Fix dwarf2loc.h::dwarf2_evaluate_property function description.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
f1838a98 46#include "exceptions.h"
695c3173 47#include "gdb_bfd.h"
f9e14852 48#include "probe.h"
2f4950cd 49
e5e2b9ff 50static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 51static int svr4_have_link_map_offsets (void);
9f2982ff 52static void svr4_relocate_main_executable (void);
f9e14852 53static void svr4_free_library_list (void *p_list);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
cc10cae3 59 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
60 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
61 When prelinking is involved and the prelink base address changes,
62 we may need a different offset - the recomputed offset is in L_ADDR.
63 It is commonly the same value. It is cached as we want to warn about
64 the difference and compute it only once. L_ADDR is valid
65 iff L_ADDR_P. */
66 CORE_ADDR l_addr, l_addr_inferior;
67 unsigned int l_addr_p : 1;
93a57060
DJ
68
69 /* The target location of lm. */
70 CORE_ADDR lm_addr;
3957565a
JK
71
72 /* Values read in from inferior's fields of the same name. */
73 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
74 };
75
76/* On SVR4 systems, a list of symbols in the dynamic linker where
77 GDB can try to place a breakpoint to monitor shared library
78 events.
79
80 If none of these symbols are found, or other errors occur, then
81 SVR4 systems will fall back to using a symbol as the "startup
82 mapping complete" breakpoint address. */
83
bc043ef3 84static const char * const solib_break_names[] =
13437d4b
KB
85{
86 "r_debug_state",
87 "_r_debug_state",
88 "_dl_debug_state",
89 "rtld_db_dlactivity",
4c7dcb84 90 "__dl_rtld_db_dlactivity",
1f72e589 91 "_rtld_debug_state",
4c0122c8 92
13437d4b
KB
93 NULL
94};
13437d4b 95
bc043ef3 96static const char * const bkpt_names[] =
13437d4b 97{
13437d4b 98 "_start",
ad3dcc5c 99 "__start",
13437d4b
KB
100 "main",
101 NULL
102};
13437d4b 103
bc043ef3 104static const char * const main_name_list[] =
13437d4b
KB
105{
106 "main_$main",
107 NULL
108};
109
f9e14852
GB
110/* What to do when a probe stop occurs. */
111
112enum probe_action
113{
114 /* Something went seriously wrong. Stop using probes and
115 revert to using the older interface. */
116 PROBES_INTERFACE_FAILED,
117
118 /* No action is required. The shared object list is still
119 valid. */
120 DO_NOTHING,
121
122 /* The shared object list should be reloaded entirely. */
123 FULL_RELOAD,
124
125 /* Attempt to incrementally update the shared object list. If
126 the update fails or is not possible, fall back to reloading
127 the list in full. */
128 UPDATE_OR_RELOAD,
129};
130
131/* A probe's name and its associated action. */
132
133struct probe_info
134{
135 /* The name of the probe. */
136 const char *name;
137
138 /* What to do when a probe stop occurs. */
139 enum probe_action action;
140};
141
142/* A list of named probes and their associated actions. If all
143 probes are present in the dynamic linker then the probes-based
144 interface will be used. */
145
146static const struct probe_info probe_info[] =
147{
148 { "init_start", DO_NOTHING },
149 { "init_complete", FULL_RELOAD },
150 { "map_start", DO_NOTHING },
151 { "map_failed", DO_NOTHING },
152 { "reloc_complete", UPDATE_OR_RELOAD },
153 { "unmap_start", DO_NOTHING },
154 { "unmap_complete", FULL_RELOAD },
155};
156
157#define NUM_PROBES ARRAY_SIZE (probe_info)
158
4d7b2d5b
JB
159/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
160 the same shared library. */
161
162static int
163svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
164{
165 if (strcmp (gdb_so_name, inferior_so_name) == 0)
166 return 1;
167
168 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
169 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
170 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
171 sometimes they have identical content, but are not linked to each
172 other. We don't restrict this check for Solaris, but the chances
173 of running into this situation elsewhere are very low. */
174 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
175 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
176 return 1;
177
178 /* Similarly, we observed the same issue with sparc64, but with
179 different locations. */
180 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
181 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
182 return 1;
183
184 return 0;
185}
186
187static int
188svr4_same (struct so_list *gdb, struct so_list *inferior)
189{
190 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
191}
192
3957565a
JK
193static struct lm_info *
194lm_info_read (CORE_ADDR lm_addr)
13437d4b 195{
4b188b9f 196 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
197 gdb_byte *lm;
198 struct lm_info *lm_info;
199 struct cleanup *back_to;
200
201 lm = xmalloc (lmo->link_map_size);
202 back_to = make_cleanup (xfree, lm);
203
204 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
205 {
206 warning (_("Error reading shared library list entry at %s"),
f5656ead 207 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
208 lm_info = NULL;
209 }
210 else
211 {
f5656ead 212 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 213
3957565a
JK
214 lm_info = xzalloc (sizeof (*lm_info));
215 lm_info->lm_addr = lm_addr;
216
217 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
218 ptr_type);
219 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
220 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
221 ptr_type);
222 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
223 ptr_type);
224 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
225 ptr_type);
226 }
227
228 do_cleanups (back_to);
229
230 return lm_info;
13437d4b
KB
231}
232
cc10cae3 233static int
b23518f0 234has_lm_dynamic_from_link_map (void)
cc10cae3
AO
235{
236 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
237
cfaefc65 238 return lmo->l_ld_offset >= 0;
cc10cae3
AO
239}
240
cc10cae3 241static CORE_ADDR
f65ce5fb 242lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 243{
3957565a 244 if (!so->lm_info->l_addr_p)
cc10cae3
AO
245 {
246 struct bfd_section *dyninfo_sect;
28f34a8f 247 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 248
3957565a 249 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 250
b23518f0 251 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
252 goto set_addr;
253
3957565a 254 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
255
256 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
257 if (dyninfo_sect == NULL)
258 goto set_addr;
259
260 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
261
262 if (dynaddr + l_addr != l_dynaddr)
263 {
28f34a8f 264 CORE_ADDR align = 0x1000;
4e1fc9c9 265 CORE_ADDR minpagesize = align;
28f34a8f 266
cc10cae3
AO
267 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
268 {
269 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
270 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
271 int i;
272
273 align = 1;
274
275 for (i = 0; i < ehdr->e_phnum; i++)
276 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
277 align = phdr[i].p_align;
4e1fc9c9
JK
278
279 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
280 }
281
282 /* Turn it into a mask. */
283 align--;
284
285 /* If the changes match the alignment requirements, we
286 assume we're using a core file that was generated by the
287 same binary, just prelinked with a different base offset.
288 If it doesn't match, we may have a different binary, the
289 same binary with the dynamic table loaded at an unrelated
290 location, or anything, really. To avoid regressions,
291 don't adjust the base offset in the latter case, although
292 odds are that, if things really changed, debugging won't
5c0d192f
JK
293 quite work.
294
295 One could expect more the condition
296 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
297 but the one below is relaxed for PPC. The PPC kernel supports
298 either 4k or 64k page sizes. To be prepared for 64k pages,
299 PPC ELF files are built using an alignment requirement of 64k.
300 However, when running on a kernel supporting 4k pages, the memory
301 mapping of the library may not actually happen on a 64k boundary!
302
303 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
304 equivalent to the possibly expected check above.)
305
306 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 307
02835898
JK
308 l_addr = l_dynaddr - dynaddr;
309
4e1fc9c9
JK
310 if ((l_addr & (minpagesize - 1)) == 0
311 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 312 {
701ed6dc 313 if (info_verbose)
ccf26247
JK
314 printf_unfiltered (_("Using PIC (Position Independent Code) "
315 "prelink displacement %s for \"%s\".\n"),
f5656ead 316 paddress (target_gdbarch (), l_addr),
ccf26247 317 so->so_name);
cc10cae3 318 }
79d4c408 319 else
02835898
JK
320 {
321 /* There is no way to verify the library file matches. prelink
322 can during prelinking of an unprelinked file (or unprelinking
323 of a prelinked file) shift the DYNAMIC segment by arbitrary
324 offset without any page size alignment. There is no way to
325 find out the ELF header and/or Program Headers for a limited
326 verification if it they match. One could do a verification
327 of the DYNAMIC segment. Still the found address is the best
328 one GDB could find. */
329
330 warning (_(".dynamic section for \"%s\" "
331 "is not at the expected address "
332 "(wrong library or version mismatch?)"), so->so_name);
333 }
cc10cae3
AO
334 }
335
336 set_addr:
337 so->lm_info->l_addr = l_addr;
3957565a 338 so->lm_info->l_addr_p = 1;
cc10cae3
AO
339 }
340
341 return so->lm_info->l_addr;
342}
343
6c95b8df 344/* Per pspace SVR4 specific data. */
13437d4b 345
1a816a87
PA
346struct svr4_info
347{
c378eb4e 348 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
349
350 /* Validity flag for debug_loader_offset. */
351 int debug_loader_offset_p;
352
353 /* Load address for the dynamic linker, inferred. */
354 CORE_ADDR debug_loader_offset;
355
356 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
357 char *debug_loader_name;
358
359 /* Load map address for the main executable. */
360 CORE_ADDR main_lm_addr;
1a816a87 361
6c95b8df
PA
362 CORE_ADDR interp_text_sect_low;
363 CORE_ADDR interp_text_sect_high;
364 CORE_ADDR interp_plt_sect_low;
365 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
366
367 /* Nonzero if the list of objects was last obtained from the target
368 via qXfer:libraries-svr4:read. */
369 int using_xfer;
370
371 /* Table of struct probe_and_action instances, used by the
372 probes-based interface to map breakpoint addresses to probes
373 and their associated actions. Lookup is performed using
374 probe_and_action->probe->address. */
375 htab_t probes_table;
376
377 /* List of objects loaded into the inferior, used by the probes-
378 based interface. */
379 struct so_list *solib_list;
6c95b8df 380};
1a816a87 381
6c95b8df
PA
382/* Per-program-space data key. */
383static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 384
f9e14852
GB
385/* Free the probes table. */
386
387static void
388free_probes_table (struct svr4_info *info)
389{
390 if (info->probes_table == NULL)
391 return;
392
393 htab_delete (info->probes_table);
394 info->probes_table = NULL;
395}
396
397/* Free the solib list. */
398
399static void
400free_solib_list (struct svr4_info *info)
401{
402 svr4_free_library_list (&info->solib_list);
403 info->solib_list = NULL;
404}
405
6c95b8df
PA
406static void
407svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 408{
487ad57c 409 struct svr4_info *info = arg;
f9e14852
GB
410
411 free_probes_table (info);
412 free_solib_list (info);
413
6c95b8df 414 xfree (info);
1a816a87
PA
415}
416
6c95b8df
PA
417/* Get the current svr4 data. If none is found yet, add it now. This
418 function always returns a valid object. */
34439770 419
6c95b8df
PA
420static struct svr4_info *
421get_svr4_info (void)
1a816a87 422{
6c95b8df 423 struct svr4_info *info;
1a816a87 424
6c95b8df
PA
425 info = program_space_data (current_program_space, solib_svr4_pspace_data);
426 if (info != NULL)
427 return info;
34439770 428
41bf6aca 429 info = XCNEW (struct svr4_info);
6c95b8df
PA
430 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
431 return info;
1a816a87 432}
93a57060 433
13437d4b
KB
434/* Local function prototypes */
435
bc043ef3 436static int match_main (const char *);
13437d4b 437
97ec2c2f
UW
438/* Read program header TYPE from inferior memory. The header is found
439 by scanning the OS auxillary vector.
440
09919ac2
JK
441 If TYPE == -1, return the program headers instead of the contents of
442 one program header.
