_loader_offset = load_addr; | |
e696b3ad | 2386 | solib_add (NULL, from_tty, auto_solib_add); |
34439770 | 2387 | } |
13437d4b KB |
2388 | |
2389 | /* Record the relocated start and end address of the dynamic linker | |
d7fa2ae2 | 2390 | text and plt section for svr4_in_dynsym_resolve_code. */ |
192b62ce | 2391 | interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text"); |
13437d4b KB |
2392 | if (interp_sect) |
2393 | { | |
6c95b8df | 2394 | info->interp_text_sect_low = |
192b62ce | 2395 | bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr; |
6c95b8df PA |
2396 | info->interp_text_sect_high = |
2397 | info->interp_text_sect_low | |
192b62ce | 2398 | + bfd_section_size (tmp_bfd.get (), interp_sect); |
13437d4b | 2399 | } |
192b62ce | 2400 | interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt"); |
13437d4b KB |
2401 | if (interp_sect) |
2402 | { | |
6c95b8df | 2403 | info->interp_plt_sect_low = |
192b62ce | 2404 | bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr; |
6c95b8df PA |
2405 | info->interp_plt_sect_high = |
2406 | info->interp_plt_sect_low | |
192b62ce | 2407 | + bfd_section_size (tmp_bfd.get (), interp_sect); |
13437d4b KB |
2408 | } |
2409 | ||
2410 | /* Now try to set a breakpoint in the dynamic linker. */ | |
2411 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
2412 | { | |
192b62ce TT |
2413 | sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), |
2414 | cmp_name_and_sec_flags, | |
3953f15c | 2415 | *bkpt_namep); |
13437d4b KB |
2416 | if (sym_addr != 0) |
2417 | break; | |
2418 | } | |
2419 | ||
2bbe3cc1 DJ |
2420 | if (sym_addr != 0) |
2421 | /* Convert 'sym_addr' from a function pointer to an address. | |
2422 | Because we pass tmp_bfd_target instead of the current | |
2423 | target, this will always produce an unrelocated value. */ | |
f5656ead | 2424 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
2bbe3cc1 DJ |
2425 | sym_addr, |
2426 | tmp_bfd_target); | |
2427 | ||
695c3173 TT |
2428 | /* We're done with both the temporary bfd and target. Closing |
2429 | the target closes the underlying bfd, because it holds the | |
2430 | only remaining reference. */ | |
460014f5 | 2431 | target_close (tmp_bfd_target); |
13437d4b KB |
2432 | |
2433 | if (sym_addr != 0) | |
2434 | { | |
f9e14852 GB |
2435 | svr4_create_solib_event_breakpoints (target_gdbarch (), |
2436 | load_addr + sym_addr); | |
97ec2c2f | 2437 | xfree (interp_name); |
13437d4b KB |
2438 | return 1; |
2439 | } | |
2440 | ||
2441 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
2442 | linker. Warn and drop into the old code. */ | |
2443 | bkpt_at_symbol: | |
97ec2c2f | 2444 | xfree (interp_name); |
82d03102 PG |
2445 | warning (_("Unable to find dynamic linker breakpoint function.\n" |
2446 | "GDB will be unable to debug shared library initializers\n" | |
2447 | "and track explicitly loaded dynamic code.")); | |
13437d4b | 2448 | } |
13437d4b | 2449 | |
e499d0f1 DJ |
2450 | /* Scan through the lists of symbols, trying to look up the symbol and |
2451 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
2452 | ||
2453 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
2454 | { | |
2455 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
3b7344d5 | 2456 | if ((msymbol.minsym != NULL) |
77e371c0 | 2457 | && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) |
e499d0f1 | 2458 | { |
77e371c0 | 2459 | sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
f5656ead | 2460 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
de64a9ac JM |
2461 | sym_addr, |
2462 | ¤t_target); | |
f9e14852 | 2463 | svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr); |
e499d0f1 DJ |
2464 | return 1; |
2465 | } | |
2466 | } | |
13437d4b | 2467 | |
fb139f32 | 2468 | if (interp_name != NULL && !current_inferior ()->attach_flag) |
13437d4b | 2469 | { |
c6490bf2 | 2470 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) |
13437d4b | 2471 | { |
c6490bf2 | 2472 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); |
3b7344d5 | 2473 | if ((msymbol.minsym != NULL) |
77e371c0 | 2474 | && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) |
c6490bf2 | 2475 | { |
77e371c0 | 2476 | sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); |
f5656ead | 2477 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), |
c6490bf2 KB |
2478 | sym_addr, |
2479 | ¤t_target); | |
f9e14852 | 2480 | svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr); |
c6490bf2 KB |
2481 | return 1; |
2482 | } | |
13437d4b KB |
2483 | } |
2484 | } | |
542c95c2 | 2485 | return 0; |
13437d4b KB |
2486 | } |
2487 | ||
09919ac2 JK |
2488 | /* Read the ELF program headers from ABFD. Return the contents and |
