Commit | Line | Data |
---|---|---|
ab31aa69 | 1 | /* Handle SVR4 shared libraries for GDB, the GNU Debugger. |
2f4950cd | 2 | |
6aba47ca | 3 | Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, |
9b254dd1 | 4 | 2001, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. |
13437d4b KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
13437d4b KB |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
13437d4b | 20 | |
13437d4b KB |
21 | #include "defs.h" |
22 | ||
13437d4b | 23 | #include "elf/external.h" |
21479ded | 24 | #include "elf/common.h" |
f7856c8f | 25 | #include "elf/mips.h" |
13437d4b KB |
26 | |
27 | #include "symtab.h" | |
28 | #include "bfd.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcore.h" | |
13437d4b | 32 | #include "target.h" |
13437d4b | 33 | #include "inferior.h" |
13437d4b | 34 | |
4b188b9f MK |
35 | #include "gdb_assert.h" |
36 | ||
13437d4b | 37 | #include "solist.h" |
bba93f6c | 38 | #include "solib.h" |
13437d4b KB |
39 | #include "solib-svr4.h" |
40 | ||
2f4950cd | 41 | #include "bfd-target.h" |
cc10cae3 | 42 | #include "elf-bfd.h" |
2f4950cd | 43 | #include "exec.h" |
8d4e36ba | 44 | #include "auxv.h" |
2f4950cd | 45 | |
e5e2b9ff | 46 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); |
d5a921c9 | 47 | static int svr4_have_link_map_offsets (void); |
1c4dcb57 | 48 | |
13437d4b KB |
49 | /* Link map info to include in an allocated so_list entry */ |
50 | ||
51 | struct lm_info | |
52 | { | |
53 | /* Pointer to copy of link map from inferior. The type is char * | |
54 | rather than void *, so that we may use byte offsets to find the | |
55 | various fields without the need for a cast. */ | |
4066fc10 | 56 | gdb_byte *lm; |
cc10cae3 AO |
57 | |
58 | /* Amount by which addresses in the binary should be relocated to | |
59 | match the inferior. This could most often be taken directly | |
60 | from lm, but when prelinking is involved and the prelink base | |
61 | address changes, we may need a different offset, we want to | |
62 | warn about the difference and compute it only once. */ | |
63 | CORE_ADDR l_addr; | |
93a57060 DJ |
64 | |
65 | /* The target location of lm. */ | |
66 | CORE_ADDR lm_addr; | |
13437d4b KB |
67 | }; |
68 | ||
69 | /* On SVR4 systems, a list of symbols in the dynamic linker where | |
70 | GDB can try to place a breakpoint to monitor shared library | |
71 | events. | |
72 | ||
73 | If none of these symbols are found, or other errors occur, then | |
74 | SVR4 systems will fall back to using a symbol as the "startup | |
75 | mapping complete" breakpoint address. */ | |
76 | ||
13437d4b KB |
77 | static char *solib_break_names[] = |
78 | { | |
79 | "r_debug_state", | |
80 | "_r_debug_state", | |
81 | "_dl_debug_state", | |
82 | "rtld_db_dlactivity", | |
1f72e589 | 83 | "_rtld_debug_state", |
4c0122c8 | 84 | |
13437d4b KB |
85 | NULL |
86 | }; | |
13437d4b KB |
87 | |
88 | #define BKPT_AT_SYMBOL 1 | |
89 | ||
ab31aa69 | 90 | #if defined (BKPT_AT_SYMBOL) |
13437d4b KB |
91 | static char *bkpt_names[] = |
92 | { | |
93 | #ifdef SOLIB_BKPT_NAME | |
94 | SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */ | |
95 | #endif | |
96 | "_start", | |
ad3dcc5c | 97 | "__start", |
13437d4b KB |
98 | "main", |
99 | NULL | |
100 | }; | |
101 | #endif | |
102 | ||
13437d4b KB |
103 | static char *main_name_list[] = |
104 | { | |
105 | "main_$main", | |
106 | NULL | |
107 | }; | |
108 | ||
4d7b2d5b JB |
109 | /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent |
110 | the same shared library. */ | |
111 | ||
112 | static int | |
113 | svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) | |
114 | { | |
115 | if (strcmp (gdb_so_name, inferior_so_name) == 0) | |
116 | return 1; | |
117 | ||
118 | /* On Solaris, when starting inferior we think that dynamic linker is | |
119 | /usr/lib/ld.so.1, but later on, the table of loaded shared libraries | |
120 | contains /lib/ld.so.1. Sometimes one file is a link to another, but | |
121 | sometimes they have identical content, but are not linked to each | |
122 | other. We don't restrict this check for Solaris, but the chances | |
123 | of running into this situation elsewhere are very low. */ | |
124 | if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 | |
125 | && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) | |
126 | return 1; | |
127 | ||
128 | /* Similarly, we observed the same issue with sparc64, but with | |
129 | different locations. */ | |
130 | if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 | |
131 | && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) | |
132 | return 1; | |
133 | ||
134 | return 0; | |
135 | } | |
136 | ||
137 | static int | |
138 | svr4_same (struct so_list *gdb, struct so_list *inferior) | |
139 | { | |
140 | return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); | |
141 | } | |
142 | ||
13437d4b KB |
143 | /* link map access functions */ |
144 | ||
145 | static CORE_ADDR | |
cc10cae3 | 146 | LM_ADDR_FROM_LINK_MAP (struct so_list *so) |
13437d4b | 147 | { |
4b188b9f | 148 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 149 | |
cfaefc65 AS |
150 | return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset, |
151 | builtin_type_void_data_ptr); | |
13437d4b KB |
152 | } |
153 | ||
cc10cae3 AO |
154 | static int |
155 | HAS_LM_DYNAMIC_FROM_LINK_MAP () | |
156 | { | |
157 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
158 | ||
cfaefc65 | 159 | return lmo->l_ld_offset >= 0; |
cc10cae3 AO |
160 | } |
161 | ||
162 | static CORE_ADDR | |
163 | LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so) | |
164 | { | |
165 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
166 | ||
cfaefc65 AS |
167 | return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset, |
168 | builtin_type_void_data_ptr); | |
cc10cae3 AO |
169 | } |
170 | ||
171 | static CORE_ADDR | |
172 | LM_ADDR_CHECK (struct so_list *so, bfd *abfd) | |
173 | { | |
174 | if (so->lm_info->l_addr == (CORE_ADDR)-1) | |
175 | { | |
176 | struct bfd_section *dyninfo_sect; | |
177 | CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000; | |
178 | ||
179 | l_addr = LM_ADDR_FROM_LINK_MAP (so); | |
180 | ||
181 | if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ()) | |
182 | goto set_addr; | |
183 | ||
184 | l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so); | |
185 | ||
186 | dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
187 | if (dyninfo_sect == NULL) | |
188 | goto set_addr; | |
189 | ||
190 | dynaddr = bfd_section_vma (abfd, dyninfo_sect); | |
191 | ||
192 | if (dynaddr + l_addr != l_dynaddr) | |
193 | { | |
cc10cae3 AO |
194 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
195 | { | |
196 | Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; | |
197 | Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; | |
198 | int i; | |
199 | ||
200 | align = 1; | |
201 | ||
202 | for (i = 0; i < ehdr->e_phnum; i++) | |
203 | if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) | |
204 | align = phdr[i].p_align; | |
205 | } | |
206 | ||
207 | /* Turn it into a mask. */ | |
208 | align--; | |
209 | ||
210 | /* If the changes match the alignment requirements, we | |
211 | assume we're using a core file that was generated by the | |
212 | same binary, just prelinked with a different base offset. | |
213 | If it doesn't match, we may have a different binary, the | |
214 | same binary with the dynamic table loaded at an unrelated | |
215 | location, or anything, really. To avoid regressions, | |
216 | don't adjust the base offset in the latter case, although | |
217 | odds are that, if things really changed, debugging won't | |
218 | quite work. */ | |
f1e55806 | 219 | if ((l_addr & align) == ((l_dynaddr - dynaddr) & align)) |
cc10cae3 AO |
220 | { |
221 | l_addr = l_dynaddr - dynaddr; | |
79d4c408 DJ |
222 | |
223 | warning (_(".dynamic section for \"%s\" " | |
224 | "is not at the expected address"), so->so_name); | |
cc10cae3 AO |
225 | warning (_("difference appears to be caused by prelink, " |
226 | "adjusting expectations")); | |
227 | } | |
79d4c408 DJ |
228 | else |
229 | warning (_(".dynamic section for \"%s\" " | |
230 | "is not at the expected address " | |
231 | "(wrong library or version mismatch?)"), so->so_name); | |
cc10cae3 AO |
232 | } |
233 | ||
