Commit | Line | Data |
---|---|---|
ab31aa69 | 1 | /* Handle SVR4 shared libraries for GDB, the GNU Debugger. |
2f4950cd AC |
2 | |
3 | Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, | |
4b188b9f | 4 | 2000, 2001, 2003, 2004, 2005 |
e4bbbda8 | 5 | Free Software Foundation, Inc. |
13437d4b KB |
6 | |
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program; if not, write to the Free Software | |
21 | Foundation, Inc., 59 Temple Place - Suite 330, | |
22 | Boston, MA 02111-1307, USA. */ | |
23 | ||
13437d4b KB |
24 | #include "defs.h" |
25 | ||
13437d4b | 26 | #include "elf/external.h" |
21479ded | 27 | #include "elf/common.h" |
f7856c8f | 28 | #include "elf/mips.h" |
13437d4b KB |
29 | |
30 | #include "symtab.h" | |
31 | #include "bfd.h" | |
32 | #include "symfile.h" | |
33 | #include "objfiles.h" | |
34 | #include "gdbcore.h" | |
13437d4b | 35 | #include "target.h" |
13437d4b | 36 | #include "inferior.h" |
13437d4b | 37 | |
4b188b9f MK |
38 | #include "gdb_assert.h" |
39 | ||
13437d4b KB |
40 | #include "solist.h" |
41 | #include "solib-svr4.h" | |
42 | ||
2f4950cd AC |
43 | #include "bfd-target.h" |
44 | #include "exec.h" | |
45 | ||
e5e2b9ff | 46 | static struct link_map_offsets *svr4_fetch_link_map_offsets (void); |
d5a921c9 | 47 | static int svr4_have_link_map_offsets (void); |
1c4dcb57 | 48 | |
4b188b9f MK |
49 | /* This hook is set to a function that provides native link map |
50 | offsets if the code in solib-legacy.c is linked in. */ | |
51 | struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void); | |
21479ded | 52 | |
13437d4b KB |
53 | /* Link map info to include in an allocated so_list entry */ |
54 | ||
55 | struct lm_info | |
56 | { | |
57 | /* Pointer to copy of link map from inferior. The type is char * | |
58 | rather than void *, so that we may use byte offsets to find the | |
59 | various fields without the need for a cast. */ | |
60 | char *lm; | |
61 | }; | |
62 | ||
63 | /* On SVR4 systems, a list of symbols in the dynamic linker where | |
64 | GDB can try to place a breakpoint to monitor shared library | |
65 | events. | |
66 | ||
67 | If none of these symbols are found, or other errors occur, then | |
68 | SVR4 systems will fall back to using a symbol as the "startup | |
69 | mapping complete" breakpoint address. */ | |
70 | ||
13437d4b KB |
71 | static char *solib_break_names[] = |
72 | { | |
73 | "r_debug_state", | |
74 | "_r_debug_state", | |
75 | "_dl_debug_state", | |
76 | "rtld_db_dlactivity", | |
1f72e589 | 77 | "_rtld_debug_state", |
4c0122c8 JB |
78 | |
79 | /* On the 64-bit PowerPC, the linker symbol with the same name as | |
80 | the C function points to a function descriptor, not to the entry | |
81 | point. The linker symbol whose name is the C function name | |
82 | prefixed with a '.' points to the function's entry point. So | |
83 | when we look through this table, we ignore symbols that point | |
84 | into the data section (thus skipping the descriptor's symbol), | |
85 | and eventually try this one, giving us the real entry point | |
86 | address. */ | |
87 | "._dl_debug_state", | |
88 | ||
13437d4b KB |
89 | NULL |
90 | }; | |
13437d4b KB |
91 | |
92 | #define BKPT_AT_SYMBOL 1 | |
93 | ||
ab31aa69 | 94 | #if defined (BKPT_AT_SYMBOL) |
13437d4b KB |
95 | static char *bkpt_names[] = |
96 | { | |
97 | #ifdef SOLIB_BKPT_NAME | |
98 | SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */ | |
99 | #endif | |
100 | "_start", | |
ad3dcc5c | 101 | "__start", |
13437d4b KB |
102 | "main", |
103 | NULL | |
104 | }; | |
105 | #endif | |
106 | ||
13437d4b KB |
107 | static char *main_name_list[] = |
108 | { | |
109 | "main_$main", | |
110 | NULL | |
111 | }; | |
112 | ||
ae0167b9 AC |
113 | /* Macro to extract an address from a solib structure. When GDB is |
114 | configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is | |
115 | configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We | |
116 | have to extract only the significant bits of addresses to get the | |
117 | right address when accessing the core file BFD. | |
118 | ||
119 | Assume that the address is unsigned. */ | |
13437d4b KB |
120 | |
121 | #define SOLIB_EXTRACT_ADDRESS(MEMBER) \ | |
ae0167b9 | 122 | extract_unsigned_integer (&(MEMBER), sizeof (MEMBER)) |
13437d4b KB |
123 | |
124 | /* local data declarations */ | |
125 | ||
13437d4b KB |
126 | /* link map access functions */ |
127 | ||
128 | static CORE_ADDR | |
129 | LM_ADDR (struct so_list *so) | |
130 | { | |
4b188b9f | 131 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 132 | |
58bc91c9 MH |
133 | return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset, |
134 | lmo->l_addr_size); | |
13437d4b KB |
135 | } |
136 | ||
137 | static CORE_ADDR | |
138 | LM_NEXT (struct so_list *so) | |
139 | { | |
4b188b9f | 140 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 141 | |
ae0167b9 AC |
142 | /* Assume that the address is unsigned. */ |
143 | return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset, | |
144 | lmo->l_next_size); | |
13437d4b KB |
145 | } |
146 | ||
147 | static CORE_ADDR | |
148 | LM_NAME (struct so_list *so) | |
149 | { | |
4b188b9f | 150 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 151 | |
ae0167b9 AC |
152 | /* Assume that the address is unsigned. */ |
153 | return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset, | |
154 | lmo->l_name_size); | |
13437d4b KB |
155 | } |
156 | ||
13437d4b KB |
157 | static int |
158 | IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so) | |
159 | { | |
4b188b9f | 160 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 161 | |
ae0167b9 AC |
162 | /* Assume that the address is unsigned. */ |
163 | return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset, | |
164 | lmo->l_prev_size) == 0; | |
13437d4b KB |
165 | } |
166 | ||
13437d4b KB |
167 | static CORE_ADDR debug_base; /* Base of dynamic linker structures */ |
168 | static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */ | |
169 | ||
170 | /* Local function prototypes */ | |
171 | ||
172 | static int match_main (char *); | |
173 | ||
87f84c9d | 174 | static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword); |
13437d4b KB |
175 | |
176 | /* | |
177 | ||
178 | LOCAL FUNCTION | |
179 | ||
180 | bfd_lookup_symbol -- lookup the value for a specific symbol | |
181 | ||
182 | SYNOPSIS | |
183 | ||
87f84c9d | 184 | CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags) |
13437d4b KB |
185 | |
186 | DESCRIPTION | |
187 | ||
188 | An expensive way to lookup the value of a single symbol for | |
189 | bfd's that are only temporary anyway. This is used by the | |
190 | shared library support to find the address of the debugger | |
191 | interface structures in the shared library. | |
192 | ||
87f84c9d JB |
193 | If SECT_FLAGS is non-zero, only match symbols in sections whose |
194 | flags include all those in SECT_FLAGS. | |
195 | ||
13437d4b KB |
196 | Note that 0 is specifically allowed as an error return (no |
197 | such symbol). | |
198 | */ | |
199 | ||
200 | static CORE_ADDR | |
87f84c9d | 201 | bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags) |