443
97ec2c2f
UW
444 Return a pointer to allocated memory holding the program header contents,
445 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
446 size of those contents is returned to P_SECT_SIZE. Likewise, the target
447 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
448
449static gdb_byte *
450read_program_header (int type, int *p_sect_size, int *p_arch_size)
451{
f5656ead 452 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 453 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
454 int arch_size, sect_size;
455 CORE_ADDR sect_addr;
456 gdb_byte *buf;
43136979 457 int pt_phdr_p = 0;
97ec2c2f
UW
458
459 /* Get required auxv elements from target. */
460 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
461 return 0;
462 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
463 return 0;
464 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
465 return 0;
466 if (!at_phdr || !at_phnum)
467 return 0;
468
469 /* Determine ELF architecture type. */
470 if (at_phent == sizeof (Elf32_External_Phdr))
471 arch_size = 32;
472 else if (at_phent == sizeof (Elf64_External_Phdr))
473 arch_size = 64;
474 else
475 return 0;
476
09919ac2
JK
477 /* Find the requested segment. */
478 if (type == -1)
479 {
480 sect_addr = at_phdr;
481 sect_size = at_phent * at_phnum;
482 }
483 else if (arch_size == 32)
97ec2c2f
UW
484 {
485 Elf32_External_Phdr phdr;
486 int i;
487
488 /* Search for requested PHDR. */
489 for (i = 0; i < at_phnum; i++)
490 {
43136979
AR
491 int p_type;
492
97ec2c2f
UW
493 if (target_read_memory (at_phdr + i * sizeof (phdr),
494 (gdb_byte *)&phdr, sizeof (phdr)))
495 return 0;
496
43136979
AR
497 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
498 4, byte_order);
499
500 if (p_type == PT_PHDR)
501 {
502 pt_phdr_p = 1;
503 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
504 4, byte_order);
505 }
506
507 if (p_type == type)
97ec2c2f
UW
508 break;
509 }
510
511 if (i == at_phnum)
512 return 0;
513
514 /* Retrieve address and size. */
e17a4113
UW
515 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
516 4, byte_order);
517 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
518 4, byte_order);
97ec2c2f
UW
519 }
520 else
521 {
522 Elf64_External_Phdr phdr;
523 int i;
524
525 /* Search for requested PHDR. */
526 for (i = 0; i < at_phnum; i++)
527 {
43136979
AR
528 int p_type;
529
97ec2c2f
UW
530 if (target_read_memory (at_phdr + i * sizeof (phdr),
531 (gdb_byte *)&phdr, sizeof (phdr)))
532 return 0;
533
43136979
AR
534 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
535 4, byte_order);
536
537 if (p_type == PT_PHDR)
538 {
539 pt_phdr_p = 1;
540 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
541 8, byte_order);
542 }
543
544 if (p_type == type)
97ec2c2f
UW
545 break;
546 }
547
548 if (i == at_phnum)
549 return 0;
550
551 /* Retrieve address and size. */
e17a4113
UW
552 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
553 8, byte_order);
554 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
555 8, byte_order);
97ec2c2f
UW
556 }
557
43136979
AR
558 /* PT_PHDR is optional, but we really need it
559 for PIE to make this work in general. */
560
561 if (pt_phdr_p)
562 {
563 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
564 Relocation offset is the difference between the two. */
565 sect_addr = sect_addr + (at_phdr - pt_phdr);
566 }
567
97ec2c2f
UW
568 /* Read in requested program header. */
569 buf = xmalloc (sect_size);
570 if (target_read_memory (sect_addr, buf, sect_size))
571 {
572 xfree (buf);
573 return NULL;
574 }
575
576 if (p_arch_size)
577 *p_arch_size = arch_size;
578 if (p_sect_size)
579 *p_sect_size = sect_size;
580
581 return buf;
582}
583
584
585/* Return program interpreter string. */
001f13d8 586static char *
97ec2c2f
UW
587find_program_interpreter (void)
588{
589 gdb_byte *buf = NULL;
590
591 /* If we have an exec_bfd, use its section table. */
592 if (exec_bfd
593 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
594 {
595 struct bfd_section *interp_sect;
596
597 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
598 if (interp_sect != NULL)
599 {
97ec2c2f
UW
600 int sect_size = bfd_section_size (exec_bfd, interp_sect);
601
602 buf = xmalloc (sect_size);
603 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
604 }
605 }
606
607 /* If we didn't find it, use the target auxillary vector. */
608 if (!buf)
609 buf = read_program_header (PT_INTERP, NULL, NULL);
610
001f13d8 611 return (char *) buf;
97ec2c2f
UW
612}
613
614
b6d7a4bf
SM
615/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
616 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
617
618static int
b6d7a4bf 619scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr)
3a40aaa0
UW
620{
621 int arch_size, step, sect_size;
b6d7a4bf 622 long current_dyntag;
b381ea14 623 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 624 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
625 Elf32_External_Dyn *x_dynp_32;
626 Elf64_External_Dyn *x_dynp_64;
627 struct bfd_section *sect;
61f0d762 628 struct target_section *target_section;
3a40aaa0
UW
629
630 if (abfd == NULL)
631 return 0;
0763ab81
PA
632
633 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
634 return 0;
635
3a40aaa0
UW
636 arch_size = bfd_get_arch_size (abfd);
637 if (arch_size == -1)
0763ab81 638 return 0;
3a40aaa0
UW
639
640 /* Find the start address of the .dynamic section. */
641 sect = bfd_get_section_by_name (abfd, ".dynamic");
642 if (sect == NULL)
643 return 0;
61f0d762
JK
644
645 for (target_section = current_target_sections->sections;
646 target_section < current_target_sections->sections_end;
647 target_section++)
648 if (sect == target_section->the_bfd_section)
649 break;
b381ea14
JK
650 if (target_section < current_target_sections->sections_end)
651 dyn_addr = target_section->addr;
652 else
653 {
654 /* ABFD may come from OBJFILE acting only as a symbol file without being
655 loaded into the target (see add_symbol_file_command). This case is
656 such fallback to the file VMA address without the possibility of
657 having the section relocated to its actual in-memory address. */
658
659 dyn_addr = bfd_section_vma (abfd, sect);
660 }
3a40aaa0 661
65728c26
DJ
662 /* Read in .dynamic from the BFD. We will get the actual value
663 from memory later. */
3a40aaa0 664 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
665 buf = bufstart = alloca (sect_size);
666 if (!bfd_get_section_contents (abfd, sect,
667 buf, 0, sect_size))
668 return 0;
3a40aaa0
UW
669
670 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
671 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
672 : sizeof (Elf64_External_Dyn);
673 for (bufend = buf + sect_size;
674 buf < bufend;
675 buf += step)
676 {
677 if (arch_size == 32)
678 {
679 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 680 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
681 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
682 }
65728c26 683 else
3a40aaa0
UW
684 {
685 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 686 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
687 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
688 }
b6d7a4bf 689 if (current_dyntag == DT_NULL)
3a40aaa0 690 return 0;
b6d7a4bf 691 if (current_dyntag == desired_dyntag)
3a40aaa0 692 {
65728c26
DJ
693 /* If requested, try to read the runtime value of this .dynamic
694 entry. */
3a40aaa0 695 if (ptr)
65728c26 696 {
b6da22b0 697 struct type *ptr_type;
65728c26
DJ
698 gdb_byte ptr_buf[8];
699 CORE_ADDR ptr_addr;
700
f5656ead 701 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 702 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 703 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 704 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
705 *ptr = dyn_ptr;
706 }
707 return 1;
3a40aaa0
UW
708 }
709 }
710
711 return 0;
712}
713
b6d7a4bf
SM
714/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
715 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
716 is returned and the corresponding PTR is set. */
97ec2c2f
UW
717
718static int
b6d7a4bf 719scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr)
97ec2c2f 720{
f5656ead 721 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 722 int sect_size, arch_size, step;
b6d7a4bf 723 long current_dyntag;
97ec2c2f
UW
724 CORE_ADDR dyn_ptr;
725 gdb_byte *bufend, *bufstart, *buf;
726
727 /* Read in .dynamic section. */
728 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
729 if (!buf)
730 return 0;
731
732 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
733 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
734 : sizeof (Elf64_External_Dyn);
735 for (bufend = buf + sect_size;
736 buf < bufend;
737 buf += step)
738 {
739 if (arch_size == 32)
740 {
741 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 742
b6d7a4bf 743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
744 4, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 4, byte_order);
97ec2c2f
UW
747 }
748 else
749 {
750 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 751
b6d7a4bf 752 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
753 8, byte_order);
754 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
755 8, byte_order);
97ec2c2f 756 }
b6d7a4bf 757 if (current_dyntag == DT_NULL)
97ec2c2f
UW
758 break;
759
b6d7a4bf 760 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
761 {
762 if (ptr)
763 *ptr = dyn_ptr;
764
765 xfree (bufstart);
766 return 1;
767 }
768 }
769
770 xfree (bufstart);
771 return 0;
772}
773
7f86f058
PA
774/* Locate the base address of dynamic linker structs for SVR4 elf
775 targets.
13437d4b
KB
776
777 For SVR4 elf targets the address of the dynamic linker's runtime
778 structure is contained within the dynamic info section in the
779 executable file. The dynamic section is also mapped into the
780 inferior address space. Because the runtime loader fills in the
781 real address before starting the inferior, we have to read in the
782 dynamic info section from the inferior address space.
783 If there are any errors while trying to find the address, we
7f86f058 784 silently return 0, otherwise the found address is returned. */
13437d4b
KB
785
786static CORE_ADDR
787elf_locate_base (void)
788{
3b7344d5 789 struct bound_minimal_symbol msymbol;
3a40aaa0 790 CORE_ADDR dyn_ptr;
13437d4b 791
65728c26
DJ
792 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
793 instead of DT_DEBUG, although they sometimes contain an unused
794 DT_DEBUG. */
97ec2c2f
UW
795 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
796 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 797 {
f5656ead 798 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 799 gdb_byte *pbuf;
b6da22b0 800 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 801
3a40aaa0
UW
802 pbuf = alloca (pbuf_size);
803 /* DT_MIPS_RLD_MAP contains a pointer to the address
804 of the dynamic link structure. */
805 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 806 return 0;
b6da22b0 807 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
808 }
809
65728c26 810 /* Find DT_DEBUG. */
97ec2c2f
UW
811 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
812 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
813 return dyn_ptr;
814
3a40aaa0
UW
815 /* This may be a static executable. Look for the symbol
816 conventionally named _r_debug, as a last resort. */
817 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 818 if (msymbol.minsym != NULL)
77e371c0 819 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
820
821 /* DT_DEBUG entry not found. */
822 return 0;
823}
824
7f86f058 825/* Locate the base address of dynamic linker structs.
13437d4b
KB
826
827 For both the SunOS and SVR4 shared library implementations, if the
828 inferior executable has been linked dynamically, there is a single
829 address somewhere in the inferior's data space which is the key to
830 locating all of the dynamic linker's runtime structures. This
831 address is the value of the debug base symbol. The job of this
832 function is to find and return that address, or to return 0 if there
833 is no such address (the executable is statically linked for example).
834
835 For SunOS, the job is almost trivial, since the dynamic linker and
836 all of it's structures are statically linked to the executable at
837 link time. Thus the symbol for the address we are looking for has
838 already been added to the minimal symbol table for the executable's
839 objfile at the time the symbol file's symbols were read, and all we
840 have to do is look it up there. Note that we explicitly do NOT want
841 to find the copies in the shared library.
842
843 The SVR4 version is a bit more complicated because the address
844 is contained somewhere in the dynamic info section. We have to go
845 to a lot more work to discover the address of the debug base symbol.
846 Because of this complexity, we cache the value we find and return that
847 value on subsequent invocations. Note there is no copy in the
7f86f058 848 executable symbol tables. */
13437d4b
KB
849
850static CORE_ADDR
1a816a87 851locate_base (struct svr4_info *info)
13437d4b 852{
13437d4b
KB
853 /* Check to see if we have a currently valid address, and if so, avoid
854 doing all this work again and just return the cached address. If
855 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
856 section for ELF executables. There's no point in doing any of this
857 though if we don't have some link map offsets to work with. */
13437d4b 858
1a816a87 859 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 860 info->debug_base = elf_locate_base ();
1a816a87 861 return info->debug_base;
13437d4b
KB
862}
863
e4cd0d6a 864/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
865 return its address in the inferior. Return zero if the address
866 could not be determined.
