Commit | Line | Data |
---|---|---|
ab31aa69 | 1 | /* Handle SVR4 shared libraries for GDB, the GNU Debugger. |
2f4950cd | 2 | |
0b302171 JB |
3 | Copyright (C) 1990-1996, 1998-2001, 2003-2012 Free Software |
4 | Foundation, Inc. | |
13437d4b KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
13437d4b KB |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
13437d4b | 20 | |
13437d4b KB |
21 | #include "defs.h" |
22 | ||
13437d4b | 23 | #include "elf/external.h" |
21479ded | 24 | #include "elf/common.h" |
f7856c8f | 25 | #include "elf/mips.h" |
13437d4b KB |
26 | |
27 | #include "symtab.h" | |
28 | #include "bfd.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcore.h" | |
13437d4b | 32 | #include "target.h" |
13437d4b | 33 | #include "inferior.h" |
fb14de7b | 34 | #include "regcache.h" |
2020b7ab | 35 | #include "gdbthread.h" |
1a816a87 | 36 | #include "observer.h" |
13437d4b | 37 | |
4b188b9f MK |
38 | #include "gdb_assert.h" |
39 | ||
13437d4b | 40 | #include "solist.h" |
bba93f6c | 41 | #include "solib.h" |
13437d4b KB |
42 | #include "solib-svr4.h" |
43 | ||
2f4950cd | 44 | #include "bfd-target.h" |
cc10cae3 | 45 | #include "elf-bfd.h" |
2f4950cd | 46 | #include "exec.h" |
8d4e36ba | 47 | #include "auxv.h" |
f1838a98 | 48 | #include "exceptions.h" |
695c3173 | 49 | #include "gdb_bfd.h" |
2f4950cd | 50 | |
e5e2b9ff | 51 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); |
d5a921c9 | 52 | static int svr4_have_link_map_offsets (void); |
9f2982ff | 53 | static void svr4_relocate_main_executable (void); |
1c4dcb57 | 54 | |
c378eb4e | 55 | /* Link map info to include in an allocated so_list entry. */ |
13437d4b KB |
56 | |
57 | struct lm_info | |
58 | { | |
cc10cae3 | 59 | /* Amount by which addresses in the binary should be relocated to |
3957565a JK |
60 | match the inferior. The direct inferior value is L_ADDR_INFERIOR. |
61 | When prelinking is involved and the prelink base address changes, | |
62 | we may need a different offset - the recomputed offset is in L_ADDR. | |
63 | It is commonly the same value. It is cached as we want to warn about | |
64 | the difference and compute it only once. L_ADDR is valid | |
65 | iff L_ADDR_P. */ | |
66 | CORE_ADDR l_addr, l_addr_inferior; | |
67 | unsigned int l_addr_p : 1; | |
93a57060 DJ |
68 | |
69 | /* The target location of lm. */ | |
70 | CORE_ADDR lm_addr; | |
3957565a JK |
71 | |
72 | /* Values read in from inferior's fields of the same name. */ | |
73 | CORE_ADDR l_ld, l_next, l_prev, l_name; | |
13437d4b KB |
74 | }; |
75 | ||
76 | /* On SVR4 systems, a list of symbols in the dynamic linker where | |
77 | GDB can try to place a breakpoint to monitor shared library | |
78 | events. | |
79 | ||
80 | If none of these symbols are found, or other errors occur, then | |
81 | SVR4 systems will fall back to using a symbol as the "startup | |
82 | mapping complete" breakpoint address. */ | |
83 | ||
bc043ef3 | 84 | static const char * const solib_break_names[] = |
13437d4b KB |
85 | { |
86 | "r_debug_state", | |
87 | "_r_debug_state", | |
88 | "_dl_debug_state", | |
89 | "rtld_db_dlactivity", | |
4c7dcb84 | 90 | "__dl_rtld_db_dlactivity", |
1f72e589 | 91 | "_rtld_debug_state", |
4c0122c8 | 92 | |
13437d4b KB |
93 | NULL |
94 | }; | |
13437d4b | 95 | |
bc043ef3 | 96 | static const char * const bkpt_names[] = |
13437d4b | 97 | { |
13437d4b | 98 | "_start", |
ad3dcc5c | 99 | "__start", |
13437d4b KB |
100 | "main", |
101 | NULL | |
102 | }; | |
13437d4b | 103 | |
bc043ef3 | 104 | static const char * const main_name_list[] = |
13437d4b KB |
105 | { |
106 | "main_$main", | |
107 | NULL | |
108 | }; | |
109 | ||
4d7b2d5b JB |
110 | /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent |
111 | the same shared library. */ | |
112 | ||
113 | static int | |
114 | svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) | |
115 | { | |
116 | if (strcmp (gdb_so_name, inferior_so_name) == 0) | |
117 | return 1; | |
118 | ||
119 | /* On Solaris, when starting inferior we think that dynamic linker is | |
d989b283 PP |
120 | /usr/lib/ld.so.1, but later on, the table of loaded shared libraries |
121 | contains /lib/ld.so.1. Sometimes one file is a link to another, but | |
4d7b2d5b JB |
122 | sometimes they have identical content, but are not linked to each |
123 | other. We don't restrict this check for Solaris, but the chances | |
124 | of running into this situation elsewhere are very low. */ | |
125 | if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 | |
126 | && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) | |
127 | return 1; | |
128 | ||
129 | /* Similarly, we observed the same issue with sparc64, but with | |
130 | different locations. */ | |
131 | if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 | |
132 | && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) | |
133 | return 1; | |
134 | ||
135 | return 0; | |
136 | } | |
137 | ||
138 | static int | |
139 | svr4_same (struct so_list *gdb, struct so_list *inferior) | |
140 | { | |
141 | return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); | |
142 | } | |
143 | ||
3957565a JK |
144 | static struct lm_info * |
145 | lm_info_read (CORE_ADDR lm_addr) | |
13437d4b | 146 | { |
4b188b9f | 147 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
3957565a JK |
148 | gdb_byte *lm; |
149 | struct lm_info *lm_info; | |
150 | struct cleanup *back_to; | |
151 | ||
152 | lm = xmalloc (lmo->link_map_size); | |
153 | back_to = make_cleanup (xfree, lm); | |
154 | ||
155 | if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0) | |
156 | { | |
157 | warning (_("Error reading shared library list entry at %s"), | |
158 | paddress (target_gdbarch, lm_addr)), | |
159 | lm_info = NULL; | |
160 | } | |
161 | else | |
162 | { | |
163 | struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; | |
13437d4b | 164 | |
3957565a JK |
165 | lm_info = xzalloc (sizeof (*lm_info)); |
166 | lm_info->lm_addr = lm_addr; | |
167 | ||
168 | lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset], | |
169 | ptr_type); | |
170 | lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type); | |
171 | lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset], | |
172 | ptr_type); | |
173 | lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset], | |
174 | ptr_type); | |
175 | lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset], | |
176 | ptr_type); | |
177 | } | |
178 | ||
179 | do_cleanups (back_to); | |
180 | ||
181 | return lm_info; | |
13437d4b KB |
182 | } |
183 | ||
cc10cae3 | 184 | static int |
b23518f0 | 185 | has_lm_dynamic_from_link_map (void) |
cc10cae3 AO |
186 | { |
187 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
188 | ||
cfaefc65 | 189 | return lmo->l_ld_offset >= 0; |
cc10cae3 AO |
190 | } |
191 | ||
cc10cae3 | 192 | static CORE_ADDR |
b23518f0 | 193 | lm_addr_check (struct so_list *so, bfd *abfd) |
cc10cae3 | 194 | { |
3957565a | 195 | if (!so->lm_info->l_addr_p) |
cc10cae3 AO |
196 | { |
197 | struct bfd_section *dyninfo_sect; | |
28f34a8f | 198 | CORE_ADDR l_addr, l_dynaddr, dynaddr; |
cc10cae3 | 199 | |
3957565a | 200 | l_addr = so->lm_info->l_addr_inferior; |
cc10cae3 | 201 | |
b23518f0 | 202 | if (! abfd || ! has_lm_dynamic_from_link_map ()) |
cc10cae3 AO |
203 | goto set_addr; |
204 | ||
3957565a | 205 | l_dynaddr = so->lm_info->l_ld; |
cc10cae3 AO |
206 | |
207 | dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
208 | if (dyninfo_sect == NULL) | |
209 | goto set_addr; | |
210 | ||
211 | dynaddr = bfd_section_vma (abfd, dyninfo_sect); | |
212 | ||
213 | if (dynaddr + l_addr != l_dynaddr) | |
214 | { | |
28f34a8f | 215 | CORE_ADDR align = 0x1000; |
4e1fc9c9 | 216 | CORE_ADDR minpagesize = align; |
28f34a8f | 217 | |
cc10cae3 AO |
218 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
219 | { | |
220 | Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; | |
221 | Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; | |
222 | int i; | |
223 | ||
224 | align = 1; | |
225 | ||
226 | for (i = 0; i < ehdr->e_phnum; i++) | |
227 | if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) | |
228 | align = phdr[i].p_align; | |
4e1fc9c9 JK |
229 | |
230 | minpagesize = get_elf_backend_data (abfd)->minpagesize; | |
cc10cae3 AO |
231 | } |
232 | ||
233 | /* Turn it into a mask. */ | |
234 | align--; | |
235 | ||
236 | /* If the changes match the alignment requirements, we | |
237 | assume we're using a core file that was generated by the | |
238 | same binary, just prelinked with a different base offset. | |
239 | If it doesn't match, we may have a different binary, the | |
240 | same binary with the dynamic table loaded at an unrelated | |
241 | location, or anything, really. To avoid regressions, | |
242 | don't adjust the base offset in the latter case, although | |
243 | odds are that, if things really changed, debugging won't | |
5c0d192f JK |
244 | quite work. |
245 | ||
246 | One could expect more the condition | |
247 | ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0) | |
248 | but the one below is relaxed for PPC. The PPC kernel supports | |
249 | either 4k or 64k page sizes. To be prepared for 64k pages, | |
250 | PPC ELF files are built using an alignment requirement of 64k. | |
251 | However, when running on a kernel supporting 4k pages, the memory | |
252 | mapping of the library may not actually happen on a 64k boundary! | |
253 | ||
254 | (In the usual case where (l_addr & align) == 0, this check is | |
4e1fc9c9 JK |
255 | equivalent to the possibly expected check above.) |
256 | ||
257 | Even on PPC it must be zero-aligned at least for MINPAGESIZE. */ | |
5c0d192f | 258 | |
02835898 JK |
259 | l_addr = l_dynaddr - dynaddr; |
260 | ||
4e1fc9c9 JK |
261 | if ((l_addr & (minpagesize - 1)) == 0 |
262 | && (l_addr & align) == ((l_dynaddr - dynaddr) & align)) | |
cc10cae3 | 263 | { |
701ed6dc | 264 | if (info_verbose) |
ccf26247 JK |
265 | printf_unfiltered (_("Using PIC (Position Independent Code) " |
266 | "prelink displacement %s for \"%s\".\n"), | |
267 | paddress (target_gdbarch, l_addr), | |
268 | so->so_name); | |
cc10cae3 | 269 | } |
79d4c408 | 270 | else |
02835898 JK |
271 | { |
272 | /* There is no way to verify the library file matches. prelink | |
273 | can during prelinking of an unprelinked file (or unprelinking | |
274 | of a prelinked file) shift the DYNAMIC segment by arbitrary | |
275 | offset without any page size alignment. There is no way to | |
276 | find out the ELF header and/or Program Headers for a limited | |
277 | verification if it they match. One could do a verification | |
278 | of the DYNAMIC segment. Still the found address is the best | |
279 | one GDB could find. */ | |
280 | ||
281 | warning (_(".dynamic section for \"%s\" " | |
282 | "is not at the expected address " | |
283 | "(wrong library or version mismatch?)"), so->so_name); | |
284 | } | |
cc10cae3 AO |
285 | } |
286 | ||
287 | set_addr: | |
288 | so->lm_info->l_addr = l_addr; | |
3957565a | 289 | so->lm_info->l_addr_p = 1; |
cc10cae3 AO |
290 | } |
291 | ||
292 | return so->lm_info->l_addr; | |
293 | } | |
294 | ||
6c95b8df | 295 | /* Per pspace SVR4 specific data. */ |
13437d4b | 296 | |
1a816a87 PA |
297 | struct svr4_info |
298 | { | |
c378eb4e | 299 | CORE_ADDR debug_base; /* Base of dynamic linker structures. */ |
1a816a87 PA |
300 | |
301 | /* Validity flag for debug_loader_offset. */ | |
302 | int debug_loader_offset_p; | |
303 | ||
304 | /* Load address for the dynamic linker, inferred. */ | |
305 | CORE_ADDR debug_loader_offset; | |
306 | ||
307 | /* Name of the dynamic linker, valid if debug_loader_offset_p. */ | |
308 | char *debug_loader_name; | |
309 | ||
310 | /* Load map address for the main executable. */ | |
311 | CORE_ADDR main_lm_addr; | |
1a816a87 | 312 | |
6c95b8df PA |
313 | CORE_ADDR interp_text_sect_low; |
314 | CORE_ADDR interp_text_sect_high; | |
315 | CORE_ADDR interp_plt_sect_low; | |
316 | CORE_ADDR interp_plt_sect_high; | |
317 | }; | |
1a816a87 | 318 | |
6c95b8df PA |
319 | /* Per-program-space data key. */ |
320 | static const struct program_space_data *solib_svr4_pspace_data; | |
1a816a87 | 321 | |
6c95b8df PA |
322 | static void |
323 | svr4_pspace_data_cleanup (struct program_space *pspace, void *arg) | |
1a816a87 | 324 | { |
6c95b8df | 325 | struct svr4_info *info; |
1a816a87 | 326 | |
6c95b8df PA |
327 | info = program_space_data (pspace, solib_svr4_pspace_data); |
328 | xfree (info); | |
1a816a87 PA |
329 | } |
330 | ||
6c95b8df PA |
331 | /* Get the current svr4 data. If none is found yet, add it now. This |
332 | function always returns a valid object. */ | |
34439770 | 333 | |
6c95b8df PA |
334 | static struct svr4_info * |
335 | get_svr4_info (void) | |
1a816a87 | 336 | { |
6c95b8df | 337 | struct svr4_info *info; |
1a816a87 | 338 | |
6c95b8df PA |
339 | info = program_space_data (current_program_space, solib_svr4_pspace_data); |
