Commit | Line | Data |
---|---|---|
ab31aa69 | 1 | /* Handle SVR4 shared libraries for GDB, the GNU Debugger. |
2f4950cd | 2 | |
197e01b6 | 3 | Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, |
e4cd0d6a | 4 | 2000, 2001, 2003, 2004, 2005, 2006 |
e4bbbda8 | 5 | Free Software Foundation, Inc. |
13437d4b KB |
6 | |
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
22 | Boston, MA 02110-1301, USA. */ | |
13437d4b | 23 | |
13437d4b KB |
24 | #include "defs.h" |
25 | ||
13437d4b | 26 | #include "elf/external.h" |
21479ded | 27 | #include "elf/common.h" |
f7856c8f | 28 | #include "elf/mips.h" |
13437d4b KB |
29 | |
30 | #include "symtab.h" | |
31 | #include "bfd.h" | |
32 | #include "symfile.h" | |
33 | #include "objfiles.h" | |
34 | #include "gdbcore.h" | |
13437d4b | 35 | #include "target.h" |
13437d4b | 36 | #include "inferior.h" |
13437d4b | 37 | |
4b188b9f MK |
38 | #include "gdb_assert.h" |
39 | ||
13437d4b | 40 | #include "solist.h" |
bba93f6c | 41 | #include "solib.h" |
13437d4b KB |
42 | #include "solib-svr4.h" |
43 | ||
2f4950cd | 44 | #include "bfd-target.h" |
cc10cae3 | 45 | #include "elf-bfd.h" |
2f4950cd AC |
46 | #include "exec.h" |
47 | ||
e5e2b9ff | 48 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); |
d5a921c9 | 49 | static int svr4_have_link_map_offsets (void); |
1c4dcb57 | 50 | |
4b188b9f MK |
51 | /* This hook is set to a function that provides native link map |
52 | offsets if the code in solib-legacy.c is linked in. */ | |
53 | struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void); | |
21479ded | 54 | |
13437d4b KB |
55 | /* Link map info to include in an allocated so_list entry */ |
56 | ||
57 | struct lm_info | |
58 | { | |
59 | /* Pointer to copy of link map from inferior. The type is char * | |
60 | rather than void *, so that we may use byte offsets to find the | |
61 | various fields without the need for a cast. */ | |
4066fc10 | 62 | gdb_byte *lm; |
cc10cae3 AO |
63 | |
64 | /* Amount by which addresses in the binary should be relocated to | |
65 | match the inferior. This could most often be taken directly | |
66 | from lm, but when prelinking is involved and the prelink base | |
67 | address changes, we may need a different offset, we want to | |
68 | warn about the difference and compute it only once. */ | |
69 | CORE_ADDR l_addr; | |
13437d4b KB |
70 | }; |
71 | ||
72 | /* On SVR4 systems, a list of symbols in the dynamic linker where | |
73 | GDB can try to place a breakpoint to monitor shared library | |
74 | events. | |
75 | ||
76 | If none of these symbols are found, or other errors occur, then | |
77 | SVR4 systems will fall back to using a symbol as the "startup | |
78 | mapping complete" breakpoint address. */ | |
79 | ||
13437d4b KB |
80 | static char *solib_break_names[] = |
81 | { | |
82 | "r_debug_state", | |
83 | "_r_debug_state", | |
84 | "_dl_debug_state", | |
85 | "rtld_db_dlactivity", | |
1f72e589 | 86 | "_rtld_debug_state", |
4c0122c8 JB |
87 | |
88 | /* On the 64-bit PowerPC, the linker symbol with the same name as | |
89 | the C function points to a function descriptor, not to the entry | |
90 | point. The linker symbol whose name is the C function name | |
91 | prefixed with a '.' points to the function's entry point. So | |
92 | when we look through this table, we ignore symbols that point | |
93 | into the data section (thus skipping the descriptor's symbol), | |
94 | and eventually try this one, giving us the real entry point | |
95 | address. */ | |
96 | "._dl_debug_state", | |
97 | ||
13437d4b KB |
98 | NULL |
99 | }; | |
13437d4b KB |
100 | |
101 | #define BKPT_AT_SYMBOL 1 | |
102 | ||
ab31aa69 | 103 | #if defined (BKPT_AT_SYMBOL) |
13437d4b KB |
104 | static char *bkpt_names[] = |
105 | { | |
106 | #ifdef SOLIB_BKPT_NAME | |
107 | SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */ | |
108 | #endif | |
109 | "_start", | |
ad3dcc5c | 110 | "__start", |
13437d4b KB |
111 | "main", |
112 | NULL | |
113 | }; | |
114 | #endif | |
115 | ||
13437d4b KB |
116 | static char *main_name_list[] = |
117 | { | |
118 | "main_$main", | |
119 | NULL | |
120 | }; | |
121 | ||
ae0167b9 AC |
122 | /* Macro to extract an address from a solib structure. When GDB is |
123 | configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is | |
124 | configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We | |
125 | have to extract only the significant bits of addresses to get the | |
126 | right address when accessing the core file BFD. | |
127 | ||
128 | Assume that the address is unsigned. */ | |
13437d4b KB |
129 | |
130 | #define SOLIB_EXTRACT_ADDRESS(MEMBER) \ | |
ae0167b9 | 131 | extract_unsigned_integer (&(MEMBER), sizeof (MEMBER)) |
13437d4b KB |
132 | |
133 | /* local data declarations */ | |
134 | ||
13437d4b KB |
135 | /* link map access functions */ |
136 | ||
137 | static CORE_ADDR | |
cc10cae3 | 138 | LM_ADDR_FROM_LINK_MAP (struct so_list *so) |
13437d4b | 139 | { |
4b188b9f | 140 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 141 | |
cc10cae3 AO |
142 | return (CORE_ADDR) extract_signed_integer (so->lm_info->lm |
143 | + lmo->l_addr_offset, | |
58bc91c9 | 144 | lmo->l_addr_size); |
13437d4b KB |
145 | } |
146 | ||
cc10cae3 AO |
147 | static int |
148 | HAS_LM_DYNAMIC_FROM_LINK_MAP () | |
149 | { | |
150 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
151 | ||
152 | return (lmo->l_ld_size != 0); | |
153 | } | |
154 | ||
155 | static CORE_ADDR | |
156 | LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so) | |
157 | { | |
158 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
159 | ||
160 | gdb_assert (lmo->l_ld_size != 0); | |
161 | ||
162 | return (CORE_ADDR) extract_signed_integer (so->lm_info->lm | |
163 | + lmo->l_ld_offset, | |
164 | lmo->l_ld_size); | |
165 | } | |
166 | ||
167 | static CORE_ADDR | |
168 | LM_ADDR_CHECK (struct so_list *so, bfd *abfd) | |
169 | { | |
170 | if (so->lm_info->l_addr == (CORE_ADDR)-1) | |
171 | { | |
172 | struct bfd_section *dyninfo_sect; | |
173 | CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000; | |
174 | ||
175 | l_addr = LM_ADDR_FROM_LINK_MAP (so); | |
176 | ||
177 | if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ()) | |
178 | goto set_addr; | |
179 | ||
180 | l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so); | |
181 | ||
182 | dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); | |
183 | if (dyninfo_sect == NULL) | |
184 | goto set_addr; | |
185 | ||
186 | dynaddr = bfd_section_vma (abfd, dyninfo_sect); | |
187 | ||
188 | if (dynaddr + l_addr != l_dynaddr) | |
189 | { | |
190 | warning (_(".dynamic section for \"%s\" " | |
191 | "is not at the expected address"), so->so_name); | |
192 | ||
193 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) | |
194 | { | |
195 | Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; | |
196 | Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; | |
197 | int i; | |
198 | ||
199 | align = 1; | |
200 | ||
201 | for (i = 0; i < ehdr->e_phnum; i++) | |
202 | if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) | |
203 | align = phdr[i].p_align; | |
204 | } | |
205 | ||
206 | /* Turn it into a mask. */ | |
207 | align--; | |
208 | ||
209 | /* If the changes match the alignment requirements, we | |
210 | assume we're using a core file that was generated by the | |
211 | same binary, just prelinked with a different base offset. | |
212 | If it doesn't match, we may have a different binary, the | |
213 | same binary with the dynamic table loaded at an unrelated | |
214 | location, or anything, really. To avoid regressions, | |
215 | don't adjust the base offset in the latter case, although | |
216 | odds are that, if things really changed, debugging won't | |