234 | set_addr: | |
235 | so->lm_info->l_addr = l_addr; | |
236 | } | |
237 | ||
238 | return so->lm_info->l_addr; | |
239 | } | |
240 | ||
13437d4b KB |
241 | static CORE_ADDR |
242 | LM_NEXT (struct so_list *so) | |
243 | { | |
4b188b9f | 244 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 245 | |
cfaefc65 AS |
246 | return extract_typed_address (so->lm_info->lm + lmo->l_next_offset, |
247 | builtin_type_void_data_ptr); | |
13437d4b KB |
248 | } |
249 | ||
250 | static CORE_ADDR | |
251 | LM_NAME (struct so_list *so) | |
252 | { | |
4b188b9f | 253 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 254 | |
cfaefc65 AS |
255 | return extract_typed_address (so->lm_info->lm + lmo->l_name_offset, |
256 | builtin_type_void_data_ptr); | |
13437d4b KB |
257 | } |
258 | ||
13437d4b KB |
259 | static int |
260 | IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so) | |
261 | { | |
4b188b9f | 262 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 263 | |
e499d0f1 DJ |
264 | /* Assume that everything is a library if the dynamic loader was loaded |
265 | late by a static executable. */ | |
266 | if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL) | |
267 | return 0; | |
268 | ||
cfaefc65 AS |
269 | return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset, |
270 | builtin_type_void_data_ptr) == 0; | |
13437d4b KB |
271 | } |
272 | ||
13437d4b | 273 | static CORE_ADDR debug_base; /* Base of dynamic linker structures */ |
13437d4b | 274 | |
34439770 DJ |
275 | /* Validity flag for debug_loader_offset. */ |
276 | static int debug_loader_offset_p; | |
277 | ||
278 | /* Load address for the dynamic linker, inferred. */ | |
279 | static CORE_ADDR debug_loader_offset; | |
280 | ||
281 | /* Name of the dynamic linker, valid if debug_loader_offset_p. */ | |
282 | static char *debug_loader_name; | |
283 | ||
93a57060 DJ |
284 | /* Load map address for the main executable. */ |
285 | static CORE_ADDR main_lm_addr; | |
286 | ||
13437d4b KB |
287 | /* Local function prototypes */ |
288 | ||
289 | static int match_main (char *); | |
290 | ||
2bbe3cc1 | 291 | static CORE_ADDR bfd_lookup_symbol (bfd *, char *); |
13437d4b KB |
292 | |
293 | /* | |
294 | ||
295 | LOCAL FUNCTION | |
296 | ||
297 | bfd_lookup_symbol -- lookup the value for a specific symbol | |
298 | ||
299 | SYNOPSIS | |
300 | ||
2bbe3cc1 | 301 | CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname) |
13437d4b KB |
302 | |
303 | DESCRIPTION | |
304 | ||
305 | An expensive way to lookup the value of a single symbol for | |
306 | bfd's that are only temporary anyway. This is used by the | |
307 | shared library support to find the address of the debugger | |
2bbe3cc1 | 308 | notification routine in the shared library. |
13437d4b | 309 | |
2bbe3cc1 DJ |
310 | The returned symbol may be in a code or data section; functions |
311 | will normally be in a code section, but may be in a data section | |
312 | if this architecture uses function descriptors. | |
87f84c9d | 313 | |
13437d4b KB |
314 | Note that 0 is specifically allowed as an error return (no |
315 | such symbol). | |
316 | */ | |
317 | ||
318 | static CORE_ADDR | |
2bbe3cc1 | 319 | bfd_lookup_symbol (bfd *abfd, char *symname) |
13437d4b | 320 | { |
435b259c | 321 | long storage_needed; |
13437d4b KB |
322 | asymbol *sym; |
323 | asymbol **symbol_table; | |
324 | unsigned int number_of_symbols; | |
325 | unsigned int i; | |
326 | struct cleanup *back_to; | |
327 | CORE_ADDR symaddr = 0; | |
328 | ||
329 | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
330 | ||
331 | if (storage_needed > 0) | |
332 | { | |
333 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
4efb68b1 | 334 | back_to = make_cleanup (xfree, symbol_table); |
13437d4b KB |
335 | number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); |
336 | ||
337 | for (i = 0; i < number_of_symbols; i++) | |
338 | { | |
339 | sym = *symbol_table++; | |
6314a349 | 340 | if (strcmp (sym->name, symname) == 0 |
2bbe3cc1 | 341 | && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0) |
13437d4b | 342 | { |
2bbe3cc1 | 343 | /* BFD symbols are section relative. */ |
13437d4b KB |
344 | symaddr = sym->value + sym->section->vma; |
345 | break; | |
346 | } | |
347 | } | |
348 | do_cleanups (back_to); | |
349 | } | |
350 | ||
351 | if (symaddr) | |
352 | return symaddr; | |
353 | ||
354 | /* On FreeBSD, the dynamic linker is stripped by default. So we'll | |
355 | have to check the dynamic string table too. */ | |
356 | ||
357 | storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); | |
358 | ||
359 | if (storage_needed > 0) | |
360 | { | |
361 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
4efb68b1 | 362 | back_to = make_cleanup (xfree, symbol_table); |
13437d4b KB |
363 | number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table); |
364 | ||
365 | for (i = 0; i < number_of_symbols; i++) | |
366 | { | |
367 | sym = *symbol_table++; | |
87f84c9d | 368 | |
6314a349 | 369 | if (strcmp (sym->name, symname) == 0 |
2bbe3cc1 | 370 | && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0) |
13437d4b | 371 | { |
2bbe3cc1 | 372 | /* BFD symbols are section relative. */ |
13437d4b KB |
373 | symaddr = sym->value + sym->section->vma; |
374 | break; | |
375 | } | |
376 | } | |
377 | do_cleanups (back_to); | |
378 | } | |
379 | ||
380 | return symaddr; | |
381 | } | |
382 | ||
3a40aaa0 UW |
383 | /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is |
384 | returned and the corresponding PTR is set. */ | |
385 | ||
386 | static int | |
387 | scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr) | |
388 | { | |
389 | int arch_size, step, sect_size; | |
390 | long dyn_tag; | |
391 | CORE_ADDR dyn_ptr, dyn_addr; | |
65728c26 | 392 | gdb_byte *bufend, *bufstart, *buf; |
3a40aaa0 UW |
393 | Elf32_External_Dyn *x_dynp_32; |
394 | Elf64_External_Dyn *x_dynp_64; | |
395 | struct bfd_section *sect; | |
396 | ||
397 | if (abfd == NULL) | |
398 | return 0; | |
399 | arch_size = bfd_get_arch_size (abfd); | |
400 | if (arch_size == -1) | |
401 | return 0; | |
402 | ||
403 | /* Find the start address of the .dynamic section. */ | |
404 | sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
405 | if (sect == NULL) | |
406 | return 0; | |
407 | dyn_addr = bfd_section_vma (abfd, sect); | |
408 | ||
65728c26 DJ |
409 | /* Read in .dynamic from the BFD. We will get the actual value |
410 | from memory later. */ | |
3a40aaa0 | 411 | sect_size = bfd_section_size (abfd, sect); |
65728c26 DJ |
412 | buf = bufstart = alloca (sect_size); |
413 | if (!bfd_get_section_contents (abfd, sect, | |
414 | buf, 0, sect_size)) | |
415 | return 0; | |
3a40aaa0 UW |
416 | |
417 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
418 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
419 | : sizeof (Elf64_External_Dyn); | |
420 | for (bufend = buf + sect_size; | |
421 | buf < bufend; | |
422 | buf += step) | |
423 | { | |
424 | if (arch_size == 32) | |
425 | { | |
426 | x_dynp_32 = (Elf32_External_Dyn *) buf; | |
427 | dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag); | |
428 | dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr); | |
429 | } | |
65728c26 | 430 | else |
3a40aaa0 UW |
431 | { |
432 | x_dynp_64 = (Elf64_External_Dyn *) buf; | |
433 | dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag); | |
434 | dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr); | |
435 | } | |
436 | if (dyn_tag == DT_NULL) | |
437 | return 0; | |
438 | if (dyn_tag == dyntag) | |
439 | { | |
65728c26 DJ |
440 | /* If requested, try to read the runtime value of this .dynamic |
441 | entry. */ | |
3a40aaa0 | 442 | if (ptr) |
65728c26 DJ |
443 | { |
444 | gdb_byte ptr_buf[8]; | |
445 | CORE_ADDR ptr_addr; | |
446 | ||
447 | ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8; | |
448 | if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0) | |
449 | dyn_ptr = extract_typed_address (ptr_buf, | |
450 | builtin_type_void_data_ptr); | |
451 | *ptr = dyn_ptr; | |
452 | } | |
453 | return 1; | |
3a40aaa0 UW |
454 | } |
455 | } | |
456 | ||
457 | return 0; | |
458 | } | |
459 | ||
460 | ||
13437d4b KB |
461 | /* |
462 | ||
463 | LOCAL FUNCTION | |
464 | ||
465 | elf_locate_base -- locate the base address of dynamic linker structs | |
466 | for SVR4 elf targets. | |