2489 | set *PHDRS_SIZE to the size of the program headers. */ | |
e2a44558 | 2490 | |
09919ac2 JK |
2491 | static gdb_byte * |
2492 | read_program_headers_from_bfd (bfd *abfd, int *phdrs_size) | |
e2a44558 | 2493 | { |
09919ac2 JK |
2494 | Elf_Internal_Ehdr *ehdr; |
2495 | gdb_byte *buf; | |
e2a44558 | 2496 | |
09919ac2 | 2497 | ehdr = elf_elfheader (abfd); |
b8040f19 | 2498 | |
09919ac2 JK |
2499 | *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize; |
2500 | if (*phdrs_size == 0) | |
2501 | return NULL; | |
2502 | ||
224c3ddb | 2503 | buf = (gdb_byte *) xmalloc (*phdrs_size); |
09919ac2 JK |
2504 | if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0 |
2505 | || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size) | |
2506 | { | |
2507 | xfree (buf); | |
2508 | return NULL; | |
2509 | } | |
2510 | ||
2511 | return buf; | |
b8040f19 JK |
2512 | } |
2513 | ||
01c30d6e JK |
2514 | /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior |
2515 | exec_bfd. Otherwise return 0. | |
2516 | ||
2517 | We relocate all of the sections by the same amount. This | |
c378eb4e | 2518 | behavior is mandated by recent editions of the System V ABI. |
b8040f19 JK |
2519 | According to the System V Application Binary Interface, |
2520 | Edition 4.1, page 5-5: | |
2521 | ||
2522 | ... Though the system chooses virtual addresses for | |
2523 | individual processes, it maintains the segments' relative | |
2524 | positions. Because position-independent code uses relative | |
2525 | addressesing between segments, the difference between | |
2526 | virtual addresses in memory must match the difference | |
2527 | between virtual addresses in the file. The difference | |
2528 | between the virtual address of any segment in memory and | |
2529 | the corresponding virtual address in the file is thus a | |
2530 | single constant value for any one executable or shared | |
2531 | object in a given process. This difference is the base | |
2532 | address. One use of the base address is to relocate the | |
2533 | memory image of the program during dynamic linking. | |
2534 | ||
2535 | The same language also appears in Edition 4.0 of the System V | |
09919ac2 JK |
2536 | ABI and is left unspecified in some of the earlier editions. |
2537 | ||
2538 | Decide if the objfile needs to be relocated. As indicated above, we will | |
2539 | only be here when execution is stopped. But during attachment PC can be at | |
2540 | arbitrary address therefore regcache_read_pc can be misleading (contrary to | |
2541 | the auxv AT_ENTRY value). Moreover for executable with interpreter section | |
2542 | regcache_read_pc would point to the interpreter and not the main executable. | |
2543 | ||
2544 | So, to summarize, relocations are necessary when the start address obtained | |
2545 | from the executable is different from the address in auxv AT_ENTRY entry. | |
d989b283 | 2546 | |
09919ac2 JK |
2547 | [ The astute reader will note that we also test to make sure that |
2548 | the executable in question has the DYNAMIC flag set. It is my | |
2549 | opinion that this test is unnecessary (undesirable even). It | |
2550 | was added to avoid inadvertent relocation of an executable | |
2551 | whose e_type member in the ELF header is not ET_DYN. There may | |
2552 | be a time in the future when it is desirable to do relocations | |
2553 | on other types of files as well in which case this condition | |
2554 | should either be removed or modified to accomodate the new file | |
2555 | type. - Kevin, Nov 2000. ] */ | |
b8040f19 | 2556 | |
01c30d6e JK |
2557 | static int |
2558 | svr4_exec_displacement (CORE_ADDR *displacementp) | |
b8040f19 | 2559 | { |
41752192 JK |
2560 | /* ENTRY_POINT is a possible function descriptor - before |
2561 | a call to gdbarch_convert_from_func_ptr_addr. */ | |
8f61baf8 | 2562 | CORE_ADDR entry_point, exec_displacement; |
b8040f19 JK |
2563 | |
2564 | if (exec_bfd == NULL) | |
2565 | return 0; | |
2566 | ||
09919ac2 JK |
2567 | /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries |
2568 | being executed themselves and PIE (Position Independent Executable) | |
2569 | executables are ET_DYN. */ | |
2570 | ||
2571 | if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0) | |
2572 | return 0; | |
2573 | ||
2574 | if (target_auxv_search (¤t_target, AT_ENTRY, &entry_point) <= 0) | |
2575 | return 0; | |
2576 | ||
8f61baf8 | 2577 | exec_displacement = entry_point - bfd_get_start_address (exec_bfd); |
09919ac2 | 2578 | |
8f61baf8 | 2579 | /* Verify the EXEC_DISPLACEMENT candidate complies with the required page |
09919ac2 JK |
2580 | alignment. It is cheaper than the program headers comparison below. */ |
2581 | ||
2582 | if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