340 | if (info != NULL) | |
341 | return info; | |
34439770 | 342 | |
6c95b8df PA |
343 | info = XZALLOC (struct svr4_info); |
344 | set_program_space_data (current_program_space, solib_svr4_pspace_data, info); | |
345 | return info; | |
1a816a87 | 346 | } |
93a57060 | 347 | |
13437d4b KB |
348 | /* Local function prototypes */ |
349 | ||
bc043ef3 | 350 | static int match_main (const char *); |
13437d4b | 351 | |
97ec2c2f UW |
352 | /* Read program header TYPE from inferior memory. The header is found |
353 | by scanning the OS auxillary vector. | |
354 | ||
09919ac2 JK |
355 | If TYPE == -1, return the program headers instead of the contents of |
356 | one program header. | |
357 | ||
97ec2c2f UW |
358 | Return a pointer to allocated memory holding the program header contents, |
359 | or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the | |
360 | size of those contents is returned to P_SECT_SIZE. Likewise, the target | |
361 | architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */ | |
362 | ||
363 | static gdb_byte * | |
364 | read_program_header (int type, int *p_sect_size, int *p_arch_size) | |
365 | { | |
e17a4113 | 366 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
43136979 | 367 | CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0; |
97ec2c2f UW |
368 | int arch_size, sect_size; |
369 | CORE_ADDR sect_addr; | |
370 | gdb_byte *buf; | |
43136979 | 371 | int pt_phdr_p = 0; |
97ec2c2f UW |
372 | |
373 | /* Get required auxv elements from target. */ | |
374 | if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0) | |
375 | return 0; | |
376 | if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0) | |
377 | return 0; | |
378 | if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0) | |
379 | return 0; | |
380 | if (!at_phdr || !at_phnum) | |
381 | return 0; | |
382 | ||
383 | /* Determine ELF architecture type. */ | |
384 | if (at_phent == sizeof (Elf32_External_Phdr)) | |
385 | arch_size = 32; | |
386 | else if (at_phent == sizeof (Elf64_External_Phdr)) | |
387 | arch_size = 64; | |
388 | else | |
389 | return 0; | |
390 | ||
09919ac2 JK |
391 | /* Find the requested segment. */ |
392 | if (type == -1) | |
393 | { | |
394 | sect_addr = at_phdr; | |
395 | sect_size = at_phent * at_phnum; | |
396 | } | |
397 | else if (arch_size == 32) | |
97ec2c2f UW |
398 | { |
399 | Elf32_External_Phdr phdr; | |
400 | int i; | |
401 | ||
402 | /* Search for requested PHDR. */ | |
403 | for (i = 0; i < at_phnum; i++) | |
404 | { | |
43136979 AR |
405 | int p_type; |
406 | ||
97ec2c2f UW |
407 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
408 | (gdb_byte *)&phdr, sizeof (phdr))) | |
409 | return 0; | |
410 | ||
43136979 AR |
411 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
412 | 4, byte_order); | |
413 | ||
414 | if (p_type == PT_PHDR) | |
415 | { | |
416 | pt_phdr_p = 1; | |
417 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
418 | 4, byte_order); | |
419 | } | |
420 | ||
421 | if (p_type == type) | |
97ec2c2f UW |
422 | break; |
423 | } | |
424 | ||
425 | if (i == at_phnum) | |
426 | return 0; | |
427 | ||
428 | /* Retrieve address and size. */ | |
e17a4113 UW |
429 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
430 | 4, byte_order); | |
431 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
432 | 4, byte_order); | |
97ec2c2f UW |
433 | } |
434 | else | |
435 | { | |
436 | Elf64_External_Phdr phdr; | |
437 | int i; | |
438 | ||
439 | /* Search for requested PHDR. */ | |
440 | for (i = 0; i < at_phnum; i++) | |
441 | { | |
43136979 AR |
442 | int p_type; |
443 | ||
97ec2c2f UW |
444 | if (target_read_memory (at_phdr + i * sizeof (phdr), |
445 | (gdb_byte *)&phdr, sizeof (phdr))) | |
446 | return 0; | |
447 | ||
43136979 AR |
448 | p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, |
449 | 4, byte_order); | |
450 | ||
451 | if (p_type == PT_PHDR) | |
452 | { | |
453 | pt_phdr_p = 1; | |
454 | pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, | |
455 | 8, byte_order); | |
456 | } | |
457 | ||
458 | if (p_type == type) | |
97ec2c2f UW |
459 | break; |
460 | } | |
461 | ||
462 | if (i == at_phnum) | |
463 | return 0; | |
464 | ||
465 | /* Retrieve address and size. */ | |
e17a4113 UW |
466 | sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, |
467 | 8, byte_order); | |
468 | sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, | |
469 | 8, byte_order); | |
97ec2c2f UW |
470 | } |
471 | ||
43136979 AR |
472 | /* PT_PHDR is optional, but we really need it |
473 | for PIE to make this work in general. */ | |
474 | ||
475 | if (pt_phdr_p) | |
476 | { | |
477 | /* at_phdr is real address in memory. pt_phdr is what pheader says it is. | |
478 | Relocation offset is the difference between the two. */ | |
479 | sect_addr = sect_addr + (at_phdr - pt_phdr); | |
480 | } | |
481 | ||
97ec2c2f UW |
482 | /* Read in requested program header. */ |
483 | buf = xmalloc (sect_size); | |
484 | if (target_read_memory (sect_addr, buf, sect_size)) | |
485 | { | |
486 | xfree (buf); | |
487 | return NULL; | |
488 | } | |
489 | ||
490 | if (p_arch_size) | |
491 | *p_arch_size = arch_size; | |
492 | if (p_sect_size) | |
493 | *p_sect_size = sect_size; | |
494 | ||
495 | return buf; | |
496 | } | |
497 | ||
498 | ||
499 | /* Return program interpreter string. */ | |
500 | static gdb_byte * | |
501 | find_program_interpreter (void) | |
502 | { | |
503 | gdb_byte *buf = NULL; | |
504 | ||
505 | /* If we have an exec_bfd, use its section table. */ | |
506 | if (exec_bfd | |
507 | && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
508 | { | |
509 | struct bfd_section *interp_sect; | |
510 | ||
511 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
512 | if (interp_sect != NULL) | |
513 | { | |
97ec2c2f UW |
514 | int sect_size = bfd_section_size (exec_bfd, interp_sect); |
515 | ||
516 | buf = xmalloc (sect_size); | |
517 | bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size); | |
518 | } | |
519 | } | |
520 | ||
521 | /* If we didn't find it, use the target auxillary vector. */ | |
522 | if (!buf) | |
523 | buf = read_program_header (PT_INTERP, NULL, NULL); | |
524 | ||
525 | return buf; | |
526 | } | |
527 | ||
528 | ||
c378eb4e | 529 | /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is |
3a40aaa0 UW |
530 | returned and the corresponding PTR is set. */ |
531 | ||
532 | static int | |
533 | scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr) | |
534 | { | |
535 | int arch_size, step, sect_size; | |
536 | long dyn_tag; | |
b381ea14 | 537 | CORE_ADDR dyn_ptr, dyn_addr; |
65728c26 | 538 | gdb_byte *bufend, *bufstart, *buf; |
3a40aaa0 UW |
539 | Elf32_External_Dyn *x_dynp_32; |
540 | Elf64_External_Dyn *x_dynp_64; | |
541 | struct bfd_section *sect; | |
61f0d762 | 542 | struct target_section *target_section; |
3a40aaa0 UW |
543 | |
544 | if (abfd == NULL) | |
545 | return 0; | |
0763ab81 PA |
546 | |
547 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
548 | return 0; | |
549 | ||
3a40aaa0 UW |
550 | arch_size = bfd_get_arch_size (abfd); |
551 | if (arch_size == -1) | |
0763ab81 | 552 | return 0; |
3a40aaa0 UW |
553 | |
554 | /* Find the start address of the .dynamic section. */ | |
555 | sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
556 | if (sect == NULL) | |
557 | return 0; | |
61f0d762 JK |
558 | |
559 | for (target_section = current_target_sections->sections; | |
560 | target_section < current_target_sections->sections_end; | |
561 | target_section++) | |
562 | if (sect == target_section->the_bfd_section) | |
563 | break; | |
b381ea14 JK |
564 | if (target_section < current_target_sections->sections_end) |
565 | dyn_addr = target_section->addr; | |
566 | else | |
567 | { | |
568 | /* ABFD may come from OBJFILE acting only as a symbol file without being | |
569 | loaded into the target (see add_symbol_file_command). This case is | |
570 | such fallback to the file VMA address without the possibility of | |
571 | having the section relocated to its actual in-memory address. */ | |
572 | ||
573 | dyn_addr = bfd_section_vma (abfd, sect); | |
574 | } | |
3a40aaa0 | 575 | |
65728c26 DJ |
576 | /* Read in .dynamic from the BFD. We will get the actual value |
577 | from memory later. */ | |
3a40aaa0 | 578 | sect_size = bfd_section_size (abfd, sect); |
65728c26 DJ |
579 | buf = bufstart = alloca (sect_size); |
580 | if (!bfd_get_section_contents (abfd, sect, | |
581 | buf, 0, sect_size)) | |
582 | return 0; | |
3a40aaa0 UW |
583 | |
584 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
585 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
586 | : sizeof (Elf64_External_Dyn); | |
587 | for (bufend = buf + sect_size; | |
588 | buf < bufend; | |
589 | buf += step) | |
590 | { | |
591 | if (arch_size == 32) | |
592 | { | |
593 | x_dynp_32 = (Elf32_External_Dyn *) buf; | |
594 | dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag); | |
595 | dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr); | |
596 | } | |
65728c26 | 597 | else |
3a40aaa0 UW |
598 | { |
599 | x_dynp_64 = (Elf64_External_Dyn *) buf; | |
600 | dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag); | |
601 | dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr); | |
602 | } | |
603 | if (dyn_tag == DT_NULL) | |
604 | return 0; | |
605 | if (dyn_tag == dyntag) | |
606 | { | |
65728c26 DJ |
607 | /* If requested, try to read the runtime value of this .dynamic |
608 | entry. */ | |
3a40aaa0 | 609 | if (ptr) |
65728c26 | 610 | { |
b6da22b0 | 611 | struct type *ptr_type; |
65728c26 DJ |
612 | gdb_byte ptr_buf[8]; |
613 | CORE_ADDR ptr_addr; | |
614 | ||
b6da22b0 | 615 | ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; |
b381ea14 | 616 | ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8; |
65728c26 | 617 | if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0) |
b6da22b0 | 618 | dyn_ptr = extract_typed_address (ptr_buf, ptr_type); |
65728c26 DJ |
619 | *ptr = dyn_ptr; |
620 | } | |
621 | return 1; | |
3a40aaa0 UW |
622 | } |
623 | } | |
624 | ||
625 | return 0; | |
626 | } | |
627 | ||
97ec2c2f UW |
628 | /* Scan for DYNTAG in .dynamic section of the target's main executable, |
629 | found by consulting the OS auxillary vector. If DYNTAG is found 1 is | |
630 | returned and the corresponding PTR is set. */ | |
631 | ||
632 | static int | |
633 | scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr) | |
634 | { | |
e17a4113 | 635 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
97ec2c2f UW |
636 | int sect_size, arch_size, step; |
637 | long dyn_tag; | |
638 | CORE_ADDR dyn_ptr; | |
639 | gdb_byte *bufend, *bufstart, *buf; | |
640 | ||
641 | /* Read in .dynamic section. */ | |
642 | buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size); | |
643 | if (!buf) | |
644 | return 0; | |
645 | ||
646 | /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ | |
647 | step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) | |
648 | : sizeof (Elf64_External_Dyn); | |
649 | for (bufend = buf + sect_size; | |
650 | buf < bufend; | |
651 | buf += step) | |
652 | { | |
653 | if (arch_size == 32) | |
654 | { | |
655 | Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf; | |
433759f7 | 656 | |
e17a4113 UW |
657 | dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
658 | 4, byte_order); | |
659 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
660 | 4, byte_order); | |
97ec2c2f UW |
661 | } |
662 | else | |
663 | { | |
664 | Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf; | |
433759f7 | 665 | |
e17a4113 UW |
666 | dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, |
667 | 8, byte_order); | |
668 | dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, | |
669 | 8, byte_order); | |
97ec2c2f UW |
670 | } |
671 | if (dyn_tag == DT_NULL) | |
672 | break; | |
673 | ||
674 | if (dyn_tag == dyntag) | |
675 | { | |
676 | if (ptr) | |
677 | *ptr = dyn_ptr; | |
678 | ||
679 | xfree (bufstart); | |
680 | return 1; | |
681 | } | |
682 | } | |
683 | ||
684 | xfree (bufstart); | |
685 | return 0; | |
686 | } | |
687 | ||
7f86f058 PA |
688 | /* Locate the base address of dynamic linker structs for SVR4 elf |
689 | targets. | |
13437d4b KB |
690 | |
691 | For SVR4 elf targets the address of the dynamic linker's runtime | |
692 | structure is contained within the dynamic info section in the | |
693 | executable file. The dynamic section is also mapped into the | |
694 | inferior address space. Because the runtime loader fills in the | |
695 | real address before starting the inferior, we have to read in the | |
696 | dynamic info section from the inferior address space. | |
697 | If there are any errors while trying to find the address, we | |
7f86f058 | 698 | silently return 0, otherwise the found address is returned. */ |
13437d4b KB |
699 | |
700 | static CORE_ADDR | |
701 | elf_locate_base (void) | |
702 | { | |
3a40aaa0 UW |