467 | ||
468 | SYNOPSIS | |
469 | ||
470 | CORE_ADDR elf_locate_base (void) | |
471 | ||
472 | DESCRIPTION | |
473 | ||
474 | For SVR4 elf targets the address of the dynamic linker's runtime | |
475 | structure is contained within the dynamic info section in the | |
476 | executable file. The dynamic section is also mapped into the | |
477 | inferior address space. Because the runtime loader fills in the | |
478 | real address before starting the inferior, we have to read in the | |
479 | dynamic info section from the inferior address space. | |
480 | If there are any errors while trying to find the address, we | |
481 | silently return 0, otherwise the found address is returned. | |
482 | ||
483 | */ | |
484 | ||
485 | static CORE_ADDR | |
486 | elf_locate_base (void) | |
487 | { | |
3a40aaa0 UW |
488 | struct minimal_symbol *msymbol; |
489 | CORE_ADDR dyn_ptr; | |
13437d4b | 490 | |
65728c26 DJ |
491 | /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this |
492 | instead of DT_DEBUG, although they sometimes contain an unused | |
493 | DT_DEBUG. */ | |
3a40aaa0 UW |
494 | if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)) |
495 | { | |
496 | gdb_byte *pbuf; | |
497 | int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr); | |
498 | pbuf = alloca (pbuf_size); | |
499 | /* DT_MIPS_RLD_MAP contains a pointer to the address | |
500 | of the dynamic link structure. */ | |
501 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | |
e499d0f1 | 502 | return 0; |
3a40aaa0 | 503 | return extract_typed_address (pbuf, builtin_type_void_data_ptr); |
e499d0f1 DJ |
504 | } |
505 | ||
65728c26 DJ |
506 | /* Find DT_DEBUG. */ |
507 | if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)) | |
508 | return dyn_ptr; | |
509 | ||
3a40aaa0 UW |
510 | /* This may be a static executable. Look for the symbol |
511 | conventionally named _r_debug, as a last resort. */ | |
512 | msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile); | |
513 | if (msymbol != NULL) | |
514 | return SYMBOL_VALUE_ADDRESS (msymbol); | |
13437d4b KB |
515 | |
516 | /* DT_DEBUG entry not found. */ | |
517 | return 0; | |
518 | } | |
519 | ||
13437d4b KB |
520 | /* |
521 | ||
522 | LOCAL FUNCTION | |
523 | ||
524 | locate_base -- locate the base address of dynamic linker structs | |
525 | ||
526 | SYNOPSIS | |
527 | ||
528 | CORE_ADDR locate_base (void) | |
529 | ||
530 | DESCRIPTION | |
531 | ||
532 | For both the SunOS and SVR4 shared library implementations, if the | |
533 | inferior executable has been linked dynamically, there is a single | |
534 | address somewhere in the inferior's data space which is the key to | |
535 | locating all of the dynamic linker's runtime structures. This | |
536 | address is the value of the debug base symbol. The job of this | |
537 | function is to find and return that address, or to return 0 if there | |
538 | is no such address (the executable is statically linked for example). | |
539 | ||
540 | For SunOS, the job is almost trivial, since the dynamic linker and | |
541 | all of it's structures are statically linked to the executable at | |
542 | link time. Thus the symbol for the address we are looking for has | |
543 | already been added to the minimal symbol table for the executable's | |
544 | objfile at the time the symbol file's symbols were read, and all we | |
545 | have to do is look it up there. Note that we explicitly do NOT want | |
546 | to find the copies in the shared library. | |
547 | ||
548 | The SVR4 version is a bit more complicated because the address | |
549 | is contained somewhere in the dynamic info section. We have to go | |
550 | to a lot more work to discover the address of the debug base symbol. | |
551 | Because of this complexity, we cache the value we find and return that | |
552 | value on subsequent invocations. Note there is no copy in the | |
553 | executable symbol tables. | |
554 | ||
555 | */ | |
556 | ||
557 | static CORE_ADDR | |
558 | locate_base (void) | |
559 | { | |
13437d4b KB |
560 | /* Check to see if we have a currently valid address, and if so, avoid |
561 | doing all this work again and just return the cached address. If | |
562 | we have no cached address, try to locate it in the dynamic info | |
d5a921c9 KB |
563 | section for ELF executables. There's no point in doing any of this |
564 | though if we don't have some link map offsets to work with. */ | |
13437d4b | 565 | |
d5a921c9 | 566 | if (debug_base == 0 && svr4_have_link_map_offsets ()) |
13437d4b KB |
567 | { |
568 | if (exec_bfd != NULL | |
569 | && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
570 | debug_base = elf_locate_base (); | |
13437d4b KB |
571 | } |
572 | return (debug_base); | |
13437d4b KB |
573 | } |
574 | ||
e4cd0d6a MK |
575 | /* Find the first element in the inferior's dynamic link map, and |
576 | return its address in the inferior. | |
13437d4b | 577 | |
e4cd0d6a MK |
578 | FIXME: Perhaps we should validate the info somehow, perhaps by |
579 | checking r_version for a known version number, or r_state for | |
580 | RT_CONSISTENT. */ | |
13437d4b KB |
581 | |
582 | static CORE_ADDR | |
e4cd0d6a | 583 | solib_svr4_r_map (void) |
13437d4b | 584 | { |
4b188b9f | 585 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 586 | |
e4cd0d6a MK |
587 | return read_memory_typed_address (debug_base + lmo->r_map_offset, |
588 | builtin_type_void_data_ptr); | |
589 | } | |
13437d4b | 590 | |
7cd25cfc DJ |
591 | /* Find r_brk from the inferior's debug base. */ |
592 | ||
593 | static CORE_ADDR | |
594 | solib_svr4_r_brk (void) | |
595 | { | |
596 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
597 | ||
598 | return read_memory_typed_address (debug_base + lmo->r_brk_offset, | |
599 | builtin_type_void_data_ptr); | |
600 | } | |
601 | ||
e4cd0d6a MK |
602 | /* Find the link map for the dynamic linker (if it is not in the |
603 | normal list of loaded shared objects). */ | |
13437d4b | 604 | |
e4cd0d6a MK |
605 | static CORE_ADDR |
606 | solib_svr4_r_ldsomap (void) | |
607 | { | |
608 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
609 | ULONGEST version; | |
13437d4b | 610 | |
e4cd0d6a MK |
611 | /* Check version, and return zero if `struct r_debug' doesn't have |
612 | the r_ldsomap member. */ | |
613 | version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset, | |
614 | lmo->r_version_size); | |
615 | if (version < 2 || lmo->r_ldsomap_offset == -1) | |
616 | return 0; | |
13437d4b | 617 | |
e4cd0d6a MK |
618 | return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset, |
619 | builtin_type_void_data_ptr); | |
13437d4b KB |
620 | } |
621 | ||
13437d4b KB |
622 | /* |
623 | ||
624 | LOCAL FUNCTION | |
625 | ||
626 | open_symbol_file_object | |
627 | ||
628 | SYNOPSIS | |
629 | ||
630 | void open_symbol_file_object (void *from_tty) | |
631 | ||
632 | DESCRIPTION | |
633 | ||
634 | If no open symbol file, attempt to locate and open the main symbol | |
635 | file. On SVR4 systems, this is the first link map entry. If its | |
636 | name is here, we can open it. Useful when attaching to a process | |
637 | without first loading its symbol file. | |
638 | ||
639 | If FROM_TTYP dereferences to a non-zero integer, allow messages to | |
640 | be printed. This parameter is a pointer rather than an int because | |
641 | open_symbol_file_object() is called via catch_errors() and | |
642 | catch_errors() requires a pointer argument. */ | |
643 | ||
644 | static int | |
645 | open_symbol_file_object (void *from_ttyp) | |
646 | { | |
647 | CORE_ADDR lm, l_name; | |
648 | char *filename; | |
649 | int errcode; | |
650 | int from_tty = *(int *)from_ttyp; | |
4b188b9f | 651 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
cfaefc65 AS |
652 | int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr); |
653 | gdb_byte *l_name_buf = xmalloc (l_name_size); | |
b8c9b27d | 654 | struct cleanup *cleanups = make_cleanup (xfree, l_name_buf); |
13437d4b KB |
655 | |
656 | if (symfile_objfile) | |
657 | if (!query ("Attempt to reload symbols from process? ")) | |
658 | return 0; | |
659 | ||
7cd25cfc DJ |
660 | /* Always locate the debug struct, in case it has moved. */ |
661 | debug_base = 0; | |
662 | if (locate_base () == 0) | |
13437d4b KB |
663 | return 0; /* failed somehow... */ |