2583 | { | |
2584 | const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd); | |
2585 | ||
2586 | /* p_align of PT_LOAD segments does not specify any alignment but | |
2587 | only congruency of addresses: | |
2588 | p_offset % p_align == p_vaddr % p_align | |
2589 | Kernel is free to load the executable with lower alignment. */ | |
2590 | ||
8f61baf8 | 2591 | if ((exec_displacement & (elf->minpagesize - 1)) != 0) |
09919ac2 JK |
2592 | return 0; |
2593 | } | |
2594 | ||
2595 | /* Verify that the auxilliary vector describes the same file as exec_bfd, by | |
2596 | comparing their program headers. If the program headers in the auxilliary | |
2597 | vector do not match the program headers in the executable, then we are | |
2598 | looking at a different file than the one used by the kernel - for | |
2599 | instance, "gdb program" connected to "gdbserver :PORT ld.so program". */ | |
2600 | ||
2601 | if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
2602 | { | |
2603 | /* Be optimistic and clear OK only if GDB was able to verify the headers | |
2604 | really do not match. */ | |
2605 | int phdrs_size, phdrs2_size, ok = 1; | |
2606 | gdb_byte *buf, *buf2; | |
0a1e94c7 | 2607 | int arch_size; |
09919ac2 | 2608 | |
a738da3a | 2609 | buf = read_program_header (-1, &phdrs_size, &arch_size, NULL); |
09919ac2 | 2610 | buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size); |
0a1e94c7 JK |
2611 | if (buf != NULL && buf2 != NULL) |
2612 | { | |
f5656ead | 2613 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
0a1e94c7 JK |
2614 | |
2615 | /* We are dealing with three different addresses. EXEC_BFD | |
2616 | represents current address in on-disk file. target memory content | |
2617 | may be different from EXEC_BFD as the file may have been prelinked | |
2618 | to a different address after the executable has been loaded. | |
2619 | Moreover the address of placement in target memory can be | |
3e43a32a MS |
2620 | different from what the program headers in target memory say - |
2621 | this is the goal of PIE. | |
0a1e94c7 JK |
2622 | |
2623 | Detected DISPLACEMENT covers both the offsets of PIE placement and | |
2624 | possible new prelink performed after start of the program. Here | |
2625 | relocate BUF and BUF2 just by the EXEC_BFD vs. target memory | |
2626 | content offset for the verification purpose. */ | |
2627 | ||
2628 | if (phdrs_size != phdrs2_size | |
2629 | || bfd_get_arch_size (exec_bfd) != arch_size) | |
2630 | ok = 0; | |
3e43a32a MS |
2631 | else if (arch_size == 32 |
2632 | && phdrs_size >= sizeof (Elf32_External_Phdr) | |
0a1e94c7 JK |
2633 | && phdrs_size % sizeof (Elf32_External_Phdr) == 0) |
2634 | { | |
2635 | Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | |
2636 | Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | |
2637 | CORE_ADDR displacement = 0; | |
2638 | int i; | |
2639 | ||
2640 | /* DISPLACEMENT could be found more easily by the difference of | |
2641 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
2642 | already have enough information to compute that displacement | |
2643 | with what we've read. */ | |
2644 | ||
2645 | for (i = 0; i < ehdr2->e_phnum; i++) | |
2646 | if (phdr2[i].p_type == PT_LOAD) | |
2647 | { | |
2648 | Elf32_External_Phdr *phdrp; | |
2649 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2650 | CORE_ADDR vaddr, paddr; | |
2651 | CORE_ADDR displacement_vaddr = 0; | |
2652 | CORE_ADDR displacement_paddr = 0; | |
2653 | ||
2654 | phdrp = &((Elf32_External_Phdr *) buf)[i]; | |
2655 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
2656 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2657 | ||
2658 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, | |
2659 | byte_order); | |
2660 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
2661 | ||
2662 | paddr = extract_unsigned_integer (buf_paddr_p, 4, | |
2663 | byte_order); | |
2664 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
2665 | ||
2666 | if (displacement_vaddr == displacement_paddr) | |
2667 | displacement = displacement_vaddr; | |
2668 | ||
2669 | break; | |
2670 | } | |
2671 | ||
2672 | /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ | |
2673 | ||
2674 | for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++) | |
2675 | { | |
2676 | Elf32_External_Phdr *phdrp; | |
2677 | Elf32_External_Phdr *phdr2p; | |
2678 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2679 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 2680 | asection *plt2_asect; |
0a1e94c7 JK |
2681 | |
2682 | phdrp = &((Elf32_External_Phdr *) buf)[i]; | |
2683 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