217 | quite work. */ | |
218 | if ((l_addr & align) == 0 && ((dynaddr - l_dynaddr) & align) == 0) | |
219 | { | |
220 | l_addr = l_dynaddr - dynaddr; | |
221 | warning (_("difference appears to be caused by prelink, " | |
222 | "adjusting expectations")); | |
223 | } | |
224 | } | |
225 | ||
226 | set_addr: | |
227 | so->lm_info->l_addr = l_addr; | |
228 | } | |
229 | ||
230 | return so->lm_info->l_addr; | |
231 | } | |
232 | ||
13437d4b KB |
233 | static CORE_ADDR |
234 | LM_NEXT (struct so_list *so) | |
235 | { | |
4b188b9f | 236 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 237 | |
ae0167b9 AC |
238 | /* Assume that the address is unsigned. */ |
239 | return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset, | |
240 | lmo->l_next_size); | |
13437d4b KB |
241 | } |
242 | ||
243 | static CORE_ADDR | |
244 | LM_NAME (struct so_list *so) | |
245 | { | |
4b188b9f | 246 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 247 | |
ae0167b9 AC |
248 | /* Assume that the address is unsigned. */ |
249 | return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset, | |
250 | lmo->l_name_size); | |
13437d4b KB |
251 | } |
252 | ||
13437d4b KB |
253 | static int |
254 | IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so) | |
255 | { | |
4b188b9f | 256 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 257 | |
ae0167b9 AC |
258 | /* Assume that the address is unsigned. */ |
259 | return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset, | |
260 | lmo->l_prev_size) == 0; | |
13437d4b KB |
261 | } |
262 | ||
13437d4b KB |
263 | static CORE_ADDR debug_base; /* Base of dynamic linker structures */ |
264 | static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */ | |
265 | ||
266 | /* Local function prototypes */ | |
267 | ||
268 | static int match_main (char *); | |
269 | ||
87f84c9d | 270 | static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword); |
13437d4b KB |
271 | |
272 | /* | |
273 | ||
274 | LOCAL FUNCTION | |
275 | ||
276 | bfd_lookup_symbol -- lookup the value for a specific symbol | |
277 | ||
278 | SYNOPSIS | |
279 | ||
87f84c9d | 280 | CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags) |
13437d4b KB |
281 | |
282 | DESCRIPTION | |
283 | ||
284 | An expensive way to lookup the value of a single symbol for | |
285 | bfd's that are only temporary anyway. This is used by the | |
286 | shared library support to find the address of the debugger | |
287 | interface structures in the shared library. | |
288 | ||
87f84c9d JB |
289 | If SECT_FLAGS is non-zero, only match symbols in sections whose |
290 | flags include all those in SECT_FLAGS. | |
291 | ||
13437d4b KB |
292 | Note that 0 is specifically allowed as an error return (no |
293 | such symbol). | |
294 | */ | |
295 | ||
296 | static CORE_ADDR | |
87f84c9d | 297 | bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags) |
13437d4b | 298 | { |
435b259c | 299 | long storage_needed; |
13437d4b KB |
300 | asymbol *sym; |
301 | asymbol **symbol_table; | |
302 | unsigned int number_of_symbols; | |
303 | unsigned int i; | |
304 | struct cleanup *back_to; | |
305 | CORE_ADDR symaddr = 0; | |
306 | ||
307 | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
308 | ||
309 | if (storage_needed > 0) | |
310 | { | |
311 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
4efb68b1 | 312 | back_to = make_cleanup (xfree, symbol_table); |
13437d4b KB |
313 | number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); |
314 | ||
315 | for (i = 0; i < number_of_symbols; i++) | |
316 | { | |
317 | sym = *symbol_table++; | |
6314a349 | 318 | if (strcmp (sym->name, symname) == 0 |
87f84c9d | 319 | && (sym->section->flags & sect_flags) == sect_flags) |
13437d4b KB |
320 | { |
321 | /* Bfd symbols are section relative. */ | |
322 | symaddr = sym->value + sym->section->vma; | |
323 | break; | |
324 | } | |
325 | } | |
326 | do_cleanups (back_to); | |
327 | } | |
328 | ||
329 | if (symaddr) | |
330 | return symaddr; | |
331 | ||
332 | /* On FreeBSD, the dynamic linker is stripped by default. So we'll | |
333 | have to check the dynamic string table too. */ | |
334 | ||
335 | storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); | |
336 | ||
337 | if (storage_needed > 0) | |
338 | { | |
339 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
4efb68b1 | 340 | back_to = make_cleanup (xfree, symbol_table); |
13437d4b KB |
341 | number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table); |
342 | ||
343 | for (i = 0; i < number_of_symbols; i++) | |
344 | { | |
345 | sym = *symbol_table++; | |
87f84c9d | 346 | |
6314a349 | 347 | if (strcmp (sym->name, symname) == 0 |
87f84c9d | 348 | && (sym->section->flags & sect_flags) == sect_flags) |
13437d4b KB |
349 | { |
350 | /* Bfd symbols are section relative. */ | |
351 | symaddr = sym->value + sym->section->vma; | |
352 | break; | |
353 | } | |
354 | } | |
355 | do_cleanups (back_to); | |
356 | } | |
357 | ||
358 | return symaddr; | |
359 | } | |
360 | ||
13437d4b KB |
361 | /* |
362 | ||
363 | LOCAL FUNCTION | |
364 | ||
365 | elf_locate_base -- locate the base address of dynamic linker structs | |
366 | for SVR4 elf targets. | |
367 | ||
368 | SYNOPSIS | |
369 | ||
370 | CORE_ADDR elf_locate_base (void) | |
371 | ||
372 | DESCRIPTION | |
373 | ||
374 | For SVR4 elf targets the address of the dynamic linker's runtime | |
375 | structure is contained within the dynamic info section in the | |
376 | executable file. The dynamic section is also mapped into the | |
377 | inferior address space. Because the runtime loader fills in the | |
378 | real address before starting the inferior, we have to read in the | |
379 | dynamic info section from the inferior address space. | |
380 | If there are any errors while trying to find the address, we | |
381 | silently return 0, otherwise the found address is returned. | |
382 | ||
383 | */ | |
384 | ||
385 | static CORE_ADDR | |
386 | elf_locate_base (void) | |
387 | { | |
7be0c536 | 388 | struct bfd_section *dyninfo_sect; |
13437d4b KB |
389 | int dyninfo_sect_size; |
390 | CORE_ADDR dyninfo_addr; | |
4066fc10 MI |
391 | gdb_byte *buf; |
392 | gdb_byte *bufend; | |
13437d4b KB |
393 | int arch_size; |
394 | ||
395 | /* Find the start address of the .dynamic section. */ | |
396 | dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic"); | |
397 | if (dyninfo_sect == NULL) | |
398 | return 0; | |
399 | dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect); | |
400 | ||
401 | /* Read in .dynamic section, silently ignore errors. */ | |
402 | dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect); | |
403 | buf = alloca (dyninfo_sect_size); | |
404 | if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size)) | |
405 | return 0; | |
406 | ||
407 | /* Find the DT_DEBUG entry in the the .dynamic section. | |
408 | For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has | |
409 | no DT_DEBUG entries. */ | |
410 | ||
411 | arch_size = bfd_get_arch_size (exec_bfd); | |
412 | if (arch_size == -1) /* failure */ | |
413 | return 0; | |
414 | ||
415 | if (arch_size == 32) | |
416 | { /* 32-bit elf */ | |
417 | for (bufend = buf + dyninfo_sect_size; | |
418 | buf < bufend; | |
419 | buf += sizeof (Elf32_External_Dyn)) | |
420 | { | |
421 | Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf; | |
422 | long dyn_tag; | |
423 | CORE_ADDR dyn_ptr; | |
424 | ||
425 | dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag); | |
426 | if (dyn_tag == DT_NULL) | |
427 | break; | |
428 | else if (dyn_tag == DT_DEBUG) | |
429 | { | |
430 | dyn_ptr = bfd_h_get_32 (exec_bfd, | |
431 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
432 | return dyn_ptr; | |