664 | ||
665 | /* First link map member should be the executable. */ | |
e4cd0d6a MK |
666 | lm = solib_svr4_r_map (); |
667 | if (lm == 0) | |
13437d4b KB |
668 | return 0; /* failed somehow... */ |
669 | ||
670 | /* Read address of name from target memory to GDB. */ | |
cfaefc65 | 671 | read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size); |
13437d4b | 672 | |
cfaefc65 AS |
673 | /* Convert the address to host format. */ |
674 | l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr); | |
13437d4b KB |
675 | |
676 | /* Free l_name_buf. */ | |
677 | do_cleanups (cleanups); | |
678 | ||
679 | if (l_name == 0) | |
680 | return 0; /* No filename. */ | |
681 | ||
682 | /* Now fetch the filename from target memory. */ | |
683 | target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
ea5bf0a1 | 684 | make_cleanup (xfree, filename); |
13437d4b KB |
685 | |
686 | if (errcode) | |
687 | { | |
8a3fe4f8 | 688 | warning (_("failed to read exec filename from attached file: %s"), |
13437d4b KB |
689 | safe_strerror (errcode)); |
690 | return 0; | |
691 | } | |
692 | ||
13437d4b | 693 | /* Have a pathname: read the symbol file. */ |
1adeb98a | 694 | symbol_file_add_main (filename, from_tty); |
13437d4b KB |
695 | |
696 | return 1; | |
697 | } | |
13437d4b | 698 | |
34439770 DJ |
699 | /* If no shared library information is available from the dynamic |
700 | linker, build a fallback list from other sources. */ | |
701 | ||
702 | static struct so_list * | |
703 | svr4_default_sos (void) | |
704 | { | |
705 | struct so_list *head = NULL; | |
706 | struct so_list **link_ptr = &head; | |
707 | ||
708 | if (debug_loader_offset_p) | |
709 | { | |
710 | struct so_list *new = XZALLOC (struct so_list); | |
711 | ||
712 | new->lm_info = xmalloc (sizeof (struct lm_info)); | |
713 | ||
714 | /* Nothing will ever check the cached copy of the link | |
715 | map if we set l_addr. */ | |
716 | new->lm_info->l_addr = debug_loader_offset; | |
93a57060 | 717 | new->lm_info->lm_addr = 0; |
34439770 DJ |
718 | new->lm_info->lm = NULL; |
719 | ||
720 | strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1); | |
721 | new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
722 | strcpy (new->so_original_name, new->so_name); | |
723 | ||
724 | *link_ptr = new; | |
725 | link_ptr = &new->next; | |
726 | } | |
727 | ||
728 | return head; | |
729 | } | |
730 | ||
13437d4b KB |
731 | /* LOCAL FUNCTION |
732 | ||
733 | current_sos -- build a list of currently loaded shared objects | |
734 | ||
735 | SYNOPSIS | |
736 | ||
737 | struct so_list *current_sos () | |
738 | ||
739 | DESCRIPTION | |
740 | ||
741 | Build a list of `struct so_list' objects describing the shared | |
742 | objects currently loaded in the inferior. This list does not | |
743 | include an entry for the main executable file. | |
744 | ||
745 | Note that we only gather information directly available from the | |
746 | inferior --- we don't examine any of the shared library files | |
747 | themselves. The declaration of `struct so_list' says which fields | |
748 | we provide values for. */ | |
749 | ||
750 | static struct so_list * | |
751 | svr4_current_sos (void) | |
752 | { | |
753 | CORE_ADDR lm; | |
754 | struct so_list *head = 0; | |
755 | struct so_list **link_ptr = &head; | |
e4cd0d6a | 756 | CORE_ADDR ldsomap = 0; |
13437d4b | 757 | |
7cd25cfc DJ |
758 | /* Always locate the debug struct, in case it has moved. */ |
759 | debug_base = 0; | |
760 | locate_base (); | |
13437d4b | 761 | |
7cd25cfc DJ |
762 | /* If we can't find the dynamic linker's base structure, this |
763 | must not be a dynamically linked executable. Hmm. */ | |
764 | if (! debug_base) | |
765 | return svr4_default_sos (); | |
13437d4b KB |
766 | |
767 | /* Walk the inferior's link map list, and build our list of | |
768 | `struct so_list' nodes. */ | |
e4cd0d6a | 769 | lm = solib_svr4_r_map (); |
34439770 | 770 | |
13437d4b KB |
771 | while (lm) |
772 | { | |
4b188b9f | 773 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f4456994 | 774 | struct so_list *new = XZALLOC (struct so_list); |
b8c9b27d | 775 | struct cleanup *old_chain = make_cleanup (xfree, new); |
13437d4b | 776 | |
13437d4b | 777 | new->lm_info = xmalloc (sizeof (struct lm_info)); |
b8c9b27d | 778 | make_cleanup (xfree, new->lm_info); |
13437d4b | 779 | |
831004b7 | 780 | new->lm_info->l_addr = (CORE_ADDR)-1; |
93a57060 | 781 | new->lm_info->lm_addr = lm; |
f4456994 | 782 | new->lm_info->lm = xzalloc (lmo->link_map_size); |
b8c9b27d | 783 | make_cleanup (xfree, new->lm_info->lm); |
13437d4b KB |
784 | |
785 | read_memory (lm, new->lm_info->lm, lmo->link_map_size); | |
786 | ||
787 | lm = LM_NEXT (new); | |
788 | ||
789 | /* For SVR4 versions, the first entry in the link map is for the | |
790 | inferior executable, so we must ignore it. For some versions of | |
791 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
792 | does have a name, so we can no longer use a missing name to | |
793 | decide when to ignore it. */ | |
e4cd0d6a | 794 | if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0) |
93a57060 DJ |
795 | { |
796 | main_lm_addr = new->lm_info->lm_addr; | |
797 | free_so (new); | |
798 | } | |
13437d4b KB |
799 | else |
800 | { | |
801 | int errcode; | |
802 | char *buffer; | |
803 | ||
804 | /* Extract this shared object's name. */ | |
805 | target_read_string (LM_NAME (new), &buffer, | |
806 | SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
807 | if (errcode != 0) | |
8a3fe4f8 AC |
808 | warning (_("Can't read pathname for load map: %s."), |
809 | safe_strerror (errcode)); | |
13437d4b KB |
810 | else |
811 | { | |
812 | strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); | |
813 | new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
13437d4b KB |
814 | strcpy (new->so_original_name, new->so_name); |
815 | } | |
ea5bf0a1 | 816 | xfree (buffer); |
13437d4b KB |
817 | |
818 | /* If this entry has no name, or its name matches the name | |
819 | for the main executable, don't include it in the list. */ | |
820 | if (! new->so_name[0] | |
821 | || match_main (new->so_name)) | |
822 | free_so (new); | |
823 | else | |
824 | { | |
825 | new->next = 0; | |
826 | *link_ptr = new; | |
827 | link_ptr = &new->next; | |
828 | } | |
829 | } | |
830 | ||
e4cd0d6a MK |
831 | /* On Solaris, the dynamic linker is not in the normal list of |
832 | shared objects, so make sure we pick it up too. Having | |
833 | symbol information for the dynamic linker is quite crucial | |
834 | for skipping dynamic linker resolver code. */ | |
835 | if (lm == 0 && ldsomap == 0) | |
836 | lm = ldsomap = solib_svr4_r_ldsomap (); | |
837 | ||
13437d4b KB |
838 | discard_cleanups (old_chain); |
839 | } | |
840 | ||
34439770 DJ |
841 | if (head == NULL) |
842 | return svr4_default_sos (); | |
843 | ||
13437d4b KB |
844 | return head; |
845 | } | |
846 | ||
93a57060 | 847 | /* Get the address of the link_map for a given OBJFILE. */ |
bc4a16ae EZ |
848 | |
849 | CORE_ADDR | |
850 | svr4_fetch_objfile_link_map (struct objfile *objfile) | |
851 | { | |
93a57060 | 852 | struct so_list *so; |
bc4a16ae | 853 | |
93a57060 DJ |
854 | /* Cause svr4_current_sos() to be run if it hasn't been already. */ |
855 | if (main_lm_addr == 0) | |
856 | solib_add (NULL, 0, ¤t_target, auto_solib_add); | |
bc4a16ae | 857 | |
93a57060 DJ |
858 | /* svr4_current_sos() will set main_lm_addr for the main executable. */ |
859 | if (objfile == symfile_objfile) | |
860 | return main_lm_addr; | |
861 | ||
862 | /* The other link map addresses may be found by examining the list | |
863 | of shared libraries. */ | |
864 | for (so = master_so_list (); so; so = so->next) | |
865 | if (so->objfile == objfile) | |
866 | return so->lm_info->lm_addr; | |
867 | ||
868 | /* Not found! */ | |
bc4a16ae EZ |
869 | return 0; |
870 | } | |
13437d4b KB |
871 | |
872 | /* On some systems, the only way to recognize the link map entry for | |
873 | the main executable file is by looking at its name. Return | |
874 | non-zero iff SONAME matches one of the known main executable names. */ | |
875 | ||
876 | static int | |
877 | match_main (char *soname) | |
878 | { | |
879 | char **mainp; | |
880 | ||
881 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
882 | { | |