2684 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2685 | phdr2p = &((Elf32_External_Phdr *) buf2)[i]; | |
2686 | ||
2687 | /* PT_GNU_STACK is an exception by being never relocated by | |
2688 | prelink as its addresses are always zero. */ | |
2689 | ||
2690 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2691 | continue; | |
2692 | ||
2693 | /* Check also other adjustment combinations - PR 11786. */ | |
2694 | ||
3e43a32a MS |
2695 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, |
2696 | byte_order); | |
0a1e94c7 JK |
2697 | vaddr -= displacement; |
2698 | store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr); | |
2699 | ||
3e43a32a MS |
2700 | paddr = extract_unsigned_integer (buf_paddr_p, 4, |
2701 | byte_order); | |
0a1e94c7 JK |
2702 | paddr -= displacement; |
2703 | store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr); | |
2704 | ||
2705 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2706 | continue; | |
2707 | ||
204b5331 DE |
2708 | /* Strip modifies the flags and alignment of PT_GNU_RELRO. |
2709 | CentOS-5 has problems with filesz, memsz as well. | |
2710 | See PR 11786. */ | |
2711 | if (phdr2[i].p_type == PT_GNU_RELRO) | |
2712 | { | |
2713 | Elf32_External_Phdr tmp_phdr = *phdrp; | |
2714 | Elf32_External_Phdr tmp_phdr2 = *phdr2p; | |
2715 | ||
2716 | memset (tmp_phdr.p_filesz, 0, 4); | |
2717 | memset (tmp_phdr.p_memsz, 0, 4); | |
2718 | memset (tmp_phdr.p_flags, 0, 4); | |
2719 | memset (tmp_phdr.p_align, 0, 4); | |
2720 | memset (tmp_phdr2.p_filesz, 0, 4); | |
2721 | memset (tmp_phdr2.p_memsz, 0, 4); | |
2722 | memset (tmp_phdr2.p_flags, 0, 4); | |
2723 | memset (tmp_phdr2.p_align, 0, 4); | |
2724 | ||
2725 | if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | |
2726 | == 0) | |
2727 | continue; | |
2728 | } | |
2729 | ||
43b8e241 JK |
2730 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
2731 | plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | |
2732 | if (plt2_asect) | |
2733 | { | |
2734 | int content2; | |
2735 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
2736 | CORE_ADDR filesz; | |
2737 | ||
2738 | content2 = (bfd_get_section_flags (exec_bfd, plt2_asect) | |
2739 | & SEC_HAS_CONTENTS) != 0; | |
2740 | ||
2741 | filesz = extract_unsigned_integer (buf_filesz_p, 4, | |
2742 | byte_order); | |
2743 | ||
2744 | /* PLT2_ASECT is from on-disk file (exec_bfd) while | |
2745 | FILESZ is from the in-memory image. */ | |
2746 | if (content2) | |
2747 | filesz += bfd_get_section_size (plt2_asect); | |
2748 | else | |
2749 | filesz -= bfd_get_section_size (plt2_asect); | |
2750 | ||
2751 | store_unsigned_integer (buf_filesz_p, 4, byte_order, | |
2752 | filesz); | |
2753 | ||
2754 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2755 | continue; | |
2756 | } | |
2757 | ||
0a1e94c7 JK |
2758 | ok = 0; |
2759 | break; | |
2760 | } | |
2761 | } | |
3e43a32a MS |
2762 | else if (arch_size == 64 |
2763 | && phdrs_size >= sizeof (Elf64_External_Phdr) | |
0a1e94c7 JK |
2764 | && phdrs_size % sizeof (Elf64_External_Phdr) == 0) |
2765 | { | |
2766 | Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | |
2767 | Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | |
2768 | CORE_ADDR displacement = 0; | |
2769 | int i; | |
2770 | ||
2771 | /* DISPLACEMENT could be found more easily by the difference of | |
2772 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
2773 | already have enough information to compute that displacement | |
2774 | with what we've read. */ | |
2775 | ||
2776 | for (i = 0; i < ehdr2->e_phnum; i++) | |
2777 | if (phdr2[i].p_type == PT_LOAD) | |
2778 | { | |
2779 | Elf64_External_Phdr *phdrp; | |
2780 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2781 | CORE_ADDR vaddr, paddr; | |
2782 | CORE_ADDR displacement_vaddr = 0; | |
2783 | CORE_ADDR displacement_paddr = 0; | |
2784 | ||
2785 | phdrp = &((Elf64_External_Phdr *) buf)[i]; | |
2786 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
2787 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2788 | ||
2789 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, | |
2790 | byte_order); | |
2791 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
2792 | ||
2793 | paddr = extract_unsigned_integer (buf_paddr_p, 8, | |
2794 | byte_order); | |
2795 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
2796 | ||
2797 | if (displacement_vaddr == displacement_paddr) | |
2798 | displacement = displacement_vaddr; | |
2799 | ||
2800 | break; | |
2801 | } | |
2802 | ||
2803 | /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ | |
2804 | ||
2805 | for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++) | |
2806 | { | |
2807 | Elf64_External_Phdr *phdrp; | |
2808 | Elf64_External_Phdr *phdr2p; | |