13437d4b | 202 | { |
435b259c | 203 | long storage_needed; |
13437d4b KB |
204 | asymbol *sym; |
205 | asymbol **symbol_table; | |
206 | unsigned int number_of_symbols; | |
207 | unsigned int i; | |
208 | struct cleanup *back_to; | |
209 | CORE_ADDR symaddr = 0; | |
210 | ||
211 | storage_needed = bfd_get_symtab_upper_bound (abfd); | |
212 | ||
213 | if (storage_needed > 0) | |
214 | { | |
215 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
4efb68b1 | 216 | back_to = make_cleanup (xfree, symbol_table); |
13437d4b KB |
217 | number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); |
218 | ||
219 | for (i = 0; i < number_of_symbols; i++) | |
220 | { | |
221 | sym = *symbol_table++; | |
6314a349 | 222 | if (strcmp (sym->name, symname) == 0 |
87f84c9d | 223 | && (sym->section->flags & sect_flags) == sect_flags) |
13437d4b KB |
224 | { |
225 | /* Bfd symbols are section relative. */ | |
226 | symaddr = sym->value + sym->section->vma; | |
227 | break; | |
228 | } | |
229 | } | |
230 | do_cleanups (back_to); | |
231 | } | |
232 | ||
233 | if (symaddr) | |
234 | return symaddr; | |
235 | ||
236 | /* On FreeBSD, the dynamic linker is stripped by default. So we'll | |
237 | have to check the dynamic string table too. */ | |
238 | ||
239 | storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); | |
240 | ||
241 | if (storage_needed > 0) | |
242 | { | |
243 | symbol_table = (asymbol **) xmalloc (storage_needed); | |
4efb68b1 | 244 | back_to = make_cleanup (xfree, symbol_table); |
13437d4b KB |
245 | number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table); |
246 | ||
247 | for (i = 0; i < number_of_symbols; i++) | |
248 | { | |
249 | sym = *symbol_table++; | |
87f84c9d | 250 | |
6314a349 | 251 | if (strcmp (sym->name, symname) == 0 |
87f84c9d | 252 | && (sym->section->flags & sect_flags) == sect_flags) |
13437d4b KB |
253 | { |
254 | /* Bfd symbols are section relative. */ | |
255 | symaddr = sym->value + sym->section->vma; | |
256 | break; | |
257 | } | |
258 | } | |
259 | do_cleanups (back_to); | |
260 | } | |
261 | ||
262 | return symaddr; | |
263 | } | |
264 | ||
13437d4b KB |
265 | /* |
266 | ||
267 | LOCAL FUNCTION | |
268 | ||
269 | elf_locate_base -- locate the base address of dynamic linker structs | |
270 | for SVR4 elf targets. | |
271 | ||
272 | SYNOPSIS | |
273 | ||
274 | CORE_ADDR elf_locate_base (void) | |
275 | ||
276 | DESCRIPTION | |
277 | ||
278 | For SVR4 elf targets the address of the dynamic linker's runtime | |
279 | structure is contained within the dynamic info section in the | |
280 | executable file. The dynamic section is also mapped into the | |
281 | inferior address space. Because the runtime loader fills in the | |
282 | real address before starting the inferior, we have to read in the | |
283 | dynamic info section from the inferior address space. | |
284 | If there are any errors while trying to find the address, we | |
285 | silently return 0, otherwise the found address is returned. | |
286 | ||
287 | */ | |
288 | ||
289 | static CORE_ADDR | |
290 | elf_locate_base (void) | |
291 | { | |
7be0c536 | 292 | struct bfd_section *dyninfo_sect; |
13437d4b KB |
293 | int dyninfo_sect_size; |
294 | CORE_ADDR dyninfo_addr; | |
295 | char *buf; | |
296 | char *bufend; | |
297 | int arch_size; | |
298 | ||
299 | /* Find the start address of the .dynamic section. */ | |
300 | dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic"); | |
301 | if (dyninfo_sect == NULL) | |
302 | return 0; | |
303 | dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect); | |
304 | ||
305 | /* Read in .dynamic section, silently ignore errors. */ | |
306 | dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect); | |
307 | buf = alloca (dyninfo_sect_size); | |
308 | if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size)) | |
309 | return 0; | |
310 | ||
311 | /* Find the DT_DEBUG entry in the the .dynamic section. | |
312 | For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has | |
313 | no DT_DEBUG entries. */ | |
314 | ||
315 | arch_size = bfd_get_arch_size (exec_bfd); | |
316 | if (arch_size == -1) /* failure */ | |
317 | return 0; | |
318 | ||
319 | if (arch_size == 32) | |
320 | { /* 32-bit elf */ | |
321 | for (bufend = buf + dyninfo_sect_size; | |
322 | buf < bufend; | |
323 | buf += sizeof (Elf32_External_Dyn)) | |
324 | { | |
325 | Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf; | |
326 | long dyn_tag; | |
327 | CORE_ADDR dyn_ptr; | |
328 | ||
329 | dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag); | |
330 | if (dyn_tag == DT_NULL) | |
331 | break; | |
332 | else if (dyn_tag == DT_DEBUG) | |
333 | { | |
334 | dyn_ptr = bfd_h_get_32 (exec_bfd, | |
335 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
336 | return dyn_ptr; | |
337 | } | |
13437d4b KB |
338 | else if (dyn_tag == DT_MIPS_RLD_MAP) |
339 | { | |
340 | char *pbuf; | |
743b930b | 341 | int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT; |
13437d4b | 342 | |
743b930b | 343 | pbuf = alloca (pbuf_size); |
13437d4b KB |
344 | /* DT_MIPS_RLD_MAP contains a pointer to the address |
345 | of the dynamic link structure. */ | |
346 | dyn_ptr = bfd_h_get_32 (exec_bfd, | |
347 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
743b930b | 348 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) |
13437d4b | 349 | return 0; |
743b930b | 350 | return extract_unsigned_integer (pbuf, pbuf_size); |
13437d4b | 351 | } |
13437d4b KB |
352 | } |
353 | } | |
354 | else /* 64-bit elf */ | |
355 | { | |
356 | for (bufend = buf + dyninfo_sect_size; | |
357 | buf < bufend; | |
358 | buf += sizeof (Elf64_External_Dyn)) | |
359 | { | |
360 | Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf; | |
361 | long dyn_tag; | |
362 | CORE_ADDR dyn_ptr; | |
363 | ||
364 | dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag); | |
365 | if (dyn_tag == DT_NULL) | |
366 | break; | |
367 | else if (dyn_tag == DT_DEBUG) | |
368 | { | |
369 | dyn_ptr = bfd_h_get_64 (exec_bfd, | |
370 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
371 | return dyn_ptr; | |
372 | } | |
743b930b KB |
373 | else if (dyn_tag == DT_MIPS_RLD_MAP) |
374 | { | |
375 | char *pbuf; | |
376 | int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT; | |
377 | ||
378 | pbuf = alloca (pbuf_size); | |
379 | /* DT_MIPS_RLD_MAP contains a pointer to the address | |
380 | of the dynamic link structure. */ | |
381 | dyn_ptr = bfd_h_get_64 (exec_bfd, | |
382 | (bfd_byte *) x_dynp->d_un.d_ptr); | |
383 | if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) | |
384 | return 0; | |
385 | return extract_unsigned_integer (pbuf, pbuf_size); | |
386 | } | |
13437d4b KB |
387 | } |
388 | } | |
389 | ||
390 | /* DT_DEBUG entry not found. */ | |
391 | return 0; | |
392 | } | |
393 | ||
13437d4b KB |
394 | /* |
395 | ||
396 | LOCAL FUNCTION | |
397 | ||
398 | locate_base -- locate the base address of dynamic linker structs | |
399 | ||
400 | SYNOPSIS | |
401 | ||
402 | CORE_ADDR locate_base (void) | |
403 | ||
404 | DESCRIPTION | |
405 | ||
406 | For both the SunOS and SVR4 shared library implementations, if the | |