703 | struct minimal_symbol *msymbol; |
704 | CORE_ADDR dyn_ptr; | |
13437d4b | 705 | |
65728c26 DJ |
706 | /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this |
707 | instead of DT_DEBUG, although they sometimes contain an unused | |
708 | DT_DEBUG. */ | |
97ec2c2f UW |
709 | if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr) |
710 | || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr)) | |
3a40aaa0 | 711 | { |
b6da22b0 | 712 | struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; |
3a40aaa0 | 713 | gdb_byte *pbuf; |
b6da22b0 | 714 | int pbuf_size = TYPE_LENGTH (ptr_type); |
433759f7 | 715 | |
3a40aaa0 UW |
716 | pbuf = alloca (pbuf_size); |
717 | /* DT_MIPS_RLD_MAP contains a pointer to the address | |
718 | of the dynamic link structure. */ | |
719 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | |
e499d0f1 | 720 | return 0; |
b6da22b0 | 721 | return extract_typed_address (pbuf, ptr_type); |
e499d0f1 DJ |
722 | } |
723 | ||
65728c26 | 724 | /* Find DT_DEBUG. */ |
97ec2c2f UW |
725 | if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr) |
726 | || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr)) | |
65728c26 DJ |
727 | return dyn_ptr; |
728 | ||
3a40aaa0 UW |
729 | /* This may be a static executable. Look for the symbol |
730 | conventionally named _r_debug, as a last resort. */ | |
731 | msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile); | |
732 | if (msymbol != NULL) | |
733 | return SYMBOL_VALUE_ADDRESS (msymbol); | |
13437d4b KB |
734 | |
735 | /* DT_DEBUG entry not found. */ | |
736 | return 0; | |
737 | } | |
738 | ||
7f86f058 | 739 | /* Locate the base address of dynamic linker structs. |
13437d4b KB |
740 | |
741 | For both the SunOS and SVR4 shared library implementations, if the | |
742 | inferior executable has been linked dynamically, there is a single | |
743 | address somewhere in the inferior's data space which is the key to | |
744 | locating all of the dynamic linker's runtime structures. This | |
745 | address is the value of the debug base symbol. The job of this | |
746 | function is to find and return that address, or to return 0 if there | |
747 | is no such address (the executable is statically linked for example). | |
748 | ||
749 | For SunOS, the job is almost trivial, since the dynamic linker and | |
750 | all of it's structures are statically linked to the executable at | |
751 | link time. Thus the symbol for the address we are looking for has | |
752 | already been added to the minimal symbol table for the executable's | |
753 | objfile at the time the symbol file's symbols were read, and all we | |
754 | have to do is look it up there. Note that we explicitly do NOT want | |
755 | to find the copies in the shared library. | |
756 | ||
757 | The SVR4 version is a bit more complicated because the address | |
758 | is contained somewhere in the dynamic info section. We have to go | |
759 | to a lot more work to discover the address of the debug base symbol. | |
760 | Because of this complexity, we cache the value we find and return that | |
761 | value on subsequent invocations. Note there is no copy in the | |
7f86f058 | 762 | executable symbol tables. */ |
13437d4b KB |
763 | |
764 | static CORE_ADDR | |
1a816a87 | 765 | locate_base (struct svr4_info *info) |
13437d4b | 766 | { |
13437d4b KB |
767 | /* Check to see if we have a currently valid address, and if so, avoid |
768 | doing all this work again and just return the cached address. If | |
769 | we have no cached address, try to locate it in the dynamic info | |
d5a921c9 KB |
770 | section for ELF executables. There's no point in doing any of this |
771 | though if we don't have some link map offsets to work with. */ | |
13437d4b | 772 | |
1a816a87 | 773 | if (info->debug_base == 0 && svr4_have_link_map_offsets ()) |
0763ab81 | 774 | info->debug_base = elf_locate_base (); |
1a816a87 | 775 | return info->debug_base; |
13437d4b KB |
776 | } |
777 | ||
e4cd0d6a | 778 | /* Find the first element in the inferior's dynamic link map, and |
6f992fbf JB |
779 | return its address in the inferior. Return zero if the address |
780 | could not be determined. | |
13437d4b | 781 | |
e4cd0d6a MK |
782 | FIXME: Perhaps we should validate the info somehow, perhaps by |
783 | checking r_version for a known version number, or r_state for | |
784 | RT_CONSISTENT. */ | |
13437d4b KB |
785 | |
786 | static CORE_ADDR | |
1a816a87 | 787 | solib_svr4_r_map (struct svr4_info *info) |
13437d4b | 788 | { |
4b188b9f | 789 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
b6da22b0 | 790 | struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; |
08597104 JB |
791 | CORE_ADDR addr = 0; |
792 | volatile struct gdb_exception ex; | |
13437d4b | 793 | |
08597104 JB |
794 | TRY_CATCH (ex, RETURN_MASK_ERROR) |
795 | { | |
796 | addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset, | |
797 | ptr_type); | |
798 | } | |
799 | exception_print (gdb_stderr, ex); | |
800 | return addr; | |
e4cd0d6a | 801 | } |
13437d4b | 802 | |
7cd25cfc DJ |
803 | /* Find r_brk from the inferior's debug base. */ |
804 | ||
805 | static CORE_ADDR | |
1a816a87 | 806 | solib_svr4_r_brk (struct svr4_info *info) |
7cd25cfc DJ |
807 | { |
808 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
b6da22b0 | 809 | struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; |
7cd25cfc | 810 | |
1a816a87 PA |
811 | return read_memory_typed_address (info->debug_base + lmo->r_brk_offset, |
812 | ptr_type); | |
7cd25cfc DJ |
813 | } |
814 | ||
e4cd0d6a MK |
815 | /* Find the link map for the dynamic linker (if it is not in the |
816 | normal list of loaded shared objects). */ | |
13437d4b | 817 | |
e4cd0d6a | 818 | static CORE_ADDR |
1a816a87 | 819 | solib_svr4_r_ldsomap (struct svr4_info *info) |
e4cd0d6a MK |
820 | { |
821 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
b6da22b0 | 822 | struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; |
e17a4113 | 823 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); |
e4cd0d6a | 824 | ULONGEST version; |
13437d4b | 825 | |
e4cd0d6a MK |
826 | /* Check version, and return zero if `struct r_debug' doesn't have |
827 | the r_ldsomap member. */ | |
1a816a87 PA |
828 | version |
829 | = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset, | |
e17a4113 | 830 | lmo->r_version_size, byte_order); |
e4cd0d6a MK |
831 | if (version < 2 || lmo->r_ldsomap_offset == -1) |
832 | return 0; | |
13437d4b | 833 | |
1a816a87 | 834 | return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset, |
b6da22b0 | 835 | ptr_type); |
13437d4b KB |
836 | } |
837 | ||
de18c1d8 JM |
838 | /* On Solaris systems with some versions of the dynamic linker, |
839 | ld.so's l_name pointer points to the SONAME in the string table | |
840 | rather than into writable memory. So that GDB can find shared | |
841 | libraries when loading a core file generated by gcore, ensure that | |
842 | memory areas containing the l_name string are saved in the core | |
843 | file. */ | |
844 | ||
845 | static int | |
846 | svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size) | |
847 | { | |
848 | struct svr4_info *info; | |
849 | CORE_ADDR ldsomap; | |
850 | struct so_list *new; | |
851 | struct cleanup *old_chain; | |
852 | struct link_map_offsets *lmo; | |
74de0234 | 853 | CORE_ADDR name_lm; |
de18c1d8 JM |
854 | |
855 | info = get_svr4_info (); | |
856 | ||
857 | info->debug_base = 0; | |
858 | locate_base (info); | |
859 | if (!info->debug_base) | |
860 | return 0; | |
861 | ||
862 | ldsomap = solib_svr4_r_ldsomap (info); | |
863 | if (!ldsomap) | |
864 | return 0; | |
865 | ||
866 | lmo = svr4_fetch_link_map_offsets (); | |
867 | new = XZALLOC (struct so_list); | |
868 | old_chain = make_cleanup (xfree, new); | |
3957565a | 869 | new->lm_info = lm_info_read (ldsomap); |
de18c1d8 | 870 | make_cleanup (xfree, new->lm_info); |
3957565a | 871 | name_lm = new->lm_info ? new->lm_info->l_name : 0; |
de18c1d8 JM |
872 | do_cleanups (old_chain); |
873 | ||
74de0234 | 874 | return (name_lm >= vaddr && name_lm < vaddr + size); |
de18c1d8 JM |
875 | } |
876 | ||
7f86f058 | 877 | /* Implement the "open_symbol_file_object" target_so_ops method. |
13437d4b | 878 | |
7f86f058 PA |
879 | If no open symbol file, attempt to locate and open the main symbol |
880 | file. On SVR4 systems, this is the first link map entry. If its | |
881 | name is here, we can open it. Useful when attaching to a process | |
882 | without first loading its symbol file. */ | |
13437d4b KB |
883 | |
884 | static int | |
885 | open_symbol_file_object (void *from_ttyp) | |
886 | { | |
887 | CORE_ADDR lm, l_name; | |
888 | char *filename; | |
889 | int errcode; | |
890 | int from_tty = *(int *)from_ttyp; | |
4b188b9f | 891 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
b6da22b0 UW |
892 | struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr; |
893 | int l_name_size = TYPE_LENGTH (ptr_type); | |
cfaefc65 | 894 | gdb_byte *l_name_buf = xmalloc (l_name_size); |
b8c9b27d | 895 | struct cleanup *cleanups = make_cleanup (xfree, l_name_buf); |
6c95b8df | 896 | struct svr4_info *info = get_svr4_info (); |
13437d4b KB |
897 | |
898 | if (symfile_objfile) | |
9e2f0ad4 | 899 | if (!query (_("Attempt to reload symbols from process? "))) |
3bb47e8b TT |
900 | { |
901 | do_cleanups (cleanups); | |
902 | return 0; | |
903 | } | |
13437d4b | 904 | |
7cd25cfc | 905 | /* Always locate the debug struct, in case it has moved. */ |
1a816a87 PA |
906 | info->debug_base = 0; |
907 | if (locate_base (info) == 0) | |
3bb47e8b TT |
908 | { |
909 | do_cleanups (cleanups); | |
910 | return 0; /* failed somehow... */ | |
911 | } | |
13437d4b KB |
912 | |
913 | /* First link map member should be the executable. */ | |
1a816a87 | 914 | lm = solib_svr4_r_map (info); |
e4cd0d6a | 915 | if (lm == 0) |
3bb47e8b TT |
916 | { |
917 | do_cleanups (cleanups); | |
918 | return 0; /* failed somehow... */ | |
919 | } | |
13437d4b KB |
920 | |
921 | /* Read address of name from target memory to GDB. */ | |
cfaefc65 | 922 | read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size); |
13437d4b | 923 | |
cfaefc65 | 924 | /* Convert the address to host format. */ |
b6da22b0 | 925 | l_name = extract_typed_address (l_name_buf, ptr_type); |
13437d4b | 926 | |
13437d4b | 927 | if (l_name == 0) |
3bb47e8b TT |
928 | { |
929 | do_cleanups (cleanups); | |
930 | return 0; /* No filename. */ | |
931 | } | |
13437d4b KB |
932 | |
933 | /* Now fetch the filename from target memory. */ | |
934 | target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
ea5bf0a1 | 935 | make_cleanup (xfree, filename); |
13437d4b KB |
936 | |
937 | if (errcode) | |
938 | { | |
8a3fe4f8 | 939 | warning (_("failed to read exec filename from attached file: %s"), |
13437d4b | 940 | safe_strerror (errcode)); |
3bb47e8b | 941 | do_cleanups (cleanups); |
13437d4b KB |
942 | return 0; |
943 | } | |
944 | ||
13437d4b | 945 | /* Have a pathname: read the symbol file. */ |
1adeb98a | 946 | symbol_file_add_main (filename, from_tty); |
13437d4b | 947 | |
3bb47e8b | 948 | do_cleanups (cleanups); |
13437d4b KB |
949 | return 1; |
950 | } | |
13437d4b | 951 | |
2268b414 JK |
952 | /* Data exchange structure for the XML parser as returned by |
953 | svr4_current_sos_via_xfer_libraries. */ | |
954 | ||
955 | struct svr4_library_list | |
956 | { | |
957 | struct so_list *head, **tailp; | |
958 | ||
959 | /* Inferior address of struct link_map used for the main executable. It is | |
960 | NULL if not known. */ | |
961 | CORE_ADDR main_lm; | |
962 | }; | |
963 | ||
93f2a35e JK |
964 | /* Implementation for target_so_ops.free_so. */ |
965 | ||
966 | static void | |
967 | svr4_free_so (struct so_list *so) | |
968 | { | |
969 | xfree (so->lm_info); | |
970 | } | |
971 | ||
972 | /* Free so_list built so far (called via cleanup). */ | |
973 | ||
974 | static void | |
975 | svr4_free_library_list (void *p_list) | |
976 | { | |
977 | struct so_list *list = *(struct so_list **) p_list; | |
978 | ||
979 | while (list != NULL) | |
980 | { | |
981 | struct so_list *next = list->next; | |
982 | ||
983 | svr4_free_so (list); | |
984 | list = next; | |
985 | } | |
986 | } | |
987 | ||
2268b414 JK |
988 | #ifdef HAVE_LIBEXPAT |
989 | ||
990 | #include "xml-support.h" | |
991 | ||
992 | /* Handle the start of a <library> element. Note: new elements are added | |
993 | at the tail of the list, keeping the list in order. */ | |
994 | ||
995 | static void | |
996 | library_list_start_library (struct gdb_xml_parser *parser, | |
997 | const struct gdb_xml_element *element, | |
998 | void *user_data, VEC(gdb_xml_value_s) *attributes) | |
999 | { | |
1000 | struct svr4_library_list *list = user_data; | |
1001 | const char *name = xml_find_attribute (attributes, "name")->value; | |
1002 | ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value; | |