2809 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2810 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 2811 | asection *plt2_asect; |
0a1e94c7 JK |
2812 | |
2813 | phdrp = &((Elf64_External_Phdr *) buf)[i]; | |
2814 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
2815 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2816 | phdr2p = &((Elf64_External_Phdr *) buf2)[i]; | |
2817 | ||
2818 | /* PT_GNU_STACK is an exception by being never relocated by | |
2819 | prelink as its addresses are always zero. */ | |
2820 | ||
2821 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2822 | continue; | |
2823 | ||
2824 | /* Check also other adjustment combinations - PR 11786. */ | |
2825 | ||
3e43a32a MS |
2826 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, |
2827 | byte_order); | |
0a1e94c7 JK |
2828 | vaddr -= displacement; |
2829 | store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr); | |
2830 | ||
3e43a32a MS |
2831 | paddr = extract_unsigned_integer (buf_paddr_p, 8, |
2832 | byte_order); | |
0a1e94c7 JK |
2833 | paddr -= displacement; |
2834 | store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr); | |
2835 | ||
2836 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2837 | continue; | |
2838 | ||
204b5331 DE |
2839 | /* Strip modifies the flags and alignment of PT_GNU_RELRO. |
2840 | CentOS-5 has problems with filesz, memsz as well. | |
2841 | See PR 11786. */ | |
2842 | if (phdr2[i].p_type == PT_GNU_RELRO) | |
2843 | { | |
2844 | Elf64_External_Phdr tmp_phdr = *phdrp; | |
2845 | Elf64_External_Phdr tmp_phdr2 = *phdr2p; | |
2846 | ||
2847 | memset (tmp_phdr.p_filesz, 0, 8); | |
2848 | memset (tmp_phdr.p_memsz, 0, 8); | |
2849 | memset (tmp_phdr.p_flags, 0, 4); | |
2850 | memset (tmp_phdr.p_align, 0, 8); | |
2851 | memset (tmp_phdr2.p_filesz, 0, 8); | |
2852 | memset (tmp_phdr2.p_memsz, 0, 8); | |
2853 | memset (tmp_phdr2.p_flags, 0, 4); | |
2854 | memset (tmp_phdr2.p_align, 0, 8); | |
2855 | ||
2856 | if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) | |
2857 | == 0) | |
2858 | continue; | |
2859 | } | |
2860 | ||
43b8e241 JK |
2861 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
2862 | plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | |
2863 | if (plt2_asect) | |
2864 | { | |
2865 | int content2; | |
2866 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
2867 | CORE_ADDR filesz; | |
2868 | ||
2869 | content2 = (bfd_get_section_flags (exec_bfd, plt2_asect) | |
2870 | & SEC_HAS_CONTENTS) != 0; | |
2871 | ||
2872 | filesz = extract_unsigned_integer (buf_filesz_p, 8, | |
2873 | byte_order); | |
2874 | ||
2875 | /* PLT2_ASECT is from on-disk file (exec_bfd) while | |
2876 | FILESZ is from the in-memory image. */ | |
2877 | if (content2) | |
2878 | filesz += bfd_get_section_size (plt2_asect); | |
2879 | else | |
2880 | filesz -= bfd_get_section_size (plt2_asect); | |
2881 | ||
2882 | store_unsigned_integer (buf_filesz_p, 8, byte_order, | |
2883 | filesz); | |
2884 | ||
2885 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2886 | continue; | |
2887 | } | |
2888 | ||
0a1e94c7 JK |
2889 | ok = 0; |
2890 | break; | |
2891 | } | |
2892 | } | |
2893 | else | |
2894 | ok = 0; | |
2895 | } | |
09919ac2 JK |
2896 | |
2897 | xfree (buf); | |
2898 | xfree (buf2); | |
2899 | ||
2900 | if (!ok) | |
2901 | return 0; | |
2902 | } | |
b8040f19 | 2903 | |
ccf26247 JK |
2904 | if (info_verbose) |
2905 | { | |
2906 | /* It can be printed repeatedly as there is no easy way to check | |
2907 | the executable symbols/file has been already relocated to | |
2908 | displacement. */ | |
2909 | ||
2910 | printf_unfiltered (_("Using PIE (Position Independent Executable) " | |
2911 | "displacement %s for \"%s\".\n"), | |
8f61baf8 | 2912 | paddress (target_gdbarch (), exec_displacement), |
ccf26247 JK |
2913 | bfd_get_filename (exec_bfd)); |
2914 | } | |
2915 | ||
8f61baf8 | 2916 | *displacementp = exec_displacement; |
01c30d6e | 2917 | return 1; |
b8040f19 JK |
2918 | } |
2919 | ||
2920 | /* Relocate the main executable. This function should be called upon | |
c378eb4e | 2921 | stopping the inferior process at the entry point to the program. |
b8040f19 JK |
2922 | The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are |
2923 | different, the main executable is relocated by the proper amount. */ | |
2924 | ||
2925 | static void | |
2926 | svr4_relocate_main_executable (void) | |
2927 | { | |
01c30d6e JK |
2928 | CORE_ADDR displacement; |
2929 | ||
4e5799b6 JK |
2930 | /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS |
2931 | probably contains the offsets computed using the PIE displacement | |
2932 | from the previous run, which of course are irrelevant for this run. | |