433 | } | |
13437d4b KB |
434 | else if (dyn_tag == DT_MIPS_RLD_MAP) |
435 | { | |
4066fc10 | 436 | gdb_byte *pbuf; |
743b930b | 437 | int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT; |
13437d4b | 438 | |
743b930b | 439 | pbuf = alloca (pbuf_size); |
13437d4b KB |
440 | /* DT_MIPS_RLD_MAP contains a pointer to the address |
441 | of the dynamic link structure. */ | |
442 | dyn_ptr = bfd_h_get_32 (exec_bfd, | |
443 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
743b930b | 444 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) |
13437d4b | 445 | return 0; |
743b930b | 446 | return extract_unsigned_integer (pbuf, pbuf_size); |
13437d4b | 447 | } |
13437d4b KB |
448 | } |
449 | } | |
450 | else /* 64-bit elf */ | |
451 | { | |
452 | for (bufend = buf + dyninfo_sect_size; | |
453 | buf < bufend; | |
454 | buf += sizeof (Elf64_External_Dyn)) | |
455 | { | |
456 | Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf; | |
457 | long dyn_tag; | |
458 | CORE_ADDR dyn_ptr; | |
459 | ||
460 | dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag); | |
461 | if (dyn_tag == DT_NULL) | |
462 | break; | |
463 | else if (dyn_tag == DT_DEBUG) | |
464 | { | |
465 | dyn_ptr = bfd_h_get_64 (exec_bfd, | |
466 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
467 | return dyn_ptr; | |
468 | } | |
743b930b KB |
469 | else if (dyn_tag == DT_MIPS_RLD_MAP) |
470 | { | |
4066fc10 | 471 | gdb_byte *pbuf; |
743b930b KB |
472 | int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT; |
473 | ||
474 | pbuf = alloca (pbuf_size); | |
475 | /* DT_MIPS_RLD_MAP contains a pointer to the address | |
476 | of the dynamic link structure. */ | |
477 | dyn_ptr = bfd_h_get_64 (exec_bfd, | |
478 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
479 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | |
480 | return 0; | |
481 | return extract_unsigned_integer (pbuf, pbuf_size); | |
482 | } | |
13437d4b KB |
483 | } |
484 | } | |
485 | ||
486 | /* DT_DEBUG entry not found. */ | |
487 | return 0; | |
488 | } | |
489 | ||
13437d4b KB |
490 | /* |
491 | ||
492 | LOCAL FUNCTION | |
493 | ||
494 | locate_base -- locate the base address of dynamic linker structs | |
495 | ||
496 | SYNOPSIS | |
497 | ||
498 | CORE_ADDR locate_base (void) | |
499 | ||
500 | DESCRIPTION | |
501 | ||
502 | For both the SunOS and SVR4 shared library implementations, if the | |
503 | inferior executable has been linked dynamically, there is a single | |
504 | address somewhere in the inferior's data space which is the key to | |
505 | locating all of the dynamic linker's runtime structures. This | |
506 | address is the value of the debug base symbol. The job of this | |
507 | function is to find and return that address, or to return 0 if there | |
508 | is no such address (the executable is statically linked for example). | |
509 | ||
510 | For SunOS, the job is almost trivial, since the dynamic linker and | |
511 | all of it's structures are statically linked to the executable at | |
512 | link time. Thus the symbol for the address we are looking for has | |
513 | already been added to the minimal symbol table for the executable's | |
514 | objfile at the time the symbol file's symbols were read, and all we | |
515 | have to do is look it up there. Note that we explicitly do NOT want | |
516 | to find the copies in the shared library. | |
517 | ||
518 | The SVR4 version is a bit more complicated because the address | |
519 | is contained somewhere in the dynamic info section. We have to go | |
520 | to a lot more work to discover the address of the debug base symbol. | |
521 | Because of this complexity, we cache the value we find and return that | |
522 | value on subsequent invocations. Note there is no copy in the | |
523 | executable symbol tables. | |
524 | ||
525 | */ | |
526 | ||
527 | static CORE_ADDR | |
528 | locate_base (void) | |
529 | { | |
13437d4b KB |
530 | /* Check to see if we have a currently valid address, and if so, avoid |
531 | doing all this work again and just return the cached address. If | |
532 | we have no cached address, try to locate it in the dynamic info | |
d5a921c9 KB |
533 | section for ELF executables. There's no point in doing any of this |
534 | though if we don't have some link map offsets to work with. */ | |
13437d4b | 535 | |
d5a921c9 | 536 | if (debug_base == 0 && svr4_have_link_map_offsets ()) |
13437d4b KB |
537 | { |
538 | if (exec_bfd != NULL | |
539 | && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
540 | debug_base = elf_locate_base (); | |
13437d4b KB |
541 | } |
542 | return (debug_base); | |
13437d4b KB |
543 | } |
544 | ||
e4cd0d6a MK |
545 | /* Find the first element in the inferior's dynamic link map, and |
546 | return its address in the inferior. | |
13437d4b | 547 | |
e4cd0d6a MK |
548 | FIXME: Perhaps we should validate the info somehow, perhaps by |
549 | checking r_version for a known version number, or r_state for | |
550 | RT_CONSISTENT. */ | |
13437d4b KB |
551 | |
552 | static CORE_ADDR | |
e4cd0d6a | 553 | solib_svr4_r_map (void) |
13437d4b | 554 | { |
4b188b9f | 555 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 556 | |
e4cd0d6a MK |
557 | return read_memory_typed_address (debug_base + lmo->r_map_offset, |
558 | builtin_type_void_data_ptr); | |
559 | } | |
13437d4b | 560 | |
e4cd0d6a MK |
561 | /* Find the link map for the dynamic linker (if it is not in the |
562 | normal list of loaded shared objects). */ | |
13437d4b | 563 | |
e4cd0d6a MK |
564 | static CORE_ADDR |
565 | solib_svr4_r_ldsomap (void) | |
566 | { | |
567 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); | |
568 | ULONGEST version; | |
13437d4b | 569 | |
e4cd0d6a MK |
570 | /* Check version, and return zero if `struct r_debug' doesn't have |
571 | the r_ldsomap member. */ | |
572 | version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset, | |
573 | lmo->r_version_size); | |
574 | if (version < 2 || lmo->r_ldsomap_offset == -1) | |
575 | return 0; | |
13437d4b | 576 | |
e4cd0d6a MK |
577 | return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset, |
578 | builtin_type_void_data_ptr); | |
13437d4b KB |
579 | } |
580 | ||
13437d4b KB |
581 | /* |
582 | ||
583 | LOCAL FUNCTION | |
584 | ||
585 | open_symbol_file_object | |
586 | ||
587 | SYNOPSIS | |
588 | ||
589 | void open_symbol_file_object (void *from_tty) | |
590 | ||
591 | DESCRIPTION | |
592 | ||
593 | If no open symbol file, attempt to locate and open the main symbol | |
594 | file. On SVR4 systems, this is the first link map entry. If its | |
595 | name is here, we can open it. Useful when attaching to a process | |
596 | without first loading its symbol file. | |
597 | ||
598 | If FROM_TTYP dereferences to a non-zero integer, allow messages to | |
599 | be printed. This parameter is a pointer rather than an int because | |
600 | open_symbol_file_object() is called via catch_errors() and | |
601 | catch_errors() requires a pointer argument. */ | |
602 | ||
603 | static int | |
604 | open_symbol_file_object (void *from_ttyp) | |
605 | { | |
606 | CORE_ADDR lm, l_name; | |
607 | char *filename; | |
608 | int errcode; | |
609 | int from_tty = *(int *)from_ttyp; | |
4b188b9f | 610 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
4066fc10 | 611 | gdb_byte *l_name_buf = xmalloc (lmo->l_name_size); |
b8c9b27d | 612 | struct cleanup *cleanups = make_cleanup (xfree, l_name_buf); |
13437d4b KB |
613 | |
614 | if (symfile_objfile) | |
615 | if (!query ("Attempt to reload symbols from process? ")) | |
616 | return 0; | |
617 | ||
618 | if ((debug_base = locate_base ()) == 0) | |
619 | return 0; /* failed somehow... */ | |
620 | ||