407 | inferior executable has been linked dynamically, there is a single | |
408 | address somewhere in the inferior's data space which is the key to | |
409 | locating all of the dynamic linker's runtime structures. This | |
410 | address is the value of the debug base symbol. The job of this | |
411 | function is to find and return that address, or to return 0 if there | |
412 | is no such address (the executable is statically linked for example). | |
413 | ||
414 | For SunOS, the job is almost trivial, since the dynamic linker and | |
415 | all of it's structures are statically linked to the executable at | |
416 | link time. Thus the symbol for the address we are looking for has | |
417 | already been added to the minimal symbol table for the executable's | |
418 | objfile at the time the symbol file's symbols were read, and all we | |
419 | have to do is look it up there. Note that we explicitly do NOT want | |
420 | to find the copies in the shared library. | |
421 | ||
422 | The SVR4 version is a bit more complicated because the address | |
423 | is contained somewhere in the dynamic info section. We have to go | |
424 | to a lot more work to discover the address of the debug base symbol. | |
425 | Because of this complexity, we cache the value we find and return that | |
426 | value on subsequent invocations. Note there is no copy in the | |
427 | executable symbol tables. | |
428 | ||
429 | */ | |
430 | ||
431 | static CORE_ADDR | |
432 | locate_base (void) | |
433 | { | |
13437d4b KB |
434 | /* Check to see if we have a currently valid address, and if so, avoid |
435 | doing all this work again and just return the cached address. If | |
436 | we have no cached address, try to locate it in the dynamic info | |
d5a921c9 KB |
437 | section for ELF executables. There's no point in doing any of this |
438 | though if we don't have some link map offsets to work with. */ | |
13437d4b | 439 | |
d5a921c9 | 440 | if (debug_base == 0 && svr4_have_link_map_offsets ()) |
13437d4b KB |
441 | { |
442 | if (exec_bfd != NULL | |
443 | && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) | |
444 | debug_base = elf_locate_base (); | |
13437d4b KB |
445 | } |
446 | return (debug_base); | |
13437d4b KB |
447 | } |
448 | ||
449 | /* | |
450 | ||
451 | LOCAL FUNCTION | |
452 | ||
453 | first_link_map_member -- locate first member in dynamic linker's map | |
454 | ||
455 | SYNOPSIS | |
456 | ||
457 | static CORE_ADDR first_link_map_member (void) | |
458 | ||
459 | DESCRIPTION | |
460 | ||
461 | Find the first element in the inferior's dynamic link map, and | |
462 | return its address in the inferior. This function doesn't copy the | |
463 | link map entry itself into our address space; current_sos actually | |
464 | does the reading. */ | |
465 | ||
466 | static CORE_ADDR | |
467 | first_link_map_member (void) | |
468 | { | |
469 | CORE_ADDR lm = 0; | |
4b188b9f | 470 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 471 | char *r_map_buf = xmalloc (lmo->r_map_size); |
b8c9b27d | 472 | struct cleanup *cleanups = make_cleanup (xfree, r_map_buf); |
13437d4b KB |
473 | |
474 | read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size); | |
475 | ||
ae0167b9 AC |
476 | /* Assume that the address is unsigned. */ |
477 | lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size); | |
13437d4b KB |
478 | |
479 | /* FIXME: Perhaps we should validate the info somehow, perhaps by | |
480 | checking r_version for a known version number, or r_state for | |
481 | RT_CONSISTENT. */ | |
482 | ||
483 | do_cleanups (cleanups); | |
484 | ||
13437d4b KB |
485 | return (lm); |
486 | } | |
487 | ||
13437d4b KB |
488 | /* |
489 | ||
490 | LOCAL FUNCTION | |
491 | ||
492 | open_symbol_file_object | |
493 | ||
494 | SYNOPSIS | |
495 | ||
496 | void open_symbol_file_object (void *from_tty) | |
497 | ||
498 | DESCRIPTION | |
499 | ||
500 | If no open symbol file, attempt to locate and open the main symbol | |
501 | file. On SVR4 systems, this is the first link map entry. If its | |
502 | name is here, we can open it. Useful when attaching to a process | |
503 | without first loading its symbol file. | |
504 | ||
505 | If FROM_TTYP dereferences to a non-zero integer, allow messages to | |
506 | be printed. This parameter is a pointer rather than an int because | |
507 | open_symbol_file_object() is called via catch_errors() and | |
508 | catch_errors() requires a pointer argument. */ | |
509 | ||
510 | static int | |
511 | open_symbol_file_object (void *from_ttyp) | |
512 | { | |
513 | CORE_ADDR lm, l_name; | |
514 | char *filename; | |
515 | int errcode; | |
516 | int from_tty = *(int *)from_ttyp; | |
4b188b9f | 517 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b | 518 | char *l_name_buf = xmalloc (lmo->l_name_size); |
b8c9b27d | 519 | struct cleanup *cleanups = make_cleanup (xfree, l_name_buf); |
13437d4b KB |
520 | |
521 | if (symfile_objfile) | |
522 | if (!query ("Attempt to reload symbols from process? ")) | |
523 | return 0; | |
524 | ||
525 | if ((debug_base = locate_base ()) == 0) | |
526 | return 0; /* failed somehow... */ | |
527 | ||
528 | /* First link map member should be the executable. */ | |
529 | if ((lm = first_link_map_member ()) == 0) | |
530 | return 0; /* failed somehow... */ | |
531 | ||
532 | /* Read address of name from target memory to GDB. */ | |
533 | read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size); | |
534 | ||
ae0167b9 AC |
535 | /* Convert the address to host format. Assume that the address is |
536 | unsigned. */ | |
537 | l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size); | |
13437d4b KB |
538 | |
539 | /* Free l_name_buf. */ | |
540 | do_cleanups (cleanups); | |
541 | ||
542 | if (l_name == 0) | |
543 | return 0; /* No filename. */ | |
544 | ||
545 | /* Now fetch the filename from target memory. */ | |
546 | target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
547 | ||
548 | if (errcode) | |
549 | { | |
8a3fe4f8 | 550 | warning (_("failed to read exec filename from attached file: %s"), |
13437d4b KB |
551 | safe_strerror (errcode)); |
552 | return 0; | |
553 | } | |
554 | ||
b8c9b27d | 555 | make_cleanup (xfree, filename); |
13437d4b | 556 | /* Have a pathname: read the symbol file. */ |
1adeb98a | 557 | symbol_file_add_main (filename, from_tty); |
13437d4b KB |
558 | |
559 | return 1; | |
560 | } | |
13437d4b KB |
561 | |
562 | /* LOCAL FUNCTION | |
563 | ||
564 | current_sos -- build a list of currently loaded shared objects | |
565 | ||
566 | SYNOPSIS | |
567 | ||
568 | struct so_list *current_sos () | |
569 | ||
570 | DESCRIPTION | |
571 | ||
572 | Build a list of `struct so_list' objects describing the shared | |
573 | objects currently loaded in the inferior. This list does not | |
574 | include an entry for the main executable file. | |
575 | ||
576 | Note that we only gather information directly available from the | |
577 | inferior --- we don't examine any of the shared library files | |
578 | themselves. The declaration of `struct so_list' says which fields | |
579 | we provide values for. */ | |
580 | ||
581 | static struct so_list * | |