883 | if (strcmp (soname, *mainp) == 0) | |
884 | return (1); | |
885 | } | |
886 | ||
887 | return (0); | |
888 | } | |
889 | ||
13437d4b KB |
890 | /* Return 1 if PC lies in the dynamic symbol resolution code of the |
891 | SVR4 run time loader. */ | |
13437d4b KB |
892 | static CORE_ADDR interp_text_sect_low; |
893 | static CORE_ADDR interp_text_sect_high; | |
894 | static CORE_ADDR interp_plt_sect_low; | |
895 | static CORE_ADDR interp_plt_sect_high; | |
896 | ||
7d522c90 | 897 | int |
d7fa2ae2 | 898 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) |
13437d4b KB |
899 | { |
900 | return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) | |
901 | || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) | |
902 | || in_plt_section (pc, NULL)); | |
903 | } | |
13437d4b | 904 | |
2f4950cd AC |
905 | /* Given an executable's ABFD and target, compute the entry-point |
906 | address. */ | |
907 | ||
908 | static CORE_ADDR | |
909 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | |
910 | { | |
911 | /* KevinB wrote ... for most targets, the address returned by | |
912 | bfd_get_start_address() is the entry point for the start | |
913 | function. But, for some targets, bfd_get_start_address() returns | |
914 | the address of a function descriptor from which the entry point | |
915 | address may be extracted. This address is extracted by | |
916 | gdbarch_convert_from_func_ptr_addr(). The method | |
917 | gdbarch_convert_from_func_ptr_addr() is the merely the identify | |
918 | function for targets which don't use function descriptors. */ | |
919 | return gdbarch_convert_from_func_ptr_addr (current_gdbarch, | |
920 | bfd_get_start_address (abfd), | |
921 | targ); | |
922 | } | |
13437d4b KB |
923 | |
924 | /* | |
925 | ||
926 | LOCAL FUNCTION | |
927 | ||
928 | enable_break -- arrange for dynamic linker to hit breakpoint | |
929 | ||
930 | SYNOPSIS | |
931 | ||
932 | int enable_break (void) | |
933 | ||
934 | DESCRIPTION | |
935 | ||
936 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
937 | debugger interface, support for arranging for the inferior to hit | |
938 | a breakpoint after mapping in the shared libraries. This function | |
939 | enables that breakpoint. | |
940 | ||
941 | For SunOS, there is a special flag location (in_debugger) which we | |
942 | set to 1. When the dynamic linker sees this flag set, it will set | |
943 | a breakpoint at a location known only to itself, after saving the | |
944 | original contents of that place and the breakpoint address itself, | |
945 | in it's own internal structures. When we resume the inferior, it | |
946 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
947 | We handle this (in a different place) by restoring the contents of | |
948 | the breakpointed location (which is only known after it stops), | |
949 | chasing around to locate the shared libraries that have been | |
950 | loaded, then resuming. | |
951 | ||
952 | For SVR4, the debugger interface structure contains a member (r_brk) | |
953 | which is statically initialized at the time the shared library is | |
954 | built, to the offset of a function (_r_debug_state) which is guaran- | |
955 | teed to be called once before mapping in a library, and again when | |
956 | the mapping is complete. At the time we are examining this member, | |
957 | it contains only the unrelocated offset of the function, so we have | |
958 | to do our own relocation. Later, when the dynamic linker actually | |
959 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
960 | ||
961 | The debugger interface structure also contains an enumeration which | |
962 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
963 | depending upon whether or not the library is being mapped or unmapped, | |
964 | and then set to RT_CONSISTENT after the library is mapped/unmapped. | |
965 | */ | |
966 | ||
967 | static int | |
968 | enable_break (void) | |
969 | { | |
13437d4b KB |
970 | #ifdef BKPT_AT_SYMBOL |
971 | ||
972 | struct minimal_symbol *msymbol; | |
973 | char **bkpt_namep; | |
974 | asection *interp_sect; | |
7cd25cfc | 975 | CORE_ADDR sym_addr; |
13437d4b KB |
976 | |
977 | /* First, remove all the solib event breakpoints. Their addresses | |
978 | may have changed since the last time we ran the program. */ | |
979 | remove_solib_event_breakpoints (); | |
980 | ||
13437d4b KB |
981 | interp_text_sect_low = interp_text_sect_high = 0; |
982 | interp_plt_sect_low = interp_plt_sect_high = 0; | |
983 | ||
7cd25cfc DJ |
984 | /* If we already have a shared library list in the target, and |
985 | r_debug contains r_brk, set the breakpoint there - this should | |
986 | mean r_brk has already been relocated. Assume the dynamic linker | |
987 | is the object containing r_brk. */ | |
988 | ||
989 | solib_add (NULL, 0, ¤t_target, auto_solib_add); | |
990 | sym_addr = 0; | |
991 | if (debug_base && solib_svr4_r_map () != 0) | |
992 | sym_addr = solib_svr4_r_brk (); | |
993 | ||
994 | if (sym_addr != 0) | |
995 | { | |
996 | struct obj_section *os; | |
997 | ||
b36ec657 DJ |
998 | sym_addr = gdbarch_addr_bits_remove |
999 | (current_gdbarch, gdbarch_convert_from_func_ptr_addr (current_gdbarch, | |
1000 | sym_addr, | |
1001 | ¤t_target)); | |
1002 | ||
7cd25cfc DJ |
1003 | os = find_pc_section (sym_addr); |
1004 | if (os != NULL) | |
1005 | { | |
1006 | /* Record the relocated start and end address of the dynamic linker | |
1007 | text and plt section for svr4_in_dynsym_resolve_code. */ | |
1008 | bfd *tmp_bfd; | |
1009 | CORE_ADDR load_addr; | |
1010 | ||
1011 | tmp_bfd = os->objfile->obfd; | |
1012 | load_addr = ANOFFSET (os->objfile->section_offsets, | |
1013 | os->objfile->sect_index_text); | |
1014 | ||
1015 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | |
1016 | if (interp_sect) | |
1017 | { | |
1018 | interp_text_sect_low = | |
1019 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1020 | interp_text_sect_high = | |
1021 | interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1022 | } | |
1023 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
1024 | if (interp_sect) | |
1025 | { | |
1026 | interp_plt_sect_low = | |
1027 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1028 | interp_plt_sect_high = | |
1029 | interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1030 | } | |
1031 | ||
1032 | create_solib_event_breakpoint (sym_addr); | |
1033 | return 1; | |
1034 | } | |
1035 | } | |
1036 | ||
13437d4b KB |
1037 | /* Find the .interp section; if not found, warn the user and drop |
1038 | into the old breakpoint at symbol code. */ | |
1039 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
1040 | if (interp_sect) | |
1041 | { | |
1042 | unsigned int interp_sect_size; | |
1043 | char *buf; | |
8ad2fcde KB |
1044 | CORE_ADDR load_addr = 0; |
1045 | int load_addr_found = 0; | |
2ec9a4f8 | 1046 | int loader_found_in_list = 0; |
f8766ec1 | 1047 | struct so_list *so; |
e4f7b8c8 | 1048 | bfd *tmp_bfd = NULL; |
2f4950cd | 1049 | struct target_ops *tmp_bfd_target; |
e4f7b8c8 MS |
1050 | int tmp_fd = -1; |
1051 | char *tmp_pathname = NULL; | |
13437d4b KB |
1052 | |
1053 | /* Read the contents of the .interp section into a local buffer; | |
1054 | the contents specify the dynamic linker this program uses. */ | |
7cd25cfc | 1055 | sym_addr = 0; |
13437d4b KB |
1056 | interp_sect_size = bfd_section_size (exec_bfd, interp_sect); |
1057 | buf = alloca (interp_sect_size); | |
1058 | bfd_get_section_contents (exec_bfd, interp_sect, | |
1059 | buf, 0, interp_sect_size); | |
1060 | ||
1061 | /* Now we need to figure out where the dynamic linker was | |
1062 | loaded so that we can load its symbols and place a breakpoint | |
1063 | in the dynamic linker itself. | |
1064 | ||
1065 | This address is stored on the stack. However, I've been unable | |
1066 | to find any magic formula to find it for Solaris (appears to | |
1067 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
1068 | mechanism to find the dynamic linker's base address. */ | |
e4f7b8c8 | 1069 | |
34439770 | 1070 | tmp_fd = solib_open (buf, &tmp_pathname); |
e4f7b8c8 | 1071 | if (tmp_fd >= 0) |
9f76c2cd | 1072 | tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd); |
e4f7b8c8 | 1073 | |
13437d4b KB |
1074 | if (tmp_bfd == NULL) |
1075 | goto bkpt_at_symbol; | |
