*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999,
e4cd0d6a 4 2000, 2001, 2003, 2004, 2005, 2006
e4bbbda8 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
13437d4b 23
13437d4b
KB
24#include "defs.h"
25
13437d4b 26#include "elf/external.h"
21479ded 27#include "elf/common.h"
f7856c8f 28#include "elf/mips.h"
13437d4b
KB
29
30#include "symtab.h"
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbcore.h"
13437d4b 35#include "target.h"
13437d4b 36#include "inferior.h"
13437d4b 37
4b188b9f
MK
38#include "gdb_assert.h"
39
13437d4b 40#include "solist.h"
bba93f6c 41#include "solib.h"
13437d4b
KB
42#include "solib-svr4.h"
43
2f4950cd 44#include "bfd-target.h"
cc10cae3 45#include "elf-bfd.h"
2f4950cd
AC
46#include "exec.h"
47
e5e2b9ff 48static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 49static int svr4_have_link_map_offsets (void);
1c4dcb57 50
4b188b9f
MK
51/* This hook is set to a function that provides native link map
52 offsets if the code in solib-legacy.c is linked in. */
53struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
21479ded 54
13437d4b
KB
55/* Link map info to include in an allocated so_list entry */
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
13437d4b
KB
70 };
71
72/* On SVR4 systems, a list of symbols in the dynamic linker where
73 GDB can try to place a breakpoint to monitor shared library
74 events.
75
76 If none of these symbols are found, or other errors occur, then
77 SVR4 systems will fall back to using a symbol as the "startup
78 mapping complete" breakpoint address. */
79
13437d4b
KB
80static char *solib_break_names[] =
81{
82 "r_debug_state",
83 "_r_debug_state",
84 "_dl_debug_state",
85 "rtld_db_dlactivity",
1f72e589 86 "_rtld_debug_state",
4c0122c8
JB
87
88 /* On the 64-bit PowerPC, the linker symbol with the same name as
89 the C function points to a function descriptor, not to the entry
90 point. The linker symbol whose name is the C function name
91 prefixed with a '.' points to the function's entry point. So
92 when we look through this table, we ignore symbols that point
93 into the data section (thus skipping the descriptor's symbol),
94 and eventually try this one, giving us the real entry point
95 address. */
96 "._dl_debug_state",
97
13437d4b
KB
98 NULL
99};
13437d4b
KB
100
101#define BKPT_AT_SYMBOL 1
102
ab31aa69 103#if defined (BKPT_AT_SYMBOL)
13437d4b
KB
104static char *bkpt_names[] =
105{
106#ifdef SOLIB_BKPT_NAME
107 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
108#endif
109 "_start",
ad3dcc5c 110 "__start",
13437d4b
KB
111 "main",
112 NULL
113};
114#endif
115
13437d4b
KB
116static char *main_name_list[] =
117{
118 "main_$main",
119 NULL
120};
121
ae0167b9
AC
122/* Macro to extract an address from a solib structure. When GDB is
123 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
124 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We
125 have to extract only the significant bits of addresses to get the
126 right address when accessing the core file BFD.
127
128 Assume that the address is unsigned. */
13437d4b
KB
129
130#define SOLIB_EXTRACT_ADDRESS(MEMBER) \
ae0167b9 131 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER))
13437d4b
KB
132
133/* local data declarations */
134
13437d4b
KB
135/* link map access functions */
136
137static CORE_ADDR
cc10cae3 138LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 139{
4b188b9f 140 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 141
cc10cae3
AO
142 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm
143 + lmo->l_addr_offset,
58bc91c9 144 lmo->l_addr_size);
13437d4b
KB
145}
146
cc10cae3
AO
147static int
148HAS_LM_DYNAMIC_FROM_LINK_MAP ()
149{
150 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
151
152 return (lmo->l_ld_size != 0);
153}
154
155static CORE_ADDR
156LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 gdb_assert (lmo->l_ld_size != 0);
161
162 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm
163 + lmo->l_ld_offset,
164 lmo->l_ld_size);
165}
166
167static CORE_ADDR
168LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
169{
170 if (so->lm_info->l_addr == (CORE_ADDR)-1)
171 {
172 struct bfd_section *dyninfo_sect;
173 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
174
175 l_addr = LM_ADDR_FROM_LINK_MAP (so);
176
177 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
178 goto set_addr;
179
180 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
181
182 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
183 if (dyninfo_sect == NULL)
184 goto set_addr;
185
186 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
187
188 if (dynaddr + l_addr != l_dynaddr)
189 {
190 warning (_(".dynamic section for \"%s\" "
191 "is not at the expected address"), so->so_name);
192
193 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
194 {
195 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
196 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
197 int i;
198
199 align = 1;
200
201 for (i = 0; i < ehdr->e_phnum; i++)
202 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
203 align = phdr[i].p_align;
204 }
205
206 /* Turn it into a mask. */
207 align--;
208
209 /* If the changes match the alignment requirements, we
210 assume we're using a core file that was generated by the
211 same binary, just prelinked with a different base offset.
212 If it doesn't match, we may have a different binary, the
213 same binary with the dynamic table loaded at an unrelated
214 location, or anything, really. To avoid regressions,
215 don't adjust the base offset in the latter case, although
216 odds are that, if things really changed, debugging won't
217 quite work. */
218 if ((l_addr & align) == 0 && ((dynaddr - l_dynaddr) & align) == 0)
219 {
220 l_addr = l_dynaddr - dynaddr;
221 warning (_("difference appears to be caused by prelink, "
222 "adjusting expectations"));
223 }
224 }
225
226 set_addr:
227 so->lm_info->l_addr = l_addr;
228 }
229
230 return so->lm_info->l_addr;
231}
232
13437d4b
KB
233static CORE_ADDR
234LM_NEXT (struct so_list *so)
235{
4b188b9f 236 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 237
ae0167b9
AC
238 /* Assume that the address is unsigned. */
239 return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset,
240 lmo->l_next_size);
13437d4b
KB
241}
242
243static CORE_ADDR
244LM_NAME (struct so_list *so)
245{
4b188b9f 246 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 247
ae0167b9
AC
248 /* Assume that the address is unsigned. */
249 return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset,
250 lmo->l_name_size);
13437d4b
KB
251}
252
13437d4b
KB
253static int
254IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
255{
4b188b9f 256 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 257
ae0167b9
AC
258 /* Assume that the address is unsigned. */
259 return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset,
260 lmo->l_prev_size) == 0;
13437d4b
KB
261}
262
13437d4b
KB
263static CORE_ADDR debug_base; /* Base of dynamic linker structures */
264static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
265
266/* Local function prototypes */
267
268static int match_main (char *);
269
87f84c9d 270static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
13437d4b
KB
271
272/*
273
274 LOCAL FUNCTION
275
276 bfd_lookup_symbol -- lookup the value for a specific symbol
277
278 SYNOPSIS
279
87f84c9d 280 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b
KB
281
282 DESCRIPTION
283
284 An expensive way to lookup the value of a single symbol for
285 bfd's that are only temporary anyway. This is used by the
286 shared library support to find the address of the debugger
287 interface structures in the shared library.