1003 | ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value; | |
1004 | ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value; | |
1005 | struct so_list *new_elem; | |
1006 | ||
1007 | new_elem = XZALLOC (struct so_list); | |
1008 | new_elem->lm_info = XZALLOC (struct lm_info); | |
1009 | new_elem->lm_info->lm_addr = *lmp; | |
1010 | new_elem->lm_info->l_addr_inferior = *l_addrp; | |
1011 | new_elem->lm_info->l_ld = *l_ldp; | |
1012 | ||
1013 | strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1); | |
1014 | new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0; | |
1015 | strcpy (new_elem->so_original_name, new_elem->so_name); | |
1016 | ||
1017 | *list->tailp = new_elem; | |
1018 | list->tailp = &new_elem->next; | |
1019 | } | |
1020 | ||
1021 | /* Handle the start of a <library-list-svr4> element. */ | |
1022 | ||
1023 | static void | |
1024 | svr4_library_list_start_list (struct gdb_xml_parser *parser, | |
1025 | const struct gdb_xml_element *element, | |
1026 | void *user_data, VEC(gdb_xml_value_s) *attributes) | |
1027 | { | |
1028 | struct svr4_library_list *list = user_data; | |
1029 | const char *version = xml_find_attribute (attributes, "version")->value; | |
1030 | struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm"); | |
1031 | ||
1032 | if (strcmp (version, "1.0") != 0) | |
1033 | gdb_xml_error (parser, | |
1034 | _("SVR4 Library list has unsupported version \"%s\""), | |
1035 | version); | |
1036 | ||
1037 | if (main_lm) | |
1038 | list->main_lm = *(ULONGEST *) main_lm->value; | |
1039 | } | |
1040 | ||
1041 | /* The allowed elements and attributes for an XML library list. | |
1042 | The root element is a <library-list>. */ | |
1043 | ||
1044 | static const struct gdb_xml_attribute svr4_library_attributes[] = | |
1045 | { | |
1046 | { "name", GDB_XML_AF_NONE, NULL, NULL }, | |
1047 | { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1048 | { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1049 | { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, | |
1050 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1051 | }; | |
1052 | ||
1053 | static const struct gdb_xml_element svr4_library_list_children[] = | |
1054 | { | |
1055 | { | |
1056 | "library", svr4_library_attributes, NULL, | |
1057 | GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL, | |
1058 | library_list_start_library, NULL | |
1059 | }, | |
1060 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1061 | }; | |
1062 | ||
1063 | static const struct gdb_xml_attribute svr4_library_list_attributes[] = | |
1064 | { | |
1065 | { "version", GDB_XML_AF_NONE, NULL, NULL }, | |
1066 | { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL }, | |
1067 | { NULL, GDB_XML_AF_NONE, NULL, NULL } | |
1068 | }; | |
1069 | ||
1070 | static const struct gdb_xml_element svr4_library_list_elements[] = | |
1071 | { | |
1072 | { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children, | |
1073 | GDB_XML_EF_NONE, svr4_library_list_start_list, NULL }, | |
1074 | { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } | |
1075 | }; | |
1076 | ||
2268b414 JK |
1077 | /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if |
1078 | ||
1079 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1080 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
1081 | empty, caller is responsible for freeing all its entries. */ | |
1082 | ||
1083 | static int | |
1084 | svr4_parse_libraries (const char *document, struct svr4_library_list *list) | |
1085 | { | |
1086 | struct cleanup *back_to = make_cleanup (svr4_free_library_list, | |
1087 | &list->head); | |
1088 | ||
1089 | memset (list, 0, sizeof (*list)); | |
1090 | list->tailp = &list->head; | |
1091 | if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd", | |
1092 | svr4_library_list_elements, document, list) == 0) | |
1093 | { | |
1094 | /* Parsed successfully, keep the result. */ | |
1095 | discard_cleanups (back_to); | |
1096 | return 1; | |
1097 | } | |
1098 | ||
1099 | do_cleanups (back_to); | |
1100 | return 0; | |
1101 | } | |
1102 | ||
1103 | /* Attempt to get so_list from target via qXfer:libraries:read packet. | |
1104 | ||
1105 | Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such | |
1106 | case. Return 1 if *SO_LIST_RETURN contains the library list, it may be | |
1107 | empty, caller is responsible for freeing all its entries. */ | |
1108 | ||
1109 | static int | |
1110 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list) | |
1111 | { | |
1112 | char *svr4_library_document; | |
1113 | int result; | |
1114 | struct cleanup *back_to; | |
1115 | ||
1116 | /* Fetch the list of shared libraries. */ | |
1117 | svr4_library_document = target_read_stralloc (¤t_target, | |
1118 | TARGET_OBJECT_LIBRARIES_SVR4, | |
1119 | NULL); | |
1120 | if (svr4_library_document == NULL) | |
1121 | return 0; | |
1122 | ||
1123 | back_to = make_cleanup (xfree, svr4_library_document); | |
1124 | result = svr4_parse_libraries (svr4_library_document, list); | |
1125 | do_cleanups (back_to); | |
1126 | ||
1127 | return result; | |
1128 | } | |
1129 | ||
1130 | #else | |
1131 | ||
1132 | static int | |
1133 | svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list) | |
1134 | { | |
1135 | return 0; | |
1136 | } | |
1137 | ||
1138 | #endif | |
1139 | ||
34439770 DJ |
1140 | /* If no shared library information is available from the dynamic |
1141 | linker, build a fallback list from other sources. */ | |
1142 | ||
1143 | static struct so_list * | |
1144 | svr4_default_sos (void) | |
1145 | { | |
6c95b8df | 1146 | struct svr4_info *info = get_svr4_info (); |
8e5c319d | 1147 | struct so_list *new; |
1a816a87 | 1148 | |
8e5c319d JK |
1149 | if (!info->debug_loader_offset_p) |
1150 | return NULL; | |
34439770 | 1151 | |
8e5c319d | 1152 | new = XZALLOC (struct so_list); |
34439770 | 1153 | |
3957565a | 1154 | new->lm_info = xzalloc (sizeof (struct lm_info)); |
34439770 | 1155 | |
3957565a | 1156 | /* Nothing will ever check the other fields if we set l_addr_p. */ |
8e5c319d | 1157 | new->lm_info->l_addr = info->debug_loader_offset; |
3957565a | 1158 | new->lm_info->l_addr_p = 1; |
34439770 | 1159 | |
8e5c319d JK |
1160 | strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1); |
1161 | new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
1162 | strcpy (new->so_original_name, new->so_name); | |
34439770 | 1163 | |
8e5c319d | 1164 | return new; |
34439770 DJ |
1165 | } |
1166 | ||
cb08cc53 JK |
1167 | /* Read the whole inferior libraries chain starting at address LM. Add the |
1168 | entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if | |
1169 | IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */ | |
13437d4b | 1170 | |
cb08cc53 JK |
1171 | static void |
1172 | svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr, | |
1173 | int ignore_first) | |
13437d4b | 1174 | { |
cb08cc53 | 1175 | CORE_ADDR prev_lm = 0, next_lm; |
13437d4b | 1176 | |
cb08cc53 | 1177 | for (; lm != 0; prev_lm = lm, lm = next_lm) |
13437d4b | 1178 | { |
4b188b9f | 1179 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
cb08cc53 JK |
1180 | struct so_list *new; |
1181 | struct cleanup *old_chain; | |
1182 | int errcode; | |
1183 | char *buffer; | |
13437d4b | 1184 | |
cb08cc53 JK |
1185 | new = XZALLOC (struct so_list); |
1186 | old_chain = make_cleanup_free_so (new); | |
13437d4b | 1187 | |
3957565a JK |
1188 | new->lm_info = lm_info_read (lm); |
1189 | if (new->lm_info == NULL) | |
1190 | { | |
1191 | do_cleanups (old_chain); | |
1192 | break; | |
1193 | } | |
13437d4b | 1194 | |
3957565a | 1195 | next_lm = new->lm_info->l_next; |
492928e4 | 1196 | |
3957565a | 1197 | if (new->lm_info->l_prev != prev_lm) |
492928e4 | 1198 | { |
2268b414 JK |
1199 | warning (_("Corrupted shared library list: %s != %s"), |
1200 | paddress (target_gdbarch, prev_lm), | |
1201 | paddress (target_gdbarch, new->lm_info->l_prev)); | |
cb08cc53 JK |
1202 | do_cleanups (old_chain); |
1203 | break; | |
492928e4 | 1204 | } |
13437d4b KB |
1205 | |
1206 | /* For SVR4 versions, the first entry in the link map is for the | |
1207 | inferior executable, so we must ignore it. For some versions of | |
1208 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
1209 | does have a name, so we can no longer use a missing name to | |
c378eb4e | 1210 | decide when to ignore it. */ |
3957565a | 1211 | if (ignore_first && new->lm_info->l_prev == 0) |
93a57060 | 1212 | { |
cb08cc53 JK |
1213 | struct svr4_info *info = get_svr4_info (); |
1214 | ||
1a816a87 | 1215 | info->main_lm_addr = new->lm_info->lm_addr; |
cb08cc53 JK |
1216 | do_cleanups (old_chain); |
1217 | continue; | |
93a57060 | 1218 | } |
13437d4b | 1219 | |
cb08cc53 | 1220 | /* Extract this shared object's name. */ |
3957565a | 1221 | target_read_string (new->lm_info->l_name, &buffer, |
cb08cc53 JK |
1222 | SO_NAME_MAX_PATH_SIZE - 1, &errcode); |
1223 | if (errcode != 0) | |
1224 | { | |
1225 | warning (_("Can't read pathname for load map: %s."), | |
1226 | safe_strerror (errcode)); | |
1227 | do_cleanups (old_chain); | |
1228 | continue; | |
13437d4b KB |
1229 | } |
1230 | ||
cb08cc53 JK |
1231 | strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); |
1232 | new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
1233 | strcpy (new->so_original_name, new->so_name); | |
1234 | xfree (buffer); | |
492928e4 | 1235 | |
cb08cc53 JK |
1236 | /* If this entry has no name, or its name matches the name |
1237 | for the main executable, don't include it in the list. */ | |
1238 | if (! new->so_name[0] || match_main (new->so_name)) | |
492928e4 | 1239 | { |
cb08cc53 JK |
1240 | do_cleanups (old_chain); |
1241 | continue; | |
492928e4 | 1242 | } |
e4cd0d6a | 1243 | |
13437d4b | 1244 | discard_cleanups (old_chain); |
cb08cc53 JK |
1245 | new->next = 0; |
1246 | **link_ptr_ptr = new; | |
1247 | *link_ptr_ptr = &new->next; | |
13437d4b | 1248 | } |
cb08cc53 JK |
1249 | } |
1250 | ||
1251 | /* Implement the "current_sos" target_so_ops method. */ | |
1252 | ||
1253 | static struct so_list * | |
1254 | svr4_current_sos (void) | |
1255 | { | |
1256 | CORE_ADDR lm; | |
1257 | struct so_list *head = NULL; | |
1258 | struct so_list **link_ptr = &head; | |
1259 | struct svr4_info *info; | |
1260 | struct cleanup *back_to; | |
1261 | int ignore_first; | |
2268b414 JK |
1262 | struct svr4_library_list library_list; |
1263 | ||
0c5bf5a9 JK |
1264 | /* Fall back to manual examination of the target if the packet is not |
1265 | supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp | |
1266 | tests a case where gdbserver cannot find the shared libraries list while | |
1267 | GDB itself is able to find it via SYMFILE_OBJFILE. | |
1268 | ||
1269 | Unfortunately statically linked inferiors will also fall back through this | |
1270 | suboptimal code path. */ | |
1271 | ||
2268b414 JK |
1272 | if (svr4_current_sos_via_xfer_libraries (&library_list)) |
1273 | { | |
1274 | if (library_list.main_lm) | |
1275 | { | |
1276 | info = get_svr4_info (); | |
1277 | info->main_lm_addr = library_list.main_lm; | |
1278 | } | |
1279 | ||
1280 | return library_list.head ? library_list.head : svr4_default_sos (); | |
1281 | } | |
cb08cc53 JK |
1282 | |
1283 | info = get_svr4_info (); | |
1284 | ||
1285 | /* Always locate the debug struct, in case it has moved. */ | |
1286 | info->debug_base = 0; | |
1287 | locate_base (info); | |
1288 | ||
1289 | /* If we can't find the dynamic linker's base structure, this | |
1290 | must not be a dynamically linked executable. Hmm. */ | |
1291 | if (! info->debug_base) | |
1292 | return svr4_default_sos (); | |
1293 | ||
1294 | /* Assume that everything is a library if the dynamic loader was loaded | |
1295 | late by a static executable. */ | |
1296 | if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL) | |
1297 | ignore_first = 0; | |
1298 | else | |
1299 | ignore_first = 1; | |
1300 | ||
1301 | back_to = make_cleanup (svr4_free_library_list, &head); | |
1302 | ||
1303 | /* Walk the inferior's link map list, and build our list of | |
1304 | `struct so_list' nodes. */ | |
1305 | lm = solib_svr4_r_map (info); | |
1306 | if (lm) | |
1307 | svr4_read_so_list (lm, &link_ptr, ignore_first); | |
1308 | ||
1309 | /* On Solaris, the dynamic linker is not in the normal list of | |
1310 | shared objects, so make sure we pick it up too. Having | |
1311 | symbol information for the dynamic linker is quite crucial | |
1312 | for skipping dynamic linker resolver code. */ | |
1313 | lm = solib_svr4_r_ldsomap (info); | |
1314 | if (lm) | |
1315 | svr4_read_so_list (lm, &link_ptr, 0); | |
1316 | ||
1317 | discard_cleanups (back_to); | |
13437d4b | 1318 | |
34439770 DJ |
1319 | if (head == NULL) |
1320 | return svr4_default_sos (); | |
1321 | ||
13437d4b KB |
1322 | return head; |
1323 | } | |
1324 | ||
93a57060 | 1325 | /* Get the address of the link_map for a given OBJFILE. */ |