621 | /* First link map member should be the executable. */ | |
e4cd0d6a MK |
622 | lm = solib_svr4_r_map (); |
623 | if (lm == 0) | |
13437d4b KB |
624 | return 0; /* failed somehow... */ |
625 | ||
626 | /* Read address of name from target memory to GDB. */ | |
627 | read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size); | |
628 | ||
ae0167b9 AC |
629 | /* Convert the address to host format. Assume that the address is |
630 | unsigned. */ | |
631 | l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size); | |
13437d4b KB |
632 | |
633 | /* Free l_name_buf. */ | |
634 | do_cleanups (cleanups); | |
635 | ||
636 | if (l_name == 0) | |
637 | return 0; /* No filename. */ | |
638 | ||
639 | /* Now fetch the filename from target memory. */ | |
640 | target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
641 | ||
642 | if (errcode) | |
643 | { | |
8a3fe4f8 | 644 | warning (_("failed to read exec filename from attached file: %s"), |
13437d4b KB |
645 | safe_strerror (errcode)); |
646 | return 0; | |
647 | } | |
648 | ||
b8c9b27d | 649 | make_cleanup (xfree, filename); |
13437d4b | 650 | /* Have a pathname: read the symbol file. */ |
1adeb98a | 651 | symbol_file_add_main (filename, from_tty); |
13437d4b KB |
652 | |
653 | return 1; | |
654 | } | |
13437d4b KB |
655 | |
656 | /* LOCAL FUNCTION | |
657 | ||
658 | current_sos -- build a list of currently loaded shared objects | |
659 | ||
660 | SYNOPSIS | |
661 | ||
662 | struct so_list *current_sos () | |
663 | ||
664 | DESCRIPTION | |
665 | ||
666 | Build a list of `struct so_list' objects describing the shared | |
667 | objects currently loaded in the inferior. This list does not | |
668 | include an entry for the main executable file. | |
669 | ||
670 | Note that we only gather information directly available from the | |
671 | inferior --- we don't examine any of the shared library files | |
672 | themselves. The declaration of `struct so_list' says which fields | |
673 | we provide values for. */ | |
674 | ||
675 | static struct so_list * | |
676 | svr4_current_sos (void) | |
677 | { | |
678 | CORE_ADDR lm; | |
679 | struct so_list *head = 0; | |
680 | struct so_list **link_ptr = &head; | |
e4cd0d6a | 681 | CORE_ADDR ldsomap = 0; |
13437d4b KB |
682 | |
683 | /* Make sure we've looked up the inferior's dynamic linker's base | |
684 | structure. */ | |
685 | if (! debug_base) | |
686 | { | |
687 | debug_base = locate_base (); | |
688 | ||
689 | /* If we can't find the dynamic linker's base structure, this | |
690 | must not be a dynamically linked executable. Hmm. */ | |
691 | if (! debug_base) | |
692 | return 0; | |
693 | } | |
694 | ||
695 | /* Walk the inferior's link map list, and build our list of | |
696 | `struct so_list' nodes. */ | |
e4cd0d6a | 697 | lm = solib_svr4_r_map (); |
13437d4b KB |
698 | while (lm) |
699 | { | |
4b188b9f | 700 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
f4456994 | 701 | struct so_list *new = XZALLOC (struct so_list); |
b8c9b27d | 702 | struct cleanup *old_chain = make_cleanup (xfree, new); |
13437d4b | 703 | |
13437d4b | 704 | new->lm_info = xmalloc (sizeof (struct lm_info)); |
b8c9b27d | 705 | make_cleanup (xfree, new->lm_info); |
13437d4b | 706 | |
831004b7 | 707 | new->lm_info->l_addr = (CORE_ADDR)-1; |
f4456994 | 708 | new->lm_info->lm = xzalloc (lmo->link_map_size); |
b8c9b27d | 709 | make_cleanup (xfree, new->lm_info->lm); |
13437d4b KB |
710 | |
711 | read_memory (lm, new->lm_info->lm, lmo->link_map_size); | |
712 | ||
713 | lm = LM_NEXT (new); | |
714 | ||
715 | /* For SVR4 versions, the first entry in the link map is for the | |
716 | inferior executable, so we must ignore it. For some versions of | |
717 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
718 | does have a name, so we can no longer use a missing name to | |
719 | decide when to ignore it. */ | |
e4cd0d6a | 720 | if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0) |
13437d4b KB |
721 | free_so (new); |
722 | else | |
723 | { | |
724 | int errcode; | |
725 | char *buffer; | |
726 | ||
727 | /* Extract this shared object's name. */ | |
728 | target_read_string (LM_NAME (new), &buffer, | |
729 | SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
730 | if (errcode != 0) | |
8a3fe4f8 AC |
731 | warning (_("Can't read pathname for load map: %s."), |
732 | safe_strerror (errcode)); | |
13437d4b KB |
733 | else |
734 | { | |
735 | strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); | |
736 | new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
b8c9b27d | 737 | xfree (buffer); |
13437d4b KB |
738 | strcpy (new->so_original_name, new->so_name); |
739 | } | |
740 | ||
741 | /* If this entry has no name, or its name matches the name | |
742 | for the main executable, don't include it in the list. */ | |
743 | if (! new->so_name[0] | |
744 | || match_main (new->so_name)) | |
745 | free_so (new); | |
746 | else | |
747 | { | |
748 | new->next = 0; | |
749 | *link_ptr = new; | |
750 | link_ptr = &new->next; | |
751 | } | |
752 | } | |
753 | ||
e4cd0d6a MK |
754 | /* On Solaris, the dynamic linker is not in the normal list of |
755 | shared objects, so make sure we pick it up too. Having | |
756 | symbol information for the dynamic linker is quite crucial | |
757 | for skipping dynamic linker resolver code. */ | |
758 | if (lm == 0 && ldsomap == 0) | |
759 | lm = ldsomap = solib_svr4_r_ldsomap (); | |
760 | ||
13437d4b KB |
761 | discard_cleanups (old_chain); |
762 | } | |
763 | ||
764 | return head; | |
765 | } | |
766 | ||
bc4a16ae EZ |
767 | /* Get the address of the link_map for a given OBJFILE. Loop through |
768 | the link maps, and return the address of the one corresponding to | |
769 | the given objfile. Note that this function takes into account that | |
770 | objfile can be the main executable, not just a shared library. The | |
771 | main executable has always an empty name field in the linkmap. */ | |
772 | ||
773 | CORE_ADDR | |
774 | svr4_fetch_objfile_link_map (struct objfile *objfile) | |
775 | { | |
776 | CORE_ADDR lm; | |
777 | ||
778 | if ((debug_base = locate_base ()) == 0) | |
779 | return 0; /* failed somehow... */ | |
780 | ||
781 | /* Position ourselves on the first link map. */ | |
e4cd0d6a | 782 | lm = solib_svr4_r_map (); |
bc4a16ae EZ |
783 | while (lm) |
784 | { | |
785 | /* Get info on the layout of the r_debug and link_map structures. */ | |
4b188b9f | 786 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
bc4a16ae EZ |
787 | int errcode; |
788 | char *buffer; | |
789 | struct lm_info objfile_lm_info; | |
790 | struct cleanup *old_chain; | |
791 | CORE_ADDR name_address; | |
4066fc10 | 792 | gdb_byte *l_name_buf = xmalloc (lmo->l_name_size); |
bc4a16ae EZ |
793 | old_chain = make_cleanup (xfree, l_name_buf); |
794 | ||
795 | /* Set up the buffer to contain the portion of the link_map | |
796 | structure that gdb cares about. Note that this is not the | |
797 | whole link_map structure. */ | |
f4456994 | 798 | objfile_lm_info.lm = xzalloc (lmo->link_map_size); |
bc4a16ae | 799 | make_cleanup (xfree, objfile_lm_info.lm); |
bc4a16ae EZ |
800 | |
801 | /* Read the link map into our internal structure. */ | |
802 | read_memory (lm, objfile_lm_info.lm, lmo->link_map_size); | |
803 | ||
804 | /* Read address of name from target memory to GDB. */ | |
805 | read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size); | |
806 | ||
ae0167b9 AC |
807 | /* Extract this object's name. Assume that the address is |
808 | unsigned. */ | |
809 | name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size); | |
bc4a16ae EZ |
810 | target_read_string (name_address, &buffer, |
811 | SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