288
87f84c9d
JB
289 If SECT_FLAGS is non-zero, only match symbols in sections whose
290 flags include all those in SECT_FLAGS.
291
13437d4b
KB
292 Note that 0 is specifically allowed as an error return (no
293 such symbol).
294 */
295
296static CORE_ADDR
87f84c9d 297bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
13437d4b 298{
435b259c 299 long storage_needed;
13437d4b
KB
300 asymbol *sym;
301 asymbol **symbol_table;
302 unsigned int number_of_symbols;
303 unsigned int i;
304 struct cleanup *back_to;
305 CORE_ADDR symaddr = 0;
306
307 storage_needed = bfd_get_symtab_upper_bound (abfd);
308
309 if (storage_needed > 0)
310 {
311 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 312 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
313 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
314
315 for (i = 0; i < number_of_symbols; i++)
316 {
317 sym = *symbol_table++;
6314a349 318 if (strcmp (sym->name, symname) == 0
87f84c9d 319 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
320 {
321 /* Bfd symbols are section relative. */
322 symaddr = sym->value + sym->section->vma;
323 break;
324 }
325 }
326 do_cleanups (back_to);
327 }
328
329 if (symaddr)
330 return symaddr;
331
332 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
333 have to check the dynamic string table too. */
334
335 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
336
337 if (storage_needed > 0)
338 {
339 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 340 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
341 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
342
343 for (i = 0; i < number_of_symbols; i++)
344 {
345 sym = *symbol_table++;
87f84c9d 346
6314a349 347 if (strcmp (sym->name, symname) == 0
87f84c9d 348 && (sym->section->flags & sect_flags) == sect_flags)
13437d4b
KB
349 {
350 /* Bfd symbols are section relative. */
351 symaddr = sym->value + sym->section->vma;
352 break;
353 }
354 }
355 do_cleanups (back_to);
356 }
357
358 return symaddr;
359}
360
13437d4b
KB
361/*
362
363 LOCAL FUNCTION
364
365 elf_locate_base -- locate the base address of dynamic linker structs
366 for SVR4 elf targets.
367
368 SYNOPSIS
369
370 CORE_ADDR elf_locate_base (void)
371
372 DESCRIPTION
373
374 For SVR4 elf targets the address of the dynamic linker's runtime
375 structure is contained within the dynamic info section in the
376 executable file. The dynamic section is also mapped into the
377 inferior address space. Because the runtime loader fills in the
378 real address before starting the inferior, we have to read in the
379 dynamic info section from the inferior address space.
380 If there are any errors while trying to find the address, we
381 silently return 0, otherwise the found address is returned.
382
383 */
384
385static CORE_ADDR
386elf_locate_base (void)
387{
7be0c536 388 struct bfd_section *dyninfo_sect;
13437d4b
KB
389 int dyninfo_sect_size;
390 CORE_ADDR dyninfo_addr;
4066fc10
MI
391 gdb_byte *buf;
392 gdb_byte *bufend;
13437d4b
KB
393 int arch_size;
394
395 /* Find the start address of the .dynamic section. */
396 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
397 if (dyninfo_sect == NULL)
398 return 0;
399 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
400
401 /* Read in .dynamic section, silently ignore errors. */
402 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
403 buf = alloca (dyninfo_sect_size);
404 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
405 return 0;
406
407 /* Find the DT_DEBUG entry in the the .dynamic section.
408 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
409 no DT_DEBUG entries. */
410
411 arch_size = bfd_get_arch_size (exec_bfd);
412 if (arch_size == -1) /* failure */
413 return 0;
414
415 if (arch_size == 32)
416 { /* 32-bit elf */
417 for (bufend = buf + dyninfo_sect_size;
418 buf < bufend;
419 buf += sizeof (Elf32_External_Dyn))
420 {
421 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
422 long dyn_tag;
423 CORE_ADDR dyn_ptr;
424
425 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
426 if (dyn_tag == DT_NULL)
427 break;
428 else if (dyn_tag == DT_DEBUG)
429 {
430 dyn_ptr = bfd_h_get_32 (exec_bfd,
431 (bfd_byte *) x_dynp->d_un.d_ptr);
432 return dyn_ptr;
433 }
13437d4b
KB
434 else if (dyn_tag == DT_MIPS_RLD_MAP)
435 {
4066fc10 436 gdb_byte *pbuf;
743b930b 437 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
13437d4b 438
743b930b 439 pbuf = alloca (pbuf_size);
13437d4b
KB
440 /* DT_MIPS_RLD_MAP contains a pointer to the address
441 of the dynamic link structure. */
442 dyn_ptr = bfd_h_get_32 (exec_bfd,
443 (bfd_byte *) x_dynp->d_un.d_ptr);
743b930b 444 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
13437d4b 445 return 0;
743b930b 446 return extract_unsigned_integer (pbuf, pbuf_size);
13437d4b 447 }
13437d4b
KB
448 }
449 }
450 else /* 64-bit elf */
451 {
452 for (bufend = buf + dyninfo_sect_size;
453 buf < bufend;
454 buf += sizeof (Elf64_External_Dyn))
455 {
456 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
457 long dyn_tag;
458 CORE_ADDR dyn_ptr;
459
460 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
461 if (dyn_tag == DT_NULL)
462 break;
463 else if (dyn_tag == DT_DEBUG)
464 {
465 dyn_ptr = bfd_h_get_64 (exec_bfd,
466 (bfd_byte *) x_dynp->d_un.d_ptr);
467 return dyn_ptr;
468 }
743b930b
KB
469 else if (dyn_tag == DT_MIPS_RLD_MAP)
470 {
4066fc10 471 gdb_byte *pbuf;
743b930b
KB
472 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT;
473
474 pbuf = alloca (pbuf_size);
475 /* DT_MIPS_RLD_MAP contains a pointer to the address
476 of the dynamic link structure. */
477 dyn_ptr = bfd_h_get_64 (exec_bfd,
478 (bfd_byte *) x_dynp->d_un.d_ptr);
479 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
480 return 0;
481 return extract_unsigned_integer (pbuf, pbuf_size);
482 }
13437d4b
KB
483 }
484 }
485
486 /* DT_DEBUG entry not found. */
487 return 0;
488}
489
13437d4b
KB
490/*
491
492 LOCAL FUNCTION
493
494 locate_base -- locate the base address of dynamic linker structs
495
496 SYNOPSIS
497
498 CORE_ADDR locate_base (void)
499
500 DESCRIPTION
501
502 For both the SunOS and SVR4 shared library implementations, if the
503 inferior executable has been linked dynamically, there is a single
504 address somewhere in the inferior's data space which is the key to
505 locating all of the dynamic linker's runtime structures. This
506 address is the value of the debug base symbol. The job of this
507 function is to find and return that address, or to return 0 if there
508 is no such address (the executable is statically linked for example).