582 | svr4_current_sos (void) | |
583 | { | |
584 | CORE_ADDR lm; | |
585 | struct so_list *head = 0; | |
586 | struct so_list **link_ptr = &head; | |
587 | ||
588 | /* Make sure we've looked up the inferior's dynamic linker's base | |
589 | structure. */ | |
590 | if (! debug_base) | |
591 | { | |
592 | debug_base = locate_base (); | |
593 | ||
594 | /* If we can't find the dynamic linker's base structure, this | |
595 | must not be a dynamically linked executable. Hmm. */ | |
596 | if (! debug_base) | |
597 | return 0; | |
598 | } | |
599 | ||
600 | /* Walk the inferior's link map list, and build our list of | |
601 | `struct so_list' nodes. */ | |
602 | lm = first_link_map_member (); | |
603 | while (lm) | |
604 | { | |
4b188b9f | 605 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
13437d4b KB |
606 | struct so_list *new |
607 | = (struct so_list *) xmalloc (sizeof (struct so_list)); | |
b8c9b27d | 608 | struct cleanup *old_chain = make_cleanup (xfree, new); |
13437d4b KB |
609 | |
610 | memset (new, 0, sizeof (*new)); | |
611 | ||
612 | new->lm_info = xmalloc (sizeof (struct lm_info)); | |
b8c9b27d | 613 | make_cleanup (xfree, new->lm_info); |
13437d4b KB |
614 | |
615 | new->lm_info->lm = xmalloc (lmo->link_map_size); | |
b8c9b27d | 616 | make_cleanup (xfree, new->lm_info->lm); |
13437d4b KB |
617 | memset (new->lm_info->lm, 0, lmo->link_map_size); |
618 | ||
619 | read_memory (lm, new->lm_info->lm, lmo->link_map_size); | |
620 | ||
621 | lm = LM_NEXT (new); | |
622 | ||
623 | /* For SVR4 versions, the first entry in the link map is for the | |
624 | inferior executable, so we must ignore it. For some versions of | |
625 | SVR4, it has no name. For others (Solaris 2.3 for example), it | |
626 | does have a name, so we can no longer use a missing name to | |
627 | decide when to ignore it. */ | |
628 | if (IGNORE_FIRST_LINK_MAP_ENTRY (new)) | |
629 | free_so (new); | |
630 | else | |
631 | { | |
632 | int errcode; | |
633 | char *buffer; | |
634 | ||
635 | /* Extract this shared object's name. */ | |
636 | target_read_string (LM_NAME (new), &buffer, | |
637 | SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
638 | if (errcode != 0) | |
8a3fe4f8 AC |
639 | warning (_("Can't read pathname for load map: %s."), |
640 | safe_strerror (errcode)); | |
13437d4b KB |
641 | else |
642 | { | |
643 | strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); | |
644 | new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; | |
b8c9b27d | 645 | xfree (buffer); |
13437d4b KB |
646 | strcpy (new->so_original_name, new->so_name); |
647 | } | |
648 | ||
649 | /* If this entry has no name, or its name matches the name | |
650 | for the main executable, don't include it in the list. */ | |
651 | if (! new->so_name[0] | |
652 | || match_main (new->so_name)) | |
653 | free_so (new); | |
654 | else | |
655 | { | |
656 | new->next = 0; | |
657 | *link_ptr = new; | |
658 | link_ptr = &new->next; | |
659 | } | |
660 | } | |
661 | ||
662 | discard_cleanups (old_chain); | |
663 | } | |
664 | ||
665 | return head; | |
666 | } | |
667 | ||
bc4a16ae EZ |
668 | /* Get the address of the link_map for a given OBJFILE. Loop through |
669 | the link maps, and return the address of the one corresponding to | |
670 | the given objfile. Note that this function takes into account that | |
671 | objfile can be the main executable, not just a shared library. The | |
672 | main executable has always an empty name field in the linkmap. */ | |
673 | ||
674 | CORE_ADDR | |
675 | svr4_fetch_objfile_link_map (struct objfile *objfile) | |
676 | { | |
677 | CORE_ADDR lm; | |
678 | ||
679 | if ((debug_base = locate_base ()) == 0) | |
680 | return 0; /* failed somehow... */ | |
681 | ||
682 | /* Position ourselves on the first link map. */ | |
683 | lm = first_link_map_member (); | |
684 | while (lm) | |
685 | { | |
686 | /* Get info on the layout of the r_debug and link_map structures. */ | |
4b188b9f | 687 | struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); |
bc4a16ae EZ |
688 | int errcode; |
689 | char *buffer; | |
690 | struct lm_info objfile_lm_info; | |
691 | struct cleanup *old_chain; | |
692 | CORE_ADDR name_address; | |
693 | char *l_name_buf = xmalloc (lmo->l_name_size); | |
694 | old_chain = make_cleanup (xfree, l_name_buf); | |
695 | ||
696 | /* Set up the buffer to contain the portion of the link_map | |
697 | structure that gdb cares about. Note that this is not the | |
698 | whole link_map structure. */ | |
699 | objfile_lm_info.lm = xmalloc (lmo->link_map_size); | |
700 | make_cleanup (xfree, objfile_lm_info.lm); | |
701 | memset (objfile_lm_info.lm, 0, lmo->link_map_size); | |
702 | ||
703 | /* Read the link map into our internal structure. */ | |
704 | read_memory (lm, objfile_lm_info.lm, lmo->link_map_size); | |
705 | ||
706 | /* Read address of name from target memory to GDB. */ | |
707 | read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size); | |
708 | ||
ae0167b9 AC |
709 | /* Extract this object's name. Assume that the address is |
710 | unsigned. */ | |
711 | name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size); | |
bc4a16ae EZ |
712 | target_read_string (name_address, &buffer, |
713 | SO_NAME_MAX_PATH_SIZE - 1, &errcode); | |
714 | make_cleanup (xfree, buffer); | |
715 | if (errcode != 0) | |
8a3fe4f8 AC |
716 | warning (_("Can't read pathname for load map: %s."), |
717 | safe_strerror (errcode)); | |
bc4a16ae EZ |
718 | else |
719 | { | |
720 | /* Is this the linkmap for the file we want? */ | |
721 | /* If the file is not a shared library and has no name, | |
722 | we are sure it is the main executable, so we return that. */ | |
723 | if ((buffer && strcmp (buffer, objfile->name) == 0) | |
724 | || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0))) | |
725 | { | |
726 | do_cleanups (old_chain); | |
727 | return lm; | |
728 | } | |
729 | } | |
ae0167b9 AC |
730 | /* Not the file we wanted, continue checking. Assume that the |
731 | address is unsigned. */ | |
732 | lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset, | |
733 | lmo->l_next_size); | |
bc4a16ae EZ |
734 | do_cleanups (old_chain); |
735 | } | |
736 | return 0; | |
737 | } | |
13437d4b KB |
738 | |
739 | /* On some systems, the only way to recognize the link map entry for | |
740 | the main executable file is by looking at its name. Return | |
741 | non-zero iff SONAME matches one of the known main executable names. */ | |
742 | ||
743 | static int | |
744 | match_main (char *soname) | |
745 | { | |
746 | char **mainp; | |
747 | ||
748 | for (mainp = main_name_list; *mainp != NULL; mainp++) | |
749 | { | |
750 | if (strcmp (soname, *mainp) == 0) | |
751 | return (1); | |
752 | } | |
753 | ||
754 | return (0); | |
755 | } | |
756 | ||
13437d4b KB |
757 | /* Return 1 if PC lies in the dynamic symbol resolution code of the |
758 | SVR4 run time loader. */ | |
13437d4b KB |
759 | static CORE_ADDR interp_text_sect_low; |
760 | static CORE_ADDR interp_text_sect_high; | |
761 | static CORE_ADDR interp_plt_sect_low; | |
762 | static CORE_ADDR interp_plt_sect_high; | |
763 | ||
d7fa2ae2 KB |