13437d4b 867
e4cd0d6a
MK
868 FIXME: Perhaps we should validate the info somehow, perhaps by
869 checking r_version for a known version number, or r_state for
870 RT_CONSISTENT. */
13437d4b
KB
871
872static CORE_ADDR
1a816a87 873solib_svr4_r_map (struct svr4_info *info)
13437d4b 874{
4b188b9f 875 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 876 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104
JB
877 CORE_ADDR addr = 0;
878 volatile struct gdb_exception ex;
13437d4b 879
08597104
JB
880 TRY_CATCH (ex, RETURN_MASK_ERROR)
881 {
882 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
883 ptr_type);
884 }
885 exception_print (gdb_stderr, ex);
886 return addr;
e4cd0d6a 887}
13437d4b 888
7cd25cfc
DJ
889/* Find r_brk from the inferior's debug base. */
890
891static CORE_ADDR
1a816a87 892solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
893{
894 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 895 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 896
1a816a87
PA
897 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
898 ptr_type);
7cd25cfc
DJ
899}
900
e4cd0d6a
MK
901/* Find the link map for the dynamic linker (if it is not in the
902 normal list of loaded shared objects). */
13437d4b 903
e4cd0d6a 904static CORE_ADDR
1a816a87 905solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
906{
907 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
908 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
909 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
e4cd0d6a 910 ULONGEST version;
13437d4b 911
e4cd0d6a
MK
912 /* Check version, and return zero if `struct r_debug' doesn't have
913 the r_ldsomap member. */
1a816a87
PA
914 version
915 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 916 lmo->r_version_size, byte_order);
e4cd0d6a
MK
917 if (version < 2 || lmo->r_ldsomap_offset == -1)
918 return 0;
13437d4b 919
1a816a87 920 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 921 ptr_type);
13437d4b
KB
922}
923
de18c1d8
JM
924/* On Solaris systems with some versions of the dynamic linker,
925 ld.so's l_name pointer points to the SONAME in the string table
926 rather than into writable memory. So that GDB can find shared
927 libraries when loading a core file generated by gcore, ensure that
928 memory areas containing the l_name string are saved in the core
929 file. */
930
931static int
932svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
933{
934 struct svr4_info *info;
935 CORE_ADDR ldsomap;
936 struct so_list *new;
937 struct cleanup *old_chain;
74de0234 938 CORE_ADDR name_lm;
de18c1d8
JM
939
940 info = get_svr4_info ();
941
942 info->debug_base = 0;
943 locate_base (info);
944 if (!info->debug_base)
945 return 0;
946
947 ldsomap = solib_svr4_r_ldsomap (info);
948 if (!ldsomap)
949 return 0;
950
41bf6aca 951 new = XCNEW (struct so_list);
de18c1d8 952 old_chain = make_cleanup (xfree, new);
3957565a 953 new->lm_info = lm_info_read (ldsomap);
de18c1d8 954 make_cleanup (xfree, new->lm_info);
3957565a 955 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
956 do_cleanups (old_chain);
957
74de0234 958 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
959}
960
7f86f058 961/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 962
7f86f058
PA
963 If no open symbol file, attempt to locate and open the main symbol
964 file. On SVR4 systems, this is the first link map entry. If its
965 name is here, we can open it. Useful when attaching to a process
966 without first loading its symbol file. */
13437d4b
KB
967
968static int
969open_symbol_file_object (void *from_ttyp)
970{
971 CORE_ADDR lm, l_name;
972 char *filename;
973 int errcode;
974 int from_tty = *(int *)from_ttyp;
4b188b9f 975 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 976 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 977 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 978 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 979 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 980 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
981
982 if (symfile_objfile)
9e2f0ad4 983 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
984 {
985 do_cleanups (cleanups);
986 return 0;
987 }
13437d4b 988
7cd25cfc 989 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
990 info->debug_base = 0;
991 if (locate_base (info) == 0)
3bb47e8b
TT
992 {
993 do_cleanups (cleanups);
994 return 0; /* failed somehow... */
995 }
13437d4b
KB
996
997 /* First link map member should be the executable. */
1a816a87 998 lm = solib_svr4_r_map (info);
e4cd0d6a 999 if (lm == 0)
3bb47e8b
TT
1000 {
1001 do_cleanups (cleanups);
1002 return 0; /* failed somehow... */
1003 }
13437d4b
KB
1004
1005 /* Read address of name from target memory to GDB. */
cfaefc65 1006 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1007
cfaefc65 1008 /* Convert the address to host format. */
b6da22b0 1009 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1010
13437d4b 1011 if (l_name == 0)
3bb47e8b
TT
1012 {
1013 do_cleanups (cleanups);
1014 return 0; /* No filename. */
1015 }
13437d4b
KB
1016
1017 /* Now fetch the filename from target memory. */
1018 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1019 make_cleanup (xfree, filename);
13437d4b
KB
1020
1021 if (errcode)
1022 {
8a3fe4f8 1023 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1024 safe_strerror (errcode));
3bb47e8b 1025 do_cleanups (cleanups);
13437d4b
KB
1026 return 0;
1027 }
1028
13437d4b 1029 /* Have a pathname: read the symbol file. */
1adeb98a 1030 symbol_file_add_main (filename, from_tty);
13437d4b 1031
3bb47e8b 1032 do_cleanups (cleanups);
13437d4b
KB
1033 return 1;
1034}
13437d4b 1035
2268b414
JK
1036/* Data exchange structure for the XML parser as returned by
1037 svr4_current_sos_via_xfer_libraries. */
1038
1039struct svr4_library_list
1040{
1041 struct so_list *head, **tailp;
1042
1043 /* Inferior address of struct link_map used for the main executable. It is
1044 NULL if not known. */
1045 CORE_ADDR main_lm;
1046};
1047
93f2a35e
JK
1048/* Implementation for target_so_ops.free_so. */
1049
1050static void
1051svr4_free_so (struct so_list *so)
1052{
1053 xfree (so->lm_info);
1054}
1055
0892cb63
DE
1056/* Implement target_so_ops.clear_so. */
1057
1058static void
1059svr4_clear_so (struct so_list *so)
1060{
6dcc1893
PP
1061 if (so->lm_info != NULL)
1062 so->lm_info->l_addr_p = 0;
0892cb63
DE
1063}
1064
93f2a35e
JK
1065/* Free so_list built so far (called via cleanup). */
1066
1067static void
1068svr4_free_library_list (void *p_list)
1069{
1070 struct so_list *list = *(struct so_list **) p_list;
1071
1072 while (list != NULL)
1073 {
1074 struct so_list *next = list->next;
1075
3756ef7e 1076 free_so (list);
93f2a35e
JK
1077 list = next;
1078 }
1079}
1080
f9e14852
GB
1081/* Copy library list. */
1082
1083static struct so_list *
1084svr4_copy_library_list (struct so_list *src)
1085{
1086 struct so_list *dst = NULL;
1087 struct so_list **link = &dst;
1088
1089 while (src != NULL)
1090 {
1091 struct so_list *new;
1092
1093 new = xmalloc (sizeof (struct so_list));
1094 memcpy (new, src, sizeof (struct so_list));
1095
1096 new->lm_info = xmalloc (sizeof (struct lm_info));
1097 memcpy (new->lm_info, src->lm_info, sizeof (struct lm_info));
1098
1099 new->next = NULL;
1100 *link = new;
1101 link = &new->next;
1102
1103 src = src->next;
1104 }
1105
1106 return dst;
1107}
1108
2268b414
JK
1109#ifdef HAVE_LIBEXPAT
1110
1111#include "xml-support.h"
1112
1113/* Handle the start of a <library> element. Note: new elements are added
1114 at the tail of the list, keeping the list in order. */
1115
1116static void
1117library_list_start_library (struct gdb_xml_parser *parser,
1118 const struct gdb_xml_element *element,
1119 void *user_data, VEC(gdb_xml_value_s) *attributes)
1120{
1121 struct svr4_library_list *list = user_data;
1122 const char *name = xml_find_attribute (attributes, "name")->value;
1123 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1124 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1125 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1126 struct so_list *new_elem;
1127
41bf6aca
TT
1128 new_elem = XCNEW (struct so_list);
1129 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1130 new_elem->lm_info->lm_addr = *lmp;
1131 new_elem->lm_info->l_addr_inferior = *l_addrp;
1132 new_elem->lm_info->l_ld = *l_ldp;
1133
1134 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1135 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1136 strcpy (new_elem->so_original_name, new_elem->so_name);
1137
1138 *list->tailp = new_elem;
1139 list->tailp = &new_elem->next;
1140}
1141
1142/* Handle the start of a <library-list-svr4> element. */
1143
1144static void
1145svr4_library_list_start_list (struct gdb_xml_parser *parser,
1146 const struct gdb_xml_element *element,
1147 void *user_data, VEC(gdb_xml_value_s) *attributes)
1148{
1149 struct svr4_library_list *list = user_data;
1150 const char *version = xml_find_attribute (attributes, "version")->value;
1151 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1152
1153 if (strcmp (version, "1.0") != 0)
1154 gdb_xml_error (parser,
1155 _("SVR4 Library list has unsupported version \"%s\""),
1156 version);
1157
1158 if (main_lm)
1159 list->main_lm = *(ULONGEST *) main_lm->value;
1160}
1161
1162/* The allowed elements and attributes for an XML library list.
1163 The root element is a <library-list>. */
1164
1165static const struct gdb_xml_attribute svr4_library_attributes[] =
1166{
1167 { "name", GDB_XML_AF_NONE, NULL, NULL },
1168 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1169 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1170 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1172};
1173
1174static const struct gdb_xml_element svr4_library_list_children[] =
1175{
1176 {
1177 "library", svr4_library_attributes, NULL,
1178 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1179 library_list_start_library, NULL
1180 },
1181 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1182};
1183
1184static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1185{
1186 { "version", GDB_XML_AF_NONE, NULL, NULL },
1187 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1188 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1189};
1190
1191static const struct gdb_xml_element svr4_library_list_elements[] =
1192{
1193 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1194 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1195 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1196};
1197
2268b414
JK
1198/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1199
1200 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1201 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1202 empty, caller is responsible for freeing all its entries. */
1203
1204static int
1205svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1206{
1207 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1208 &list->head);
1209
1210 memset (list, 0, sizeof (*list));
1211 list->tailp = &list->head;
1212 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1213 svr4_library_list_elements, document, list) == 0)
1214 {
1215 /* Parsed successfully, keep the result. */
1216 discard_cleanups (back_to);
1217 return 1;
1218 }
1219
1220 do_cleanups (back_to);
1221 return 0;
1222}
1223
f9e14852 1224/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1225
1226 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1227 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1228 empty, caller is responsible for freeing all its entries.
1229
1230 Note that ANNEX must be NULL if the remote does not explicitly allow
1231 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1232 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1233
1234static int
f9e14852
GB
1235svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1236 const char *annex)
2268b414
JK
1237{
1238 char *svr4_library_document;
1239 int result;
1240 struct cleanup *back_to;
1241
f9e14852
GB
1242 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1243
2268b414
JK
1244 /* Fetch the list of shared libraries. */
1245 svr4_library_document = target_read_stralloc (&current_target,
1246 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1247 annex);
2268b414
JK
1248 if (svr4_library_document == NULL)
1249 return 0;
1250
1251 back_to = make_cleanup (xfree, svr4_library_document);
1252 result = svr4_parse_libraries (svr4_library_document, list);
1253 do_cleanups (back_to);
1254
1255 return result;
1256}
1257
1258#else
1259
1260static int
f9e14852
GB
1261svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1262 const char *annex)
2268b414
JK
1263{
1264 return 0;
1265}
1266
1267#endif
1268
34439770
DJ
1269/* If no shared library information is available from the dynamic
1270 linker, build a fallback list from other sources. */
1271
1272static struct so_list *
1273svr4_default_sos (void)
1274{
6c95b8df 1275 struct svr4_info *info = get_svr4_info ();
8e5c319d 1276 struct so_list *new;
1a816a87 1277
8e5c319d
JK
1278 if (!info->debug_loader_offset_p)
1279 return NULL;
34439770 1280
41bf6aca 1281 new = XCNEW (struct so_list);
34439770 1282
3957565a 1283 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1284
3957565a 1285 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1286 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1287 new->lm_info->l_addr_p = 1;
34439770 1288
8e5c319d
JK
1289 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1290 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1291 strcpy (new->so_original_name, new->so_name);
34439770 1292
8e5c319d 1293 return new;
34439770
DJ
1294}
1295
f9e14852
GB
1296/* Read the whole inferior libraries chain starting at address LM.