509
510 For SunOS, the job is almost trivial, since the dynamic linker and
511 all of it's structures are statically linked to the executable at
512 link time. Thus the symbol for the address we are looking for has
513 already been added to the minimal symbol table for the executable's
514 objfile at the time the symbol file's symbols were read, and all we
515 have to do is look it up there. Note that we explicitly do NOT want
516 to find the copies in the shared library.
517
518 The SVR4 version is a bit more complicated because the address
519 is contained somewhere in the dynamic info section. We have to go
520 to a lot more work to discover the address of the debug base symbol.
521 Because of this complexity, we cache the value we find and return that
522 value on subsequent invocations. Note there is no copy in the
523 executable symbol tables.
524
525 */
526
527static CORE_ADDR
528locate_base (void)
529{
13437d4b
KB
530 /* Check to see if we have a currently valid address, and if so, avoid
531 doing all this work again and just return the cached address. If
532 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
533 section for ELF executables. There's no point in doing any of this
534 though if we don't have some link map offsets to work with. */
13437d4b 535
d5a921c9 536 if (debug_base == 0 && svr4_have_link_map_offsets ())
13437d4b
KB
537 {
538 if (exec_bfd != NULL
539 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
540 debug_base = elf_locate_base ();
13437d4b
KB
541 }
542 return (debug_base);
13437d4b
KB
543}
544
e4cd0d6a
MK
545/* Find the first element in the inferior's dynamic link map, and
546 return its address in the inferior.
13437d4b 547
e4cd0d6a
MK
548 FIXME: Perhaps we should validate the info somehow, perhaps by
549 checking r_version for a known version number, or r_state for
550 RT_CONSISTENT. */
13437d4b
KB
551
552static CORE_ADDR
e4cd0d6a 553solib_svr4_r_map (void)
13437d4b 554{
4b188b9f 555 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
13437d4b 556
e4cd0d6a
MK
557 return read_memory_typed_address (debug_base + lmo->r_map_offset,
558 builtin_type_void_data_ptr);
559}
13437d4b 560
e4cd0d6a
MK
561/* Find the link map for the dynamic linker (if it is not in the
562 normal list of loaded shared objects). */
13437d4b 563
e4cd0d6a
MK
564static CORE_ADDR
565solib_svr4_r_ldsomap (void)
566{
567 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
568 ULONGEST version;
13437d4b 569
e4cd0d6a
MK
570 /* Check version, and return zero if `struct r_debug' doesn't have
571 the r_ldsomap member. */
572 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
573 lmo->r_version_size);
574 if (version < 2 || lmo->r_ldsomap_offset == -1)
575 return 0;
13437d4b 576
e4cd0d6a
MK
577 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
578 builtin_type_void_data_ptr);
13437d4b
KB
579}
580
13437d4b
KB
581/*
582
583 LOCAL FUNCTION
584
585 open_symbol_file_object
586
587 SYNOPSIS
588
589 void open_symbol_file_object (void *from_tty)
590
591 DESCRIPTION
592
593 If no open symbol file, attempt to locate and open the main symbol
594 file. On SVR4 systems, this is the first link map entry. If its
595 name is here, we can open it. Useful when attaching to a process
596 without first loading its symbol file.
597
598 If FROM_TTYP dereferences to a non-zero integer, allow messages to
599 be printed. This parameter is a pointer rather than an int because
600 open_symbol_file_object() is called via catch_errors() and
601 catch_errors() requires a pointer argument. */
602
603static int
604open_symbol_file_object (void *from_ttyp)
605{
606 CORE_ADDR lm, l_name;
607 char *filename;
608 int errcode;
609 int from_tty = *(int *)from_ttyp;
4b188b9f 610 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
4066fc10 611 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
b8c9b27d 612 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
13437d4b
KB
613
614 if (symfile_objfile)
615 if (!query ("Attempt to reload symbols from process? "))
616 return 0;
617
618 if ((debug_base = locate_base ()) == 0)
619 return 0; /* failed somehow... */
620
621 /* First link map member should be the executable. */
e4cd0d6a
MK
622 lm = solib_svr4_r_map ();
623 if (lm == 0)
13437d4b
KB
624 return 0; /* failed somehow... */
625
626 /* Read address of name from target memory to GDB. */
627 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
628
ae0167b9
AC
629 /* Convert the address to host format. Assume that the address is
630 unsigned. */
631 l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
13437d4b
KB
632
633 /* Free l_name_buf. */
634 do_cleanups (cleanups);
635
636 if (l_name == 0)
637 return 0; /* No filename. */
638
639 /* Now fetch the filename from target memory. */
640 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
641
642 if (errcode)
643 {
8a3fe4f8 644 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
645 safe_strerror (errcode));
646 return 0;
647 }
648
b8c9b27d 649 make_cleanup (xfree, filename);
13437d4b 650 /* Have a pathname: read the symbol file. */
1adeb98a 651 symbol_file_add_main (filename, from_tty);
13437d4b
KB
652
653 return 1;
654}
13437d4b
KB
655
656/* LOCAL FUNCTION
657
658 current_sos -- build a list of currently loaded shared objects
659
660 SYNOPSIS
661
662 struct so_list *current_sos ()
663
664 DESCRIPTION
665
666 Build a list of `struct so_list' objects describing the shared
667 objects currently loaded in the inferior. This list does not
668 include an entry for the main executable file.