1076 | ||
1077 | /* Make sure the dynamic linker's really a useful object. */ | |
1078 | if (!bfd_check_format (tmp_bfd, bfd_object)) | |
1079 | { | |
8a3fe4f8 | 1080 | warning (_("Unable to grok dynamic linker %s as an object file"), buf); |
13437d4b KB |
1081 | bfd_close (tmp_bfd); |
1082 | goto bkpt_at_symbol; | |
1083 | } | |
1084 | ||
2f4950cd AC |
1085 | /* Now convert the TMP_BFD into a target. That way target, as |
1086 | well as BFD operations can be used. Note that closing the | |
1087 | target will also close the underlying bfd. */ | |
1088 | tmp_bfd_target = target_bfd_reopen (tmp_bfd); | |
1089 | ||
f8766ec1 KB |
1090 | /* On a running target, we can get the dynamic linker's base |
1091 | address from the shared library table. */ | |
f8766ec1 KB |
1092 | so = master_so_list (); |
1093 | while (so) | |
8ad2fcde | 1094 | { |
4d7b2d5b | 1095 | if (svr4_same_1 (buf, so->so_original_name)) |
8ad2fcde KB |
1096 | { |
1097 | load_addr_found = 1; | |
2ec9a4f8 | 1098 | loader_found_in_list = 1; |
cc10cae3 | 1099 | load_addr = LM_ADDR_CHECK (so, tmp_bfd); |
8ad2fcde KB |
1100 | break; |
1101 | } | |
f8766ec1 | 1102 | so = so->next; |
8ad2fcde KB |
1103 | } |
1104 | ||
8d4e36ba JB |
1105 | /* If we were not able to find the base address of the loader |
1106 | from our so_list, then try using the AT_BASE auxilliary entry. */ | |
1107 | if (!load_addr_found) | |
1108 | if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0) | |
1109 | load_addr_found = 1; | |
1110 | ||
8ad2fcde KB |
1111 | /* Otherwise we find the dynamic linker's base address by examining |
1112 | the current pc (which should point at the entry point for the | |
8d4e36ba JB |
1113 | dynamic linker) and subtracting the offset of the entry point. |
1114 | ||
1115 | This is more fragile than the previous approaches, but is a good | |
1116 | fallback method because it has actually been working well in | |
1117 | most cases. */ | |
8ad2fcde | 1118 | if (!load_addr_found) |
2ec9a4f8 DJ |
1119 | load_addr = (read_pc () |
1120 | - exec_entry_point (tmp_bfd, tmp_bfd_target)); | |
1121 | ||
1122 | if (!loader_found_in_list) | |
34439770 | 1123 | { |
34439770 DJ |
1124 | debug_loader_name = xstrdup (buf); |
1125 | debug_loader_offset_p = 1; | |
1126 | debug_loader_offset = load_addr; | |
2bbe3cc1 | 1127 | solib_add (NULL, 0, ¤t_target, auto_solib_add); |
34439770 | 1128 | } |
13437d4b KB |
1129 | |
1130 | /* Record the relocated start and end address of the dynamic linker | |
d7fa2ae2 | 1131 | text and plt section for svr4_in_dynsym_resolve_code. */ |
13437d4b KB |
1132 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); |
1133 | if (interp_sect) | |
1134 | { | |
1135 | interp_text_sect_low = | |
1136 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1137 | interp_text_sect_high = | |
1138 | interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1139 | } | |
1140 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
1141 | if (interp_sect) | |
1142 | { | |
1143 | interp_plt_sect_low = | |
1144 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1145 | interp_plt_sect_high = | |
1146 | interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1147 | } | |
1148 | ||
1149 | /* Now try to set a breakpoint in the dynamic linker. */ | |
1150 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
1151 | { | |
2bbe3cc1 | 1152 | sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep); |
13437d4b KB |
1153 | if (sym_addr != 0) |
1154 | break; | |
1155 | } | |
1156 | ||
2bbe3cc1 DJ |
1157 | if (sym_addr != 0) |
1158 | /* Convert 'sym_addr' from a function pointer to an address. | |
1159 | Because we pass tmp_bfd_target instead of the current | |
1160 | target, this will always produce an unrelocated value. */ | |
1161 | sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch, | |
1162 | sym_addr, | |
1163 | tmp_bfd_target); | |
1164 | ||
2f4950cd AC |
1165 | /* We're done with both the temporary bfd and target. Remember, |
1166 | closing the target closes the underlying bfd. */ | |
1167 | target_close (tmp_bfd_target, 0); | |
13437d4b KB |
1168 | |
1169 | if (sym_addr != 0) | |
1170 | { | |
1171 | create_solib_event_breakpoint (load_addr + sym_addr); | |
1172 | return 1; | |
1173 | } | |
1174 | ||
1175 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
1176 | linker. Warn and drop into the old code. */ | |
1177 | bkpt_at_symbol: | |
518f9d3c | 1178 | xfree (tmp_pathname); |
82d03102 PG |
1179 | warning (_("Unable to find dynamic linker breakpoint function.\n" |
1180 | "GDB will be unable to debug shared library initializers\n" | |
1181 | "and track explicitly loaded dynamic code.")); | |
13437d4b | 1182 | } |
13437d4b | 1183 | |
e499d0f1 DJ |
1184 | /* Scan through the lists of symbols, trying to look up the symbol and |
1185 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
1186 | ||
1187 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
1188 | { | |
1189 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
1190 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
1191 | { | |
1192 | create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol)); | |
1193 | return 1; | |
1194 | } | |
1195 | } | |
13437d4b | 1196 | |
13437d4b KB |
1197 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) |
1198 | { | |
1199 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
1200 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
1201 | { | |
1202 | create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol)); | |
1203 | return 1; | |
1204 | } | |
1205 | } | |
13437d4b KB |
1206 | #endif /* BKPT_AT_SYMBOL */ |
1207 | ||
542c95c2 | 1208 | return 0; |
13437d4b KB |
1209 | } |
1210 | ||
1211 | /* | |
1212 | ||
1213 | LOCAL FUNCTION | |
1214 | ||
1215 | special_symbol_handling -- additional shared library symbol handling | |
1216 | ||
1217 | SYNOPSIS | |
1218 | ||
1219 | void special_symbol_handling () | |
1220 | ||
1221 | DESCRIPTION | |
1222 | ||
1223 | Once the symbols from a shared object have been loaded in the usual | |
1224 | way, we are called to do any system specific symbol handling that | |
1225 | is needed. | |
1226 | ||
ab31aa69 | 1227 | For SunOS4, this consisted of grunging around in the dynamic |
13437d4b KB |
1228 | linkers structures to find symbol definitions for "common" symbols |
1229 | and adding them to the minimal symbol table for the runtime common | |
1230 | objfile. | |
1231 | ||
ab31aa69 KB |
1232 | However, for SVR4, there's nothing to do. |
1233 | ||
13437d4b KB |
1234 | */ |
1235 | ||
1236 | static void | |
1237 | svr4_special_symbol_handling (void) | |
1238 | { | |
13437d4b KB |
1239 | } |
1240 | ||
e2a44558 KB |
1241 | /* Relocate the main executable. This function should be called upon |
1242 | stopping the inferior process at the entry point to the program. | |
1243 | The entry point from BFD is compared to the PC and if they are | |
1244 | different, the main executable is relocated by the proper amount. | |
1245 | ||
1246 | As written it will only attempt to relocate executables which | |
1247 | lack interpreter sections. It seems likely that only dynamic | |
1248 | linker executables will get relocated, though it should work | |
1249 | properly for a position-independent static executable as well. */ | |
1250 | ||
1251 | static void | |
1252 | svr4_relocate_main_executable (void) | |
1253 | { | |
1254 | asection *interp_sect; | |
1255 | CORE_ADDR pc = read_pc (); | |
1256 | ||
1257 | /* Decide if the objfile needs to be relocated. As indicated above, | |
1258 | we will only be here when execution is stopped at the beginning | |
1259 | of the program. Relocation is necessary if the address at which | |
1260 | we are presently stopped differs from the start address stored in | |
1261 | the executable AND there's no interpreter section. The condition | |
1262 | regarding the interpreter section is very important because if | |
1263 | there *is* an interpreter section, execution will begin there | |
1264 | instead. When there is an interpreter section, the start address | |
1265 | is (presumably) used by the interpreter at some point to start | |
1266 | execution of the program. | |
1267 | ||
1268 | If there is an interpreter, it is normal for it to be set to an | |
1269 | arbitrary address at the outset. The job of finding it is | |