1297 Expect the first entry in the chain's previous entry to be PREV_LM.
1298 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1299 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1300 to it. Returns nonzero upon success. If zero is returned the
1301 entries stored to LINK_PTR_PTR are still valid although they may
1302 represent only part of the inferior library list. */
13437d4b 1303
f9e14852
GB
1304static int
1305svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1306 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1307{
c725e7b6 1308 CORE_ADDR first_l_name = 0;
f9e14852 1309 CORE_ADDR next_lm;
13437d4b 1310
cb08cc53 1311 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1312 {
cb08cc53
JK
1313 struct so_list *new;
1314 struct cleanup *old_chain;
1315 int errcode;
1316 char *buffer;
13437d4b 1317
41bf6aca 1318 new = XCNEW (struct so_list);
cb08cc53 1319 old_chain = make_cleanup_free_so (new);
13437d4b 1320
3957565a
JK
1321 new->lm_info = lm_info_read (lm);
1322 if (new->lm_info == NULL)
1323 {
1324 do_cleanups (old_chain);
f9e14852 1325 return 0;
3957565a 1326 }
13437d4b 1327
3957565a 1328 next_lm = new->lm_info->l_next;
492928e4 1329
3957565a 1330 if (new->lm_info->l_prev != prev_lm)
492928e4 1331 {
2268b414 1332 warning (_("Corrupted shared library list: %s != %s"),
f5656ead
TT
1333 paddress (target_gdbarch (), prev_lm),
1334 paddress (target_gdbarch (), new->lm_info->l_prev));
cb08cc53 1335 do_cleanups (old_chain);
f9e14852 1336 return 0;
492928e4 1337 }
13437d4b
KB
1338
1339 /* For SVR4 versions, the first entry in the link map is for the
1340 inferior executable, so we must ignore it. For some versions of
1341 SVR4, it has no name. For others (Solaris 2.3 for example), it
1342 does have a name, so we can no longer use a missing name to
c378eb4e 1343 decide when to ignore it. */
3957565a 1344 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1345 {
cb08cc53
JK
1346 struct svr4_info *info = get_svr4_info ();
1347
c91550fc 1348 first_l_name = new->lm_info->l_name;
1a816a87 1349 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1350 do_cleanups (old_chain);
1351 continue;
93a57060 1352 }
13437d4b 1353
cb08cc53 1354 /* Extract this shared object's name. */
3957565a 1355 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1356 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1357 if (errcode != 0)
1358 {
7d760051
UW
1359 /* If this entry's l_name address matches that of the
1360 inferior executable, then this is not a normal shared
1361 object, but (most likely) a vDSO. In this case, silently
1362 skip it; otherwise emit a warning. */
c91550fc 1363 if (first_l_name == 0 || new->lm_info->l_name != first_l_name)
7d760051
UW
1364 warning (_("Can't read pathname for load map: %s."),
1365 safe_strerror (errcode));
cb08cc53
JK
1366 do_cleanups (old_chain);
1367 continue;
13437d4b
KB
1368 }
1369
cb08cc53
JK
1370 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1371 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1372 strcpy (new->so_original_name, new->so_name);
1373 xfree (buffer);
492928e4 1374
cb08cc53
JK
1375 /* If this entry has no name, or its name matches the name
1376 for the main executable, don't include it in the list. */
1377 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1378 {
cb08cc53
JK
1379 do_cleanups (old_chain);
1380 continue;
492928e4 1381 }
e4cd0d6a 1382
13437d4b 1383 discard_cleanups (old_chain);
cb08cc53
JK
1384 new->next = 0;
1385 **link_ptr_ptr = new;
1386 *link_ptr_ptr = &new->next;
13437d4b 1387 }
f9e14852
GB
1388
1389 return 1;
cb08cc53
JK
1390}
1391
f9e14852
GB
1392/* Read the full list of currently loaded shared objects directly
1393 from the inferior, without referring to any libraries read and
1394 stored by the probes interface. Handle special cases relating
1395 to the first elements of the list. */
cb08cc53
JK
1396
1397static struct so_list *
f9e14852 1398svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1399{
1400 CORE_ADDR lm;
1401 struct so_list *head = NULL;
1402 struct so_list **link_ptr = &head;
cb08cc53
JK
1403 struct cleanup *back_to;
1404 int ignore_first;
2268b414
JK
1405 struct svr4_library_list library_list;
1406
0c5bf5a9
JK
1407 /* Fall back to manual examination of the target if the packet is not
1408 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1409 tests a case where gdbserver cannot find the shared libraries list while
1410 GDB itself is able to find it via SYMFILE_OBJFILE.
1411
1412 Unfortunately statically linked inferiors will also fall back through this
1413 suboptimal code path. */
1414
f9e14852
GB
1415 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1416 NULL);
1417 if (info->using_xfer)
2268b414
JK
1418 {
1419 if (library_list.main_lm)
f9e14852 1420 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1421
1422 return library_list.head ? library_list.head : svr4_default_sos ();
1423 }
cb08cc53 1424
cb08cc53
JK
1425 /* Always locate the debug struct, in case it has moved. */
1426 info->debug_base = 0;
1427 locate_base (info);
1428
1429 /* If we can't find the dynamic linker's base structure, this
1430 must not be a dynamically linked executable. Hmm. */
1431 if (! info->debug_base)
1432 return svr4_default_sos ();
1433
1434 /* Assume that everything is a library if the dynamic loader was loaded
1435 late by a static executable. */
1436 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1437 ignore_first = 0;
1438 else
1439 ignore_first = 1;
1440
1441 back_to = make_cleanup (svr4_free_library_list, &head);
1442
1443 /* Walk the inferior's link map list, and build our list of
1444 `struct so_list' nodes. */
1445 lm = solib_svr4_r_map (info);
1446 if (lm)
f9e14852 1447 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1448
1449 /* On Solaris, the dynamic linker is not in the normal list of
1450 shared objects, so make sure we pick it up too. Having
1451 symbol information for the dynamic linker is quite crucial
1452 for skipping dynamic linker resolver code. */
1453 lm = solib_svr4_r_ldsomap (info);
1454 if (lm)
f9e14852 1455 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1456
1457 discard_cleanups (back_to);
13437d4b 1458
34439770
DJ
1459 if (head == NULL)
1460 return svr4_default_sos ();
1461
13437d4b
KB
1462 return head;
1463}
1464
f9e14852
GB
1465/* Implement the "current_sos" target_so_ops method. */
1466
1467static struct so_list *
1468svr4_current_sos (void)
1469{
1470 struct svr4_info *info = get_svr4_info ();
1471
1472 /* If the solib list has been read and stored by the probes
1473 interface then we return a copy of the stored list. */
1474 if (info->solib_list != NULL)
1475 return svr4_copy_library_list (info->solib_list);
1476
1477 /* Otherwise obtain the solib list directly from the inferior. */
1478 return svr4_current_sos_direct (info);
1479}
1480
93a57060 1481/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1482
1483CORE_ADDR
1484svr4_fetch_objfile_link_map (struct objfile *objfile)
1485{
93a57060 1486 struct so_list *so;
6c95b8df 1487 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1488
93a57060 1489 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1490 if (info->main_lm_addr == 0)
93a57060 1491 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1492
93a57060
DJ
1493 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1494 if (objfile == symfile_objfile)
1a816a87 1495 return info->main_lm_addr;
93a57060
DJ
1496
1497 /* The other link map addresses may be found by examining the list
1498 of shared libraries. */
1499 for (so = master_so_list (); so; so = so->next)
1500 if (so->objfile == objfile)
1501 return so->lm_info->lm_addr;
1502
1503 /* Not found! */
bc4a16ae
EZ
1504 return 0;
1505}
13437d4b
KB
1506
1507/* On some systems, the only way to recognize the link map entry for
1508 the main executable file is by looking at its name. Return
1509 non-zero iff SONAME matches one of the known main executable names. */
1510
1511static int
bc043ef3 1512match_main (const char *soname)
13437d4b 1513{
bc043ef3 1514 const char * const *mainp;
13437d4b
KB
1515
1516 for (mainp = main_name_list; *mainp != NULL; mainp++)
1517 {
1518 if (strcmp (soname, *mainp) == 0)
1519 return (1);
1520 }
1521
1522 return (0);
1523}
1524
13437d4b
KB
1525/* Return 1 if PC lies in the dynamic symbol resolution code of the
1526 SVR4 run time loader. */
13437d4b 1527
7d522c90 1528int
d7fa2ae2 1529svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1530{
6c95b8df
PA
1531 struct svr4_info *info = get_svr4_info ();
1532
1533 return ((pc >= info->interp_text_sect_low
1534 && pc < info->interp_text_sect_high)
1535 || (pc >= info->interp_plt_sect_low
1536 && pc < info->interp_plt_sect_high)
3e5d3a5a 1537 || in_plt_section (pc)
0875794a 1538 || in_gnu_ifunc_stub (pc));
13437d4b 1539}
13437d4b 1540
2f4950cd
AC
1541/* Given an executable's ABFD and target, compute the entry-point
1542 address. */
1543
1544static CORE_ADDR
1545exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1546{
8c2b9656
YQ
1547 CORE_ADDR addr;
1548
2f4950cd
AC
1549 /* KevinB wrote ... for most targets, the address returned by
1550 bfd_get_start_address() is the entry point for the start
1551 function. But, for some targets, bfd_get_start_address() returns
1552 the address of a function descriptor from which the entry point
1553 address may be extracted. This address is extracted by
1554 gdbarch_convert_from_func_ptr_addr(). The method
1555 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1556 function for targets which don't use function descriptors. */
8c2b9656 1557 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1558 bfd_get_start_address (abfd),
1559 targ);
8c2b9656 1560 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1561}
13437d4b 1562
f9e14852
GB
1563/* A probe and its associated action. */
1564
1565struct probe_and_action
1566{
1567 /* The probe. */
1568 struct probe *probe;
1569
729662a5
TT
1570 /* The relocated address of the probe. */
1571 CORE_ADDR address;
1572
f9e14852
GB
1573 /* The action. */
1574 enum probe_action action;
1575};
1576
1577/* Returns a hash code for the probe_and_action referenced by p. */
1578
1579static hashval_t
1580hash_probe_and_action (const void *p)
1581{
1582 const struct probe_and_action *pa = p;
1583
729662a5 1584 return (hashval_t) pa->address;
f9e14852
GB
1585}
1586
1587/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1588 are equal. */
1589
1590static int
1591equal_probe_and_action (const void *p1, const void *p2)
1592{
1593 const struct probe_and_action *pa1 = p1;
1594 const struct probe_and_action *pa2 = p2;
1595
729662a5 1596 return pa1->address == pa2->address;
f9e14852
GB
1597}
1598
1599/* Register a solib event probe and its associated action in the
1600 probes table. */
1601
1602static void
729662a5
TT
1603register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1604 enum probe_action action)
f9e14852
GB
1605{
1606 struct svr4_info *info = get_svr4_info ();
1607 struct probe_and_action lookup, *pa;
1608 void **slot;
1609
1610 /* Create the probes table, if necessary. */
1611 if (info->probes_table == NULL)
1612 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1613 equal_probe_and_action,
1614 xfree, xcalloc, xfree);
1615
1616 lookup.probe = probe;
729662a5 1617 lookup.address = address;
f9e14852
GB
1618 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1619 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1620
1621 pa = XCNEW (struct probe_and_action);
1622 pa->probe = probe;
729662a5 1623 pa->address = address;
f9e14852
GB
1624 pa->action = action;
1625
1626 *slot = pa;
1627}
1628
1629/* Get the solib event probe at the specified location, and the
1630 action associated with it. Returns NULL if no solib event probe
1631 was found. */
1632
1633static struct probe_and_action *
1634solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1635{
f9e14852
GB
1636 struct probe_and_action lookup;
1637 void **slot;
1638
729662a5 1639 lookup.address = address;
f9e14852
GB
1640 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1641
1642 if (slot == NULL)
1643 return NULL;
1644
1645 return (struct probe_and_action *) *slot;
1646}
1647
1648/* Decide what action to take when the specified solib event probe is
1649 hit. */
1650
1651static enum probe_action
1652solib_event_probe_action (struct probe_and_action *pa)
1653{
1654 enum probe_action action;
1655 unsigned probe_argc;
08a6411c 1656 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1657
1658 action = pa->action;
1659 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1660 return action;
1661
1662 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1663
1664 /* Check that an appropriate number of arguments has been supplied.