669
670 Note that we only gather information directly available from the
671 inferior --- we don't examine any of the shared library files
672 themselves. The declaration of `struct so_list' says which fields
673 we provide values for. */
674
675static struct so_list *
676svr4_current_sos (void)
677{
678 CORE_ADDR lm;
679 struct so_list *head = 0;
680 struct so_list **link_ptr = &head;
e4cd0d6a 681 CORE_ADDR ldsomap = 0;
13437d4b
KB
682
683 /* Make sure we've looked up the inferior's dynamic linker's base
684 structure. */
685 if (! debug_base)
686 {
687 debug_base = locate_base ();
688
689 /* If we can't find the dynamic linker's base structure, this
690 must not be a dynamically linked executable. Hmm. */
691 if (! debug_base)
692 return 0;
693 }
694
695 /* Walk the inferior's link map list, and build our list of
696 `struct so_list' nodes. */
e4cd0d6a 697 lm = solib_svr4_r_map ();
13437d4b
KB
698 while (lm)
699 {
4b188b9f 700 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 701 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 702 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 703
13437d4b 704 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 705 make_cleanup (xfree, new->lm_info);
13437d4b 706
831004b7 707 new->lm_info->l_addr = (CORE_ADDR)-1;
f4456994 708 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 709 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
710
711 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
712
713 lm = LM_NEXT (new);
714
715 /* For SVR4 versions, the first entry in the link map is for the
716 inferior executable, so we must ignore it. For some versions of
717 SVR4, it has no name. For others (Solaris 2.3 for example), it
718 does have a name, so we can no longer use a missing name to
719 decide when to ignore it. */
e4cd0d6a 720 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
13437d4b
KB
721 free_so (new);
722 else
723 {
724 int errcode;
725 char *buffer;
726
727 /* Extract this shared object's name. */
728 target_read_string (LM_NAME (new), &buffer,
729 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
730 if (errcode != 0)
8a3fe4f8
AC
731 warning (_("Can't read pathname for load map: %s."),
732 safe_strerror (errcode));
13437d4b
KB
733 else
734 {
735 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
736 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
b8c9b27d 737 xfree (buffer);
13437d4b
KB
738 strcpy (new->so_original_name, new->so_name);
739 }
740
741 /* If this entry has no name, or its name matches the name
742 for the main executable, don't include it in the list. */
743 if (! new->so_name[0]
744 || match_main (new->so_name))
745 free_so (new);
746 else
747 {
748 new->next = 0;
749 *link_ptr = new;
750 link_ptr = &new->next;
751 }
752 }
753
e4cd0d6a
MK
754 /* On Solaris, the dynamic linker is not in the normal list of
755 shared objects, so make sure we pick it up too. Having
756 symbol information for the dynamic linker is quite crucial
757 for skipping dynamic linker resolver code. */
758 if (lm == 0 && ldsomap == 0)
759 lm = ldsomap = solib_svr4_r_ldsomap ();
760
13437d4b
KB
761 discard_cleanups (old_chain);
762 }
763
764 return head;
765}
766
bc4a16ae
EZ
767/* Get the address of the link_map for a given OBJFILE. Loop through
768 the link maps, and return the address of the one corresponding to
769 the given objfile. Note that this function takes into account that
770 objfile can be the main executable, not just a shared library. The
771 main executable has always an empty name field in the linkmap. */
772
773CORE_ADDR
774svr4_fetch_objfile_link_map (struct objfile *objfile)
775{
776 CORE_ADDR lm;
777
778 if ((debug_base = locate_base ()) == 0)
779 return 0; /* failed somehow... */
780
781 /* Position ourselves on the first link map. */
e4cd0d6a 782 lm = solib_svr4_r_map ();
bc4a16ae
EZ
783 while (lm)
784 {
785 /* Get info on the layout of the r_debug and link_map structures. */
4b188b9f 786 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
bc4a16ae
EZ
787 int errcode;
788 char *buffer;
789 struct lm_info objfile_lm_info;
790 struct cleanup *old_chain;
791 CORE_ADDR name_address;
4066fc10 792 gdb_byte *l_name_buf = xmalloc (lmo->l_name_size);
bc4a16ae
EZ
793 old_chain = make_cleanup (xfree, l_name_buf);
794
795 /* Set up the buffer to contain the portion of the link_map
796 structure that gdb cares about. Note that this is not the
797 whole link_map structure. */
f4456994 798 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
bc4a16ae 799 make_cleanup (xfree, objfile_lm_info.lm);
bc4a16ae
EZ
800
801 /* Read the link map into our internal structure. */
802 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
803
804 /* Read address of name from target memory to GDB. */
805 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size);
806
ae0167b9
AC
807 /* Extract this object's name. Assume that the address is
808 unsigned. */
809 name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size);
bc4a16ae
EZ
810 target_read_string (name_address, &buffer,
811 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
812 make_cleanup (xfree, buffer);
813 if (errcode != 0)
8a3fe4f8
AC
814 warning (_("Can't read pathname for load map: %s."),
815 safe_strerror (errcode));
bc4a16ae
EZ
816 else
817 {
818 /* Is this the linkmap for the file we want? */
819 /* If the file is not a shared library and has no name,
820 we are sure it is the main executable, so we return that. */
821 if ((buffer && strcmp (buffer, objfile->name) == 0)
822 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
823 {
824 do_cleanups (old_chain);