1270 | handled in enable_break(). | |
1271 | ||
1272 | So, to summarize, relocations are necessary when there is no | |
1273 | interpreter section and the start address obtained from the | |
1274 | executable is different from the address at which GDB is | |
1275 | currently stopped. | |
1276 | ||
1277 | [ The astute reader will note that we also test to make sure that | |
1278 | the executable in question has the DYNAMIC flag set. It is my | |
1279 | opinion that this test is unnecessary (undesirable even). It | |
1280 | was added to avoid inadvertent relocation of an executable | |
1281 | whose e_type member in the ELF header is not ET_DYN. There may | |
1282 | be a time in the future when it is desirable to do relocations | |
1283 | on other types of files as well in which case this condition | |
1284 | should either be removed or modified to accomodate the new file | |
1285 | type. (E.g, an ET_EXEC executable which has been built to be | |
1286 | position-independent could safely be relocated by the OS if | |
1287 | desired. It is true that this violates the ABI, but the ABI | |
1288 | has been known to be bent from time to time.) - Kevin, Nov 2000. ] | |
1289 | */ | |
1290 | ||
1291 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
1292 | if (interp_sect == NULL | |
1293 | && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0 | |
2f4950cd | 1294 | && (exec_entry_point (exec_bfd, &exec_ops) != pc)) |
e2a44558 KB |
1295 | { |
1296 | struct cleanup *old_chain; | |
1297 | struct section_offsets *new_offsets; | |
1298 | int i, changed; | |
1299 | CORE_ADDR displacement; | |
1300 | ||
1301 | /* It is necessary to relocate the objfile. The amount to | |
1302 | relocate by is simply the address at which we are stopped | |
1303 | minus the starting address from the executable. | |
1304 | ||
1305 | We relocate all of the sections by the same amount. This | |
1306 | behavior is mandated by recent editions of the System V ABI. | |
1307 | According to the System V Application Binary Interface, | |
1308 | Edition 4.1, page 5-5: | |
1309 | ||
1310 | ... Though the system chooses virtual addresses for | |
1311 | individual processes, it maintains the segments' relative | |
1312 | positions. Because position-independent code uses relative | |
1313 | addressesing between segments, the difference between | |
1314 | virtual addresses in memory must match the difference | |
1315 | between virtual addresses in the file. The difference | |
1316 | between the virtual address of any segment in memory and | |
1317 | the corresponding virtual address in the file is thus a | |
1318 | single constant value for any one executable or shared | |
1319 | object in a given process. This difference is the base | |
1320 | address. One use of the base address is to relocate the | |
1321 | memory image of the program during dynamic linking. | |
1322 | ||
1323 | The same language also appears in Edition 4.0 of the System V | |
1324 | ABI and is left unspecified in some of the earlier editions. */ | |
1325 | ||
2f4950cd | 1326 | displacement = pc - exec_entry_point (exec_bfd, &exec_ops); |
e2a44558 KB |
1327 | changed = 0; |
1328 | ||
13fc0c2f KB |
1329 | new_offsets = xcalloc (symfile_objfile->num_sections, |
1330 | sizeof (struct section_offsets)); | |
b8c9b27d | 1331 | old_chain = make_cleanup (xfree, new_offsets); |
e2a44558 KB |
1332 | |
1333 | for (i = 0; i < symfile_objfile->num_sections; i++) | |
1334 | { | |
1335 | if (displacement != ANOFFSET (symfile_objfile->section_offsets, i)) | |
1336 | changed = 1; | |
1337 | new_offsets->offsets[i] = displacement; | |
1338 | } | |
1339 | ||
1340 | if (changed) | |
1341 | objfile_relocate (symfile_objfile, new_offsets); | |
1342 | ||
1343 | do_cleanups (old_chain); | |
1344 | } | |
1345 | } | |
1346 | ||
13437d4b KB |
1347 | /* |
1348 | ||
1349 | GLOBAL FUNCTION | |
1350 | ||
1351 | svr4_solib_create_inferior_hook -- shared library startup support | |
1352 | ||
1353 | SYNOPSIS | |
1354 | ||
7095b863 | 1355 | void svr4_solib_create_inferior_hook () |
13437d4b KB |
1356 | |
1357 | DESCRIPTION | |
1358 | ||
1359 | When gdb starts up the inferior, it nurses it along (through the | |
1360 | shell) until it is ready to execute it's first instruction. At this | |
1361 | point, this function gets called via expansion of the macro | |
1362 | SOLIB_CREATE_INFERIOR_HOOK. | |
1363 | ||
1364 | For SunOS executables, this first instruction is typically the | |
1365 | one at "_start", or a similar text label, regardless of whether | |
1366 | the executable is statically or dynamically linked. The runtime | |
1367 | startup code takes care of dynamically linking in any shared | |
1368 | libraries, once gdb allows the inferior to continue. | |
1369 | ||
1370 | For SVR4 executables, this first instruction is either the first | |
1371 | instruction in the dynamic linker (for dynamically linked | |
1372 | executables) or the instruction at "start" for statically linked | |
1373 | executables. For dynamically linked executables, the system | |
1374 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
1375 | and starts it running. The dynamic linker maps in any needed | |
1376 | shared libraries, maps in the actual user executable, and then | |
1377 | jumps to "start" in the user executable. | |
1378 | ||
1379 | For both SunOS shared libraries, and SVR4 shared libraries, we | |
1380 | can arrange to cooperate with the dynamic linker to discover the | |
1381 | names of shared libraries that are dynamically linked, and the | |
1382 | base addresses to which they are linked. | |
1383 | ||
1384 | This function is responsible for discovering those names and | |
1385 | addresses, and saving sufficient information about them to allow | |
1386 | their symbols to be read at a later time. | |
1387 | ||
1388 | FIXME | |
1389 | ||
1390 | Between enable_break() and disable_break(), this code does not | |
1391 | properly handle hitting breakpoints which the user might have | |
1392 | set in the startup code or in the dynamic linker itself. Proper | |
1393 | handling will probably have to wait until the implementation is | |
1394 | changed to use the "breakpoint handler function" method. | |
1395 | ||
1396 | Also, what if child has exit()ed? Must exit loop somehow. | |
1397 | */ | |
1398 | ||
e2a44558 | 1399 | static void |
13437d4b KB |
1400 | svr4_solib_create_inferior_hook (void) |
1401 | { | |
e2a44558 KB |
1402 | /* Relocate the main executable if necessary. */ |
1403 | svr4_relocate_main_executable (); | |
1404 | ||
d5a921c9 | 1405 | if (!svr4_have_link_map_offsets ()) |
513f5903 | 1406 | return; |
d5a921c9 | 1407 | |
13437d4b | 1408 | if (!enable_break ()) |
542c95c2 | 1409 | return; |
13437d4b | 1410 | |
ab31aa69 KB |
1411 | #if defined(_SCO_DS) |
1412 | /* SCO needs the loop below, other systems should be using the | |
13437d4b KB |
1413 | special shared library breakpoints and the shared library breakpoint |
1414 | service routine. | |
1415 | ||
1416 | Now run the target. It will eventually hit the breakpoint, at | |
1417 | which point all of the libraries will have been mapped in and we | |
1418 | can go groveling around in the dynamic linker structures to find | |
1419 | out what we need to know about them. */ | |
1420 | ||
1421 | clear_proceed_status (); | |
c0236d92 | 1422 | stop_soon = STOP_QUIETLY; |
13437d4b KB |
1423 | stop_signal = TARGET_SIGNAL_0; |
1424 | do | |
1425 | { | |
39f77062 | 1426 | target_resume (pid_to_ptid (-1), 0, stop_signal); |
ae123ec6 | 1427 | wait_for_inferior (0); |
13437d4b KB |
1428 | } |
1429 | while (stop_signal != TARGET_SIGNAL_TRAP); | |
c0236d92 | 1430 | stop_soon = NO_STOP_QUIETLY; |
ab31aa69 | 1431 | #endif /* defined(_SCO_DS) */ |
13437d4b KB |
1432 | } |
1433 | ||
1434 | static void | |
1435 | svr4_clear_solib (void) | |
1436 | { | |
1437 | debug_base = 0; | |
34439770 DJ |
1438 | debug_loader_offset_p = 0; |
1439 | debug_loader_offset = 0; | |
1440 | xfree (debug_loader_name); | |
1441 | debug_loader_name = NULL; | |
93a57060 | 1442 | main_lm_addr = 0; |
13437d4b KB |
1443 | } |
1444 | ||
1445 | static void | |
1446 | svr4_free_so (struct so_list *so) | |
1447 | { | |
b8c9b27d KB |
1448 | xfree (so->lm_info->lm); |
1449 | xfree (so->lm_info); | |
13437d4b KB |
1450 | } |