bc4a16ae EZ |
1326 | |
1327 | CORE_ADDR | |
1328 | svr4_fetch_objfile_link_map (struct objfile *objfile) | |
1329 | { | |
93a57060 | 1330 | struct so_list *so; |
6c95b8df | 1331 | struct svr4_info *info = get_svr4_info (); |
bc4a16ae | 1332 | |
93a57060 | 1333 | /* Cause svr4_current_sos() to be run if it hasn't been already. */ |
1a816a87 | 1334 | if (info->main_lm_addr == 0) |
93a57060 | 1335 | solib_add (NULL, 0, ¤t_target, auto_solib_add); |
bc4a16ae | 1336 | |
93a57060 DJ |
1337 | /* svr4_current_sos() will set main_lm_addr for the main executable. */ |
1338 | if (objfile == symfile_objfile) | |
1a816a87 | 1339 | return info->main_lm_addr; |
93a57060 DJ |
1340 | |
1341 | /* The other link map addresses may be found by examining the list | |
1342 | of shared libraries. */ | |
1343 | for (so = master_so_list (); so; so = so->next) | |
1344 | if (so->objfile == objfile) | |
1345 | return so->lm_info->lm_addr; | |
1346 | ||
1347 | /* Not found! */ | |
bc4a16ae EZ |
1348 | return 0; |
1349 | } | |
13437d4b KB |
1350 | |
1351 | /* On some systems, the only way to recognize the link map entry for | |
1352 | the main executable file is by looking at its name. Return | |
1353 | non-zero iff SONAME matches one of the known main executable names. */ | |
1354 | ||
1355 | static int | |
bc043ef3 | 1356 | match_main (const char *soname) |
13437d4b | 1357 | { |
bc043ef3 | 1358 | const char * const *mainp; |
13437d4b KB |
1359 | |
1360 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
1361 | { | |
1362 | if (strcmp (soname, *mainp) == 0) | |
1363 | return (1); | |
1364 | } | |
1365 | ||
1366 | return (0); | |
1367 | } | |
1368 | ||
13437d4b KB |
1369 | /* Return 1 if PC lies in the dynamic symbol resolution code of the |
1370 | SVR4 run time loader. */ | |
13437d4b | 1371 | |
7d522c90 | 1372 | int |
d7fa2ae2 | 1373 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) |
13437d4b | 1374 | { |
6c95b8df PA |
1375 | struct svr4_info *info = get_svr4_info (); |
1376 | ||
1377 | return ((pc >= info->interp_text_sect_low | |
1378 | && pc < info->interp_text_sect_high) | |
1379 | || (pc >= info->interp_plt_sect_low | |
1380 | && pc < info->interp_plt_sect_high) | |
0875794a JK |
1381 | || in_plt_section (pc, NULL) |
1382 | || in_gnu_ifunc_stub (pc)); | |
13437d4b | 1383 | } |
13437d4b | 1384 | |
2f4950cd AC |
1385 | /* Given an executable's ABFD and target, compute the entry-point |
1386 | address. */ | |
1387 | ||
1388 | static CORE_ADDR | |
1389 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | |
1390 | { | |
1391 | /* KevinB wrote ... for most targets, the address returned by | |
1392 | bfd_get_start_address() is the entry point for the start | |
1393 | function. But, for some targets, bfd_get_start_address() returns | |
1394 | the address of a function descriptor from which the entry point | |
1395 | address may be extracted. This address is extracted by | |
1396 | gdbarch_convert_from_func_ptr_addr(). The method | |
1397 | gdbarch_convert_from_func_ptr_addr() is the merely the identify | |
1398 | function for targets which don't use function descriptors. */ | |
1cf3db46 | 1399 | return gdbarch_convert_from_func_ptr_addr (target_gdbarch, |
2f4950cd AC |
1400 | bfd_get_start_address (abfd), |
1401 | targ); | |
1402 | } | |
13437d4b | 1403 | |
cb457ae2 YQ |
1404 | /* Helper function for gdb_bfd_lookup_symbol. */ |
1405 | ||
1406 | static int | |
1407 | cmp_name_and_sec_flags (asymbol *sym, void *data) | |
1408 | { | |
1409 | return (strcmp (sym->name, (const char *) data) == 0 | |
1410 | && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0); | |
1411 | } | |
7f86f058 | 1412 | /* Arrange for dynamic linker to hit breakpoint. |
13437d4b KB |
1413 | |
1414 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
1415 | debugger interface, support for arranging for the inferior to hit | |
1416 | a breakpoint after mapping in the shared libraries. This function | |
1417 | enables that breakpoint. | |
1418 | ||
1419 | For SunOS, there is a special flag location (in_debugger) which we | |
1420 | set to 1. When the dynamic linker sees this flag set, it will set | |
1421 | a breakpoint at a location known only to itself, after saving the | |
1422 | original contents of that place and the breakpoint address itself, | |
1423 | in it's own internal structures. When we resume the inferior, it | |
1424 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
1425 | We handle this (in a different place) by restoring the contents of | |
1426 | the breakpointed location (which is only known after it stops), | |
1427 | chasing around to locate the shared libraries that have been | |
1428 | loaded, then resuming. | |
1429 | ||
1430 | For SVR4, the debugger interface structure contains a member (r_brk) | |
1431 | which is statically initialized at the time the shared library is | |
1432 | built, to the offset of a function (_r_debug_state) which is guaran- | |
1433 | teed to be called once before mapping in a library, and again when | |
1434 | the mapping is complete. At the time we are examining this member, | |
1435 | it contains only the unrelocated offset of the function, so we have | |
1436 | to do our own relocation. Later, when the dynamic linker actually | |
1437 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
1438 | ||
1439 | The debugger interface structure also contains an enumeration which | |
1440 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
1441 | depending upon whether or not the library is being mapped or unmapped, | |
7f86f058 | 1442 | and then set to RT_CONSISTENT after the library is mapped/unmapped. */ |
13437d4b KB |
1443 | |
1444 | static int | |
268a4a75 | 1445 | enable_break (struct svr4_info *info, int from_tty) |
13437d4b | 1446 | { |
13437d4b | 1447 | struct minimal_symbol *msymbol; |
bc043ef3 | 1448 | const char * const *bkpt_namep; |
13437d4b | 1449 | asection *interp_sect; |
97ec2c2f | 1450 | gdb_byte *interp_name; |
7cd25cfc | 1451 | CORE_ADDR sym_addr; |
13437d4b | 1452 | |
6c95b8df PA |
1453 | info->interp_text_sect_low = info->interp_text_sect_high = 0; |
1454 | info->interp_plt_sect_low = info->interp_plt_sect_high = 0; | |
13437d4b | 1455 | |
7cd25cfc DJ |
1456 | /* If we already have a shared library list in the target, and |
1457 | r_debug contains r_brk, set the breakpoint there - this should | |
1458 | mean r_brk has already been relocated. Assume the dynamic linker | |
1459 | is the object containing r_brk. */ | |
1460 | ||
268a4a75 | 1461 | solib_add (NULL, from_tty, ¤t_target, auto_solib_add); |
7cd25cfc | 1462 | sym_addr = 0; |
1a816a87 PA |
1463 | if (info->debug_base && solib_svr4_r_map (info) != 0) |
1464 | sym_addr = solib_svr4_r_brk (info); | |
7cd25cfc DJ |
1465 | |
1466 | if (sym_addr != 0) | |
1467 | { | |
1468 | struct obj_section *os; | |
1469 | ||
b36ec657 | 1470 | sym_addr = gdbarch_addr_bits_remove |
1cf3db46 | 1471 | (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch, |
3e43a32a MS |
1472 | sym_addr, |
1473 | ¤t_target)); | |
b36ec657 | 1474 | |
48379de6 DE |
1475 | /* On at least some versions of Solaris there's a dynamic relocation |
1476 | on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if | |
1477 | we get control before the dynamic linker has self-relocated. | |
1478 | Check if SYM_ADDR is in a known section, if it is assume we can | |
1479 | trust its value. This is just a heuristic though, it could go away | |
1480 | or be replaced if it's getting in the way. | |
1481 | ||
1482 | On ARM we need to know whether the ISA of rtld_db_dlactivity (or | |
1483 | however it's spelled in your particular system) is ARM or Thumb. | |
1484 | That knowledge is encoded in the address, if it's Thumb the low bit | |
1485 | is 1. However, we've stripped that info above and it's not clear | |
1486 | what all the consequences are of passing a non-addr_bits_remove'd | |
1487 | address to create_solib_event_breakpoint. The call to | |
1488 | find_pc_section verifies we know about the address and have some | |
1489 | hope of computing the right kind of breakpoint to use (via | |
1490 | symbol info). It does mean that GDB needs to be pointed at a | |
1491 | non-stripped version of the dynamic linker in order to obtain | |
1492 | information it already knows about. Sigh. */ | |
1493 | ||
7cd25cfc DJ |
1494 | os = find_pc_section (sym_addr); |
1495 | if (os != NULL) | |
1496 | { | |
1497 | /* Record the relocated start and end address of the dynamic linker | |
1498 | text and plt section for svr4_in_dynsym_resolve_code. */ | |
1499 | bfd *tmp_bfd; | |
1500 | CORE_ADDR load_addr; | |
1501 | ||
1502 | tmp_bfd = os->objfile->obfd; | |
1503 | load_addr = ANOFFSET (os->objfile->section_offsets, | |
1504 | os->objfile->sect_index_text); | |
1505 | ||
1506 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); | |
1507 | if (interp_sect) | |
1508 | { | |
6c95b8df | 1509 | info->interp_text_sect_low = |
7cd25cfc | 1510 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; |
6c95b8df PA |
1511 | info->interp_text_sect_high = |
1512 | info->interp_text_sect_low | |
1513 | + bfd_section_size (tmp_bfd, interp_sect); | |
7cd25cfc DJ |
1514 | } |
1515 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
1516 | if (interp_sect) | |
1517 | { | |
6c95b8df | 1518 | info->interp_plt_sect_low = |
7cd25cfc | 1519 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; |
6c95b8df PA |
1520 | info->interp_plt_sect_high = |
1521 | info->interp_plt_sect_low | |
1522 | + bfd_section_size (tmp_bfd, interp_sect); | |
7cd25cfc DJ |
1523 | } |
1524 | ||
a6d9a66e | 1525 | create_solib_event_breakpoint (target_gdbarch, sym_addr); |
7cd25cfc DJ |
1526 | return 1; |
1527 | } | |
1528 | } | |
1529 | ||
97ec2c2f | 1530 | /* Find the program interpreter; if not found, warn the user and drop |
13437d4b | 1531 | into the old breakpoint at symbol code. */ |
97ec2c2f UW |
1532 | interp_name = find_program_interpreter (); |
1533 | if (interp_name) | |
13437d4b | 1534 | { |
8ad2fcde KB |
1535 | CORE_ADDR load_addr = 0; |
1536 | int load_addr_found = 0; | |
2ec9a4f8 | 1537 | int loader_found_in_list = 0; |
f8766ec1 | 1538 | struct so_list *so; |
e4f7b8c8 | 1539 | bfd *tmp_bfd = NULL; |
2f4950cd | 1540 | struct target_ops *tmp_bfd_target; |
f1838a98 | 1541 | volatile struct gdb_exception ex; |
13437d4b | 1542 | |
7cd25cfc | 1543 | sym_addr = 0; |
13437d4b KB |
1544 | |
1545 | /* Now we need to figure out where the dynamic linker was | |
1546 | loaded so that we can load its symbols and place a breakpoint | |
1547 | in the dynamic linker itself. | |
1548 | ||
1549 | This address is stored on the stack. However, I've been unable | |
1550 | to find any magic formula to find it for Solaris (appears to | |
1551 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
1552 | mechanism to find the dynamic linker's base address. */ | |
e4f7b8c8 | 1553 | |
f1838a98 UW |
1554 | TRY_CATCH (ex, RETURN_MASK_ALL) |
1555 | { | |
97ec2c2f | 1556 | tmp_bfd = solib_bfd_open (interp_name); |
f1838a98 | 1557 | } |
13437d4b KB |
1558 | if (tmp_bfd == NULL) |
1559 | goto bkpt_at_symbol; | |
1560 | ||
2f4950cd | 1561 | /* Now convert the TMP_BFD into a target. That way target, as |
695c3173 | 1562 | well as BFD operations can be used. */ |
2f4950cd | 1563 | tmp_bfd_target = target_bfd_reopen (tmp_bfd); |
695c3173 TT |
1564 | /* target_bfd_reopen acquired its own reference, so we can |
1565 | release ours now. */ | |
1566 | gdb_bfd_unref (tmp_bfd); | |
2f4950cd | 1567 | |
f8766ec1 KB |
1568 | /* On a running target, we can get the dynamic linker's base |
1569 | address from the shared library table. */ | |
f8766ec1 KB |
1570 | so = master_so_list (); |
1571 | while (so) | |
8ad2fcde | 1572 | { |
97ec2c2f | 1573 | if (svr4_same_1 (interp_name, so->so_original_name)) |
8ad2fcde KB |
1574 | { |
1575 | load_addr_found = 1; | |
2ec9a4f8 | 1576 | loader_found_in_list = 1; |
b23518f0 | 1577 | load_addr = lm_addr_check (so, tmp_bfd); |
8ad2fcde KB |
1578 | break; |
1579 | } | |
f8766ec1 | 1580 | so = so->next; |
8ad2fcde KB |
1581 | } |
1582 | ||
8d4e36ba JB |
1583 | /* If we were not able to find the base address of the loader |
1584 | from our so_list, then try using the AT_BASE auxilliary entry. */ | |
1585 | if (!load_addr_found) | |
1586 | if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0) | |
ad3a0e5b JK |
1587 | { |
1588 | int addr_bit = gdbarch_addr_bit (target_gdbarch); | |
1589 | ||
1590 | /* Ensure LOAD_ADDR has proper sign in its possible upper bits so | |
1591 | that `+ load_addr' will overflow CORE_ADDR width not creating | |
1592 | invalid addresses like 0x101234567 for 32bit inferiors on 64bit | |
1593 | GDB. */ | |
1594 | ||
d182d057 | 1595 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
ad3a0e5b | 1596 | { |
d182d057 | 1597 | CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit; |
ad3a0e5b JK |