825 return lm;
826 }
827 }
ae0167b9
AC
828 /* Not the file we wanted, continue checking. Assume that the
829 address is unsigned. */
830 lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset,
831 lmo->l_next_size);
bc4a16ae
EZ
832 do_cleanups (old_chain);
833 }
834 return 0;
835}
13437d4b
KB
836
837/* On some systems, the only way to recognize the link map entry for
838 the main executable file is by looking at its name. Return
839 non-zero iff SONAME matches one of the known main executable names. */
840
841static int
842match_main (char *soname)
843{
844 char **mainp;
845
846 for (mainp = main_name_list; *mainp != NULL; mainp++)
847 {
848 if (strcmp (soname, *mainp) == 0)
849 return (1);
850 }
851
852 return (0);
853}
854
13437d4b
KB
855/* Return 1 if PC lies in the dynamic symbol resolution code of the
856 SVR4 run time loader. */
13437d4b
KB
857static CORE_ADDR interp_text_sect_low;
858static CORE_ADDR interp_text_sect_high;
859static CORE_ADDR interp_plt_sect_low;
860static CORE_ADDR interp_plt_sect_high;
861
d7fa2ae2
KB
862static int
863svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b
KB
864{
865 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
866 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
867 || in_plt_section (pc, NULL));
868}
13437d4b 869
2f4950cd
AC
870/* Given an executable's ABFD and target, compute the entry-point
871 address. */
872
873static CORE_ADDR
874exec_entry_point (struct bfd *abfd, struct target_ops *targ)
875{
876 /* KevinB wrote ... for most targets, the address returned by
877 bfd_get_start_address() is the entry point for the start
878 function. But, for some targets, bfd_get_start_address() returns
879 the address of a function descriptor from which the entry point
880 address may be extracted. This address is extracted by
881 gdbarch_convert_from_func_ptr_addr(). The method
882 gdbarch_convert_from_func_ptr_addr() is the merely the identify
883 function for targets which don't use function descriptors. */
884 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
885 bfd_get_start_address (abfd),
886 targ);
887}
13437d4b
KB
888
889/*
890
891 LOCAL FUNCTION
892
893 enable_break -- arrange for dynamic linker to hit breakpoint
894
895 SYNOPSIS
896
897 int enable_break (void)
898
899 DESCRIPTION
900
901 Both the SunOS and the SVR4 dynamic linkers have, as part of their
902 debugger interface, support for arranging for the inferior to hit
903 a breakpoint after mapping in the shared libraries. This function
904 enables that breakpoint.
905
906 For SunOS, there is a special flag location (in_debugger) which we
907 set to 1. When the dynamic linker sees this flag set, it will set
908 a breakpoint at a location known only to itself, after saving the
909 original contents of that place and the breakpoint address itself,
910 in it's own internal structures. When we resume the inferior, it
911 will eventually take a SIGTRAP when it runs into the breakpoint.
912 We handle this (in a different place) by restoring the contents of
913 the breakpointed location (which is only known after it stops),
914 chasing around to locate the shared libraries that have been
915 loaded, then resuming.
916
917 For SVR4, the debugger interface structure contains a member (r_brk)
918 which is statically initialized at the time the shared library is
919 built, to the offset of a function (_r_debug_state) which is guaran-
920 teed to be called once before mapping in a library, and again when
921 the mapping is complete. At the time we are examining this member,
922 it contains only the unrelocated offset of the function, so we have
923 to do our own relocation. Later, when the dynamic linker actually
924 runs, it relocates r_brk to be the actual address of _r_debug_state().
925
926 The debugger interface structure also contains an enumeration which
927 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
928 depending upon whether or not the library is being mapped or unmapped,
929 and then set to RT_CONSISTENT after the library is mapped/unmapped.
930 */
931
932static int
933enable_break (void)
934{
935 int success = 0;
936
13437d4b
KB
937#ifdef BKPT_AT_SYMBOL
938
939 struct minimal_symbol *msymbol;
940 char **bkpt_namep;
941 asection *interp_sect;
942
943 /* First, remove all the solib event breakpoints. Their addresses
944 may have changed since the last time we ran the program. */
945 remove_solib_event_breakpoints ();
946
13437d4b
KB
947 interp_text_sect_low = interp_text_sect_high = 0;
948 interp_plt_sect_low = interp_plt_sect_high = 0;
949
950 /* Find the .interp section; if not found, warn the user and drop
951 into the old breakpoint at symbol code. */
952 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
953 if (interp_sect)
954 {
955 unsigned int interp_sect_size;
956 char *buf;
8ad2fcde
KB
957 CORE_ADDR load_addr = 0;
958 int load_addr_found = 0;
f8766ec1 959 struct so_list *so;
e4f7b8c8 960 bfd *tmp_bfd = NULL;
2f4950cd 961 struct target_ops *tmp_bfd_target;
e4f7b8c8
MS
962 int tmp_fd = -1;
963 char *tmp_pathname = NULL;
13437d4b
KB
964 CORE_ADDR sym_addr = 0;
965
966 /* Read the contents of the .interp section into a local buffer;
967 the contents specify the dynamic linker this program uses. */
968 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
969 buf = alloca (interp_sect_size);
970 bfd_get_section_contents (exec_bfd, interp_sect,
971 buf, 0, interp_sect_size);
972
973 /* Now we need to figure out where the dynamic linker was
974 loaded so that we can load its symbols and place a breakpoint
975 in the dynamic linker itself.