812 | make_cleanup (xfree, buffer); | |
813 | if (errcode != 0) | |
8a3fe4f8 AC |
814 | warning (_("Can't read pathname for load map: %s."), |
815 | safe_strerror (errcode)); | |
bc4a16ae EZ |
816 | else |
817 | { | |
818 | /* Is this the linkmap for the file we want? */ | |
819 | /* If the file is not a shared library and has no name, | |
820 | we are sure it is the main executable, so we return that. */ | |
821 | if ((buffer && strcmp (buffer, objfile->name) == 0) | |
822 | || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0))) | |
823 | { | |
824 | do_cleanups (old_chain); | |
825 | return lm; | |
826 | } | |
827 | } | |
ae0167b9 AC |
828 | /* Not the file we wanted, continue checking. Assume that the |
829 | address is unsigned. */ | |
830 | lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset, | |
831 | lmo->l_next_size); | |
bc4a16ae EZ |
832 | do_cleanups (old_chain); |
833 | } | |
834 | return 0; | |
835 | } | |
13437d4b KB |
836 | |
837 | /* On some systems, the only way to recognize the link map entry for | |
838 | the main executable file is by looking at its name. Return | |
839 | non-zero iff SONAME matches one of the known main executable names. */ | |
840 | ||
841 | static int | |
842 | match_main (char *soname) | |
843 | { | |
844 | char **mainp; | |
845 | ||
846 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
847 | { | |
848 | if (strcmp (soname, *mainp) == 0) | |
849 | return (1); | |
850 | } | |
851 | ||
852 | return (0); | |
853 | } | |
854 | ||
13437d4b KB |
855 | /* Return 1 if PC lies in the dynamic symbol resolution code of the |
856 | SVR4 run time loader. */ | |
13437d4b KB |
857 | static CORE_ADDR interp_text_sect_low; |
858 | static CORE_ADDR interp_text_sect_high; | |
859 | static CORE_ADDR interp_plt_sect_low; | |
860 | static CORE_ADDR interp_plt_sect_high; | |
861 | ||
d7fa2ae2 KB |
862 | static int |
863 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) | |
13437d4b KB |
864 | { |
865 | return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) | |
866 | || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) | |
867 | || in_plt_section (pc, NULL)); | |
868 | } | |
13437d4b | 869 | |
2f4950cd AC |
870 | /* Given an executable's ABFD and target, compute the entry-point |
871 | address. */ | |
872 | ||
873 | static CORE_ADDR | |
874 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | |
875 | { | |
876 | /* KevinB wrote ... for most targets, the address returned by | |
877 | bfd_get_start_address() is the entry point for the start | |
878 | function. But, for some targets, bfd_get_start_address() returns | |
879 | the address of a function descriptor from which the entry point | |
880 | address may be extracted. This address is extracted by | |
881 | gdbarch_convert_from_func_ptr_addr(). The method | |
882 | gdbarch_convert_from_func_ptr_addr() is the merely the identify | |
883 | function for targets which don't use function descriptors. */ | |
884 | return gdbarch_convert_from_func_ptr_addr (current_gdbarch, | |
885 | bfd_get_start_address (abfd), | |
886 | targ); | |
887 | } | |
13437d4b KB |
888 | |
889 | /* | |
890 | ||
891 | LOCAL FUNCTION | |
892 | ||
893 | enable_break -- arrange for dynamic linker to hit breakpoint | |
894 | ||
895 | SYNOPSIS | |
896 | ||
897 | int enable_break (void) | |
898 | ||
899 | DESCRIPTION | |
900 | ||
901 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
902 | debugger interface, support for arranging for the inferior to hit | |
903 | a breakpoint after mapping in the shared libraries. This function | |
904 | enables that breakpoint. | |
905 | ||
906 | For SunOS, there is a special flag location (in_debugger) which we | |
907 | set to 1. When the dynamic linker sees this flag set, it will set | |
908 | a breakpoint at a location known only to itself, after saving the | |
909 | original contents of that place and the breakpoint address itself, | |
910 | in it's own internal structures. When we resume the inferior, it | |
911 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
912 | We handle this (in a different place) by restoring the contents of | |
913 | the breakpointed location (which is only known after it stops), | |
914 | chasing around to locate the shared libraries that have been | |
915 | loaded, then resuming. | |
916 | ||
917 | For SVR4, the debugger interface structure contains a member (r_brk) | |
918 | which is statically initialized at the time the shared library is | |
919 | built, to the offset of a function (_r_debug_state) which is guaran- | |
920 | teed to be called once before mapping in a library, and again when | |
921 | the mapping is complete. At the time we are examining this member, | |
922 | it contains only the unrelocated offset of the function, so we have | |
923 | to do our own relocation. Later, when the dynamic linker actually | |
924 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
925 | ||
926 | The debugger interface structure also contains an enumeration which | |
927 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
928 | depending upon whether or not the library is being mapped or unmapped, | |
929 | and then set to RT_CONSISTENT after the library is mapped/unmapped. | |
930 | */ | |
931 | ||
932 | static int | |
933 | enable_break (void) | |
934 | { | |
935 | int success = 0; | |
936 | ||
13437d4b KB |
937 | #ifdef BKPT_AT_SYMBOL |
938 | ||
939 | struct minimal_symbol *msymbol; | |
940 | char **bkpt_namep; | |
941 | asection *interp_sect; | |
942 | ||
943 | /* First, remove all the solib event breakpoints. Their addresses | |
944 | may have changed since the last time we ran the program. */ | |
945 | remove_solib_event_breakpoints (); | |
946 | ||
13437d4b KB |
947 | interp_text_sect_low = interp_text_sect_high = 0; |
948 | interp_plt_sect_low = interp_plt_sect_high = 0; | |
949 | ||
950 | /* Find the .interp section; if not found, warn the user and drop | |
951 | into the old breakpoint at symbol code. */ | |
952 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
953 | if (interp_sect) | |
954 | { | |
955 | unsigned int interp_sect_size; | |
956 | char *buf; | |
8ad2fcde KB |
957 | CORE_ADDR load_addr = 0; |
958 | int load_addr_found = 0; | |
f8766ec1 | 959 | struct so_list *so; |
e4f7b8c8 | 960 | bfd *tmp_bfd = NULL; |
2f4950cd | 961 | struct target_ops *tmp_bfd_target; |
e4f7b8c8 MS |
962 | int tmp_fd = -1; |
963 | char *tmp_pathname = NULL; | |
13437d4b KB |
964 | CORE_ADDR sym_addr = 0; |
965 | ||
966 | /* Read the contents of the .interp section into a local buffer; | |
967 | the contents specify the dynamic linker this program uses. */ | |
968 | interp_sect_size = bfd_section_size (exec_bfd, interp_sect); | |
969 | buf = alloca (interp_sect_size); | |
970 | bfd_get_section_contents (exec_bfd, interp_sect, | |
971 | buf, 0, interp_sect_size); | |
972 | ||
973 | /* Now we need to figure out where the dynamic linker was | |
974 | loaded so that we can load its symbols and place a breakpoint | |
975 | in the dynamic linker itself. | |
976 | ||
977 | This address is stored on the stack. However, I've been unable | |
978 | to find any magic formula to find it for Solaris (appears to | |
979 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
980 | mechanism to find the dynamic linker's base address. */ | |
e4f7b8c8 MS |
981 | |
982 | tmp_fd = solib_open (buf, &tmp_pathname); | |
983 | if (tmp_fd >= 0) | |
9f76c2cd | 984 | tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd); |
e4f7b8c8 | 985 | |
13437d4b KB |
986 | if (tmp_bfd == NULL) |
987 | goto bkpt_at_symbol; | |
988 | ||
989 | /* Make sure the dynamic linker's really a useful object. */ | |
990 | if (!bfd_check_format (tmp_bfd, bfd_object)) | |