1598 | CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd, |
1599 | tmp_bfd_target); | |
1600 | ||
1601 | gdb_assert (load_addr < space_size); | |
1602 | ||
1603 | /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked | |
1604 | 64bit ld.so with 32bit executable, it should not happen. */ | |
1605 | ||
1606 | if (tmp_entry_point < space_size | |
1607 | && tmp_entry_point + load_addr >= space_size) | |
1608 | load_addr -= space_size; | |
1609 | } | |
1610 | ||
1611 | load_addr_found = 1; | |
1612 | } | |
8d4e36ba | 1613 | |
8ad2fcde KB |
1614 | /* Otherwise we find the dynamic linker's base address by examining |
1615 | the current pc (which should point at the entry point for the | |
8d4e36ba JB |
1616 | dynamic linker) and subtracting the offset of the entry point. |
1617 | ||
1618 | This is more fragile than the previous approaches, but is a good | |
1619 | fallback method because it has actually been working well in | |
1620 | most cases. */ | |
8ad2fcde | 1621 | if (!load_addr_found) |
fb14de7b | 1622 | { |
c2250ad1 UW |
1623 | struct regcache *regcache |
1624 | = get_thread_arch_regcache (inferior_ptid, target_gdbarch); | |
433759f7 | 1625 | |
fb14de7b UW |
1626 | load_addr = (regcache_read_pc (regcache) |
1627 | - exec_entry_point (tmp_bfd, tmp_bfd_target)); | |
1628 | } | |
2ec9a4f8 DJ |
1629 | |
1630 | if (!loader_found_in_list) | |
34439770 | 1631 | { |
1a816a87 PA |
1632 | info->debug_loader_name = xstrdup (interp_name); |
1633 | info->debug_loader_offset_p = 1; | |
1634 | info->debug_loader_offset = load_addr; | |
268a4a75 | 1635 | solib_add (NULL, from_tty, ¤t_target, auto_solib_add); |
34439770 | 1636 | } |
13437d4b KB |
1637 | |
1638 | /* Record the relocated start and end address of the dynamic linker | |
d7fa2ae2 | 1639 | text and plt section for svr4_in_dynsym_resolve_code. */ |
13437d4b KB |
1640 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); |
1641 | if (interp_sect) | |
1642 | { | |
6c95b8df | 1643 | info->interp_text_sect_low = |
13437d4b | 1644 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; |
6c95b8df PA |
1645 | info->interp_text_sect_high = |
1646 | info->interp_text_sect_low | |
1647 | + bfd_section_size (tmp_bfd, interp_sect); | |
13437d4b KB |
1648 | } |
1649 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
1650 | if (interp_sect) | |
1651 | { | |
6c95b8df | 1652 | info->interp_plt_sect_low = |
13437d4b | 1653 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; |
6c95b8df PA |
1654 | info->interp_plt_sect_high = |
1655 | info->interp_plt_sect_low | |
1656 | + bfd_section_size (tmp_bfd, interp_sect); | |
13437d4b KB |
1657 | } |
1658 | ||
1659 | /* Now try to set a breakpoint in the dynamic linker. */ | |
1660 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
1661 | { | |
cb457ae2 YQ |
1662 | sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags, |
1663 | (void *) *bkpt_namep); | |
13437d4b KB |
1664 | if (sym_addr != 0) |
1665 | break; | |
1666 | } | |
1667 | ||
2bbe3cc1 DJ |
1668 | if (sym_addr != 0) |
1669 | /* Convert 'sym_addr' from a function pointer to an address. | |
1670 | Because we pass tmp_bfd_target instead of the current | |
1671 | target, this will always produce an unrelocated value. */ | |
1cf3db46 | 1672 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch, |
2bbe3cc1 DJ |
1673 | sym_addr, |
1674 | tmp_bfd_target); | |
1675 | ||
695c3173 TT |
1676 | /* We're done with both the temporary bfd and target. Closing |
1677 | the target closes the underlying bfd, because it holds the | |
1678 | only remaining reference. */ | |
2f4950cd | 1679 | target_close (tmp_bfd_target, 0); |
13437d4b KB |
1680 | |
1681 | if (sym_addr != 0) | |
1682 | { | |
a6d9a66e | 1683 | create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr); |
97ec2c2f | 1684 | xfree (interp_name); |
13437d4b KB |
1685 | return 1; |
1686 | } | |
1687 | ||
1688 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
1689 | linker. Warn and drop into the old code. */ | |
1690 | bkpt_at_symbol: | |
97ec2c2f | 1691 | xfree (interp_name); |
82d03102 PG |
1692 | warning (_("Unable to find dynamic linker breakpoint function.\n" |
1693 | "GDB will be unable to debug shared library initializers\n" | |
1694 | "and track explicitly loaded dynamic code.")); | |
13437d4b | 1695 | } |
13437d4b | 1696 | |
e499d0f1 DJ |
1697 | /* Scan through the lists of symbols, trying to look up the symbol and |
1698 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
1699 | ||
1700 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
1701 | { | |
1702 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
1703 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
1704 | { | |
de64a9ac JM |
1705 | sym_addr = SYMBOL_VALUE_ADDRESS (msymbol); |
1706 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch, | |
1707 | sym_addr, | |
1708 | ¤t_target); | |
1709 | create_solib_event_breakpoint (target_gdbarch, sym_addr); | |
e499d0f1 DJ |
1710 | return 1; |
1711 | } | |
1712 | } | |
13437d4b | 1713 | |
fb139f32 | 1714 | if (interp_name != NULL && !current_inferior ()->attach_flag) |
13437d4b | 1715 | { |
c6490bf2 | 1716 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) |
13437d4b | 1717 | { |
c6490bf2 KB |
1718 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); |
1719 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
1720 | { | |
1721 | sym_addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
1722 | sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch, | |
1723 | sym_addr, | |
1724 | ¤t_target); | |
1725 | create_solib_event_breakpoint (target_gdbarch, sym_addr); | |
1726 | return 1; | |
1727 | } | |
13437d4b KB |
1728 | } |
1729 | } | |
542c95c2 | 1730 | return 0; |
13437d4b KB |
1731 | } |
1732 | ||
7f86f058 | 1733 | /* Implement the "special_symbol_handling" target_so_ops method. */ |
13437d4b KB |
1734 | |
1735 | static void | |
1736 | svr4_special_symbol_handling (void) | |
1737 | { | |
7f86f058 | 1738 | /* Nothing to do. */ |
13437d4b KB |
1739 | } |
1740 | ||
09919ac2 JK |
1741 | /* Read the ELF program headers from ABFD. Return the contents and |
1742 | set *PHDRS_SIZE to the size of the program headers. */ | |
e2a44558 | 1743 | |
09919ac2 JK |
1744 | static gdb_byte * |
1745 | read_program_headers_from_bfd (bfd *abfd, int *phdrs_size) | |
e2a44558 | 1746 | { |
09919ac2 JK |
1747 | Elf_Internal_Ehdr *ehdr; |
1748 | gdb_byte *buf; | |
e2a44558 | 1749 | |
09919ac2 | 1750 | ehdr = elf_elfheader (abfd); |
b8040f19 | 1751 | |
09919ac2 JK |
1752 | *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize; |
1753 | if (*phdrs_size == 0) | |
1754 | return NULL; | |
1755 | ||
1756 | buf = xmalloc (*phdrs_size); | |
1757 | if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0 | |
1758 | || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size) | |
1759 | { | |
1760 | xfree (buf); | |
1761 | return NULL; | |
1762 | } | |
1763 | ||
1764 | return buf; | |
b8040f19 JK |
1765 | } |
1766 | ||
01c30d6e JK |
1767 | /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior |
1768 | exec_bfd. Otherwise return 0. | |
1769 | ||
1770 | We relocate all of the sections by the same amount. This | |
c378eb4e | 1771 | behavior is mandated by recent editions of the System V ABI. |
b8040f19 JK |
1772 | According to the System V Application Binary Interface, |
1773 | Edition 4.1, page 5-5: | |
1774 | ||
1775 | ... Though the system chooses virtual addresses for | |
1776 | individual processes, it maintains the segments' relative | |
1777 | positions. Because position-independent code uses relative | |
1778 | addressesing between segments, the difference between | |
1779 | virtual addresses in memory must match the difference | |
1780 | between virtual addresses in the file. The difference | |
1781 | between the virtual address of any segment in memory and | |
1782 | the corresponding virtual address in the file is thus a | |
1783 | single constant value for any one executable or shared | |
1784 | object in a given process. This difference is the base | |
1785 | address. One use of the base address is to relocate the | |
1786 | memory image of the program during dynamic linking. | |
1787 | ||
1788 | The same language also appears in Edition 4.0 of the System V | |
09919ac2 JK |
1789 | ABI and is left unspecified in some of the earlier editions. |
1790 | ||
1791 | Decide if the objfile needs to be relocated. As indicated above, we will | |
1792 | only be here when execution is stopped. But during attachment PC can be at | |
1793 | arbitrary address therefore regcache_read_pc can be misleading (contrary to | |
1794 | the auxv AT_ENTRY value). Moreover for executable with interpreter section | |
1795 | regcache_read_pc would point to the interpreter and not the main executable. | |
1796 | ||
1797 | So, to summarize, relocations are necessary when the start address obtained | |
1798 | from the executable is different from the address in auxv AT_ENTRY entry. | |
d989b283 | 1799 | |
09919ac2 JK |
1800 | [ The astute reader will note that we also test to make sure that |
1801 | the executable in question has the DYNAMIC flag set. It is my | |
1802 | opinion that this test is unnecessary (undesirable even). It | |
1803 | was added to avoid inadvertent relocation of an executable | |
1804 | whose e_type member in the ELF header is not ET_DYN. There may | |
1805 | be a time in the future when it is desirable to do relocations | |
1806 | on other types of files as well in which case this condition | |
1807 | should either be removed or modified to accomodate the new file | |
1808 | type. - Kevin, Nov 2000. ] */ | |
b8040f19 | 1809 | |
01c30d6e JK |
1810 | static int |
1811 | svr4_exec_displacement (CORE_ADDR *displacementp) | |
b8040f19 | 1812 | { |
41752192 JK |
1813 | /* ENTRY_POINT is a possible function descriptor - before |
1814 | a call to gdbarch_convert_from_func_ptr_addr. */ | |
09919ac2 | 1815 | CORE_ADDR entry_point, displacement; |
b8040f19 JK |
1816 | |
1817 | if (exec_bfd == NULL) | |
1818 | return 0; | |
1819 | ||
09919ac2 JK |
1820 | /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries |
1821 | being executed themselves and PIE (Position Independent Executable) | |
1822 | executables are ET_DYN. */ | |
1823 | ||
1824 | if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0) | |
1825 | return 0; | |
1826 | ||
1827 | if (target_auxv_search (¤t_target, AT_ENTRY, &entry_point) <= 0) | |
1828 | return 0; | |
1829 | ||
1830 | displacement = entry_point - bfd_get_start_address (exec_bfd); | |
1831 | ||
1832 | /* Verify the DISPLACEMENT candidate complies with the required page | |
1833 | alignment. It is cheaper than the program headers comparison below. */ | |
1834 | ||
1835 | if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
1836 | { | |
1837 | const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd); | |
1838 | ||
1839 | /* p_align of PT_LOAD segments does not specify any alignment but | |
1840 | only congruency of addresses: | |
1841 | p_offset % p_align == p_vaddr % p_align | |
1842 | Kernel is free to load the executable with lower alignment. */ | |
1843 | ||
1844 | if ((displacement & (elf->minpagesize - 1)) != 0) | |
1845 | return 0; | |
1846 | } | |
1847 | ||
1848 | /* Verify that the auxilliary vector describes the same file as exec_bfd, by | |
1849 | comparing their program headers. If the program headers in the auxilliary | |
1850 | vector do not match the program headers in the executable, then we are | |
1851 | looking at a different file than the one used by the kernel - for | |
1852 | instance, "gdb program" connected to "gdbserver :PORT ld.so program". */ | |
1853 | ||
1854 | if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
1855 | { | |
1856 | /* Be optimistic and clear OK only if GDB was able to verify the headers | |
1857 | really do not match. */ | |
1858 | int phdrs_size, phdrs2_size, ok = 1; | |
1859 | gdb_byte *buf, *buf2; | |
0a1e94c7 | 1860 | int arch_size; |
09919ac2 | 1861 | |
0a1e94c7 | 1862 | buf = read_program_header (-1, &phdrs_size, &arch_size); |
09919ac2 | 1863 | buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size); |
0a1e94c7 JK |
1864 | if (buf != NULL && buf2 != NULL) |
1865 | { | |
1866 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch); | |
1867 | ||
1868 | /* We are dealing with three different addresses. EXEC_BFD | |
1869 | represents current address in on-disk file. target memory content | |
1870 | may be different from EXEC_BFD as the file may have been prelinked | |
1871 | to a different address after the executable has been loaded. | |
1872 | Moreover the address of placement in target memory can be | |
3e43a32a MS |
1873 | different from what the program headers in target memory say - |
1874 | this is the goal of PIE. | |
0a1e94c7 JK |
1875 | |
1876 | Detected DISPLACEMENT covers both the offsets of PIE placement and | |