2933 | So we need to determine the new PIE displacement and recompute the | |
2934 | section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS | |
2935 | already contains pre-computed offsets. | |
01c30d6e | 2936 | |
4e5799b6 | 2937 | If we cannot compute the PIE displacement, either: |
01c30d6e | 2938 | |
4e5799b6 JK |
2939 | - The executable is not PIE. |
2940 | ||
2941 | - SYMFILE_OBJFILE does not match the executable started in the target. | |
2942 | This can happen for main executable symbols loaded at the host while | |
2943 | `ld.so --ld-args main-executable' is loaded in the target. | |
2944 | ||
2945 | Then we leave the section offsets untouched and use them as is for | |
2946 | this run. Either: | |
2947 | ||
2948 | - These section offsets were properly reset earlier, and thus | |
2949 | already contain the correct values. This can happen for instance | |
2950 | when reconnecting via the remote protocol to a target that supports | |
2951 | the `qOffsets' packet. | |
2952 | ||
2953 | - The section offsets were not reset earlier, and the best we can | |
c378eb4e | 2954 | hope is that the old offsets are still applicable to the new run. */ |
01c30d6e JK |
2955 | |
2956 | if (! svr4_exec_displacement (&displacement)) | |
2957 | return; | |
b8040f19 | 2958 | |
01c30d6e JK |
2959 | /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file |
2960 | addresses. */ | |
b8040f19 JK |
2961 | |
2962 | if (symfile_objfile) | |
e2a44558 | 2963 | { |
e2a44558 | 2964 | struct section_offsets *new_offsets; |
b8040f19 | 2965 | int i; |
e2a44558 | 2966 | |
224c3ddb SM |
2967 | new_offsets = XALLOCAVEC (struct section_offsets, |
2968 | symfile_objfile->num_sections); | |
e2a44558 | 2969 | |
b8040f19 JK |
2970 | for (i = 0; i < symfile_objfile->num_sections; i++) |
2971 | new_offsets->offsets[i] = displacement; | |
e2a44558 | 2972 | |
b8040f19 | 2973 | objfile_relocate (symfile_objfile, new_offsets); |
e2a44558 | 2974 | } |
51bee8e9 JK |
2975 | else if (exec_bfd) |
2976 | { | |
2977 | asection *asect; | |
2978 | ||
2979 | for (asect = exec_bfd->sections; asect != NULL; asect = asect->next) | |
2980 | exec_set_section_address (bfd_get_filename (exec_bfd), asect->index, | |
2981 | (bfd_section_vma (exec_bfd, asect) | |
2982 | + displacement)); | |
2983 | } | |
e2a44558 KB |
2984 | } |
2985 | ||
7f86f058 | 2986 | /* Implement the "create_inferior_hook" target_solib_ops method. |
13437d4b KB |
2987 | |
2988 | For SVR4 executables, this first instruction is either the first | |
2989 | instruction in the dynamic linker (for dynamically linked | |
2990 | executables) or the instruction at "start" for statically linked | |
2991 | executables. For dynamically linked executables, the system | |
2992 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
2993 | and starts it running. The dynamic linker maps in any needed | |
2994 | shared libraries, maps in the actual user executable, and then | |
2995 | jumps to "start" in the user executable. | |
2996 | ||
7f86f058 PA |
2997 | We can arrange to cooperate with the dynamic linker to discover the |
2998 | names of shared libraries that are dynamically linked, and the base | |
2999 | addresses to which they are linked. | |
13437d4b KB |
3000 | |
3001 | This function is responsible for discovering those names and | |
3002 | addresses, and saving sufficient information about them to allow | |
d2e5c99a | 3003 | their symbols to be read at a later time. */ |
13437d4b | 3004 | |
e2a44558 | 3005 | static void |
268a4a75 | 3006 | svr4_solib_create_inferior_hook (int from_tty) |
13437d4b | 3007 | { |
1a816a87 PA |
3008 | struct svr4_info *info; |
3009 | ||
6c95b8df | 3010 | info = get_svr4_info (); |
2020b7ab | 3011 | |
f9e14852 GB |
3012 | /* Clear the probes-based interface's state. */ |
3013 | free_probes_table (info); | |
3014 | free_solib_list (info); | |
3015 | ||
e2a44558 | 3016 | /* Relocate the main executable if necessary. */ |
86e4bafc | 3017 | svr4_relocate_main_executable (); |
e2a44558 | 3018 | |
c91c8c16 PA |
3019 | /* No point setting a breakpoint in the dynamic linker if we can't |
3020 | hit it (e.g., a core file, or a trace file). */ | |
3021 | if (!target_has_execution) | |
3022 | return; | |
3023 | ||
d5a921c9 | 3024 | if (!svr4_have_link_map_offsets ()) |
513f5903 | 3025 | return; |
d5a921c9 | 3026 | |
268a4a75 | 3027 | if (!enable_break (info, from_tty)) |
542c95c2 | 3028 | return; |
13437d4b KB |
3029 | } |
3030 | ||
3031 | static void | |
3032 | svr4_clear_solib (void) | |
3033 | { | |
6c95b8df PA |
3034 | struct svr4_info *info; |
3035 | ||
3036 | info = get_svr4_info (); | |
3037 | info->debug_base = 0; | |
3038 | info->debug_loader_offset_p = 0; | |