1665 We expect:
1666 arg0: Lmid_t lmid (mandatory)
1667 arg1: struct r_debug *debug_base (mandatory)
1668 arg2: struct link_map *new (optional, for incremental updates) */
08a6411c 1669 probe_argc = get_probe_argument_count (pa->probe, frame);
f9e14852
GB
1670 if (probe_argc == 2)
1671 action = FULL_RELOAD;
1672 else if (probe_argc < 2)
1673 action = PROBES_INTERFACE_FAILED;
1674
1675 return action;
1676}
1677
1678/* Populate the shared object list by reading the entire list of
1679 shared objects from the inferior. Handle special cases relating
1680 to the first elements of the list. Returns nonzero on success. */
1681
1682static int
1683solist_update_full (struct svr4_info *info)
1684{
1685 free_solib_list (info);
1686 info->solib_list = svr4_current_sos_direct (info);
1687
1688 return 1;
1689}
1690
1691/* Update the shared object list starting from the link-map entry
1692 passed by the linker in the probe's third argument. Returns
1693 nonzero if the list was successfully updated, or zero to indicate
1694 failure. */
1695
1696static int
1697solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1698{
1699 struct so_list *tail;
1700 CORE_ADDR prev_lm;
1701
1702 /* svr4_current_sos_direct contains logic to handle a number of
1703 special cases relating to the first elements of the list. To
1704 avoid duplicating this logic we defer to solist_update_full
1705 if the list is empty. */
1706 if (info->solib_list == NULL)
1707 return 0;
1708
1709 /* Fall back to a full update if we are using a remote target
1710 that does not support incremental transfers. */
1711 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1712 return 0;
1713
1714 /* Walk to the end of the list. */
1715 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1716 /* Nothing. */;
1717 prev_lm = tail->lm_info->lm_addr;
1718
1719 /* Read the new objects. */
1720 if (info->using_xfer)
1721 {
1722 struct svr4_library_list library_list;
1723 char annex[64];
1724
1725 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1726 phex_nz (lm, sizeof (lm)),
1727 phex_nz (prev_lm, sizeof (prev_lm)));
1728 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1729 return 0;
1730
1731 tail->next = library_list.head;
1732 }
1733 else
1734 {
1735 struct so_list **link = &tail->next;
1736
1737 /* IGNORE_FIRST may safely be set to zero here because the
1738 above check and deferral to solist_update_full ensures
1739 that this call to svr4_read_so_list will never see the
1740 first element. */
1741 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1742 return 0;
1743 }
1744
1745 return 1;
1746}
1747
1748/* Disable the probes-based linker interface and revert to the
1749 original interface. We don't reset the breakpoints as the
1750 ones set up for the probes-based interface are adequate. */
1751
1752static void
1753disable_probes_interface_cleanup (void *arg)
1754{
1755 struct svr4_info *info = get_svr4_info ();
1756
1757 warning (_("Probes-based dynamic linker interface failed.\n"
1758 "Reverting to original interface.\n"));
1759
1760 free_probes_table (info);
1761 free_solib_list (info);
1762}
1763
1764/* Update the solib list as appropriate when using the
1765 probes-based linker interface. Do nothing if using the
1766 standard interface. */
1767
1768static void
1769svr4_handle_solib_event (void)
1770{
1771 struct svr4_info *info = get_svr4_info ();
1772 struct probe_and_action *pa;
1773 enum probe_action action;
1774 struct cleanup *old_chain, *usm_chain;
1775 struct value *val;
1776 CORE_ADDR pc, debug_base, lm = 0;
1777 int is_initial_ns;
08a6411c 1778 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1779
1780 /* Do nothing if not using the probes interface. */
1781 if (info->probes_table == NULL)
1782 return;
1783
1784 /* If anything goes wrong we revert to the original linker
1785 interface. */
1786 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1787
1788 pc = regcache_read_pc (get_current_regcache ());
1789 pa = solib_event_probe_at (info, pc);
1790 if (pa == NULL)
1791 {
1792 do_cleanups (old_chain);
1793 return;
1794 }
1795
1796 action = solib_event_probe_action (pa);
1797 if (action == PROBES_INTERFACE_FAILED)
1798 {
1799 do_cleanups (old_chain);
1800 return;
1801 }
1802
1803 if (action == DO_NOTHING)
1804 {
1805 discard_cleanups (old_chain);
1806 return;
1807 }
1808
1809 /* evaluate_probe_argument looks up symbols in the dynamic linker
1810 using find_pc_section. find_pc_section is accelerated by a cache
1811 called the section map. The section map is invalidated every
1812 time a shared library is loaded or unloaded, and if the inferior
1813 is generating a lot of shared library events then the section map
1814 will be updated every time svr4_handle_solib_event is called.
1815 We called find_pc_section in svr4_create_solib_event_breakpoints,
1816 so we can guarantee that the dynamic linker's sections are in the
1817 section map. We can therefore inhibit section map updates across
1818 these calls to evaluate_probe_argument and save a lot of time. */
1819 inhibit_section_map_updates (current_program_space);
1820 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1821 current_program_space);
1822
08a6411c 1823 val = evaluate_probe_argument (pa->probe, 1, frame);
f9e14852
GB
1824 if (val == NULL)
1825 {
1826 do_cleanups (old_chain);
1827 return;
1828 }
1829
1830 debug_base = value_as_address (val);
1831 if (debug_base == 0)
1832 {
1833 do_cleanups (old_chain);
1834 return;
1835 }
1836
1837 /* Always locate the debug struct, in case it moved. */
1838 info->debug_base = 0;
1839 if (locate_base (info) == 0)
1840 {
1841 do_cleanups (old_chain);
1842 return;
1843 }
1844
1845 /* GDB does not currently support libraries loaded via dlmopen
1846 into namespaces other than the initial one. We must ignore
1847 any namespace other than the initial namespace here until
1848 support for this is added to GDB. */
1849 if (debug_base != info->debug_base)
1850 action = DO_NOTHING;
1851
1852 if (action == UPDATE_OR_RELOAD)
1853 {
08a6411c 1854 val = evaluate_probe_argument (pa->probe, 2, frame);
f9e14852
GB
1855 if (val != NULL)
1856 lm = value_as_address (val);
1857
1858 if (lm == 0)
1859 action = FULL_RELOAD;
1860 }
1861
1862 /* Resume section map updates. */
1863 do_cleanups (usm_chain);
1864
1865 if (action == UPDATE_OR_RELOAD)
1866 {
1867 if (!solist_update_incremental (info, lm))
1868 action = FULL_RELOAD;
1869 }
1870
1871 if (action == FULL_RELOAD)
1872 {
1873 if (!solist_update_full (info))
1874 {
1875 do_cleanups (old_chain);
1876 return;
1877 }
1878 }
1879
1880 discard_cleanups (old_chain);
1881}
1882
1883/* Helper function for svr4_update_solib_event_breakpoints. */
1884
1885static int
1886svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1887{
1888 struct bp_location *loc;
1889
1890 if (b->type != bp_shlib_event)
1891 {
1892 /* Continue iterating. */
1893 return 0;
1894 }
1895
1896 for (loc = b->loc; loc != NULL; loc = loc->next)
1897 {
1898 struct svr4_info *info;
1899 struct probe_and_action *pa;
1900
1901 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1902 if (info == NULL || info->probes_table == NULL)
1903 continue;
1904
1905 pa = solib_event_probe_at (info, loc->address);
1906 if (pa == NULL)
1907 continue;
1908
1909 if (pa->action == DO_NOTHING)
1910 {
1911 if (b->enable_state == bp_disabled && stop_on_solib_events)
1912 enable_breakpoint (b);
1913 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1914 disable_breakpoint (b);
1915 }
1916
1917 break;
1918 }
1919
1920 /* Continue iterating. */
1921 return 0;
1922}
1923
1924/* Enable or disable optional solib event breakpoints as appropriate.
1925 Called whenever stop_on_solib_events is changed. */
1926
1927static void
1928svr4_update_solib_event_breakpoints (void)
1929{
1930 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
1931}
1932
1933/* Create and register solib event breakpoints. PROBES is an array
1934 of NUM_PROBES elements, each of which is vector of probes. A
1935 solib event breakpoint will be created and registered for each
1936 probe. */
1937
1938static void
1939svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
1940 VEC (probe_p) **probes,
1941 struct objfile *objfile)
f9e14852
GB
1942{
1943 int i;
1944
1945 for (i = 0; i < NUM_PROBES; i++)
1946 {
1947 enum probe_action action = probe_info[i].action;
1948 struct probe *probe;
1949 int ix;
1950
1951 for (ix = 0;
1952 VEC_iterate (probe_p, probes[i], ix, probe);
1953 ++ix)
1954 {
729662a5
TT
1955 CORE_ADDR address = get_probe_address (probe, objfile);
1956
1957 create_solib_event_breakpoint (gdbarch, address);
1958 register_solib_event_probe (probe, address, action);
f9e14852
GB
1959 }
1960 }
1961
1962 svr4_update_solib_event_breakpoints ();
1963}
1964
1965/* Both the SunOS and the SVR4 dynamic linkers call a marker function
1966 before and after mapping and unmapping shared libraries. The sole
1967 purpose of this method is to allow debuggers to set a breakpoint so
1968 they can track these changes.
1969
1970 Some versions of the glibc dynamic linker contain named probes
1971 to allow more fine grained stopping. Given the address of the
1972 original marker function, this function attempts to find these
1973 probes, and if found, sets breakpoints on those instead. If the
1974 probes aren't found, a single breakpoint is set on the original
1975 marker function. */
1976
1977static void
1978svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
1979 CORE_ADDR address)
1980{
1981 struct obj_section *os;
1982
1983 os = find_pc_section (address);
1984 if (os != NULL)
1985 {
1986 int with_prefix;
1987
1988 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
1989 {
1990 VEC (probe_p) *probes[NUM_PROBES];
1991 int all_probes_found = 1;
25f9533e 1992 int checked_can_use_probe_arguments = 0;
f9e14852
GB
1993 int i;
1994
1995 memset (probes, 0, sizeof (probes));
1996 for (i = 0; i < NUM_PROBES; i++)
1997 {
1998 const char *name = probe_info[i].name;
25f9533e 1999 struct probe *p;
f9e14852
GB
2000 char buf[32];
2001
2002 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2003 shipped with an early version of the probes code in
2004 which the probes' names were prefixed with "rtld_"
2005 and the "map_failed" probe did not exist. The
2006 locations of the probes are otherwise the same, so
2007 we check for probes with prefixed names if probes
2008 with unprefixed names are not present. */
2009 if (with_prefix)
2010 {
2011 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2012 name = buf;
2013 }
2014
2015 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2016
2017 /* The "map_failed" probe did not exist in early
2018 versions of the probes code in which the probes'
2019 names were prefixed with "rtld_". */
2020 if (strcmp (name, "rtld_map_failed") == 0)
2021 continue;
2022
2023 if (VEC_empty (probe_p, probes[i]))
2024 {
2025 all_probes_found = 0;
2026 break;
2027 }
25f9533e
SDJ
2028
2029 /* Ensure probe arguments can be evaluated. */
2030 if (!checked_can_use_probe_arguments)
2031 {
2032 p = VEC_index (probe_p, probes[i], 0);
2033 if (!can_evaluate_probe_arguments (p))
2034 {
2035 all_probes_found = 0;
2036 break;
2037 }
2038 checked_can_use_probe_arguments = 1;
2039 }
f9e14852
GB
2040 }
2041
2042 if (all_probes_found)
729662a5 2043 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2044
2045 for (i = 0; i < NUM_PROBES; i++)
2046 VEC_free (probe_p, probes[i]);
2047
2048 if (all_probes_found)
2049 return;
2050 }
2051 }
2052
2053 create_solib_event_breakpoint (gdbarch, address);
2054}
2055
cb457ae2
YQ
2056/* Helper function for gdb_bfd_lookup_symbol. */
2057
2058static int
2059cmp_name_and_sec_flags (asymbol *sym, void *data)
2060{
2061 return (strcmp (sym->name, (const char *) data) == 0
2062 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2063}
7f86f058 2064/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2065
2066 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2067 debugger interface, support for arranging for the inferior to hit
2068 a breakpoint after mapping in the shared libraries. This function
2069 enables that breakpoint.