1451 | ||
6bb7be43 JB |
1452 | |
1453 | /* Clear any bits of ADDR that wouldn't fit in a target-format | |
1454 | data pointer. "Data pointer" here refers to whatever sort of | |
1455 | address the dynamic linker uses to manage its sections. At the | |
1456 | moment, we don't support shared libraries on any processors where | |
1457 | code and data pointers are different sizes. | |
1458 | ||
1459 | This isn't really the right solution. What we really need here is | |
1460 | a way to do arithmetic on CORE_ADDR values that respects the | |
1461 | natural pointer/address correspondence. (For example, on the MIPS, | |
1462 | converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | |
1463 | sign-extend the value. There, simply truncating the bits above | |
819844ad | 1464 | gdbarch_ptr_bit, as we do below, is no good.) This should probably |
6bb7be43 JB |
1465 | be a new gdbarch method or something. */ |
1466 | static CORE_ADDR | |
1467 | svr4_truncate_ptr (CORE_ADDR addr) | |
1468 | { | |
819844ad | 1469 | if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8) |
6bb7be43 JB |
1470 | /* We don't need to truncate anything, and the bit twiddling below |
1471 | will fail due to overflow problems. */ | |
1472 | return addr; | |
1473 | else | |
819844ad | 1474 | return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1); |
6bb7be43 JB |
1475 | } |
1476 | ||
1477 | ||
749499cb KB |
1478 | static void |
1479 | svr4_relocate_section_addresses (struct so_list *so, | |
1480 | struct section_table *sec) | |
1481 | { | |
cc10cae3 AO |
1482 | sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so, |
1483 | sec->bfd)); | |
1484 | sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so, | |
1485 | sec->bfd)); | |
749499cb | 1486 | } |
4b188b9f | 1487 | \f |
749499cb | 1488 | |
4b188b9f | 1489 | /* Architecture-specific operations. */ |
6bb7be43 | 1490 | |
4b188b9f MK |
1491 | /* Per-architecture data key. */ |
1492 | static struct gdbarch_data *solib_svr4_data; | |
e5e2b9ff | 1493 | |
4b188b9f | 1494 | struct solib_svr4_ops |
e5e2b9ff | 1495 | { |
4b188b9f MK |
1496 | /* Return a description of the layout of `struct link_map'. */ |
1497 | struct link_map_offsets *(*fetch_link_map_offsets)(void); | |
1498 | }; | |
e5e2b9ff | 1499 | |
4b188b9f | 1500 | /* Return a default for the architecture-specific operations. */ |
e5e2b9ff | 1501 | |
4b188b9f MK |
1502 | static void * |
1503 | solib_svr4_init (struct obstack *obstack) | |
e5e2b9ff | 1504 | { |
4b188b9f | 1505 | struct solib_svr4_ops *ops; |
e5e2b9ff | 1506 | |
4b188b9f | 1507 | ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); |
8d005789 | 1508 | ops->fetch_link_map_offsets = NULL; |
4b188b9f | 1509 | return ops; |
e5e2b9ff KB |
1510 | } |
1511 | ||
4b188b9f | 1512 | /* Set the architecture-specific `struct link_map_offsets' fetcher for |
7e3cb44c | 1513 | GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */ |
1c4dcb57 | 1514 | |
21479ded | 1515 | void |
e5e2b9ff KB |
1516 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, |
1517 | struct link_map_offsets *(*flmo) (void)) | |
21479ded | 1518 | { |
4b188b9f MK |
1519 | struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data); |
1520 | ||
1521 | ops->fetch_link_map_offsets = flmo; | |
7e3cb44c UW |
1522 | |
1523 | set_solib_ops (gdbarch, &svr4_so_ops); | |
21479ded KB |
1524 | } |
1525 | ||
4b188b9f MK |
1526 | /* Fetch a link_map_offsets structure using the architecture-specific |
1527 | `struct link_map_offsets' fetcher. */ | |
1c4dcb57 | 1528 | |
4b188b9f MK |
1529 | static struct link_map_offsets * |
1530 | svr4_fetch_link_map_offsets (void) | |
21479ded | 1531 | { |
4b188b9f MK |
1532 | struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data); |
1533 | ||
1534 | gdb_assert (ops->fetch_link_map_offsets); | |
1535 | return ops->fetch_link_map_offsets (); | |
21479ded KB |
1536 | } |
1537 | ||
4b188b9f MK |
1538 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ |
1539 | ||
1540 | static int | |
1541 | svr4_have_link_map_offsets (void) | |
1542 | { | |
1543 | struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data); | |
1544 | return (ops->fetch_link_map_offsets != NULL); | |
1545 | } | |
1546 | \f | |
1547 | ||
e4bbbda8 MK |
1548 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a |
1549 | `struct r_debug' and a `struct link_map' that are binary compatible | |
1550 | with the origional SVR4 implementation. */ | |
1551 | ||
1552 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
1553 | for an ILP32 SVR4 system. */ | |
1554 | ||
1555 | struct link_map_offsets * | |
1556 | svr4_ilp32_fetch_link_map_offsets (void) | |
1557 | { | |
1558 | static struct link_map_offsets lmo; | |
1559 | static struct link_map_offsets *lmp = NULL; | |
1560 | ||
1561 | if (lmp == NULL) | |
1562 | { | |
1563 | lmp = &lmo; | |
1564 | ||
e4cd0d6a MK |
1565 | lmo.r_version_offset = 0; |
1566 | lmo.r_version_size = 4; | |
e4bbbda8 | 1567 | lmo.r_map_offset = 4; |
7cd25cfc | 1568 | lmo.r_brk_offset = 8; |
e4cd0d6a | 1569 | lmo.r_ldsomap_offset = 20; |
e4bbbda8 MK |
1570 | |
1571 | /* Everything we need is in the first 20 bytes. */ | |
1572 | lmo.link_map_size = 20; | |
1573 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 1574 | lmo.l_name_offset = 4; |
cc10cae3 | 1575 | lmo.l_ld_offset = 8; |
e4bbbda8 | 1576 | lmo.l_next_offset = 12; |
e4bbbda8 | 1577 | lmo.l_prev_offset = 16; |
e4bbbda8 MK |
1578 | } |
1579 | ||
1580 | return lmp; | |
1581 | } | |
1582 | ||
1583 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
1584 | for an LP64 SVR4 system. */ | |
1585 | ||
1586 | struct link_map_offsets * | |
1587 | svr4_lp64_fetch_link_map_offsets (void) | |
1588 | { | |
1589 | static struct link_map_offsets lmo; | |
1590 | static struct link_map_offsets *lmp = NULL; | |
1591 | ||
1592 | if (lmp == NULL) | |
1593 | { | |
1594 | lmp = &lmo; | |
1595 | ||
e4cd0d6a MK |
1596 | lmo.r_version_offset = 0; |
1597 | lmo.r_version_size = 4; | |
e4bbbda8 | 1598 | lmo.r_map_offset = 8; |
7cd25cfc | 1599 | lmo.r_brk_offset = 16; |
e4cd0d6a | 1600 | lmo.r_ldsomap_offset = 40; |
e4bbbda8 MK |
1601 | |
1602 | /* Everything we need is in the first 40 bytes. */ | |
1603 | lmo.link_map_size = 40; | |
1604 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 1605 | lmo.l_name_offset = 8; |
cc10cae3 | 1606 | lmo.l_ld_offset = 16; |
e4bbbda8 | 1607 | lmo.l_next_offset = 24; |
e4bbbda8 | 1608 | lmo.l_prev_offset = 32; |
e4bbbda8 MK |
1609 | } |
1610 | ||
1611 | return lmp; | |
1612 | } | |
1613 | \f | |
1614 | ||
7d522c90 | 1615 | struct target_so_ops svr4_so_ops; |
13437d4b | 1616 | |
3a40aaa0 UW |
1617 | /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a |
1618 | different rule for symbol lookup. The lookup begins here in the DSO, not in | |
1619 | the main executable. */ | |
1620 | ||
1621 | static struct symbol * | |
1622 | elf_lookup_lib_symbol (const struct objfile *objfile, | |
1623 | const char *name, | |
1624 | const char *linkage_name, | |
21b556f4 | 1625 | const domain_enum domain) |
3a40aaa0 UW |
1626 | { |
1627 | if (objfile->obfd == NULL | |
1628 | || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1) | |
1629 | return NULL; | |
1630 | ||
65728c26 | 1631 | return lookup_global_symbol_from_objfile |
21b556f4 | 1632 | (objfile, name, linkage_name, domain); |
3a40aaa0 UW |
1633 | } |
1634 | ||
a78f21af AC |
1635 | extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */ |
1636 | ||
13437d4b KB |
1637 | void |
1638 | _initialize_svr4_solib (void) | |
1639 | { | |
4b188b9f MK |
1640 | solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); |
1641 | ||
749499cb | 1642 | svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; |
13437d4b KB |
1643 | svr4_so_ops.free_so = svr4_free_so; |
1644 | svr4_so_ops.clear_solib = svr4_clear_solib; | |
1645 | svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | |
1646 | svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling; | |
1647 | svr4_so_ops.current_sos = svr4_current_sos; | |
1648 | svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | |
d7fa2ae2 | 1649 | svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; |
3a40aaa0 | 1650 | svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol; |
a7c02bc8 | 1651 | svr4_so_ops.same = svr4_same; |
13437d4b | 1652 | } |