991 | { | |
8a3fe4f8 | 992 | warning (_("Unable to grok dynamic linker %s as an object file"), buf); |
13437d4b KB |
993 | bfd_close (tmp_bfd); |
994 | goto bkpt_at_symbol; | |
995 | } | |
996 | ||
2f4950cd AC |
997 | /* Now convert the TMP_BFD into a target. That way target, as |
998 | well as BFD operations can be used. Note that closing the | |
999 | target will also close the underlying bfd. */ | |
1000 | tmp_bfd_target = target_bfd_reopen (tmp_bfd); | |
1001 | ||
f8766ec1 KB |
1002 | /* On a running target, we can get the dynamic linker's base |
1003 | address from the shared library table. */ | |
1004 | solib_add (NULL, 0, NULL, auto_solib_add); | |
1005 | so = master_so_list (); | |
1006 | while (so) | |
8ad2fcde | 1007 | { |
f8766ec1 | 1008 | if (strcmp (buf, so->so_original_name) == 0) |
8ad2fcde KB |
1009 | { |
1010 | load_addr_found = 1; | |
cc10cae3 | 1011 | load_addr = LM_ADDR_CHECK (so, tmp_bfd); |
8ad2fcde KB |
1012 | break; |
1013 | } | |
f8766ec1 | 1014 | so = so->next; |
8ad2fcde KB |
1015 | } |
1016 | ||
1017 | /* Otherwise we find the dynamic linker's base address by examining | |
1018 | the current pc (which should point at the entry point for the | |
1019 | dynamic linker) and subtracting the offset of the entry point. */ | |
1020 | if (!load_addr_found) | |
2f4950cd AC |
1021 | load_addr = (read_pc () |
1022 | - exec_entry_point (tmp_bfd, tmp_bfd_target)); | |
13437d4b KB |
1023 | |
1024 | /* Record the relocated start and end address of the dynamic linker | |
d7fa2ae2 | 1025 | text and plt section for svr4_in_dynsym_resolve_code. */ |
13437d4b KB |
1026 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); |
1027 | if (interp_sect) | |
1028 | { | |
1029 | interp_text_sect_low = | |
1030 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1031 | interp_text_sect_high = | |
1032 | interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1033 | } | |
1034 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
1035 | if (interp_sect) | |
1036 | { | |
1037 | interp_plt_sect_low = | |
1038 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
1039 | interp_plt_sect_high = | |
1040 | interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
1041 | } | |
1042 | ||
1043 | /* Now try to set a breakpoint in the dynamic linker. */ | |
1044 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
1045 | { | |
87f84c9d JB |
1046 | /* On ABI's that use function descriptors, there are usually |
1047 | two linker symbols associated with each C function: one | |
1048 | pointing at the actual entry point of the machine code, | |
1049 | and one pointing at the function's descriptor. The | |
1050 | latter symbol has the same name as the C function. | |
1051 | ||
1052 | What we're looking for here is the machine code entry | |
1053 | point, so we are only interested in symbols in code | |
1054 | sections. */ | |
1055 | sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE); | |
13437d4b KB |
1056 | if (sym_addr != 0) |
1057 | break; | |
1058 | } | |
1059 | ||
2f4950cd AC |
1060 | /* We're done with both the temporary bfd and target. Remember, |
1061 | closing the target closes the underlying bfd. */ | |
1062 | target_close (tmp_bfd_target, 0); | |
13437d4b KB |
1063 | |
1064 | if (sym_addr != 0) | |
1065 | { | |
1066 | create_solib_event_breakpoint (load_addr + sym_addr); | |
1067 | return 1; | |
1068 | } | |
1069 | ||
1070 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
1071 | linker. Warn and drop into the old code. */ | |
1072 | bkpt_at_symbol: | |
82d03102 PG |
1073 | warning (_("Unable to find dynamic linker breakpoint function.\n" |
1074 | "GDB will be unable to debug shared library initializers\n" | |
1075 | "and track explicitly loaded dynamic code.")); | |
13437d4b | 1076 | } |
13437d4b KB |
1077 | |
1078 | /* Scan through the list of symbols, trying to look up the symbol and | |
1079 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
1080 | ||
1081 | breakpoint_addr = 0; | |
1082 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) | |
1083 | { | |
1084 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
1085 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
1086 | { | |
1087 | create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol)); | |
1088 | return 1; | |
1089 | } | |
1090 | } | |
1091 | ||
1092 | /* Nothing good happened. */ | |
1093 | success = 0; | |
1094 | ||
1095 | #endif /* BKPT_AT_SYMBOL */ | |
1096 | ||
13437d4b KB |
1097 | return (success); |
1098 | } | |
1099 | ||
1100 | /* | |
1101 | ||
1102 | LOCAL FUNCTION | |
1103 | ||
1104 | special_symbol_handling -- additional shared library symbol handling | |
1105 | ||
1106 | SYNOPSIS | |
1107 | ||
1108 | void special_symbol_handling () | |
1109 | ||
1110 | DESCRIPTION | |
1111 | ||
1112 | Once the symbols from a shared object have been loaded in the usual | |
1113 | way, we are called to do any system specific symbol handling that | |
1114 | is needed. | |
1115 | ||
ab31aa69 | 1116 | For SunOS4, this consisted of grunging around in the dynamic |
13437d4b KB |
1117 | linkers structures to find symbol definitions for "common" symbols |
1118 | and adding them to the minimal symbol table for the runtime common | |
1119 | objfile. | |
1120 | ||
ab31aa69 KB |
1121 | However, for SVR4, there's nothing to do. |
1122 | ||
13437d4b KB |
1123 | */ |
1124 | ||
1125 | static void | |
1126 | svr4_special_symbol_handling (void) | |
1127 | { | |
13437d4b KB |
1128 | } |
1129 | ||
e2a44558 KB |
1130 | /* Relocate the main executable. This function should be called upon |
1131 | stopping the inferior process at the entry point to the program. | |
1132 | The entry point from BFD is compared to the PC and if they are | |
1133 | different, the main executable is relocated by the proper amount. | |
1134 | ||
1135 | As written it will only attempt to relocate executables which | |
1136 | lack interpreter sections. It seems likely that only dynamic | |
1137 | linker executables will get relocated, though it should work | |
1138 | properly for a position-independent static executable as well. */ | |
1139 | ||
1140 | static void | |
1141 | svr4_relocate_main_executable (void) | |
1142 | { | |
1143 | asection *interp_sect; | |
1144 | CORE_ADDR pc = read_pc (); | |
1145 | ||
1146 | /* Decide if the objfile needs to be relocated. As indicated above, | |
1147 | we will only be here when execution is stopped at the beginning | |
1148 | of the program. Relocation is necessary if the address at which | |
1149 | we are presently stopped differs from the start address stored in | |
1150 | the executable AND there's no interpreter section. The condition | |
1151 | regarding the interpreter section is very important because if | |
1152 | there *is* an interpreter section, execution will begin there | |
1153 | instead. When there is an interpreter section, the start address | |
1154 | is (presumably) used by the interpreter at some point to start | |
1155 | execution of the program. | |
1156 | ||
1157 | If there is an interpreter, it is normal for it to be set to an | |
1158 | arbitrary address at the outset. The job of finding it is | |
1159 | handled in enable_break(). | |
1160 | ||
1161 | So, to summarize, relocations are necessary when there is no | |
1162 | interpreter section and the start address obtained from the | |
1163 | executable is different from the address at which GDB is | |
1164 | currently stopped. | |
1165 | ||
1166 | [ The astute reader will note that we also test to make sure that | |
1167 | the executable in question has the DYNAMIC flag set. It is my | |
1168 | opinion that this test is unnecessary (undesirable even). It | |