3039 | info->debug_loader_offset = 0; | |
3040 | xfree (info->debug_loader_name); | |
3041 | info->debug_loader_name = NULL; | |
13437d4b KB |
3042 | } |
3043 | ||
6bb7be43 JB |
3044 | /* Clear any bits of ADDR that wouldn't fit in a target-format |
3045 | data pointer. "Data pointer" here refers to whatever sort of | |
3046 | address the dynamic linker uses to manage its sections. At the | |
3047 | moment, we don't support shared libraries on any processors where | |
3048 | code and data pointers are different sizes. | |
3049 | ||
3050 | This isn't really the right solution. What we really need here is | |
3051 | a way to do arithmetic on CORE_ADDR values that respects the | |
3052 | natural pointer/address correspondence. (For example, on the MIPS, | |
3053 | converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | |
3054 | sign-extend the value. There, simply truncating the bits above | |
819844ad | 3055 | gdbarch_ptr_bit, as we do below, is no good.) This should probably |
6bb7be43 JB |
3056 | be a new gdbarch method or something. */ |
3057 | static CORE_ADDR | |
3058 | svr4_truncate_ptr (CORE_ADDR addr) | |
3059 | { | |
f5656ead | 3060 | if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) |
6bb7be43 JB |
3061 | /* We don't need to truncate anything, and the bit twiddling below |
3062 | will fail due to overflow problems. */ | |
3063 | return addr; | |
3064 | else | |
f5656ead | 3065 | return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); |
6bb7be43 JB |
3066 | } |
3067 | ||
3068 | ||
749499cb KB |
3069 | static void |
3070 | svr4_relocate_section_addresses (struct so_list *so, | |
0542c86d | 3071 | struct target_section *sec) |
749499cb | 3072 | { |
2b2848e2 DE |
3073 | bfd *abfd = sec->the_bfd_section->owner; |
3074 | ||
3075 | sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd)); | |
3076 | sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd)); | |
749499cb | 3077 | } |
4b188b9f | 3078 | \f |
749499cb | 3079 | |
4b188b9f | 3080 | /* Architecture-specific operations. */ |
6bb7be43 | 3081 | |
4b188b9f MK |
3082 | /* Per-architecture data key. */ |
3083 | static struct gdbarch_data *solib_svr4_data; | |
e5e2b9ff | 3084 | |
4b188b9f | 3085 | struct solib_svr4_ops |
e5e2b9ff | 3086 | { |
4b188b9f MK |
3087 | /* Return a description of the layout of `struct link_map'. */ |
3088 | struct link_map_offsets *(*fetch_link_map_offsets)(void); | |
3089 | }; | |
e5e2b9ff | 3090 | |
4b188b9f | 3091 | /* Return a default for the architecture-specific operations. */ |
e5e2b9ff | 3092 | |
4b188b9f MK |
3093 | static void * |
3094 | solib_svr4_init (struct obstack *obstack) | |
e5e2b9ff | 3095 | { |
4b188b9f | 3096 | struct solib_svr4_ops *ops; |
e5e2b9ff | 3097 | |
4b188b9f | 3098 | ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); |
8d005789 | 3099 | ops->fetch_link_map_offsets = NULL; |
4b188b9f | 3100 | return ops; |
e5e2b9ff KB |
3101 | } |
3102 | ||
4b188b9f | 3103 | /* Set the architecture-specific `struct link_map_offsets' fetcher for |
7e3cb44c | 3104 | GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */ |
1c4dcb57 | 3105 | |
21479ded | 3106 | void |
e5e2b9ff KB |
3107 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, |
3108 | struct link_map_offsets *(*flmo) (void)) | |
21479ded | 3109 | { |
19ba03f4 SM |
3110 | struct solib_svr4_ops *ops |
3111 | = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data); | |
4b188b9f MK |
3112 | |
3113 | ops->fetch_link_map_offsets = flmo; | |
7e3cb44c UW |
3114 | |
3115 | set_solib_ops (gdbarch, &svr4_so_ops); | |
21479ded KB |
3116 | } |
3117 | ||
4b188b9f MK |
3118 | /* Fetch a link_map_offsets structure using the architecture-specific |
3119 | `struct link_map_offsets' fetcher. */ | |
1c4dcb57 | 3120 | |
4b188b9f MK |
3121 | static struct link_map_offsets * |
3122 | svr4_fetch_link_map_offsets (void) | |
21479ded | 3123 | { |
19ba03f4 SM |
3124 | struct solib_svr4_ops *ops |
3125 | = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | |
3126 | solib_svr4_data); | |
4b188b9f MK |
3127 | |
3128 | gdb_assert (ops->fetch_link_map_offsets); | |
3129 | return ops->fetch_link_map_offsets (); | |
21479ded KB |
3130 | } |
3131 | ||
4b188b9f MK |
3132 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ |
3133 | ||
3134 | static int | |
3135 | svr4_have_link_map_offsets (void) | |
3136 | { | |
19ba03f4 SM |
3137 | struct solib_svr4_ops *ops |
3138 | = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), | |
3139 | solib_svr4_data); | |
433759f7 | 3140 | |
4b188b9f MK |
3141 | return (ops->fetch_link_map_offsets != NULL); |
3142 | } | |
3143 | \f | |
3144 | ||
e4bbbda8 MK |
3145 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a |