976
977 This address is stored on the stack. However, I've been unable
978 to find any magic formula to find it for Solaris (appears to
979 be trivial on GNU/Linux). Therefore, we have to try an alternate
980 mechanism to find the dynamic linker's base address. */
e4f7b8c8
MS
981
982 tmp_fd = solib_open (buf, &tmp_pathname);
983 if (tmp_fd >= 0)
9f76c2cd 984 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
e4f7b8c8 985
13437d4b
KB
986 if (tmp_bfd == NULL)
987 goto bkpt_at_symbol;
988
989 /* Make sure the dynamic linker's really a useful object. */
990 if (!bfd_check_format (tmp_bfd, bfd_object))
991 {
8a3fe4f8 992 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
13437d4b
KB
993 bfd_close (tmp_bfd);
994 goto bkpt_at_symbol;
995 }
996
2f4950cd
AC
997 /* Now convert the TMP_BFD into a target. That way target, as
998 well as BFD operations can be used. Note that closing the
999 target will also close the underlying bfd. */
1000 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1001
f8766ec1
KB
1002 /* On a running target, we can get the dynamic linker's base
1003 address from the shared library table. */
1004 solib_add (NULL, 0, NULL, auto_solib_add);
1005 so = master_so_list ();
1006 while (so)
8ad2fcde 1007 {
f8766ec1 1008 if (strcmp (buf, so->so_original_name) == 0)
8ad2fcde
KB
1009 {
1010 load_addr_found = 1;
cc10cae3 1011 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1012 break;
1013 }
f8766ec1 1014 so = so->next;
8ad2fcde
KB
1015 }
1016
1017 /* Otherwise we find the dynamic linker's base address by examining
1018 the current pc (which should point at the entry point for the
1019 dynamic linker) and subtracting the offset of the entry point. */
1020 if (!load_addr_found)
2f4950cd
AC
1021 load_addr = (read_pc ()
1022 - exec_entry_point (tmp_bfd, tmp_bfd_target));
13437d4b
KB
1023
1024 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1025 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1026 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1027 if (interp_sect)
1028 {
1029 interp_text_sect_low =
1030 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1031 interp_text_sect_high =
1032 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1033 }
1034 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1035 if (interp_sect)
1036 {
1037 interp_plt_sect_low =
1038 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1039 interp_plt_sect_high =
1040 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1041 }
1042
1043 /* Now try to set a breakpoint in the dynamic linker. */
1044 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1045 {
87f84c9d
JB
1046 /* On ABI's that use function descriptors, there are usually
1047 two linker symbols associated with each C function: one
1048 pointing at the actual entry point of the machine code,
1049 and one pointing at the function's descriptor. The
1050 latter symbol has the same name as the C function.
1051
1052 What we're looking for here is the machine code entry
1053 point, so we are only interested in symbols in code
1054 sections. */
1055 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
13437d4b
KB
1056 if (sym_addr != 0)
1057 break;
1058 }
1059
2f4950cd
AC
1060 /* We're done with both the temporary bfd and target. Remember,
1061 closing the target closes the underlying bfd. */
1062 target_close (tmp_bfd_target, 0);
13437d4b
KB
1063
1064 if (sym_addr != 0)
1065 {
1066 create_solib_event_breakpoint (load_addr + sym_addr);
1067 return 1;
1068 }
1069
1070 /* For whatever reason we couldn't set a breakpoint in the dynamic
1071 linker. Warn and drop into the old code. */
1072 bkpt_at_symbol:
82d03102
PG
1073 warning (_("Unable to find dynamic linker breakpoint function.\n"
1074 "GDB will be unable to debug shared library initializers\n"
1075 "and track explicitly loaded dynamic code."));
13437d4b 1076 }
13437d4b
KB
1077
1078 /* Scan through the list of symbols, trying to look up the symbol and
1079 set a breakpoint there. Terminate loop when we/if we succeed. */
1080
1081 breakpoint_addr = 0;
1082 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1083 {
1084 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1085 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1086 {
1087 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1088 return 1;
1089 }
1090 }
1091
1092 /* Nothing good happened. */
1093 success = 0;
1094
1095#endif /* BKPT_AT_SYMBOL */
1096
13437d4b
KB
1097 return (success);
1098}
1099
1100/*
1101
1102 LOCAL FUNCTION
1103
1104 special_symbol_handling -- additional shared library symbol handling
1105
1106 SYNOPSIS
1107
1108 void special_symbol_handling ()
1109
1110 DESCRIPTION
1111
1112 Once the symbols from a shared object have been loaded in the usual
1113 way, we are called to do any system specific symbol handling that
1114 is needed.
1115
ab31aa69 1116 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1117 linkers structures to find symbol definitions for "common" symbols
1118 and adding them to the minimal symbol table for the runtime common
1119 objfile.
1120
ab31aa69
KB
1121 However, for SVR4, there's nothing to do.
1122
13437d4b
KB
1123 */
1124
1125static void
1126svr4_special_symbol_handling (void)
1127{
13437d4b
KB
1128}
1129
e2a44558
KB
1130/* Relocate the main executable. This function should be called upon
1131 stopping the inferior process at the entry point to the program.
1132 The entry point from BFD is compared to the PC and if they are
1133 different, the main executable is relocated by the proper amount.
1134
1135 As written it will only attempt to relocate executables which
1136 lack interpreter sections. It seems likely that only dynamic
1137 linker executables will get relocated, though it should work
1138 properly for a position-independent static executable as well. */
1139
1140static void
1141svr4_relocate_main_executable (void)
1142{
1143 asection *interp_sect;
1144 CORE_ADDR pc = read_pc ();
1145
1146 /* Decide if the objfile needs to be relocated. As indicated above,
1147 we will only be here when execution is stopped at the beginning
1148 of the program. Relocation is necessary if the address at which
1149 we are presently stopped differs from the start address stored in
1150 the executable AND there's no interpreter section. The condition
1151 regarding the interpreter section is very important because if
1152 there *is* an interpreter section, execution will begin there
1153 instead. When there is an interpreter section, the start address
1154 is (presumably) used by the interpreter at some point to start
1155 execution of the program.
1156
1157 If there is an interpreter, it is normal for it to be set to an
1158 arbitrary address at the outset. The job of finding it is
1159 handled in enable_break().
1160
1161 So, to summarize, relocations are necessary when there is no
1162 interpreter section and the start address obtained from the
1163 executable is different from the address at which GDB is
1164 currently stopped.
1165
1166 [ The astute reader will note that we also test to make sure that
1167 the executable in question has the DYNAMIC flag set. It is my
1168 opinion that this test is unnecessary (undesirable even). It
1169 was added to avoid inadvertent relocation of an executable
1170 whose e_type member in the ELF header is not ET_DYN. There may
1171 be a time in the future when it is desirable to do relocations
1172 on other types of files as well in which case this condition
1173 should either be removed or modified to accomodate the new file
1174 type. (E.g, an ET_EXEC executable which has been built to be
1175 position-independent could safely be relocated by the OS if
1176 desired. It is true that this violates the ABI, but the ABI
1177 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1178 */
1179
1180 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1181 if (interp_sect == NULL
1182 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1183 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1184 {
1185 struct cleanup *old_chain;
1186 struct section_offsets *new_offsets;
1187 int i, changed;
1188 CORE_ADDR displacement;
1189
1190 /* It is necessary to relocate the objfile. The amount to
1191 relocate by is simply the address at which we are stopped
1192 minus the starting address from the executable.