1169 | was added to avoid inadvertent relocation of an executable | |
1170 | whose e_type member in the ELF header is not ET_DYN. There may | |
1171 | be a time in the future when it is desirable to do relocations | |
1172 | on other types of files as well in which case this condition | |
1173 | should either be removed or modified to accomodate the new file | |
1174 | type. (E.g, an ET_EXEC executable which has been built to be | |
1175 | position-independent could safely be relocated by the OS if | |
1176 | desired. It is true that this violates the ABI, but the ABI | |
1177 | has been known to be bent from time to time.) - Kevin, Nov 2000. ] | |
1178 | */ | |
1179 | ||
1180 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
1181 | if (interp_sect == NULL | |
1182 | && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0 | |
2f4950cd | 1183 | && (exec_entry_point (exec_bfd, &exec_ops) != pc)) |
e2a44558 KB |
1184 | { |
1185 | struct cleanup *old_chain; | |
1186 | struct section_offsets *new_offsets; | |
1187 | int i, changed; | |
1188 | CORE_ADDR displacement; | |
1189 | ||
1190 | /* It is necessary to relocate the objfile. The amount to | |
1191 | relocate by is simply the address at which we are stopped | |
1192 | minus the starting address from the executable. | |
1193 | ||
1194 | We relocate all of the sections by the same amount. This | |
1195 | behavior is mandated by recent editions of the System V ABI. | |
1196 | According to the System V Application Binary Interface, | |
1197 | Edition 4.1, page 5-5: | |
1198 | ||
1199 | ... Though the system chooses virtual addresses for | |
1200 | individual processes, it maintains the segments' relative | |
1201 | positions. Because position-independent code uses relative | |
1202 | addressesing between segments, the difference between | |
1203 | virtual addresses in memory must match the difference | |
1204 | between virtual addresses in the file. The difference | |
1205 | between the virtual address of any segment in memory and | |
1206 | the corresponding virtual address in the file is thus a | |
1207 | single constant value for any one executable or shared | |
1208 | object in a given process. This difference is the base | |
1209 | address. One use of the base address is to relocate the | |
1210 | memory image of the program during dynamic linking. | |
1211 | ||
1212 | The same language also appears in Edition 4.0 of the System V | |
1213 | ABI and is left unspecified in some of the earlier editions. */ | |
1214 | ||
2f4950cd | 1215 | displacement = pc - exec_entry_point (exec_bfd, &exec_ops); |
e2a44558 KB |
1216 | changed = 0; |
1217 | ||
13fc0c2f KB |
1218 | new_offsets = xcalloc (symfile_objfile->num_sections, |
1219 | sizeof (struct section_offsets)); | |
b8c9b27d | 1220 | old_chain = make_cleanup (xfree, new_offsets); |
e2a44558 KB |
1221 | |
1222 | for (i = 0; i < symfile_objfile->num_sections; i++) | |
1223 | { | |
1224 | if (displacement != ANOFFSET (symfile_objfile->section_offsets, i)) | |
1225 | changed = 1; | |
1226 | new_offsets->offsets[i] = displacement; | |
1227 | } | |
1228 | ||
1229 | if (changed) | |
1230 | objfile_relocate (symfile_objfile, new_offsets); | |
1231 | ||
1232 | do_cleanups (old_chain); | |
1233 | } | |
1234 | } | |
1235 | ||
13437d4b KB |
1236 | /* |
1237 | ||
1238 | GLOBAL FUNCTION | |
1239 | ||
1240 | svr4_solib_create_inferior_hook -- shared library startup support | |
1241 | ||
1242 | SYNOPSIS | |
1243 | ||
7095b863 | 1244 | void svr4_solib_create_inferior_hook () |
13437d4b KB |
1245 | |
1246 | DESCRIPTION | |
1247 | ||
1248 | When gdb starts up the inferior, it nurses it along (through the | |
1249 | shell) until it is ready to execute it's first instruction. At this | |
1250 | point, this function gets called via expansion of the macro | |
1251 | SOLIB_CREATE_INFERIOR_HOOK. | |
1252 | ||
1253 | For SunOS executables, this first instruction is typically the | |
1254 | one at "_start", or a similar text label, regardless of whether | |
1255 | the executable is statically or dynamically linked. The runtime | |
1256 | startup code takes care of dynamically linking in any shared | |
1257 | libraries, once gdb allows the inferior to continue. | |
1258 | ||
1259 | For SVR4 executables, this first instruction is either the first | |
1260 | instruction in the dynamic linker (for dynamically linked | |
1261 | executables) or the instruction at "start" for statically linked | |
1262 | executables. For dynamically linked executables, the system | |
1263 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
1264 | and starts it running. The dynamic linker maps in any needed | |
1265 | shared libraries, maps in the actual user executable, and then | |
1266 | jumps to "start" in the user executable. | |
1267 | ||
1268 | For both SunOS shared libraries, and SVR4 shared libraries, we | |
1269 | can arrange to cooperate with the dynamic linker to discover the | |
1270 | names of shared libraries that are dynamically linked, and the | |
1271 | base addresses to which they are linked. | |
1272 | ||
1273 | This function is responsible for discovering those names and | |
1274 | addresses, and saving sufficient information about them to allow | |
1275 | their symbols to be read at a later time. | |
1276 | ||
1277 | FIXME | |
1278 | ||
1279 | Between enable_break() and disable_break(), this code does not | |
1280 | properly handle hitting breakpoints which the user might have | |
1281 | set in the startup code or in the dynamic linker itself. Proper | |
1282 | handling will probably have to wait until the implementation is | |
1283 | changed to use the "breakpoint handler function" method. | |
1284 | ||
1285 | Also, what if child has exit()ed? Must exit loop somehow. | |
1286 | */ | |
1287 | ||
e2a44558 | 1288 | static void |
13437d4b KB |
1289 | svr4_solib_create_inferior_hook (void) |
1290 | { | |
e2a44558 KB |
1291 | /* Relocate the main executable if necessary. */ |
1292 | svr4_relocate_main_executable (); | |
1293 | ||
d5a921c9 KB |
1294 | if (!svr4_have_link_map_offsets ()) |
1295 | { | |
8a3fe4f8 | 1296 | warning (_("no shared library support for this OS / ABI")); |
d5a921c9 KB |
1297 | return; |
1298 | ||
1299 | } | |
1300 | ||
13437d4b KB |
1301 | if (!enable_break ()) |
1302 | { | |
8a3fe4f8 | 1303 | warning (_("shared library handler failed to enable breakpoint")); |
13437d4b KB |
1304 | return; |
1305 | } | |
1306 | ||
ab31aa69 KB |
1307 | #if defined(_SCO_DS) |
1308 | /* SCO needs the loop below, other systems should be using the | |
13437d4b KB |
1309 | special shared library breakpoints and the shared library breakpoint |
1310 | service routine. | |
1311 | ||
1312 | Now run the target. It will eventually hit the breakpoint, at | |
1313 | which point all of the libraries will have been mapped in and we | |
1314 | can go groveling around in the dynamic linker structures to find | |
1315 | out what we need to know about them. */ | |
1316 | ||
1317 | clear_proceed_status (); | |
c0236d92 | 1318 | stop_soon = STOP_QUIETLY; |
13437d4b KB |
1319 | stop_signal = TARGET_SIGNAL_0; |
1320 | do | |
1321 | { | |
39f77062 | 1322 | target_resume (pid_to_ptid (-1), 0, stop_signal); |
13437d4b KB |
1323 | wait_for_inferior (); |
1324 | } | |
1325 | while (stop_signal != TARGET_SIGNAL_TRAP); | |
c0236d92 | 1326 | stop_soon = NO_STOP_QUIETLY; |
ab31aa69 | 1327 | #endif /* defined(_SCO_DS) */ |
13437d4b KB |
1328 | } |
1329 | ||
1330 | static void | |
1331 | svr4_clear_solib (void) | |
1332 | { | |
1333 | debug_base = 0; | |
1334 | } | |
1335 | ||
1336 | static void | |
1337 | svr4_free_so (struct so_list *so) | |
1338 | { | |
b8c9b27d KB |
1339 | xfree (so->lm_info->lm); |
1340 | xfree (so->lm_info); | |