3146 | `struct r_debug' and a `struct link_map' that are binary compatible | |
3147 | with the origional SVR4 implementation. */ | |
3148 | ||
3149 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
3150 | for an ILP32 SVR4 system. */ | |
d989b283 | 3151 | |
e4bbbda8 MK |
3152 | struct link_map_offsets * |
3153 | svr4_ilp32_fetch_link_map_offsets (void) | |
3154 | { | |
3155 | static struct link_map_offsets lmo; | |
3156 | static struct link_map_offsets *lmp = NULL; | |
3157 | ||
3158 | if (lmp == NULL) | |
3159 | { | |
3160 | lmp = &lmo; | |
3161 | ||
e4cd0d6a MK |
3162 | lmo.r_version_offset = 0; |
3163 | lmo.r_version_size = 4; | |
e4bbbda8 | 3164 | lmo.r_map_offset = 4; |
7cd25cfc | 3165 | lmo.r_brk_offset = 8; |
e4cd0d6a | 3166 | lmo.r_ldsomap_offset = 20; |
e4bbbda8 MK |
3167 | |
3168 | /* Everything we need is in the first 20 bytes. */ | |
3169 | lmo.link_map_size = 20; | |
3170 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 3171 | lmo.l_name_offset = 4; |
cc10cae3 | 3172 | lmo.l_ld_offset = 8; |
e4bbbda8 | 3173 | lmo.l_next_offset = 12; |
e4bbbda8 | 3174 | lmo.l_prev_offset = 16; |
e4bbbda8 MK |
3175 | } |
3176 | ||
3177 | return lmp; | |
3178 | } | |
3179 | ||
3180 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
3181 | for an LP64 SVR4 system. */ | |
d989b283 | 3182 | |
e4bbbda8 MK |
3183 | struct link_map_offsets * |
3184 | svr4_lp64_fetch_link_map_offsets (void) | |
3185 | { | |
3186 | static struct link_map_offsets lmo; | |
3187 | static struct link_map_offsets *lmp = NULL; | |
3188 | ||
3189 | if (lmp == NULL) | |
3190 | { | |
3191 | lmp = &lmo; | |
3192 | ||
e4cd0d6a MK |
3193 | lmo.r_version_offset = 0; |
3194 | lmo.r_version_size = 4; | |
e4bbbda8 | 3195 | lmo.r_map_offset = 8; |
7cd25cfc | 3196 | lmo.r_brk_offset = 16; |
e4cd0d6a | 3197 | lmo.r_ldsomap_offset = 40; |
e4bbbda8 MK |
3198 | |
3199 | /* Everything we need is in the first 40 bytes. */ | |
3200 | lmo.link_map_size = 40; | |
3201 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 3202 | lmo.l_name_offset = 8; |
cc10cae3 | 3203 | lmo.l_ld_offset = 16; |
e4bbbda8 | 3204 | lmo.l_next_offset = 24; |
e4bbbda8 | 3205 | lmo.l_prev_offset = 32; |
e4bbbda8 MK |
3206 | } |
3207 | ||
3208 | return lmp; | |
3209 | } | |
3210 | \f | |
3211 | ||
7d522c90 | 3212 | struct target_so_ops svr4_so_ops; |
13437d4b | 3213 | |
c378eb4e | 3214 | /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a |
3a40aaa0 UW |
3215 | different rule for symbol lookup. The lookup begins here in the DSO, not in |
3216 | the main executable. */ | |
3217 | ||
d12307c1 | 3218 | static struct block_symbol |
efad9b6a | 3219 | elf_lookup_lib_symbol (struct objfile *objfile, |
3a40aaa0 | 3220 | const char *name, |
21b556f4 | 3221 | const domain_enum domain) |
3a40aaa0 | 3222 | { |
61f0d762 JK |
3223 | bfd *abfd; |
3224 | ||
3225 | if (objfile == symfile_objfile) | |
3226 | abfd = exec_bfd; | |
3227 | else | |
3228 | { | |
3229 | /* OBJFILE should have been passed as the non-debug one. */ | |
3230 | gdb_assert (objfile->separate_debug_objfile_backlink == NULL); | |
3231 | ||
3232 | abfd = objfile->obfd; | |
3233 | } | |
3234 | ||
a738da3a | 3235 | if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1) |
d12307c1 | 3236 | return (struct block_symbol) {NULL, NULL}; |
3a40aaa0 | 3237 | |
94af9270 | 3238 | return lookup_global_symbol_from_objfile (objfile, name, domain); |
3a40aaa0 UW |
3239 | } |
3240 | ||
13437d4b KB |
3241 | void |
3242 | _initialize_svr4_solib (void) | |
3243 | { | |
4b188b9f | 3244 | solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); |
6c95b8df | 3245 | solib_svr4_pspace_data |
8e260fc0 | 3246 | = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup); |
4b188b9f | 3247 | |
749499cb | 3248 | svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; |
13437d4b | 3249 | svr4_so_ops.free_so = svr4_free_so; |
0892cb63 | 3250 | svr4_so_ops.clear_so = svr4_clear_so; |
13437d4b KB |
3251 | svr4_so_ops.clear_solib = svr4_clear_solib; |
3252 | svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | |
13437d4b KB |
3253 | svr4_so_ops.current_sos = svr4_current_sos; |
3254 | svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | |
d7fa2ae2 | 3255 | svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; |
831a0c44 | 3256 | svr4_so_ops.bfd_open = solib_bfd_open; |
3a40aaa0 | 3257 | svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol; |
a7c02bc8 | 3258 | svr4_so_ops.same = svr4_same; |
de18c1d8 | 3259 | svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core; |
f9e14852 GB |
3260 | svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints; |
3261 | svr4_so_ops.handle_event = svr4_handle_solib_event; | |
13437d4b | 3262 | } |