764 | static int |
765 | svr4_in_dynsym_resolve_code (CORE_ADDR pc) | |
13437d4b KB |
766 | { |
767 | return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) | |
768 | || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) | |
769 | || in_plt_section (pc, NULL)); | |
770 | } | |
13437d4b | 771 | |
2f4950cd AC |
772 | /* Given an executable's ABFD and target, compute the entry-point |
773 | address. */ | |
774 | ||
775 | static CORE_ADDR | |
776 | exec_entry_point (struct bfd *abfd, struct target_ops *targ) | |
777 | { | |
778 | /* KevinB wrote ... for most targets, the address returned by | |
779 | bfd_get_start_address() is the entry point for the start | |
780 | function. But, for some targets, bfd_get_start_address() returns | |
781 | the address of a function descriptor from which the entry point | |
782 | address may be extracted. This address is extracted by | |
783 | gdbarch_convert_from_func_ptr_addr(). The method | |
784 | gdbarch_convert_from_func_ptr_addr() is the merely the identify | |
785 | function for targets which don't use function descriptors. */ | |
786 | return gdbarch_convert_from_func_ptr_addr (current_gdbarch, | |
787 | bfd_get_start_address (abfd), | |
788 | targ); | |
789 | } | |
13437d4b KB |
790 | |
791 | /* | |
792 | ||
793 | LOCAL FUNCTION | |
794 | ||
795 | enable_break -- arrange for dynamic linker to hit breakpoint | |
796 | ||
797 | SYNOPSIS | |
798 | ||
799 | int enable_break (void) | |
800 | ||
801 | DESCRIPTION | |
802 | ||
803 | Both the SunOS and the SVR4 dynamic linkers have, as part of their | |
804 | debugger interface, support for arranging for the inferior to hit | |
805 | a breakpoint after mapping in the shared libraries. This function | |
806 | enables that breakpoint. | |
807 | ||
808 | For SunOS, there is a special flag location (in_debugger) which we | |
809 | set to 1. When the dynamic linker sees this flag set, it will set | |
810 | a breakpoint at a location known only to itself, after saving the | |
811 | original contents of that place and the breakpoint address itself, | |
812 | in it's own internal structures. When we resume the inferior, it | |
813 | will eventually take a SIGTRAP when it runs into the breakpoint. | |
814 | We handle this (in a different place) by restoring the contents of | |
815 | the breakpointed location (which is only known after it stops), | |
816 | chasing around to locate the shared libraries that have been | |
817 | loaded, then resuming. | |
818 | ||
819 | For SVR4, the debugger interface structure contains a member (r_brk) | |
820 | which is statically initialized at the time the shared library is | |
821 | built, to the offset of a function (_r_debug_state) which is guaran- | |
822 | teed to be called once before mapping in a library, and again when | |
823 | the mapping is complete. At the time we are examining this member, | |
824 | it contains only the unrelocated offset of the function, so we have | |
825 | to do our own relocation. Later, when the dynamic linker actually | |
826 | runs, it relocates r_brk to be the actual address of _r_debug_state(). | |
827 | ||
828 | The debugger interface structure also contains an enumeration which | |
829 | is set to either RT_ADD or RT_DELETE prior to changing the mapping, | |
830 | depending upon whether or not the library is being mapped or unmapped, | |
831 | and then set to RT_CONSISTENT after the library is mapped/unmapped. | |
832 | */ | |
833 | ||
834 | static int | |
835 | enable_break (void) | |
836 | { | |
837 | int success = 0; | |
838 | ||
13437d4b KB |
839 | #ifdef BKPT_AT_SYMBOL |
840 | ||
841 | struct minimal_symbol *msymbol; | |
842 | char **bkpt_namep; | |
843 | asection *interp_sect; | |
844 | ||
845 | /* First, remove all the solib event breakpoints. Their addresses | |
846 | may have changed since the last time we ran the program. */ | |
847 | remove_solib_event_breakpoints (); | |
848 | ||
13437d4b KB |
849 | interp_text_sect_low = interp_text_sect_high = 0; |
850 | interp_plt_sect_low = interp_plt_sect_high = 0; | |
851 | ||
852 | /* Find the .interp section; if not found, warn the user and drop | |
853 | into the old breakpoint at symbol code. */ | |
854 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
855 | if (interp_sect) | |
856 | { | |
857 | unsigned int interp_sect_size; | |
858 | char *buf; | |
8ad2fcde KB |
859 | CORE_ADDR load_addr = 0; |
860 | int load_addr_found = 0; | |
f8766ec1 | 861 | struct so_list *so; |
e4f7b8c8 | 862 | bfd *tmp_bfd = NULL; |
2f4950cd | 863 | struct target_ops *tmp_bfd_target; |
e4f7b8c8 MS |
864 | int tmp_fd = -1; |
865 | char *tmp_pathname = NULL; | |
13437d4b KB |
866 | CORE_ADDR sym_addr = 0; |
867 | ||
868 | /* Read the contents of the .interp section into a local buffer; | |
869 | the contents specify the dynamic linker this program uses. */ | |
870 | interp_sect_size = bfd_section_size (exec_bfd, interp_sect); | |
871 | buf = alloca (interp_sect_size); | |
872 | bfd_get_section_contents (exec_bfd, interp_sect, | |
873 | buf, 0, interp_sect_size); | |
874 | ||
875 | /* Now we need to figure out where the dynamic linker was | |
876 | loaded so that we can load its symbols and place a breakpoint | |
877 | in the dynamic linker itself. | |
878 | ||
879 | This address is stored on the stack. However, I've been unable | |
880 | to find any magic formula to find it for Solaris (appears to | |
881 | be trivial on GNU/Linux). Therefore, we have to try an alternate | |
882 | mechanism to find the dynamic linker's base address. */ | |
e4f7b8c8 MS |
883 | |
884 | tmp_fd = solib_open (buf, &tmp_pathname); | |
885 | if (tmp_fd >= 0) | |
886 | tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd); | |
887 | ||
13437d4b KB |
888 | if (tmp_bfd == NULL) |
889 | goto bkpt_at_symbol; | |
890 | ||
891 | /* Make sure the dynamic linker's really a useful object. */ | |
892 | if (!bfd_check_format (tmp_bfd, bfd_object)) | |
893 | { | |
8a3fe4f8 | 894 | warning (_("Unable to grok dynamic linker %s as an object file"), buf); |
13437d4b KB |
895 | bfd_close (tmp_bfd); |
896 | goto bkpt_at_symbol; | |
897 | } | |
898 | ||
2f4950cd AC |
899 | /* Now convert the TMP_BFD into a target. That way target, as |
900 | well as BFD operations can be used. Note that closing the | |
901 | target will also close the underlying bfd. */ | |
902 | tmp_bfd_target = target_bfd_reopen (tmp_bfd); | |
903 | ||
f8766ec1 KB |
904 | /* On a running target, we can get the dynamic linker's base |
905 | address from the shared library table. */ | |
906 | solib_add (NULL, 0, NULL, auto_solib_add); | |
907 | so = master_so_list (); | |
908 | while (so) | |
8ad2fcde | 909 | { |
f8766ec1 | 910 | if (strcmp (buf, so->so_original_name) == 0) |
8ad2fcde KB |
911 | { |
912 | load_addr_found = 1; | |
f8766ec1 | 913 | load_addr = LM_ADDR (so); |
8ad2fcde KB |
914 | break; |
915 | } | |
f8766ec1 | 916 | so = so->next; |
8ad2fcde KB |
917 | } |
918 | ||
919 | /* Otherwise we find the dynamic linker's base address by examining | |
920 | the current pc (which should point at the entry point for the | |
921 | dynamic linker) and subtracting the offset of the entry point. */ | |