2070
2071 For SunOS, there is a special flag location (in_debugger) which we
2072 set to 1. When the dynamic linker sees this flag set, it will set
2073 a breakpoint at a location known only to itself, after saving the
2074 original contents of that place and the breakpoint address itself,
2075 in it's own internal structures. When we resume the inferior, it
2076 will eventually take a SIGTRAP when it runs into the breakpoint.
2077 We handle this (in a different place) by restoring the contents of
2078 the breakpointed location (which is only known after it stops),
2079 chasing around to locate the shared libraries that have been
2080 loaded, then resuming.
2081
2082 For SVR4, the debugger interface structure contains a member (r_brk)
2083 which is statically initialized at the time the shared library is
2084 built, to the offset of a function (_r_debug_state) which is guaran-
2085 teed to be called once before mapping in a library, and again when
2086 the mapping is complete. At the time we are examining this member,
2087 it contains only the unrelocated offset of the function, so we have
2088 to do our own relocation. Later, when the dynamic linker actually
2089 runs, it relocates r_brk to be the actual address of _r_debug_state().
2090
2091 The debugger interface structure also contains an enumeration which
2092 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2093 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2094 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2095
2096static int
268a4a75 2097enable_break (struct svr4_info *info, int from_tty)
13437d4b 2098{
3b7344d5 2099 struct bound_minimal_symbol msymbol;
bc043ef3 2100 const char * const *bkpt_namep;
13437d4b 2101 asection *interp_sect;
001f13d8 2102 char *interp_name;
7cd25cfc 2103 CORE_ADDR sym_addr;
13437d4b 2104
6c95b8df
PA
2105 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2106 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2107
7cd25cfc
DJ
2108 /* If we already have a shared library list in the target, and
2109 r_debug contains r_brk, set the breakpoint there - this should
2110 mean r_brk has already been relocated. Assume the dynamic linker
2111 is the object containing r_brk. */
2112
268a4a75 2113 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2114 sym_addr = 0;
1a816a87
PA
2115 if (info->debug_base && solib_svr4_r_map (info) != 0)
2116 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2117
2118 if (sym_addr != 0)
2119 {
2120 struct obj_section *os;
2121
b36ec657 2122 sym_addr = gdbarch_addr_bits_remove
f5656ead 2123 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2124 sym_addr,
2125 &current_target));
b36ec657 2126
48379de6
DE
2127 /* On at least some versions of Solaris there's a dynamic relocation
2128 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2129 we get control before the dynamic linker has self-relocated.
2130 Check if SYM_ADDR is in a known section, if it is assume we can
2131 trust its value. This is just a heuristic though, it could go away
2132 or be replaced if it's getting in the way.
2133
2134 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2135 however it's spelled in your particular system) is ARM or Thumb.
2136 That knowledge is encoded in the address, if it's Thumb the low bit
2137 is 1. However, we've stripped that info above and it's not clear
2138 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2139 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2140 find_pc_section verifies we know about the address and have some
2141 hope of computing the right kind of breakpoint to use (via
2142 symbol info). It does mean that GDB needs to be pointed at a
2143 non-stripped version of the dynamic linker in order to obtain
2144 information it already knows about. Sigh. */
2145
7cd25cfc
DJ
2146 os = find_pc_section (sym_addr);
2147 if (os != NULL)
2148 {
2149 /* Record the relocated start and end address of the dynamic linker
2150 text and plt section for svr4_in_dynsym_resolve_code. */
2151 bfd *tmp_bfd;
2152 CORE_ADDR load_addr;
2153
2154 tmp_bfd = os->objfile->obfd;
2155 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2156 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2157
2158 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2159 if (interp_sect)
2160 {
6c95b8df 2161 info->interp_text_sect_low =
7cd25cfc 2162 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2163 info->interp_text_sect_high =
2164 info->interp_text_sect_low
2165 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2166 }
2167 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2168 if (interp_sect)
2169 {
6c95b8df 2170 info->interp_plt_sect_low =
7cd25cfc 2171 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2172 info->interp_plt_sect_high =
2173 info->interp_plt_sect_low
2174 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2175 }
2176
f9e14852 2177 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2178 return 1;
2179 }
2180 }
2181
97ec2c2f 2182 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2183 into the old breakpoint at symbol code. */
97ec2c2f
UW
2184 interp_name = find_program_interpreter ();
2185 if (interp_name)
13437d4b 2186 {
8ad2fcde
KB
2187 CORE_ADDR load_addr = 0;
2188 int load_addr_found = 0;
2ec9a4f8 2189 int loader_found_in_list = 0;
f8766ec1 2190 struct so_list *so;
e4f7b8c8 2191 bfd *tmp_bfd = NULL;
2f4950cd 2192 struct target_ops *tmp_bfd_target;
f1838a98 2193 volatile struct gdb_exception ex;
13437d4b 2194
7cd25cfc 2195 sym_addr = 0;
13437d4b
KB
2196
2197 /* Now we need to figure out where the dynamic linker was
2198 loaded so that we can load its symbols and place a breakpoint
2199 in the dynamic linker itself.
2200
2201 This address is stored on the stack. However, I've been unable
2202 to find any magic formula to find it for Solaris (appears to
2203 be trivial on GNU/Linux). Therefore, we have to try an alternate
2204 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2205
f1838a98
UW
2206 TRY_CATCH (ex, RETURN_MASK_ALL)
2207 {
97ec2c2f 2208 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2209 }
13437d4b
KB
2210 if (tmp_bfd == NULL)
2211 goto bkpt_at_symbol;
2212
2f4950cd 2213 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2214 well as BFD operations can be used. */
2f4950cd 2215 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2216 /* target_bfd_reopen acquired its own reference, so we can
2217 release ours now. */
2218 gdb_bfd_unref (tmp_bfd);
2f4950cd 2219
f8766ec1
KB
2220 /* On a running target, we can get the dynamic linker's base
2221 address from the shared library table. */
f8766ec1
KB
2222 so = master_so_list ();
2223 while (so)
8ad2fcde 2224 {
97ec2c2f 2225 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2226 {
2227 load_addr_found = 1;
2ec9a4f8 2228 loader_found_in_list = 1;
b23518f0 2229 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2230 break;
2231 }
f8766ec1 2232 so = so->next;
8ad2fcde
KB
2233 }
2234
8d4e36ba
JB
2235 /* If we were not able to find the base address of the loader
2236 from our so_list, then try using the AT_BASE auxilliary entry. */
2237 if (!load_addr_found)
2238 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2239 {
f5656ead 2240 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2241
2242 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2243 that `+ load_addr' will overflow CORE_ADDR width not creating
2244 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2245 GDB. */
2246
d182d057 2247 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2248 {
d182d057 2249 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2250 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2251 tmp_bfd_target);
2252
2253 gdb_assert (load_addr < space_size);
2254
2255 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2256 64bit ld.so with 32bit executable, it should not happen. */
2257
2258 if (tmp_entry_point < space_size
2259 && tmp_entry_point + load_addr >= space_size)
2260 load_addr -= space_size;
2261 }
2262
2263 load_addr_found = 1;
2264 }
8d4e36ba 2265
8ad2fcde
KB
2266 /* Otherwise we find the dynamic linker's base address by examining
2267 the current pc (which should point at the entry point for the
8d4e36ba
JB
2268 dynamic linker) and subtracting the offset of the entry point.
2269
2270 This is more fragile than the previous approaches, but is a good
2271 fallback method because it has actually been working well in
2272 most cases. */
8ad2fcde 2273 if (!load_addr_found)
fb14de7b 2274 {
c2250ad1 2275 struct regcache *regcache
f5656ead 2276 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2277
fb14de7b
UW
2278 load_addr = (regcache_read_pc (regcache)
2279 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2280 }
2ec9a4f8
DJ
2281
2282 if (!loader_found_in_list)
34439770 2283 {
1a816a87
PA
2284 info->debug_loader_name = xstrdup (interp_name);
2285 info->debug_loader_offset_p = 1;
2286 info->debug_loader_offset = load_addr;
268a4a75 2287 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2288 }
13437d4b
KB
2289
2290 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2291 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2292 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2293 if (interp_sect)
2294 {
6c95b8df 2295 info->interp_text_sect_low =
13437d4b 2296 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2297 info->interp_text_sect_high =
2298 info->interp_text_sect_low
2299 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2300 }
2301 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2302 if (interp_sect)
2303 {
6c95b8df 2304 info->interp_plt_sect_low =
13437d4b 2305 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2306 info->interp_plt_sect_high =
2307 info->interp_plt_sect_low
2308 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2309 }
2310
2311 /* Now try to set a breakpoint in the dynamic linker. */
2312 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2313 {
cb457ae2
YQ
2314 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2315 (void *) *bkpt_namep);
13437d4b
KB
2316 if (sym_addr != 0)
2317 break;
2318 }
2319
2bbe3cc1
DJ
2320 if (sym_addr != 0)
2321 /* Convert 'sym_addr' from a function pointer to an address.
2322 Because we pass tmp_bfd_target instead of the current
2323 target, this will always produce an unrelocated value. */
f5656ead 2324 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2325 sym_addr,
2326 tmp_bfd_target);
2327
695c3173
TT
2328 /* We're done with both the temporary bfd and target. Closing
2329 the target closes the underlying bfd, because it holds the
2330 only remaining reference. */
460014f5 2331 target_close (tmp_bfd_target);
13437d4b
KB
2332
2333 if (sym_addr != 0)
2334 {
f9e14852
GB
2335 svr4_create_solib_event_breakpoints (target_gdbarch (),
2336 load_addr + sym_addr);
97ec2c2f 2337 xfree (interp_name);
13437d4b
KB
2338 return 1;
2339 }
2340
2341 /* For whatever reason we couldn't set a breakpoint in the dynamic
2342 linker. Warn and drop into the old code. */
2343 bkpt_at_symbol:
97ec2c2f 2344 xfree (interp_name);
82d03102
PG
2345 warning (_("Unable to find dynamic linker breakpoint function.\n"
2346 "GDB will be unable to debug shared library initializers\n"
2347 "and track explicitly loaded dynamic code."));
13437d4b 2348 }
13437d4b 2349
e499d0f1
DJ
2350 /* Scan through the lists of symbols, trying to look up the symbol and
2351 set a breakpoint there. Terminate loop when we/if we succeed. */
2352
2353 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2354 {
2355 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2356 if ((msymbol.minsym != NULL)
77e371c0 2357 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2358 {
77e371c0 2359 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2360 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2361 sym_addr,
2362 &current_target);
f9e14852 2363 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2364 return 1;
2365 }
2366 }
13437d4b 2367
fb139f32 2368 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2369 {
c6490bf2 2370 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2371 {
c6490bf2 2372 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2373 if ((msymbol.minsym != NULL)
77e371c0 2374 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2375 {
77e371c0 2376 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2377 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2378 sym_addr,
2379 &current_target);
f9e14852 2380 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2381 return 1;
2382 }
13437d4b
KB
2383 }
2384 }
542c95c2 2385 return 0;
13437d4b
KB
2386}
2387
7f86f058 2388/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
2389
2390static void
2391svr4_special_symbol_handling (void)
2392{
7f86f058 2393 /* Nothing to do. */
13437d4b
KB
2394}
2395
09919ac2
JK
2396/* Read the ELF program headers from ABFD. Return the contents and
2397 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2398
09919ac2
JK
2399static gdb_byte *
2400read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2401{
09919ac2
JK
2402 Elf_Internal_Ehdr *ehdr;
2403 gdb_byte *buf;
e2a44558 2404
09919ac2 2405 ehdr = elf_elfheader (abfd);
b8040f19 2406
09919ac2
JK
2407 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2408 if (*phdrs_size == 0)
2409 return NULL;
2410
2411 buf = xmalloc (*phdrs_size);
2412 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2413 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2414 {
2415 xfree (buf);
2416 return NULL;
2417 }
2418
2419 return buf;
b8040f19
JK
2420}
2421
01c30d6e
JK
2422/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2423 exec_bfd. Otherwise return 0.