1877 | possible new prelink performed after start of the program. Here | |
1878 | relocate BUF and BUF2 just by the EXEC_BFD vs. target memory | |
1879 | content offset for the verification purpose. */ | |
1880 | ||
1881 | if (phdrs_size != phdrs2_size | |
1882 | || bfd_get_arch_size (exec_bfd) != arch_size) | |
1883 | ok = 0; | |
3e43a32a MS |
1884 | else if (arch_size == 32 |
1885 | && phdrs_size >= sizeof (Elf32_External_Phdr) | |
0a1e94c7 JK |
1886 | && phdrs_size % sizeof (Elf32_External_Phdr) == 0) |
1887 | { | |
1888 | Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | |
1889 | Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | |
1890 | CORE_ADDR displacement = 0; | |
1891 | int i; | |
1892 | ||
1893 | /* DISPLACEMENT could be found more easily by the difference of | |
1894 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
1895 | already have enough information to compute that displacement | |
1896 | with what we've read. */ | |
1897 | ||
1898 | for (i = 0; i < ehdr2->e_phnum; i++) | |
1899 | if (phdr2[i].p_type == PT_LOAD) | |
1900 | { | |
1901 | Elf32_External_Phdr *phdrp; | |
1902 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
1903 | CORE_ADDR vaddr, paddr; | |
1904 | CORE_ADDR displacement_vaddr = 0; | |
1905 | CORE_ADDR displacement_paddr = 0; | |
1906 | ||
1907 | phdrp = &((Elf32_External_Phdr *) buf)[i]; | |
1908 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
1909 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
1910 | ||
1911 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, | |
1912 | byte_order); | |
1913 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
1914 | ||
1915 | paddr = extract_unsigned_integer (buf_paddr_p, 4, | |
1916 | byte_order); | |
1917 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
1918 | ||
1919 | if (displacement_vaddr == displacement_paddr) | |
1920 | displacement = displacement_vaddr; | |
1921 | ||
1922 | break; | |
1923 | } | |
1924 | ||
1925 | /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ | |
1926 | ||
1927 | for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++) | |
1928 | { | |
1929 | Elf32_External_Phdr *phdrp; | |
1930 | Elf32_External_Phdr *phdr2p; | |
1931 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
1932 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 1933 | asection *plt2_asect; |
0a1e94c7 JK |
1934 | |
1935 | phdrp = &((Elf32_External_Phdr *) buf)[i]; | |
1936 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
1937 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
1938 | phdr2p = &((Elf32_External_Phdr *) buf2)[i]; | |
1939 | ||
1940 | /* PT_GNU_STACK is an exception by being never relocated by | |
1941 | prelink as its addresses are always zero. */ | |
1942 | ||
1943 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
1944 | continue; | |
1945 | ||
1946 | /* Check also other adjustment combinations - PR 11786. */ | |
1947 | ||
3e43a32a MS |
1948 | vaddr = extract_unsigned_integer (buf_vaddr_p, 4, |
1949 | byte_order); | |
0a1e94c7 JK |
1950 | vaddr -= displacement; |
1951 | store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr); | |
1952 | ||
3e43a32a MS |
1953 | paddr = extract_unsigned_integer (buf_paddr_p, 4, |
1954 | byte_order); | |
0a1e94c7 JK |
1955 | paddr -= displacement; |
1956 | store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr); | |
1957 | ||
1958 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
1959 | continue; | |
1960 | ||
43b8e241 JK |
1961 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
1962 | plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | |
1963 | if (plt2_asect) | |
1964 | { | |
1965 | int content2; | |
1966 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
1967 | CORE_ADDR filesz; | |
1968 | ||
1969 | content2 = (bfd_get_section_flags (exec_bfd, plt2_asect) | |
1970 | & SEC_HAS_CONTENTS) != 0; | |
1971 | ||
1972 | filesz = extract_unsigned_integer (buf_filesz_p, 4, | |
1973 | byte_order); | |
1974 | ||
1975 | /* PLT2_ASECT is from on-disk file (exec_bfd) while | |
1976 | FILESZ is from the in-memory image. */ | |
1977 | if (content2) | |
1978 | filesz += bfd_get_section_size (plt2_asect); | |
1979 | else | |
1980 | filesz -= bfd_get_section_size (plt2_asect); | |
1981 | ||
1982 | store_unsigned_integer (buf_filesz_p, 4, byte_order, | |
1983 | filesz); | |
1984 | ||
1985 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
1986 | continue; | |
1987 | } | |
1988 | ||
0a1e94c7 JK |
1989 | ok = 0; |
1990 | break; | |
1991 | } | |
1992 | } | |
3e43a32a MS |
1993 | else if (arch_size == 64 |
1994 | && phdrs_size >= sizeof (Elf64_External_Phdr) | |
0a1e94c7 JK |
1995 | && phdrs_size % sizeof (Elf64_External_Phdr) == 0) |
1996 | { | |
1997 | Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; | |
1998 | Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; | |
1999 | CORE_ADDR displacement = 0; | |
2000 | int i; | |
2001 | ||
2002 | /* DISPLACEMENT could be found more easily by the difference of | |
2003 | ehdr2->e_entry. But we haven't read the ehdr yet, and we | |
2004 | already have enough information to compute that displacement | |
2005 | with what we've read. */ | |
2006 | ||
2007 | for (i = 0; i < ehdr2->e_phnum; i++) | |
2008 | if (phdr2[i].p_type == PT_LOAD) | |
2009 | { | |
2010 | Elf64_External_Phdr *phdrp; | |
2011 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2012 | CORE_ADDR vaddr, paddr; | |
2013 | CORE_ADDR displacement_vaddr = 0; | |
2014 | CORE_ADDR displacement_paddr = 0; | |
2015 | ||
2016 | phdrp = &((Elf64_External_Phdr *) buf)[i]; | |
2017 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
2018 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2019 | ||
2020 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, | |
2021 | byte_order); | |
2022 | displacement_vaddr = vaddr - phdr2[i].p_vaddr; | |
2023 | ||
2024 | paddr = extract_unsigned_integer (buf_paddr_p, 8, | |
2025 | byte_order); | |
2026 | displacement_paddr = paddr - phdr2[i].p_paddr; | |
2027 | ||
2028 | if (displacement_vaddr == displacement_paddr) | |
2029 | displacement = displacement_vaddr; | |
2030 | ||
2031 | break; | |
2032 | } | |
2033 | ||
2034 | /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ | |
2035 | ||
2036 | for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++) | |
2037 | { | |
2038 | Elf64_External_Phdr *phdrp; | |
2039 | Elf64_External_Phdr *phdr2p; | |
2040 | gdb_byte *buf_vaddr_p, *buf_paddr_p; | |
2041 | CORE_ADDR vaddr, paddr; | |
43b8e241 | 2042 | asection *plt2_asect; |
0a1e94c7 JK |
2043 | |
2044 | phdrp = &((Elf64_External_Phdr *) buf)[i]; | |
2045 | buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; | |
2046 | buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; | |
2047 | phdr2p = &((Elf64_External_Phdr *) buf2)[i]; | |
2048 | ||
2049 | /* PT_GNU_STACK is an exception by being never relocated by | |
2050 | prelink as its addresses are always zero. */ | |
2051 | ||
2052 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2053 | continue; | |
2054 | ||
2055 | /* Check also other adjustment combinations - PR 11786. */ | |
2056 | ||
3e43a32a MS |
2057 | vaddr = extract_unsigned_integer (buf_vaddr_p, 8, |
2058 | byte_order); | |
0a1e94c7 JK |
2059 | vaddr -= displacement; |
2060 | store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr); | |
2061 | ||
3e43a32a MS |
2062 | paddr = extract_unsigned_integer (buf_paddr_p, 8, |
2063 | byte_order); | |
0a1e94c7 JK |
2064 | paddr -= displacement; |
2065 | store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr); | |
2066 | ||
2067 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2068 | continue; | |
2069 | ||
43b8e241 JK |
2070 | /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ |
2071 | plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); | |
2072 | if (plt2_asect) | |
2073 | { | |
2074 | int content2; | |
2075 | gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; | |
2076 | CORE_ADDR filesz; | |
2077 | ||
2078 | content2 = (bfd_get_section_flags (exec_bfd, plt2_asect) | |
2079 | & SEC_HAS_CONTENTS) != 0; | |
2080 | ||
2081 | filesz = extract_unsigned_integer (buf_filesz_p, 8, | |
2082 | byte_order); | |
2083 | ||
2084 | /* PLT2_ASECT is from on-disk file (exec_bfd) while | |
2085 | FILESZ is from the in-memory image. */ | |
2086 | if (content2) | |
2087 | filesz += bfd_get_section_size (plt2_asect); | |
2088 | else | |
2089 | filesz -= bfd_get_section_size (plt2_asect); | |
2090 | ||
2091 | store_unsigned_integer (buf_filesz_p, 8, byte_order, | |
2092 | filesz); | |
2093 | ||
2094 | if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) | |
2095 | continue; | |
2096 | } | |
2097 | ||
0a1e94c7 JK |
2098 | ok = 0; |
2099 | break; | |
2100 | } | |
2101 | } | |
2102 | else | |
2103 | ok = 0; | |
2104 | } | |
09919ac2 JK |
2105 | |
2106 | xfree (buf); | |
2107 | xfree (buf2); | |
2108 | ||
2109 | if (!ok) | |
2110 | return 0; | |
2111 | } | |
b8040f19 | 2112 | |
ccf26247 JK |
2113 | if (info_verbose) |
2114 | { | |
2115 | /* It can be printed repeatedly as there is no easy way to check | |
2116 | the executable symbols/file has been already relocated to | |
2117 | displacement. */ | |
2118 | ||
2119 | printf_unfiltered (_("Using PIE (Position Independent Executable) " | |
2120 | "displacement %s for \"%s\".\n"), | |
2121 | paddress (target_gdbarch, displacement), | |
2122 | bfd_get_filename (exec_bfd)); | |
2123 | } | |
2124 | ||
01c30d6e JK |
2125 | *displacementp = displacement; |
2126 | return 1; | |
b8040f19 JK |
2127 | } |
2128 | ||
2129 | /* Relocate the main executable. This function should be called upon | |
c378eb4e | 2130 | stopping the inferior process at the entry point to the program. |
b8040f19 JK |
2131 | The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are |
2132 | different, the main executable is relocated by the proper amount. */ | |
2133 | ||
2134 | static void | |
2135 | svr4_relocate_main_executable (void) | |
2136 | { | |
01c30d6e JK |
2137 | CORE_ADDR displacement; |
2138 | ||
4e5799b6 JK |
2139 | /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS |
2140 | probably contains the offsets computed using the PIE displacement | |
2141 | from the previous run, which of course are irrelevant for this run. | |
2142 | So we need to determine the new PIE displacement and recompute the | |
2143 | section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS | |
2144 | already contains pre-computed offsets. | |
01c30d6e | 2145 | |
4e5799b6 | 2146 | If we cannot compute the PIE displacement, either: |
01c30d6e | 2147 | |
4e5799b6 JK |
2148 | - The executable is not PIE. |
2149 | ||
2150 | - SYMFILE_OBJFILE does not match the executable started in the target. | |
2151 | This can happen for main executable symbols loaded at the host while | |
2152 | `ld.so --ld-args main-executable' is loaded in the target. | |
2153 | ||
2154 | Then we leave the section offsets untouched and use them as is for | |
2155 | this run. Either: | |
2156 | ||
2157 | - These section offsets were properly reset earlier, and thus | |
2158 | already contain the correct values. This can happen for instance | |
2159 | when reconnecting via the remote protocol to a target that supports | |
2160 | the `qOffsets' packet. | |
2161 | ||
2162 | - The section offsets were not reset earlier, and the best we can | |
c378eb4e | 2163 | hope is that the old offsets are still applicable to the new run. */ |
01c30d6e JK |
2164 | |
2165 | if (! svr4_exec_displacement (&displacement)) | |
2166 | return; | |
b8040f19 | 2167 | |
01c30d6e JK |
2168 | /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file |
2169 | addresses. */ | |
b8040f19 JK |
2170 | |
2171 | if (symfile_objfile) | |
e2a44558 | 2172 | { |
e2a44558 | 2173 | struct section_offsets *new_offsets; |
b8040f19 | 2174 | int i; |
e2a44558 | 2175 | |
b8040f19 JK |
2176 | new_offsets = alloca (symfile_objfile->num_sections |
2177 | * sizeof (*new_offsets)); | |
e2a44558 | 2178 | |
b8040f19 JK |
2179 | for (i = 0; i < symfile_objfile->num_sections; i++) |
2180 | new_offsets->offsets[i] = displacement; | |
e2a44558 | 2181 | |
b8040f19 | 2182 | objfile_relocate (symfile_objfile, new_offsets); |
e2a44558 | 2183 | } |
51bee8e9 JK |
2184 | else if (exec_bfd) |
2185 | { | |
2186 | asection *asect; | |
2187 | ||
2188 | for (asect = exec_bfd->sections; asect != NULL; asect = asect->next) | |
2189 | exec_set_section_address (bfd_get_filename (exec_bfd), asect->index, | |
2190 | (bfd_section_vma (exec_bfd, asect) | |
2191 | + displacement)); | |
2192 | } | |
e2a44558 KB |
2193 | } |
2194 | ||
7f86f058 | 2195 | /* Implement the "create_inferior_hook" target_solib_ops method. |
13437d4b KB |
2196 | |
2197 | For SVR4 executables, this first instruction is either the first | |
2198 | instruction in the dynamic linker (for dynamically linked | |
2199 | executables) or the instruction at "start" for statically linked | |