922 | if (!load_addr_found) | |
2f4950cd AC |
923 | load_addr = (read_pc () |
924 | - exec_entry_point (tmp_bfd, tmp_bfd_target)); | |
13437d4b KB |
925 | |
926 | /* Record the relocated start and end address of the dynamic linker | |
d7fa2ae2 | 927 | text and plt section for svr4_in_dynsym_resolve_code. */ |
13437d4b KB |
928 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); |
929 | if (interp_sect) | |
930 | { | |
931 | interp_text_sect_low = | |
932 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
933 | interp_text_sect_high = | |
934 | interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
935 | } | |
936 | interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); | |
937 | if (interp_sect) | |
938 | { | |
939 | interp_plt_sect_low = | |
940 | bfd_section_vma (tmp_bfd, interp_sect) + load_addr; | |
941 | interp_plt_sect_high = | |
942 | interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); | |
943 | } | |
944 | ||
945 | /* Now try to set a breakpoint in the dynamic linker. */ | |
946 | for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) | |
947 | { | |
87f84c9d JB |
948 | /* On ABI's that use function descriptors, there are usually |
949 | two linker symbols associated with each C function: one | |
950 | pointing at the actual entry point of the machine code, | |
951 | and one pointing at the function's descriptor. The | |
952 | latter symbol has the same name as the C function. | |
953 | ||
954 | What we're looking for here is the machine code entry | |
955 | point, so we are only interested in symbols in code | |
956 | sections. */ | |
957 | sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE); | |
13437d4b KB |
958 | if (sym_addr != 0) |
959 | break; | |
960 | } | |
961 | ||
2f4950cd AC |
962 | /* We're done with both the temporary bfd and target. Remember, |
963 | closing the target closes the underlying bfd. */ | |
964 | target_close (tmp_bfd_target, 0); | |
13437d4b KB |
965 | |
966 | if (sym_addr != 0) | |
967 | { | |
968 | create_solib_event_breakpoint (load_addr + sym_addr); | |
969 | return 1; | |
970 | } | |
971 | ||
972 | /* For whatever reason we couldn't set a breakpoint in the dynamic | |
973 | linker. Warn and drop into the old code. */ | |
974 | bkpt_at_symbol: | |
8a3fe4f8 | 975 | warning (_("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.")); |
13437d4b | 976 | } |
13437d4b KB |
977 | |
978 | /* Scan through the list of symbols, trying to look up the symbol and | |
979 | set a breakpoint there. Terminate loop when we/if we succeed. */ | |
980 | ||
981 | breakpoint_addr = 0; | |
982 | for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) | |
983 | { | |
984 | msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); | |
985 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
986 | { | |
987 | create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol)); | |
988 | return 1; | |
989 | } | |
990 | } | |
991 | ||
992 | /* Nothing good happened. */ | |
993 | success = 0; | |
994 | ||
995 | #endif /* BKPT_AT_SYMBOL */ | |
996 | ||
13437d4b KB |
997 | return (success); |
998 | } | |
999 | ||
1000 | /* | |
1001 | ||
1002 | LOCAL FUNCTION | |
1003 | ||
1004 | special_symbol_handling -- additional shared library symbol handling | |
1005 | ||
1006 | SYNOPSIS | |
1007 | ||
1008 | void special_symbol_handling () | |
1009 | ||
1010 | DESCRIPTION | |
1011 | ||
1012 | Once the symbols from a shared object have been loaded in the usual | |
1013 | way, we are called to do any system specific symbol handling that | |
1014 | is needed. | |
1015 | ||
ab31aa69 | 1016 | For SunOS4, this consisted of grunging around in the dynamic |
13437d4b KB |
1017 | linkers structures to find symbol definitions for "common" symbols |
1018 | and adding them to the minimal symbol table for the runtime common | |
1019 | objfile. | |
1020 | ||
ab31aa69 KB |
1021 | However, for SVR4, there's nothing to do. |
1022 | ||
13437d4b KB |
1023 | */ |
1024 | ||
1025 | static void | |
1026 | svr4_special_symbol_handling (void) | |
1027 | { | |
13437d4b KB |
1028 | } |
1029 | ||
e2a44558 KB |
1030 | /* Relocate the main executable. This function should be called upon |
1031 | stopping the inferior process at the entry point to the program. | |
1032 | The entry point from BFD is compared to the PC and if they are | |
1033 | different, the main executable is relocated by the proper amount. | |
1034 | ||
1035 | As written it will only attempt to relocate executables which | |
1036 | lack interpreter sections. It seems likely that only dynamic | |
1037 | linker executables will get relocated, though it should work | |
1038 | properly for a position-independent static executable as well. */ | |
1039 | ||
1040 | static void | |
1041 | svr4_relocate_main_executable (void) | |
1042 | { | |
1043 | asection *interp_sect; | |
1044 | CORE_ADDR pc = read_pc (); | |
1045 | ||
1046 | /* Decide if the objfile needs to be relocated. As indicated above, | |
1047 | we will only be here when execution is stopped at the beginning | |
1048 | of the program. Relocation is necessary if the address at which | |
1049 | we are presently stopped differs from the start address stored in | |
1050 | the executable AND there's no interpreter section. The condition | |
1051 | regarding the interpreter section is very important because if | |
1052 | there *is* an interpreter section, execution will begin there | |
1053 | instead. When there is an interpreter section, the start address | |
1054 | is (presumably) used by the interpreter at some point to start | |
1055 | execution of the program. | |
1056 | ||
1057 | If there is an interpreter, it is normal for it to be set to an | |
1058 | arbitrary address at the outset. The job of finding it is | |
1059 | handled in enable_break(). | |
1060 | ||
1061 | So, to summarize, relocations are necessary when there is no | |
1062 | interpreter section and the start address obtained from the | |
1063 | executable is different from the address at which GDB is | |
1064 | currently stopped. | |
1065 | ||
1066 | [ The astute reader will note that we also test to make sure that | |
1067 | the executable in question has the DYNAMIC flag set. It is my | |
1068 | opinion that this test is unnecessary (undesirable even). It | |
1069 | was added to avoid inadvertent relocation of an executable | |
1070 | whose e_type member in the ELF header is not ET_DYN. There may | |
1071 | be a time in the future when it is desirable to do relocations | |
1072 | on other types of files as well in which case this condition | |
1073 | should either be removed or modified to accomodate the new file | |
1074 | type. (E.g, an ET_EXEC executable which has been built to be | |
1075 | position-independent could safely be relocated by the OS if | |
1076 | desired. It is true that this violates the ABI, but the ABI | |
1077 | has been known to be bent from time to time.) - Kevin, Nov 2000. ] | |
1078 | */ | |
1079 | ||
1080 | interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); | |
1081 | if (interp_sect == NULL | |
1082 | && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0 | |