2424
2425 We relocate all of the sections by the same amount. This
c378eb4e 2426 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2427 According to the System V Application Binary Interface,
2428 Edition 4.1, page 5-5:
2429
2430 ... Though the system chooses virtual addresses for
2431 individual processes, it maintains the segments' relative
2432 positions. Because position-independent code uses relative
2433 addressesing between segments, the difference between
2434 virtual addresses in memory must match the difference
2435 between virtual addresses in the file. The difference
2436 between the virtual address of any segment in memory and
2437 the corresponding virtual address in the file is thus a
2438 single constant value for any one executable or shared
2439 object in a given process. This difference is the base
2440 address. One use of the base address is to relocate the
2441 memory image of the program during dynamic linking.
2442
2443 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2444 ABI and is left unspecified in some of the earlier editions.
2445
2446 Decide if the objfile needs to be relocated. As indicated above, we will
2447 only be here when execution is stopped. But during attachment PC can be at
2448 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2449 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2450 regcache_read_pc would point to the interpreter and not the main executable.
2451
2452 So, to summarize, relocations are necessary when the start address obtained
2453 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2454
09919ac2
JK
2455 [ The astute reader will note that we also test to make sure that
2456 the executable in question has the DYNAMIC flag set. It is my
2457 opinion that this test is unnecessary (undesirable even). It
2458 was added to avoid inadvertent relocation of an executable
2459 whose e_type member in the ELF header is not ET_DYN. There may
2460 be a time in the future when it is desirable to do relocations
2461 on other types of files as well in which case this condition
2462 should either be removed or modified to accomodate the new file
2463 type. - Kevin, Nov 2000. ] */
b8040f19 2464
01c30d6e
JK
2465static int
2466svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2467{
41752192
JK
2468 /* ENTRY_POINT is a possible function descriptor - before
2469 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 2470 CORE_ADDR entry_point, displacement;
b8040f19
JK
2471
2472 if (exec_bfd == NULL)
2473 return 0;
2474
09919ac2
JK
2475 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2476 being executed themselves and PIE (Position Independent Executable)
2477 executables are ET_DYN. */
2478
2479 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2480 return 0;
2481
2482 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2483 return 0;
2484
2485 displacement = entry_point - bfd_get_start_address (exec_bfd);
2486
2487 /* Verify the DISPLACEMENT candidate complies with the required page
2488 alignment. It is cheaper than the program headers comparison below. */
2489
2490 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2491 {
2492 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2493
2494 /* p_align of PT_LOAD segments does not specify any alignment but
2495 only congruency of addresses:
2496 p_offset % p_align == p_vaddr % p_align
2497 Kernel is free to load the executable with lower alignment. */
2498
2499 if ((displacement & (elf->minpagesize - 1)) != 0)
2500 return 0;
2501 }
2502
2503 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2504 comparing their program headers. If the program headers in the auxilliary
2505 vector do not match the program headers in the executable, then we are
2506 looking at a different file than the one used by the kernel - for
2507 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2508
2509 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2510 {
2511 /* Be optimistic and clear OK only if GDB was able to verify the headers
2512 really do not match. */
2513 int phdrs_size, phdrs2_size, ok = 1;
2514 gdb_byte *buf, *buf2;
0a1e94c7 2515 int arch_size;
09919ac2 2516
0a1e94c7 2517 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 2518 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2519 if (buf != NULL && buf2 != NULL)
2520 {
f5656ead 2521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2522
2523 /* We are dealing with three different addresses. EXEC_BFD
2524 represents current address in on-disk file. target memory content
2525 may be different from EXEC_BFD as the file may have been prelinked
2526 to a different address after the executable has been loaded.
2527 Moreover the address of placement in target memory can be
3e43a32a
MS
2528 different from what the program headers in target memory say -
2529 this is the goal of PIE.
0a1e94c7
JK
2530
2531 Detected DISPLACEMENT covers both the offsets of PIE placement and
2532 possible new prelink performed after start of the program. Here
2533 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2534 content offset for the verification purpose. */
2535
2536 if (phdrs_size != phdrs2_size
2537 || bfd_get_arch_size (exec_bfd) != arch_size)
2538 ok = 0;
3e43a32a
MS
2539 else if (arch_size == 32
2540 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2541 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2542 {
2543 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2544 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2545 CORE_ADDR displacement = 0;
2546 int i;
2547
2548 /* DISPLACEMENT could be found more easily by the difference of
2549 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2550 already have enough information to compute that displacement
2551 with what we've read. */
2552
2553 for (i = 0; i < ehdr2->e_phnum; i++)
2554 if (phdr2[i].p_type == PT_LOAD)
2555 {
2556 Elf32_External_Phdr *phdrp;
2557 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2558 CORE_ADDR vaddr, paddr;
2559 CORE_ADDR displacement_vaddr = 0;
2560 CORE_ADDR displacement_paddr = 0;
2561
2562 phdrp = &((Elf32_External_Phdr *) buf)[i];
2563 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2564 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2565
2566 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2567 byte_order);
2568 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2569
2570 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2571 byte_order);
2572 displacement_paddr = paddr - phdr2[i].p_paddr;
2573
2574 if (displacement_vaddr == displacement_paddr)
2575 displacement = displacement_vaddr;
2576
2577 break;
2578 }
2579
2580 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2581
2582 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2583 {
2584 Elf32_External_Phdr *phdrp;
2585 Elf32_External_Phdr *phdr2p;
2586 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2587 CORE_ADDR vaddr, paddr;
43b8e241 2588 asection *plt2_asect;
0a1e94c7
JK
2589
2590 phdrp = &((Elf32_External_Phdr *) buf)[i];
2591 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2592 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2593 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2594
2595 /* PT_GNU_STACK is an exception by being never relocated by
2596 prelink as its addresses are always zero. */
2597
2598 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2599 continue;
2600
2601 /* Check also other adjustment combinations - PR 11786. */
2602
3e43a32a
MS
2603 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2604 byte_order);
0a1e94c7
JK
2605 vaddr -= displacement;
2606 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2607
3e43a32a
MS
2608 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2609 byte_order);
0a1e94c7
JK
2610 paddr -= displacement;
2611 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2612
2613 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2614 continue;
2615
204b5331
DE
2616 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2617 CentOS-5 has problems with filesz, memsz as well.
2618 See PR 11786. */
2619 if (phdr2[i].p_type == PT_GNU_RELRO)
2620 {
2621 Elf32_External_Phdr tmp_phdr = *phdrp;
2622 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2623
2624 memset (tmp_phdr.p_filesz, 0, 4);
2625 memset (tmp_phdr.p_memsz, 0, 4);
2626 memset (tmp_phdr.p_flags, 0, 4);
2627 memset (tmp_phdr.p_align, 0, 4);
2628 memset (tmp_phdr2.p_filesz, 0, 4);
2629 memset (tmp_phdr2.p_memsz, 0, 4);
2630 memset (tmp_phdr2.p_flags, 0, 4);
2631 memset (tmp_phdr2.p_align, 0, 4);
2632
2633 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2634 == 0)
2635 continue;
2636 }
2637
43b8e241
JK
2638 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2639 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2640 if (plt2_asect)
2641 {
2642 int content2;
2643 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2644 CORE_ADDR filesz;
2645
2646 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2647 & SEC_HAS_CONTENTS) != 0;
2648
2649 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2650 byte_order);
2651
2652 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2653 FILESZ is from the in-memory image. */
2654 if (content2)
2655 filesz += bfd_get_section_size (plt2_asect);
2656 else
2657 filesz -= bfd_get_section_size (plt2_asect);
2658
2659 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2660 filesz);
2661
2662 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2663 continue;
2664 }
2665
0a1e94c7
JK
2666 ok = 0;
2667 break;
2668 }
2669 }
3e43a32a
MS
2670 else if (arch_size == 64
2671 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2672 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2673 {
2674 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2675 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2676 CORE_ADDR displacement = 0;
2677 int i;
2678
2679 /* DISPLACEMENT could be found more easily by the difference of
2680 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2681 already have enough information to compute that displacement
2682 with what we've read. */
2683
2684 for (i = 0; i < ehdr2->e_phnum; i++)
2685 if (phdr2[i].p_type == PT_LOAD)
2686 {
2687 Elf64_External_Phdr *phdrp;
2688 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2689 CORE_ADDR vaddr, paddr;
2690 CORE_ADDR displacement_vaddr = 0;
2691 CORE_ADDR displacement_paddr = 0;
2692
2693 phdrp = &((Elf64_External_Phdr *) buf)[i];
2694 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2695 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2696
2697 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2698 byte_order);
2699 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2700
2701 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2702 byte_order);
2703 displacement_paddr = paddr - phdr2[i].p_paddr;
2704
2705 if (displacement_vaddr == displacement_paddr)
2706 displacement = displacement_vaddr;
2707
2708 break;
2709 }
2710
2711 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2712
2713 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2714 {
2715 Elf64_External_Phdr *phdrp;
2716 Elf64_External_Phdr *phdr2p;
2717 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2718 CORE_ADDR vaddr, paddr;
43b8e241 2719 asection *plt2_asect;
0a1e94c7
JK
2720
2721 phdrp = &((Elf64_External_Phdr *) buf)[i];
2722 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2723 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2724 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2725
2726 /* PT_GNU_STACK is an exception by being never relocated by
2727 prelink as its addresses are always zero. */
2728
2729 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2730 continue;
2731
2732 /* Check also other adjustment combinations - PR 11786. */
2733
3e43a32a
MS
2734 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2735 byte_order);
0a1e94c7
JK
2736 vaddr -= displacement;
2737 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2738
3e43a32a
MS
2739 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2740 byte_order);
0a1e94c7
JK
2741 paddr -= displacement;
2742 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2743
2744 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2745 continue;
2746
204b5331
DE
2747 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2748 CentOS-5 has problems with filesz, memsz as well.
2749 See PR 11786. */
2750 if (phdr2[i].p_type == PT_GNU_RELRO)
2751 {
2752 Elf64_External_Phdr tmp_phdr = *phdrp;
2753 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2754
2755 memset (tmp_phdr.p_filesz, 0, 8);
2756 memset (tmp_phdr.p_memsz, 0, 8);
2757 memset (tmp_phdr.p_flags, 0, 4);
2758 memset (tmp_phdr.p_align, 0, 8);
2759 memset (tmp_phdr2.p_filesz, 0, 8);
2760 memset (tmp_phdr2.p_memsz, 0, 8);
2761 memset (tmp_phdr2.p_flags, 0, 4);
2762 memset (tmp_phdr2.p_align, 0, 8);
2763
2764 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2765 == 0)
2766 continue;
2767 }
2768
43b8e241
JK
2769 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2770 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2771 if (plt2_asect)
2772 {
2773 int content2;
2774 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2775 CORE_ADDR filesz;
2776
2777 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2778 & SEC_HAS_CONTENTS) != 0;
2779
2780 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2781 byte_order);
2782
2783 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2784 FILESZ is from the in-memory image. */
2785 if (content2)
2786 filesz += bfd_get_section_size (plt2_asect);
2787 else
2788 filesz -= bfd_get_section_size (plt2_asect);
2789
2790 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2791 filesz);
2792
2793 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2794 continue;
2795 }
2796
0a1e94c7
JK
2797 ok = 0;
2798 break;
2799 }
2800 }
2801 else
2802 ok = 0;
2803 }
09919ac2
JK
2804
2805 xfree (buf);
2806 xfree (buf2);
2807
2808 if (!ok)
2809 return 0;
2810 }
b8040f19 2811
ccf26247
JK
2812 if (info_verbose)
2813 {
2814 /* It can be printed repeatedly as there is no easy way to check
2815 the executable symbols/file has been already relocated to
2816 displacement. */
2817
2818 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2819 "displacement %s for \"%s\".\n"),
f5656ead 2820 paddress (target_gdbarch (), displacement),
ccf26247
JK
2821 bfd_get_filename (exec_bfd));
2822 }
2823
01c30d6e
JK
2824 *displacementp = displacement;
2825 return 1;
b8040f19
JK
2826}
2827
2828/* Relocate the main executable. This function should be called upon
c378eb4e 2829 stopping the inferior process at the entry point to the program.
b8040f19
JK
2830 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2831 different, the main executable is relocated by the proper amount. */
2832
2833static void
2834svr4_relocate_main_executable (void)
2835{
01c30d6e
JK
2836 CORE_ADDR displacement;
2837
4e5799b6
JK
2838 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2839 probably contains the offsets computed using the PIE displacement
2840 from the previous run, which of course are irrelevant for this run.