1193
1194 We relocate all of the sections by the same amount. This
1195 behavior is mandated by recent editions of the System V ABI.
1196 According to the System V Application Binary Interface,
1197 Edition 4.1, page 5-5:
1198
1199 ... Though the system chooses virtual addresses for
1200 individual processes, it maintains the segments' relative
1201 positions. Because position-independent code uses relative
1202 addressesing between segments, the difference between
1203 virtual addresses in memory must match the difference
1204 between virtual addresses in the file. The difference
1205 between the virtual address of any segment in memory and
1206 the corresponding virtual address in the file is thus a
1207 single constant value for any one executable or shared
1208 object in a given process. This difference is the base
1209 address. One use of the base address is to relocate the
1210 memory image of the program during dynamic linking.
1211
1212 The same language also appears in Edition 4.0 of the System V
1213 ABI and is left unspecified in some of the earlier editions. */
1214
2f4950cd 1215 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1216 changed = 0;
1217
13fc0c2f
KB
1218 new_offsets = xcalloc (symfile_objfile->num_sections,
1219 sizeof (struct section_offsets));
b8c9b27d 1220 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1221
1222 for (i = 0; i < symfile_objfile->num_sections; i++)
1223 {
1224 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1225 changed = 1;
1226 new_offsets->offsets[i] = displacement;
1227 }
1228
1229 if (changed)
1230 objfile_relocate (symfile_objfile, new_offsets);
1231
1232 do_cleanups (old_chain);
1233 }
1234}
1235
13437d4b
KB
1236/*
1237
1238 GLOBAL FUNCTION
1239
1240 svr4_solib_create_inferior_hook -- shared library startup support
1241
1242 SYNOPSIS
1243
7095b863 1244 void svr4_solib_create_inferior_hook ()
13437d4b
KB
1245
1246 DESCRIPTION
1247
1248 When gdb starts up the inferior, it nurses it along (through the
1249 shell) until it is ready to execute it's first instruction. At this
1250 point, this function gets called via expansion of the macro
1251 SOLIB_CREATE_INFERIOR_HOOK.
1252
1253 For SunOS executables, this first instruction is typically the
1254 one at "_start", or a similar text label, regardless of whether
1255 the executable is statically or dynamically linked. The runtime
1256 startup code takes care of dynamically linking in any shared
1257 libraries, once gdb allows the inferior to continue.
1258
1259 For SVR4 executables, this first instruction is either the first
1260 instruction in the dynamic linker (for dynamically linked
1261 executables) or the instruction at "start" for statically linked
1262 executables. For dynamically linked executables, the system
1263 first exec's /lib/libc.so.N, which contains the dynamic linker,
1264 and starts it running. The dynamic linker maps in any needed
1265 shared libraries, maps in the actual user executable, and then
1266 jumps to "start" in the user executable.
1267
1268 For both SunOS shared libraries, and SVR4 shared libraries, we
1269 can arrange to cooperate with the dynamic linker to discover the
1270 names of shared libraries that are dynamically linked, and the
1271 base addresses to which they are linked.
1272
1273 This function is responsible for discovering those names and
1274 addresses, and saving sufficient information about them to allow
1275 their symbols to be read at a later time.
1276
1277 FIXME
1278
1279 Between enable_break() and disable_break(), this code does not
1280 properly handle hitting breakpoints which the user might have
1281 set in the startup code or in the dynamic linker itself. Proper
1282 handling will probably have to wait until the implementation is
1283 changed to use the "breakpoint handler function" method.
1284
1285 Also, what if child has exit()ed? Must exit loop somehow.
1286 */
1287
e2a44558 1288static void
13437d4b
KB
1289svr4_solib_create_inferior_hook (void)
1290{
e2a44558
KB
1291 /* Relocate the main executable if necessary. */
1292 svr4_relocate_main_executable ();
1293
d5a921c9
KB
1294 if (!svr4_have_link_map_offsets ())
1295 {
8a3fe4f8 1296 warning (_("no shared library support for this OS / ABI"));
d5a921c9
KB
1297 return;
1298
1299 }
1300
13437d4b
KB
1301 if (!enable_break ())
1302 {
8a3fe4f8 1303 warning (_("shared library handler failed to enable breakpoint"));
13437d4b
KB
1304 return;
1305 }
1306
ab31aa69
KB
1307#if defined(_SCO_DS)
1308 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1309 special shared library breakpoints and the shared library breakpoint
1310 service routine.
1311
1312 Now run the target. It will eventually hit the breakpoint, at
1313 which point all of the libraries will have been mapped in and we
1314 can go groveling around in the dynamic linker structures to find
1315 out what we need to know about them. */
1316
1317 clear_proceed_status ();
c0236d92 1318 stop_soon = STOP_QUIETLY;
13437d4b
KB
1319 stop_signal = TARGET_SIGNAL_0;
1320 do
1321 {
39f77062 1322 target_resume (pid_to_ptid (-1), 0, stop_signal);
13437d4b
KB
1323 wait_for_inferior ();
1324 }
1325 while (stop_signal != TARGET_SIGNAL_TRAP);
c0236d92 1326 stop_soon = NO_STOP_QUIETLY;
ab31aa69 1327#endif /* defined(_SCO_DS) */
13437d4b
KB
1328}
1329
1330static void
1331svr4_clear_solib (void)
1332{
1333 debug_base = 0;
1334}
1335
1336static void
1337svr4_free_so (struct so_list *so)
1338{
b8c9b27d
KB
1339 xfree (so->lm_info->lm);
1340 xfree (so->lm_info);
13437d4b
KB
1341}
1342
6bb7be43
JB
1343
1344/* Clear any bits of ADDR that wouldn't fit in a target-format
1345 data pointer. "Data pointer" here refers to whatever sort of
1346 address the dynamic linker uses to manage its sections. At the
1347 moment, we don't support shared libraries on any processors where
1348 code and data pointers are different sizes.