2f4950cd | 1083 | && (exec_entry_point (exec_bfd, &exec_ops) != pc)) |
e2a44558 KB |
1084 | { |
1085 | struct cleanup *old_chain; | |
1086 | struct section_offsets *new_offsets; | |
1087 | int i, changed; | |
1088 | CORE_ADDR displacement; | |
1089 | ||
1090 | /* It is necessary to relocate the objfile. The amount to | |
1091 | relocate by is simply the address at which we are stopped | |
1092 | minus the starting address from the executable. | |
1093 | ||
1094 | We relocate all of the sections by the same amount. This | |
1095 | behavior is mandated by recent editions of the System V ABI. | |
1096 | According to the System V Application Binary Interface, | |
1097 | Edition 4.1, page 5-5: | |
1098 | ||
1099 | ... Though the system chooses virtual addresses for | |
1100 | individual processes, it maintains the segments' relative | |
1101 | positions. Because position-independent code uses relative | |
1102 | addressesing between segments, the difference between | |
1103 | virtual addresses in memory must match the difference | |
1104 | between virtual addresses in the file. The difference | |
1105 | between the virtual address of any segment in memory and | |
1106 | the corresponding virtual address in the file is thus a | |
1107 | single constant value for any one executable or shared | |
1108 | object in a given process. This difference is the base | |
1109 | address. One use of the base address is to relocate the | |
1110 | memory image of the program during dynamic linking. | |
1111 | ||
1112 | The same language also appears in Edition 4.0 of the System V | |
1113 | ABI and is left unspecified in some of the earlier editions. */ | |
1114 | ||
2f4950cd | 1115 | displacement = pc - exec_entry_point (exec_bfd, &exec_ops); |
e2a44558 KB |
1116 | changed = 0; |
1117 | ||
13fc0c2f KB |
1118 | new_offsets = xcalloc (symfile_objfile->num_sections, |
1119 | sizeof (struct section_offsets)); | |
b8c9b27d | 1120 | old_chain = make_cleanup (xfree, new_offsets); |
e2a44558 KB |
1121 | |
1122 | for (i = 0; i < symfile_objfile->num_sections; i++) | |
1123 | { | |
1124 | if (displacement != ANOFFSET (symfile_objfile->section_offsets, i)) | |
1125 | changed = 1; | |
1126 | new_offsets->offsets[i] = displacement; | |
1127 | } | |
1128 | ||
1129 | if (changed) | |
1130 | objfile_relocate (symfile_objfile, new_offsets); | |
1131 | ||
1132 | do_cleanups (old_chain); | |
1133 | } | |
1134 | } | |
1135 | ||
13437d4b KB |
1136 | /* |
1137 | ||
1138 | GLOBAL FUNCTION | |
1139 | ||
1140 | svr4_solib_create_inferior_hook -- shared library startup support | |
1141 | ||
1142 | SYNOPSIS | |
1143 | ||
7095b863 | 1144 | void svr4_solib_create_inferior_hook () |
13437d4b KB |
1145 | |
1146 | DESCRIPTION | |
1147 | ||
1148 | When gdb starts up the inferior, it nurses it along (through the | |
1149 | shell) until it is ready to execute it's first instruction. At this | |
1150 | point, this function gets called via expansion of the macro | |
1151 | SOLIB_CREATE_INFERIOR_HOOK. | |
1152 | ||
1153 | For SunOS executables, this first instruction is typically the | |
1154 | one at "_start", or a similar text label, regardless of whether | |
1155 | the executable is statically or dynamically linked. The runtime | |
1156 | startup code takes care of dynamically linking in any shared | |
1157 | libraries, once gdb allows the inferior to continue. | |
1158 | ||
1159 | For SVR4 executables, this first instruction is either the first | |
1160 | instruction in the dynamic linker (for dynamically linked | |
1161 | executables) or the instruction at "start" for statically linked | |
1162 | executables. For dynamically linked executables, the system | |
1163 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
1164 | and starts it running. The dynamic linker maps in any needed | |
1165 | shared libraries, maps in the actual user executable, and then | |
1166 | jumps to "start" in the user executable. | |
1167 | ||
1168 | For both SunOS shared libraries, and SVR4 shared libraries, we | |
1169 | can arrange to cooperate with the dynamic linker to discover the | |
1170 | names of shared libraries that are dynamically linked, and the | |
1171 | base addresses to which they are linked. | |
1172 | ||
1173 | This function is responsible for discovering those names and | |
1174 | addresses, and saving sufficient information about them to allow | |
1175 | their symbols to be read at a later time. | |
1176 | ||
1177 | FIXME | |
1178 | ||
1179 | Between enable_break() and disable_break(), this code does not | |
1180 | properly handle hitting breakpoints which the user might have | |
1181 | set in the startup code or in the dynamic linker itself. Proper | |
1182 | handling will probably have to wait until the implementation is | |
1183 | changed to use the "breakpoint handler function" method. | |
1184 | ||
1185 | Also, what if child has exit()ed? Must exit loop somehow. | |
1186 | */ | |
1187 | ||
e2a44558 | 1188 | static void |
13437d4b KB |
1189 | svr4_solib_create_inferior_hook (void) |
1190 | { | |
e2a44558 KB |
1191 | /* Relocate the main executable if necessary. */ |
1192 | svr4_relocate_main_executable (); | |
1193 | ||
d5a921c9 KB |
1194 | if (!svr4_have_link_map_offsets ()) |
1195 | { | |
8a3fe4f8 | 1196 | warning (_("no shared library support for this OS / ABI")); |
d5a921c9 KB |
1197 | return; |
1198 | ||
1199 | } | |
1200 | ||
13437d4b KB |
1201 | if (!enable_break ()) |
1202 | { | |
8a3fe4f8 | 1203 | warning (_("shared library handler failed to enable breakpoint")); |
13437d4b KB |
1204 | return; |
1205 | } | |
1206 | ||
ab31aa69 KB |
1207 | #if defined(_SCO_DS) |
1208 | /* SCO needs the loop below, other systems should be using the | |
13437d4b KB |
1209 | special shared library breakpoints and the shared library breakpoint |
1210 | service routine. | |
1211 | ||
1212 | Now run the target. It will eventually hit the breakpoint, at | |
1213 | which point all of the libraries will have been mapped in and we | |
1214 | can go groveling around in the dynamic linker structures to find | |
1215 | out what we need to know about them. */ | |
1216 | ||
1217 | clear_proceed_status (); | |
c0236d92 | 1218 | stop_soon = STOP_QUIETLY; |
13437d4b KB |
1219 | stop_signal = TARGET_SIGNAL_0; |
1220 | do | |
1221 | { | |
39f77062 | 1222 | target_resume (pid_to_ptid (-1), 0, stop_signal); |
13437d4b KB |
1223 | wait_for_inferior (); |
1224 | } | |
1225 | while (stop_signal != TARGET_SIGNAL_TRAP); | |
c0236d92 | 1226 | stop_soon = NO_STOP_QUIETLY; |
ab31aa69 | 1227 | #endif /* defined(_SCO_DS) */ |
13437d4b KB |
1228 | } |
1229 | ||
1230 | static void | |
1231 | svr4_clear_solib (void) | |
1232 | { | |
1233 | debug_base = 0; | |
1234 | } | |
1235 | ||
1236 | static void | |
1237 | svr4_free_so (struct so_list *so) | |
1238 | { | |
b8c9b27d KB |
1239 | xfree (so->lm_info->lm); |
1240 | xfree (so->lm_info); | |
13437d4b KB |
1241 | } |
1242 | ||
6bb7be43 JB |
1243 | |
1244 | /* Clear any bits of ADDR that wouldn't fit in a target-format | |
1245 | data pointer. "Data pointer" here refers to whatever sort of | |