13437d4b KB |
1341 | } |
1342 | ||
6bb7be43 JB |
1343 | |
1344 | /* Clear any bits of ADDR that wouldn't fit in a target-format | |
1345 | data pointer. "Data pointer" here refers to whatever sort of | |
1346 | address the dynamic linker uses to manage its sections. At the | |
1347 | moment, we don't support shared libraries on any processors where | |
1348 | code and data pointers are different sizes. | |
1349 | ||
1350 | This isn't really the right solution. What we really need here is | |
1351 | a way to do arithmetic on CORE_ADDR values that respects the | |
1352 | natural pointer/address correspondence. (For example, on the MIPS, | |
1353 | converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | |
1354 | sign-extend the value. There, simply truncating the bits above | |
1355 | TARGET_PTR_BIT, as we do below, is no good.) This should probably | |
1356 | be a new gdbarch method or something. */ | |
1357 | static CORE_ADDR | |
1358 | svr4_truncate_ptr (CORE_ADDR addr) | |
1359 | { | |
1360 | if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8) | |
1361 | /* We don't need to truncate anything, and the bit twiddling below | |
1362 | will fail due to overflow problems. */ | |
1363 | return addr; | |
1364 | else | |
1365 | return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1); | |
1366 | } | |
1367 | ||
1368 | ||
749499cb KB |
1369 | static void |
1370 | svr4_relocate_section_addresses (struct so_list *so, | |
1371 | struct section_table *sec) | |
1372 | { | |
cc10cae3 AO |
1373 | sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so, |
1374 | sec->bfd)); | |
1375 | sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so, | |
1376 | sec->bfd)); | |
749499cb | 1377 | } |
4b188b9f | 1378 | \f |
749499cb | 1379 | |
4b188b9f | 1380 | /* Architecture-specific operations. */ |
6bb7be43 | 1381 | |
4b188b9f MK |
1382 | /* Per-architecture data key. */ |
1383 | static struct gdbarch_data *solib_svr4_data; | |
e5e2b9ff | 1384 | |
4b188b9f | 1385 | struct solib_svr4_ops |
e5e2b9ff | 1386 | { |
4b188b9f MK |
1387 | /* Return a description of the layout of `struct link_map'. */ |
1388 | struct link_map_offsets *(*fetch_link_map_offsets)(void); | |
1389 | }; | |
e5e2b9ff | 1390 | |
4b188b9f | 1391 | /* Return a default for the architecture-specific operations. */ |
e5e2b9ff | 1392 | |
4b188b9f MK |
1393 | static void * |
1394 | solib_svr4_init (struct obstack *obstack) | |
e5e2b9ff | 1395 | { |
4b188b9f | 1396 | struct solib_svr4_ops *ops; |
e5e2b9ff | 1397 | |
4b188b9f MK |
1398 | ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); |
1399 | ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook; | |
1400 | return ops; | |
e5e2b9ff KB |
1401 | } |
1402 | ||
4b188b9f MK |
1403 | /* Set the architecture-specific `struct link_map_offsets' fetcher for |
1404 | GDBARCH to FLMO. */ | |
1c4dcb57 | 1405 | |
21479ded | 1406 | void |
e5e2b9ff KB |
1407 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, |
1408 | struct link_map_offsets *(*flmo) (void)) | |
21479ded | 1409 | { |
4b188b9f MK |
1410 | struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data); |
1411 | ||
1412 | ops->fetch_link_map_offsets = flmo; | |
21479ded KB |
1413 | } |
1414 | ||
4b188b9f MK |
1415 | /* Fetch a link_map_offsets structure using the architecture-specific |
1416 | `struct link_map_offsets' fetcher. */ | |
1c4dcb57 | 1417 | |
4b188b9f MK |
1418 | static struct link_map_offsets * |
1419 | svr4_fetch_link_map_offsets (void) | |
21479ded | 1420 | { |
4b188b9f MK |
1421 | struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data); |
1422 | ||
1423 | gdb_assert (ops->fetch_link_map_offsets); | |
1424 | return ops->fetch_link_map_offsets (); | |
21479ded KB |
1425 | } |
1426 | ||
4b188b9f MK |
1427 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ |
1428 | ||
1429 | static int | |
1430 | svr4_have_link_map_offsets (void) | |
1431 | { | |
1432 | struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data); | |
1433 | return (ops->fetch_link_map_offsets != NULL); | |
1434 | } | |
1435 | \f | |
1436 | ||
e4bbbda8 MK |
1437 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a |
1438 | `struct r_debug' and a `struct link_map' that are binary compatible | |
1439 | with the origional SVR4 implementation. */ | |
1440 | ||
1441 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
1442 | for an ILP32 SVR4 system. */ | |
1443 | ||
1444 | struct link_map_offsets * | |
1445 | svr4_ilp32_fetch_link_map_offsets (void) | |
1446 | { | |
1447 | static struct link_map_offsets lmo; | |
1448 | static struct link_map_offsets *lmp = NULL; | |
1449 | ||
1450 | if (lmp == NULL) | |
1451 | { | |
1452 | lmp = &lmo; | |
1453 | ||
e4cd0d6a MK |
1454 | lmo.r_version_offset = 0; |
1455 | lmo.r_version_size = 4; | |
e4bbbda8 | 1456 | lmo.r_map_offset = 4; |
e4cd0d6a | 1457 | lmo.r_ldsomap_offset = 20; |
e4bbbda8 MK |
1458 | |
1459 | /* Everything we need is in the first 20 bytes. */ | |
1460 | lmo.link_map_size = 20; | |
1461 | lmo.l_addr_offset = 0; | |
e4cd0d6a | 1462 | lmo.l_addr_size = 4; |
e4bbbda8 | 1463 | lmo.l_name_offset = 4; |
e4cd0d6a | 1464 | lmo.l_name_size = 4; |
cc10cae3 AO |
1465 | lmo.l_ld_offset = 8; |
1466 | lmo.l_ld_size = 4; | |
e4bbbda8 | 1467 | lmo.l_next_offset = 12; |
e4cd0d6a | 1468 | lmo.l_next_size = 4; |
e4bbbda8 | 1469 | lmo.l_prev_offset = 16; |
e4cd0d6a | 1470 | lmo.l_prev_size = 4; |
e4bbbda8 MK |
1471 | } |
1472 | ||
1473 | return lmp; | |
1474 | } | |
1475 | ||
1476 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
1477 | for an LP64 SVR4 system. */ | |
1478 | ||
1479 | struct link_map_offsets * | |
1480 | svr4_lp64_fetch_link_map_offsets (void) | |
1481 | { | |
1482 | static struct link_map_offsets lmo; | |
1483 | static struct link_map_offsets *lmp = NULL; | |
1484 | ||
1485 | if (lmp == NULL) | |
1486 | { | |
1487 | lmp = &lmo; | |
1488 | ||
e4cd0d6a MK |
1489 | lmo.r_version_offset = 0; |
1490 | lmo.r_version_size = 4; | |
e4bbbda8 | 1491 | lmo.r_map_offset = 8; |
e4cd0d6a | 1492 | lmo.r_ldsomap_offset = 40; |
e4bbbda8 MK |
1493 | |
1494 | /* Everything we need is in the first 40 bytes. */ | |
1495 | lmo.link_map_size = 40; | |
1496 | lmo.l_addr_offset = 0; | |
e4cd0d6a | 1497 | lmo.l_addr_size = 8; |
e4bbbda8 | 1498 | lmo.l_name_offset = 8; |
e4cd0d6a | 1499 | lmo.l_name_size = 8; |
cc10cae3 AO |
1500 | lmo.l_ld_offset = 16; |
1501 | lmo.l_ld_size = 8; | |
e4bbbda8 | 1502 | lmo.l_next_offset = 24; |
e4cd0d6a | 1503 | lmo.l_next_size = 8; |
e4bbbda8 | 1504 | lmo.l_prev_offset = 32; |
e4cd0d6a | 1505 | lmo.l_prev_size = 8; |
e4bbbda8 MK |
1506 | } |
1507 | ||
1508 | return lmp; | |
1509 | } | |
1510 | \f | |
1511 | ||
13437d4b KB |
1512 | static struct target_so_ops svr4_so_ops; |
1513 | ||
a78f21af AC |
1514 | extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */ |
1515 | ||
13437d4b KB |
1516 | void |
1517 | _initialize_svr4_solib (void) | |
1518 | { | |
4b188b9f MK |
1519 | solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); |
1520 | ||
749499cb | 1521 | svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; |
13437d4b KB |
1522 | svr4_so_ops.free_so = svr4_free_so; |
1523 | svr4_so_ops.clear_solib = svr4_clear_solib; | |
1524 | svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | |
1525 | svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling; | |
1526 | svr4_so_ops.current_sos = svr4_current_sos; | |
1527 | svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | |
d7fa2ae2 | 1528 | svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; |
13437d4b KB |
1529 | |
1530 | /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */ | |
1531 | current_target_so_ops = &svr4_so_ops; | |
1532 | } |