2841 So we need to determine the new PIE displacement and recompute the
2842 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2843 already contains pre-computed offsets.
01c30d6e 2844
4e5799b6 2845 If we cannot compute the PIE displacement, either:
01c30d6e 2846
4e5799b6
JK
2847 - The executable is not PIE.
2848
2849 - SYMFILE_OBJFILE does not match the executable started in the target.
2850 This can happen for main executable symbols loaded at the host while
2851 `ld.so --ld-args main-executable' is loaded in the target.
2852
2853 Then we leave the section offsets untouched and use them as is for
2854 this run. Either:
2855
2856 - These section offsets were properly reset earlier, and thus
2857 already contain the correct values. This can happen for instance
2858 when reconnecting via the remote protocol to a target that supports
2859 the `qOffsets' packet.
2860
2861 - The section offsets were not reset earlier, and the best we can
c378eb4e 2862 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2863
2864 if (! svr4_exec_displacement (&displacement))
2865 return;
b8040f19 2866
01c30d6e
JK
2867 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2868 addresses. */
b8040f19
JK
2869
2870 if (symfile_objfile)
e2a44558 2871 {
e2a44558 2872 struct section_offsets *new_offsets;
b8040f19 2873 int i;
e2a44558 2874
b8040f19
JK
2875 new_offsets = alloca (symfile_objfile->num_sections
2876 * sizeof (*new_offsets));
e2a44558 2877
b8040f19
JK
2878 for (i = 0; i < symfile_objfile->num_sections; i++)
2879 new_offsets->offsets[i] = displacement;
e2a44558 2880
b8040f19 2881 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2882 }
51bee8e9
JK
2883 else if (exec_bfd)
2884 {
2885 asection *asect;
2886
2887 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2888 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2889 (bfd_section_vma (exec_bfd, asect)
2890 + displacement));
2891 }
e2a44558
KB
2892}
2893
7f86f058 2894/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2895
2896 For SVR4 executables, this first instruction is either the first
2897 instruction in the dynamic linker (for dynamically linked
2898 executables) or the instruction at "start" for statically linked
2899 executables. For dynamically linked executables, the system
2900 first exec's /lib/libc.so.N, which contains the dynamic linker,
2901 and starts it running. The dynamic linker maps in any needed
2902 shared libraries, maps in the actual user executable, and then
2903 jumps to "start" in the user executable.
2904
7f86f058
PA
2905 We can arrange to cooperate with the dynamic linker to discover the
2906 names of shared libraries that are dynamically linked, and the base
2907 addresses to which they are linked.
13437d4b
KB
2908
2909 This function is responsible for discovering those names and
2910 addresses, and saving sufficient information about them to allow
d2e5c99a 2911 their symbols to be read at a later time. */
13437d4b 2912
e2a44558 2913static void
268a4a75 2914svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2915{
1a816a87
PA
2916 struct svr4_info *info;
2917
6c95b8df 2918 info = get_svr4_info ();
2020b7ab 2919
f9e14852
GB
2920 /* Clear the probes-based interface's state. */
2921 free_probes_table (info);
2922 free_solib_list (info);
2923
e2a44558 2924 /* Relocate the main executable if necessary. */
86e4bafc 2925 svr4_relocate_main_executable ();
e2a44558 2926
c91c8c16
PA
2927 /* No point setting a breakpoint in the dynamic linker if we can't
2928 hit it (e.g., a core file, or a trace file). */
2929 if (!target_has_execution)
2930 return;
2931
d5a921c9 2932 if (!svr4_have_link_map_offsets ())
513f5903 2933 return;
d5a921c9 2934
268a4a75 2935 if (!enable_break (info, from_tty))
542c95c2 2936 return;
13437d4b
KB
2937}
2938
2939static void
2940svr4_clear_solib (void)
2941{
6c95b8df
PA
2942 struct svr4_info *info;
2943
2944 info = get_svr4_info ();
2945 info->debug_base = 0;
2946 info->debug_loader_offset_p = 0;
2947 info->debug_loader_offset = 0;
2948 xfree (info->debug_loader_name);
2949 info->debug_loader_name = NULL;
13437d4b
KB
2950}
2951
6bb7be43
JB
2952/* Clear any bits of ADDR that wouldn't fit in a target-format
2953 data pointer. "Data pointer" here refers to whatever sort of
2954 address the dynamic linker uses to manage its sections. At the
2955 moment, we don't support shared libraries on any processors where
2956 code and data pointers are different sizes.
2957
2958 This isn't really the right solution. What we really need here is
2959 a way to do arithmetic on CORE_ADDR values that respects the
2960 natural pointer/address correspondence. (For example, on the MIPS,
2961 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2962 sign-extend the value. There, simply truncating the bits above
819844ad 2963 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2964 be a new gdbarch method or something. */
2965static CORE_ADDR
2966svr4_truncate_ptr (CORE_ADDR addr)
2967{
f5656ead 2968 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2969 /* We don't need to truncate anything, and the bit twiddling below
2970 will fail due to overflow problems. */
2971 return addr;
2972 else
f5656ead 2973 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
2974}
2975
2976
749499cb
KB
2977static void
2978svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2979 struct target_section *sec)
749499cb 2980{
2b2848e2
DE
2981 bfd *abfd = sec->the_bfd_section->owner;
2982
2983 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2984 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 2985}
4b188b9f 2986\f
749499cb 2987
4b188b9f 2988/* Architecture-specific operations. */
6bb7be43 2989
4b188b9f
MK
2990/* Per-architecture data key. */
2991static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2992
4b188b9f 2993struct solib_svr4_ops
e5e2b9ff 2994{
4b188b9f
MK
2995 /* Return a description of the layout of `struct link_map'. */
2996 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2997};
e5e2b9ff 2998
4b188b9f 2999/* Return a default for the architecture-specific operations. */
e5e2b9ff 3000
4b188b9f
MK
3001static void *
3002solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3003{
4b188b9f 3004 struct solib_svr4_ops *ops;
e5e2b9ff 3005
4b188b9f 3006 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3007 ops->fetch_link_map_offsets = NULL;
4b188b9f 3008 return ops;
e5e2b9ff
KB
3009}
3010
4b188b9f 3011/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3012 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3013
21479ded 3014void
e5e2b9ff
KB
3015set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3016 struct link_map_offsets *(*flmo) (void))
21479ded 3017{
4b188b9f
MK
3018 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3019
3020 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3021
3022 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3023}
3024
4b188b9f
MK
3025/* Fetch a link_map_offsets structure using the architecture-specific
3026 `struct link_map_offsets' fetcher. */
1c4dcb57 3027
4b188b9f
MK
3028static struct link_map_offsets *
3029svr4_fetch_link_map_offsets (void)
21479ded 3030{
f5656ead 3031 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
3032
3033 gdb_assert (ops->fetch_link_map_offsets);
3034 return ops->fetch_link_map_offsets ();
21479ded
KB
3035}
3036
4b188b9f
MK
3037/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3038
3039static int
3040svr4_have_link_map_offsets (void)
3041{
f5656ead 3042 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 3043
4b188b9f
MK
3044 return (ops->fetch_link_map_offsets != NULL);
3045}
3046\f
3047
e4bbbda8
MK
3048/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3049 `struct r_debug' and a `struct link_map' that are binary compatible
3050 with the origional SVR4 implementation. */
3051
3052/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3053 for an ILP32 SVR4 system. */
d989b283 3054
e4bbbda8
MK
3055struct link_map_offsets *
3056svr4_ilp32_fetch_link_map_offsets (void)
3057{
3058 static struct link_map_offsets lmo;
3059 static struct link_map_offsets *lmp = NULL;
3060
3061 if (lmp == NULL)
3062 {
3063 lmp = &lmo;
3064
e4cd0d6a
MK
3065 lmo.r_version_offset = 0;
3066 lmo.r_version_size = 4;
e4bbbda8 3067 lmo.r_map_offset = 4;
7cd25cfc 3068 lmo.r_brk_offset = 8;
e4cd0d6a 3069 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3070
3071 /* Everything we need is in the first 20 bytes. */
3072 lmo.link_map_size = 20;
3073 lmo.l_addr_offset = 0;
e4bbbda8 3074 lmo.l_name_offset = 4;
cc10cae3 3075 lmo.l_ld_offset = 8;
e4bbbda8 3076 lmo.l_next_offset = 12;
e4bbbda8 3077 lmo.l_prev_offset = 16;
e4bbbda8
MK
3078 }
3079
3080 return lmp;
3081}
3082
3083/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3084 for an LP64 SVR4 system. */
d989b283 3085
e4bbbda8
MK
3086struct link_map_offsets *
3087svr4_lp64_fetch_link_map_offsets (void)
3088{
3089 static struct link_map_offsets lmo;
3090 static struct link_map_offsets *lmp = NULL;
3091
3092 if (lmp == NULL)
3093 {
3094 lmp = &lmo;
3095
e4cd0d6a
MK
3096 lmo.r_version_offset = 0;
3097 lmo.r_version_size = 4;
e4bbbda8 3098 lmo.r_map_offset = 8;
7cd25cfc 3099 lmo.r_brk_offset = 16;
e4cd0d6a 3100 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3101
3102 /* Everything we need is in the first 40 bytes. */
3103 lmo.link_map_size = 40;
3104 lmo.l_addr_offset = 0;
e4bbbda8 3105 lmo.l_name_offset = 8;
cc10cae3 3106 lmo.l_ld_offset = 16;
e4bbbda8 3107 lmo.l_next_offset = 24;
e4bbbda8 3108 lmo.l_prev_offset = 32;
e4bbbda8
MK
3109 }
3110
3111 return lmp;
3112}
3113\f
3114
7d522c90 3115struct target_so_ops svr4_so_ops;
13437d4b 3116
c378eb4e 3117/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3118 different rule for symbol lookup. The lookup begins here in the DSO, not in
3119 the main executable. */
3120
3121static struct symbol *
3122elf_lookup_lib_symbol (const struct objfile *objfile,
3123 const char *name,
21b556f4 3124 const domain_enum domain)
3a40aaa0 3125{
61f0d762
JK
3126 bfd *abfd;
3127
3128 if (objfile == symfile_objfile)
3129 abfd = exec_bfd;
3130 else
3131 {
3132 /* OBJFILE should have been passed as the non-debug one. */
3133 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3134
3135 abfd = objfile->obfd;
3136 }
3137
3138 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
3139 return NULL;
3140
94af9270 3141 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3142}
3143
a78f21af
AC
3144extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3145
13437d4b
KB
3146void
3147_initialize_svr4_solib (void)
3148{
4b188b9f 3149 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3150 solib_svr4_pspace_data
8e260fc0 3151 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3152
749499cb 3153 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3154 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3155 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3156 svr4_so_ops.clear_solib = svr4_clear_solib;
3157 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3158 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3159 svr4_so_ops.current_sos = svr4_current_sos;
3160 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3161 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3162 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3163 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3164 svr4_so_ops.same = svr4_same;
de18c1d8 3165 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3166 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3167 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3168}
This page took 1.964377 seconds and 4 git commands to generate.