1349
1350 This isn't really the right solution. What we really need here is
1351 a way to do arithmetic on CORE_ADDR values that respects the
1352 natural pointer/address correspondence. (For example, on the MIPS,
1353 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1354 sign-extend the value. There, simply truncating the bits above
1355 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1356 be a new gdbarch method or something. */
1357static CORE_ADDR
1358svr4_truncate_ptr (CORE_ADDR addr)
1359{
1360 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1361 /* We don't need to truncate anything, and the bit twiddling below
1362 will fail due to overflow problems. */
1363 return addr;
1364 else
1365 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1366}
1367
1368
749499cb
KB
1369static void
1370svr4_relocate_section_addresses (struct so_list *so,
1371 struct section_table *sec)
1372{
cc10cae3
AO
1373 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1374 sec->bfd));
1375 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1376 sec->bfd));
749499cb 1377}
4b188b9f 1378\f
749499cb 1379
4b188b9f 1380/* Architecture-specific operations. */
6bb7be43 1381
4b188b9f
MK
1382/* Per-architecture data key. */
1383static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1384
4b188b9f 1385struct solib_svr4_ops
e5e2b9ff 1386{
4b188b9f
MK
1387 /* Return a description of the layout of `struct link_map'. */
1388 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1389};
e5e2b9ff 1390
4b188b9f 1391/* Return a default for the architecture-specific operations. */
e5e2b9ff 1392
4b188b9f
MK
1393static void *
1394solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1395{
4b188b9f 1396 struct solib_svr4_ops *ops;
e5e2b9ff 1397
4b188b9f
MK
1398 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1399 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1400 return ops;
e5e2b9ff
KB
1401}
1402
4b188b9f
MK
1403/* Set the architecture-specific `struct link_map_offsets' fetcher for
1404 GDBARCH to FLMO. */
1c4dcb57 1405
21479ded 1406void
e5e2b9ff
KB
1407set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1408 struct link_map_offsets *(*flmo) (void))
21479ded 1409{
4b188b9f
MK
1410 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1411
1412 ops->fetch_link_map_offsets = flmo;
21479ded
KB
1413}
1414
4b188b9f
MK
1415/* Fetch a link_map_offsets structure using the architecture-specific
1416 `struct link_map_offsets' fetcher. */
1c4dcb57 1417
4b188b9f
MK
1418static struct link_map_offsets *
1419svr4_fetch_link_map_offsets (void)
21479ded 1420{
4b188b9f
MK
1421 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1422
1423 gdb_assert (ops->fetch_link_map_offsets);
1424 return ops->fetch_link_map_offsets ();
21479ded
KB
1425}
1426
4b188b9f
MK
1427/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1428
1429static int
1430svr4_have_link_map_offsets (void)
1431{
1432 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1433 return (ops->fetch_link_map_offsets != NULL);
1434}
1435\f
1436
e4bbbda8
MK
1437/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1438 `struct r_debug' and a `struct link_map' that are binary compatible
1439 with the origional SVR4 implementation. */
1440
1441/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1442 for an ILP32 SVR4 system. */
1443
1444struct link_map_offsets *
1445svr4_ilp32_fetch_link_map_offsets (void)
1446{
1447 static struct link_map_offsets lmo;
1448 static struct link_map_offsets *lmp = NULL;
1449
1450 if (lmp == NULL)
1451 {
1452 lmp = &lmo;
1453
e4cd0d6a
MK
1454 lmo.r_version_offset = 0;
1455 lmo.r_version_size = 4;
e4bbbda8 1456 lmo.r_map_offset = 4;
e4cd0d6a 1457 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1458
1459 /* Everything we need is in the first 20 bytes. */
1460 lmo.link_map_size = 20;
1461 lmo.l_addr_offset = 0;
e4cd0d6a 1462 lmo.l_addr_size = 4;
e4bbbda8 1463 lmo.l_name_offset = 4;
e4cd0d6a 1464 lmo.l_name_size = 4;
cc10cae3
AO
1465 lmo.l_ld_offset = 8;
1466 lmo.l_ld_size = 4;
e4bbbda8 1467 lmo.l_next_offset = 12;
e4cd0d6a 1468 lmo.l_next_size = 4;
e4bbbda8 1469 lmo.l_prev_offset = 16;
e4cd0d6a 1470 lmo.l_prev_size = 4;
e4bbbda8
MK
1471 }
1472
1473 return lmp;
1474}
1475
1476/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1477 for an LP64 SVR4 system. */
1478
1479struct link_map_offsets *
1480svr4_lp64_fetch_link_map_offsets (void)
1481{
1482 static struct link_map_offsets lmo;
1483 static struct link_map_offsets *lmp = NULL;
1484
1485 if (lmp == NULL)
1486 {
1487 lmp = &lmo;
1488
e4cd0d6a
MK
1489 lmo.r_version_offset = 0;
1490 lmo.r_version_size = 4;
e4bbbda8 1491 lmo.r_map_offset = 8;
e4cd0d6a 1492 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1493
1494 /* Everything we need is in the first 40 bytes. */
1495 lmo.link_map_size = 40;
1496 lmo.l_addr_offset = 0;
e4cd0d6a 1497 lmo.l_addr_size = 8;
e4bbbda8 1498 lmo.l_name_offset = 8;
e4cd0d6a 1499 lmo.l_name_size = 8;
cc10cae3
AO
1500 lmo.l_ld_offset = 16;
1501 lmo.l_ld_size = 8;
e4bbbda8 1502 lmo.l_next_offset = 24;
e4cd0d6a 1503 lmo.l_next_size = 8;
e4bbbda8 1504 lmo.l_prev_offset = 32;
e4cd0d6a 1505 lmo.l_prev_size = 8;
e4bbbda8
MK
1506 }
1507
1508 return lmp;
1509}
1510\f
1511
13437d4b
KB
1512static struct target_so_ops svr4_so_ops;
1513
a78f21af
AC
1514extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1515
13437d4b
KB
1516void
1517_initialize_svr4_solib (void)
1518{
4b188b9f
MK
1519 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1520
749499cb 1521 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1522 svr4_so_ops.free_so = svr4_free_so;
1523 svr4_so_ops.clear_solib = svr4_clear_solib;
1524 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1525 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1526 svr4_so_ops.current_sos = svr4_current_sos;
1527 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1528 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
13437d4b
KB
1529
1530 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1531 current_target_so_ops = &svr4_so_ops;
1532}
This page took 0.64139 seconds and 4 git commands to generate.