1246 | address the dynamic linker uses to manage its sections. At the | |
1247 | moment, we don't support shared libraries on any processors where | |
1248 | code and data pointers are different sizes. | |
1249 | ||
1250 | This isn't really the right solution. What we really need here is | |
1251 | a way to do arithmetic on CORE_ADDR values that respects the | |
1252 | natural pointer/address correspondence. (For example, on the MIPS, | |
1253 | converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to | |
1254 | sign-extend the value. There, simply truncating the bits above | |
1255 | TARGET_PTR_BIT, as we do below, is no good.) This should probably | |
1256 | be a new gdbarch method or something. */ | |
1257 | static CORE_ADDR | |
1258 | svr4_truncate_ptr (CORE_ADDR addr) | |
1259 | { | |
1260 | if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8) | |
1261 | /* We don't need to truncate anything, and the bit twiddling below | |
1262 | will fail due to overflow problems. */ | |
1263 | return addr; | |
1264 | else | |
1265 | return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1); | |
1266 | } | |
1267 | ||
1268 | ||
749499cb KB |
1269 | static void |
1270 | svr4_relocate_section_addresses (struct so_list *so, | |
1271 | struct section_table *sec) | |
1272 | { | |
6bb7be43 JB |
1273 | sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so)); |
1274 | sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so)); | |
749499cb | 1275 | } |
4b188b9f | 1276 | \f |
749499cb | 1277 | |
4b188b9f | 1278 | /* Architecture-specific operations. */ |
6bb7be43 | 1279 | |
4b188b9f MK |
1280 | /* Per-architecture data key. */ |
1281 | static struct gdbarch_data *solib_svr4_data; | |
e5e2b9ff | 1282 | |
4b188b9f | 1283 | struct solib_svr4_ops |
e5e2b9ff | 1284 | { |
4b188b9f MK |
1285 | /* Return a description of the layout of `struct link_map'. */ |
1286 | struct link_map_offsets *(*fetch_link_map_offsets)(void); | |
1287 | }; | |
e5e2b9ff | 1288 | |
4b188b9f | 1289 | /* Return a default for the architecture-specific operations. */ |
e5e2b9ff | 1290 | |
4b188b9f MK |
1291 | static void * |
1292 | solib_svr4_init (struct obstack *obstack) | |
e5e2b9ff | 1293 | { |
4b188b9f | 1294 | struct solib_svr4_ops *ops; |
e5e2b9ff | 1295 | |
4b188b9f MK |
1296 | ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); |
1297 | ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook; | |
1298 | return ops; | |
e5e2b9ff KB |
1299 | } |
1300 | ||
4b188b9f MK |
1301 | /* Set the architecture-specific `struct link_map_offsets' fetcher for |
1302 | GDBARCH to FLMO. */ | |
1c4dcb57 | 1303 | |
21479ded | 1304 | void |
e5e2b9ff KB |
1305 | set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, |
1306 | struct link_map_offsets *(*flmo) (void)) | |
21479ded | 1307 | { |
4b188b9f MK |
1308 | struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data); |
1309 | ||
1310 | ops->fetch_link_map_offsets = flmo; | |
21479ded KB |
1311 | } |
1312 | ||
4b188b9f MK |
1313 | /* Fetch a link_map_offsets structure using the architecture-specific |
1314 | `struct link_map_offsets' fetcher. */ | |
1c4dcb57 | 1315 | |
4b188b9f MK |
1316 | static struct link_map_offsets * |
1317 | svr4_fetch_link_map_offsets (void) | |
21479ded | 1318 | { |
4b188b9f MK |
1319 | struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data); |
1320 | ||
1321 | gdb_assert (ops->fetch_link_map_offsets); | |
1322 | return ops->fetch_link_map_offsets (); | |
21479ded KB |
1323 | } |
1324 | ||
4b188b9f MK |
1325 | /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ |
1326 | ||
1327 | static int | |
1328 | svr4_have_link_map_offsets (void) | |
1329 | { | |
1330 | struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data); | |
1331 | return (ops->fetch_link_map_offsets != NULL); | |
1332 | } | |
1333 | \f | |
1334 | ||
e4bbbda8 MK |
1335 | /* Most OS'es that have SVR4-style ELF dynamic libraries define a |
1336 | `struct r_debug' and a `struct link_map' that are binary compatible | |
1337 | with the origional SVR4 implementation. */ | |
1338 | ||
1339 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
1340 | for an ILP32 SVR4 system. */ | |
1341 | ||
1342 | struct link_map_offsets * | |
1343 | svr4_ilp32_fetch_link_map_offsets (void) | |
1344 | { | |
1345 | static struct link_map_offsets lmo; | |
1346 | static struct link_map_offsets *lmp = NULL; | |
1347 | ||
1348 | if (lmp == NULL) | |
1349 | { | |
1350 | lmp = &lmo; | |
1351 | ||
1352 | /* Everything we need is in the first 8 bytes. */ | |
1353 | lmo.r_debug_size = 8; | |
1354 | lmo.r_map_offset = 4; | |
1355 | lmo.r_map_size = 4; | |
1356 | ||
1357 | /* Everything we need is in the first 20 bytes. */ | |
1358 | lmo.link_map_size = 20; | |
1359 | lmo.l_addr_offset = 0; | |
1360 | lmo.l_addr_size = 4; | |
1361 | lmo.l_name_offset = 4; | |
1362 | lmo.l_name_size = 4; | |
1363 | lmo.l_next_offset = 12; | |
1364 | lmo.l_next_size = 4; | |
1365 | lmo.l_prev_offset = 16; | |
1366 | lmo.l_prev_size = 4; | |
1367 | } | |
1368 | ||
1369 | return lmp; | |
1370 | } | |
1371 | ||
1372 | /* Fetch (and possibly build) an appropriate `struct link_map_offsets' | |
1373 | for an LP64 SVR4 system. */ | |
1374 | ||
1375 | struct link_map_offsets * | |
1376 | svr4_lp64_fetch_link_map_offsets (void) | |
1377 | { | |
1378 | static struct link_map_offsets lmo; | |
1379 | static struct link_map_offsets *lmp = NULL; | |
1380 | ||
1381 | if (lmp == NULL) | |
1382 | { | |
1383 | lmp = &lmo; | |
1384 | ||
1385 | /* Everything we need is in the first 16 bytes. */ | |
1386 | lmo.r_debug_size = 16; | |
1387 | lmo.r_map_offset = 8; | |
1388 | lmo.r_map_size = 8; | |
1389 | ||
1390 | /* Everything we need is in the first 40 bytes. */ | |
1391 | lmo.link_map_size = 40; | |
1392 | lmo.l_addr_offset = 0; | |
1393 | lmo.l_addr_size = 8; | |
1394 | lmo.l_name_offset = 8; | |
1395 | lmo.l_name_size = 8; | |
1396 | lmo.l_next_offset = 24; | |
1397 | lmo.l_next_size = 8; | |
1398 | lmo.l_prev_offset = 32; | |
1399 | lmo.l_prev_size = 8; | |
1400 | } | |
1401 | ||
1402 | return lmp; | |
1403 | } | |
1404 | \f | |
1405 | ||
13437d4b KB |
1406 | static struct target_so_ops svr4_so_ops; |
1407 | ||
a78f21af AC |
1408 | extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */ |
1409 | ||
13437d4b KB |
1410 | void |
1411 | _initialize_svr4_solib (void) | |
1412 | { | |
4b188b9f MK |
1413 | solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); |
1414 | ||
749499cb | 1415 | svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; |
13437d4b KB |
1416 | svr4_so_ops.free_so = svr4_free_so; |
1417 | svr4_so_ops.clear_solib = svr4_clear_solib; | |
1418 | svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; | |
1419 | svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling; | |
1420 | svr4_so_ops.current_sos = svr4_current_sos; | |
1421 | svr4_so_ops.open_symbol_file_object = open_symbol_file_object; | |
d7fa2ae2 | 1422 | svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; |
13437d4b KB |
1423 | |
1424 | /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */ | |
1425 | current_target_so_ops = &svr4_so_ops; | |
1426 | } |