2200 | executables. For dynamically linked executables, the system | |
2201 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
2202 | and starts it running. The dynamic linker maps in any needed | |
2203 | shared libraries, maps in the actual user executable, and then | |
2204 | jumps to "start" in the user executable. | |
2205 | ||
7f86f058 PA |
2206 | We can arrange to cooperate with the dynamic linker to discover the |
2207 | names of shared libraries that are dynamically linked, and the base | |
2208 | addresses to which they are linked. | |
13437d4b KB |
2209 | |
2210 | This function is responsible for discovering those names and | |
2211 | addresses, and saving sufficient information about them to allow | |
2212 | their symbols to be read at a later time. | |
2213 | ||
2214 | FIXME | |
2215 | ||
2216 | Between enable_break() and disable_break(), this code does not | |
2217 | properly handle hitting breakpoints which the user might have | |
2218 | set in the startup code or in the dynamic linker itself. Proper | |
2219 | handling will probably have to wait until the implementation is | |
2220 | changed to use the "breakpoint handler function" method. | |
2221 | ||
7f86f058 | 2222 | Also, what if child has exit()ed? Must exit loop somehow. */ |
13437d4b | 2223 | |
e2a44558 | 2224 | static void |
268a4a75 | 2225 | svr4_solib_create_inferior_hook (int from_tty) |
13437d4b | 2226 | { |
1cd337a5 | 2227 | #if defined(_SCO_DS) |
d6b48e9c | 2228 | struct inferior *inf; |
2020b7ab | 2229 | struct thread_info *tp; |
1cd337a5 | 2230 | #endif /* defined(_SCO_DS) */ |
1a816a87 PA |
2231 | struct svr4_info *info; |
2232 | ||
6c95b8df | 2233 | info = get_svr4_info (); |
2020b7ab | 2234 | |
e2a44558 | 2235 | /* Relocate the main executable if necessary. */ |
86e4bafc | 2236 | svr4_relocate_main_executable (); |
e2a44558 | 2237 | |
c91c8c16 PA |
2238 | /* No point setting a breakpoint in the dynamic linker if we can't |
2239 | hit it (e.g., a core file, or a trace file). */ | |
2240 | if (!target_has_execution) | |
2241 | return; | |
2242 | ||
d5a921c9 | 2243 | if (!svr4_have_link_map_offsets ()) |
513f5903 | 2244 | return; |
d5a921c9 | 2245 | |
268a4a75 | 2246 | if (!enable_break (info, from_tty)) |
542c95c2 | 2247 | return; |
13437d4b | 2248 | |
ab31aa69 KB |
2249 | #if defined(_SCO_DS) |
2250 | /* SCO needs the loop below, other systems should be using the | |
13437d4b KB |
2251 | special shared library breakpoints and the shared library breakpoint |
2252 | service routine. | |
2253 | ||
2254 | Now run the target. It will eventually hit the breakpoint, at | |
2255 | which point all of the libraries will have been mapped in and we | |
2256 | can go groveling around in the dynamic linker structures to find | |
c378eb4e | 2257 | out what we need to know about them. */ |
13437d4b | 2258 | |
d6b48e9c | 2259 | inf = current_inferior (); |
2020b7ab PA |
2260 | tp = inferior_thread (); |
2261 | ||
13437d4b | 2262 | clear_proceed_status (); |
16c381f0 | 2263 | inf->control.stop_soon = STOP_QUIETLY; |
a493e3e2 | 2264 | tp->suspend.stop_signal = GDB_SIGNAL_0; |
13437d4b KB |
2265 | do |
2266 | { | |
16c381f0 | 2267 | target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal); |
e4c8541f | 2268 | wait_for_inferior (); |
13437d4b | 2269 | } |
a493e3e2 | 2270 | while (tp->suspend.stop_signal != GDB_SIGNAL_TRAP); |
16c381f0 | 2271 | inf->control.stop_soon = NO_STOP_QUIETLY; |
ab31aa69 | 2272 | #endif /* defined(_SCO_DS) */ |
13437d4b KB |
2273 | } |
2274 | ||
2275 | static void | |
2276 | svr4_clear_solib (void) | |
2277 | { | |
6c95b8df PA |
2278 | struct svr4_info *info; |
2279 | ||
2280 | info = get_svr4_info (); | |
2281 | info->debug_base = 0; | |
2282 | info->debug_loader_offset_p = 0; | |
2283 | info->debug_loader_offset = 0; | |
2284 | xfree (info->debug_loader_name); | |
2285 | info->debug_loader_name = NULL; | |
13437d4b KB |
2286 | } |
2287 | ||
6bb7be43 JB |
2288 | /* Clear any bits of ADDR that wouldn't fit in a target-format |
2289 | data pointer. "Data pointer" here refers to whatever sort of | |
2290 | address the dynamic linker uses to manage its sections. At the | |
2291 | moment, we don't support shared libraries on any processors where | |
2292 | code and data pointers are different sizes. | |
2293 | ||
2294 | This isn't really the right solution. What we really need here is | |
2295 | a way to do arithmetic on CORE_ADDR values that respects the | |
2296 | natural pointer/address correspondence. (For example, on the MIPS, | |
2297 | converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | |
2298 | sign-extend the value. There, simply truncating the bits above | |
819844ad | 2299 | gdbarch_ptr_bit, as we do below, is no good.) This should probably |
6bb7be43 JB |
2300 | be a new gdbarch method or something. */ |
2301 | static CORE_ADDR | |
2302 | svr4_truncate_ptr (CORE_ADDR addr) | |
2303 | { | |
1cf3db46 | 2304 | if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8) |
6bb7be43 JB |
2305 | /* We don't need to truncate anything, and the bit twiddling below |
2306 | will fail due to overflow problems. */ | |
2307 | return addr; | |
2308 | else | |
1cf3db46 | 2309 | return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1); |
6bb7be43 JB |
2310 | } |
2311 | ||
2312 | ||
749499cb KB |
2313 | static void |
2314 | svr4_relocate_section_addresses (struct so_list *so, | |
0542c86d | 2315 | struct target_section *sec) |
749499cb | 2316 | { |
b23518f0 | 2317 | sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, |
cc10cae3 | 2318 | sec->bfd)); |
b23518f0 | 2319 | sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, |
cc10cae3 | 2320 | sec->bfd)); |
749499cb | 2321 | } |
4b188b9f | 2322 | \f |
749499cb | 2323 | |
4b188b9f | 2324 | /* Architecture-specific operations. */ |
6bb7be43 | 2325 | |
4b188b9f MK |
2326 | /* Per-architecture data key. */ |
2327 | static struct gdbarch_data *solib_svr4_data; | |
e5e2b9ff | 2328 | |
4b188b9f | 2329 | struct solib_svr4_ops |
e5e2b9ff | 2330 | { |
4b188b9f MK |
2331 | /* Return a description of the layout of `struct link_map'. */ |
2332 | struct link_map_offsets *(*fetch_link_map_offsets)(void); | |
2333 | }; | |
e5e2b9ff | 2334 | |
4b188b9f | 2335 | /* Return a default for the architecture-specific operations. */ |
e5e2b9ff | 2336 | |
4b188b9f MK |
2337 | static void * |
2338 | solib_svr4_init (struct obstack *obstack) | |
e5e2b9ff | 2339 | { |
4b188b9f | 2340 | struct solib_svr4_ops *ops; |
e5e2b9ff | 2341 | |
4b188b9f | 2342 | ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); |
8d005789 | 2343 | ops->fetch_link_map_offsets = NULL; |
4b188b9f | 2344 | return ops; |
e5e2b9ff KB |
2345 | } |
2346 | ||
4b188b9f | 2347 | /* Set the architecture-specific `struct link_map_offsets' fetcher for |
7e3cb44c | 2348 | GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */ |
1c4dcb57 | 2349 | |
21479ded | 2350 | void |
e5e2b9ff KB |
2351 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, |
2352 | struct link_map_offsets *(*flmo) (void)) | |
21479ded | 2353 | { |
4b188b9f MK |
2354 | struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data); |
2355 | ||
2356 | ops->fetch_link_map_offsets = flmo; | |
7e3cb44c UW |
2357 | |
2358 | set_solib_ops (gdbarch, &svr4_so_ops); | |
21479ded KB |
2359 | } |
2360 | ||
4b188b9f MK |
2361 | /* Fetch a link_map_offsets structure using the architecture-specific |
2362 | `struct link_map_offsets' fetcher. */ | |
1c4dcb57 | 2363 | |
4b188b9f MK |
2364 | static struct link_map_offsets * |
2365 | svr4_fetch_link_map_offsets (void) | |
21479ded | 2366 | { |
1cf3db46 | 2367 | struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data); |
4b188b9f MK |
2368 | |
2369 | gdb_assert (ops->fetch_link_map_offsets); | |
2370 | return ops->fetch_link_map_offsets (); | |
21479ded KB |
2371 | } |
2372 | ||
4b188b9f MK |
2373 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ |
2374 | ||
2375 | static int | |
2376 | svr4_have_link_map_offsets (void) | |
2377 | { | |
1cf3db46 | 2378 | struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data); |
433759f7 | 2379 | |
4b188b9f MK |
2380 | return (ops->fetch_link_map_offsets != NULL); |
2381 | } | |
2382 | \f | |
2383 | ||
e4bbbda8 MK |
2384 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a |
2385 | `struct r_debug' and a `struct link_map' that are binary compatible | |
2386 | with the origional SVR4 implementation. */ | |
2387 | ||
2388 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
2389 | for an ILP32 SVR4 system. */ | |
d989b283 | 2390 | |
e4bbbda8 MK |
2391 | struct link_map_offsets * |
2392 | svr4_ilp32_fetch_link_map_offsets (void) | |
2393 | { | |
2394 | static struct link_map_offsets lmo; | |
2395 | static struct link_map_offsets *lmp = NULL; | |
2396 | ||
2397 | if (lmp == NULL) | |
2398 | { | |
2399 | lmp = &lmo; | |
2400 | ||
e4cd0d6a MK |
2401 | lmo.r_version_offset = 0; |
2402 | lmo.r_version_size = 4; | |
e4bbbda8 | 2403 | lmo.r_map_offset = 4; |
7cd25cfc | 2404 | lmo.r_brk_offset = 8; |
e4cd0d6a | 2405 | lmo.r_ldsomap_offset = 20; |
e4bbbda8 MK |
2406 | |
2407 | /* Everything we need is in the first 20 bytes. */ | |
2408 | lmo.link_map_size = 20; | |
2409 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 2410 | lmo.l_name_offset = 4; |
cc10cae3 | 2411 | lmo.l_ld_offset = 8; |
e4bbbda8 | 2412 | lmo.l_next_offset = 12; |
e4bbbda8 | 2413 | lmo.l_prev_offset = 16; |
e4bbbda8 MK |
2414 | } |
2415 | ||
2416 | return lmp; | |
2417 | } | |
2418 | ||
2419 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
2420 | for an LP64 SVR4 system. */ | |
d989b283 | 2421 | |
e4bbbda8 MK |
2422 | struct link_map_offsets * |
2423 | svr4_lp64_fetch_link_map_offsets (void) | |
2424 | { | |
2425 | static struct link_map_offsets lmo; | |
2426 | static struct link_map_offsets *lmp = NULL; | |
2427 | ||
2428 | if (lmp == NULL) | |
2429 | { | |
2430 | lmp = &lmo; | |
2431 | ||
e4cd0d6a MK |
2432 | lmo.r_version_offset = 0; |
2433 | lmo.r_version_size = 4; | |
e4bbbda8 | 2434 | lmo.r_map_offset = 8; |
7cd25cfc | 2435 | lmo.r_brk_offset = 16; |
e4cd0d6a | 2436 | lmo.r_ldsomap_offset = 40; |
e4bbbda8 MK |
2437 | |
2438 | /* Everything we need is in the first 40 bytes. */ | |
2439 | lmo.link_map_size = 40; | |
2440 | lmo.l_addr_offset = 0; | |
e4bbbda8 | 2441 | lmo.l_name_offset = 8; |
cc10cae3 | 2442 | lmo.l_ld_offset = 16; |
e4bbbda8 | 2443 | lmo.l_next_offset = 24; |
e4bbbda8 | 2444 | lmo.l_prev_offset = 32; |
e4bbbda8 MK |
2445 | } |
2446 | ||
2447 | return lmp; | |
2448 | } | |
2449 | \f | |
2450 | ||
7d522c90 | 2451 | struct target_so_ops svr4_so_ops; |
13437d4b | 2452 | |
c378eb4e | 2453 | /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a |
3a40aaa0 UW |
2454 | different rule for symbol lookup. The lookup begins here in the DSO, not in |
2455 | the main executable. */ | |
2456 | ||
2457 | static struct symbol * | |
2458 | elf_lookup_lib_symbol (const struct objfile *objfile, | |
2459 | const char *name, | |
21b556f4 | 2460 | const domain_enum domain) |
3a40aaa0 | 2461 | { |
61f0d762 JK |
2462 | bfd *abfd; |
2463 | ||
2464 | if (objfile == symfile_objfile) | |
2465 | abfd = exec_bfd; | |
2466 | else | |
2467 | { | |
2468 | /* OBJFILE should have been passed as the non-debug one. */ | |
2469 | gdb_assert (objfile->separate_debug_objfile_backlink == NULL); | |
2470 | ||
2471 | abfd = objfile->obfd; | |
2472 | } | |
2473 | ||
2474 | if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1) | |
3a40aaa0 UW |
2475 | return NULL; |
2476 | ||
94af9270 | 2477 | return lookup_global_symbol_from_objfile (objfile, name, domain); |
3a40aaa0 UW |
2478 | } |
2479 | ||
a78f21af AC |
2480 | extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */ |
2481 | ||
13437d4b KB |
2482 | void |
2483 | _initialize_svr4_solib (void) | |
2484 | { | |
4b188b9f | 2485 | solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); |
6c95b8df PA |
2486 | solib_svr4_pspace_data |
2487 | = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup); | |
4b188b9f | 2488 | |
749499cb | 2489 | svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; |
13437d4b KB |
2490 | svr4_so_ops.free_so = svr4_free_so; |
2491 | svr4_so_ops.clear_solib = svr4_clear_solib; | |
2492 | svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | |
2493 | svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling; | |
2494 | svr4_so_ops.current_sos = svr4_current_sos; | |
2495 | svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | |
d7fa2ae2 | 2496 | svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; |
831a0c44 | 2497 | svr4_so_ops.bfd_open = solib_bfd_open; |
3a40aaa0 | 2498 | svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol; |
a7c02bc8 | 2499 | svr4_so_ops.same = svr4_same; |
de18c1d8 | 2500 | svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core; |
13437d4b | 2501 | } |