PR24427, bfd/doc/chew.c reads uninitialized memory and subtracts from function pointer
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
76727919 36#include "observable.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
13437d4b
KB
54/* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
bc043ef3 62static const char * const solib_break_names[] =
13437d4b
KB
63{
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
4c7dcb84 68 "__dl_rtld_db_dlactivity",
1f72e589 69 "_rtld_debug_state",
4c0122c8 70
13437d4b
KB
71 NULL
72};
13437d4b 73
bc043ef3 74static const char * const bkpt_names[] =
13437d4b 75{
13437d4b 76 "_start",
ad3dcc5c 77 "__start",
13437d4b
KB
78 "main",
79 NULL
80};
13437d4b 81
bc043ef3 82static const char * const main_name_list[] =
13437d4b
KB
83{
84 "main_$main",
85 NULL
86};
87
f9e14852
GB
88/* What to do when a probe stop occurs. */
89
90enum probe_action
91{
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107};
108
109/* A probe's name and its associated action. */
110
111struct probe_info
112{
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118};
119
120/* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124static const struct probe_info probe_info[] =
125{
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133};
134
135#define NUM_PROBES ARRAY_SIZE (probe_info)
136
4d7b2d5b
JB
137/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140static int
141svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142{
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
7307a73a 156 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
4d7b2d5b 157 different locations. */
7307a73a
RO
158 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
160 return 1;
161
4d7b2d5b
JB
162 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
163 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
164 return 1;
165
166 return 0;
167}
168
169static int
170svr4_same (struct so_list *gdb, struct so_list *inferior)
171{
172 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
173}
174
a7961323 175static std::unique_ptr<lm_info_svr4>
3957565a 176lm_info_read (CORE_ADDR lm_addr)
13437d4b 177{
4b188b9f 178 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
a7961323 179 std::unique_ptr<lm_info_svr4> lm_info;
3957565a 180
a7961323 181 gdb::byte_vector lm (lmo->link_map_size);
3957565a 182
a7961323
TT
183 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr));
3957565a
JK
186 else
187 {
f5656ead 188 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 189
a7961323 190 lm_info.reset (new lm_info_svr4);
3957565a
JK
191 lm_info->lm_addr = lm_addr;
192
193 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
194 ptr_type);
195 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
196 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
197 ptr_type);
198 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
199 ptr_type);
200 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
201 ptr_type);
202 }
203
3957565a 204 return lm_info;
13437d4b
KB
205}
206
cc10cae3 207static int
b23518f0 208has_lm_dynamic_from_link_map (void)
cc10cae3
AO
209{
210 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
211
cfaefc65 212 return lmo->l_ld_offset >= 0;
cc10cae3
AO
213}
214
cc10cae3 215static CORE_ADDR
f65ce5fb 216lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 217{
d0e449a1
SM
218 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
219
220 if (!li->l_addr_p)
cc10cae3
AO
221 {
222 struct bfd_section *dyninfo_sect;
28f34a8f 223 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 224
d0e449a1 225 l_addr = li->l_addr_inferior;
cc10cae3 226
b23518f0 227 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
228 goto set_addr;
229
d0e449a1 230 l_dynaddr = li->l_ld;
cc10cae3
AO
231
232 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
233 if (dyninfo_sect == NULL)
234 goto set_addr;
235
236 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
237
238 if (dynaddr + l_addr != l_dynaddr)
239 {
28f34a8f 240 CORE_ADDR align = 0x1000;
4e1fc9c9 241 CORE_ADDR minpagesize = align;
28f34a8f 242
cc10cae3
AO
243 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
244 {
245 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
246 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
247 int i;
248
249 align = 1;
250
251 for (i = 0; i < ehdr->e_phnum; i++)
252 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
253 align = phdr[i].p_align;
4e1fc9c9
JK
254
255 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
256 }
257
258 /* Turn it into a mask. */
259 align--;
260
261 /* If the changes match the alignment requirements, we
262 assume we're using a core file that was generated by the
263 same binary, just prelinked with a different base offset.
264 If it doesn't match, we may have a different binary, the
265 same binary with the dynamic table loaded at an unrelated
266 location, or anything, really. To avoid regressions,
267 don't adjust the base offset in the latter case, although
268 odds are that, if things really changed, debugging won't
5c0d192f
JK
269 quite work.
270
271 One could expect more the condition
272 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
273 but the one below is relaxed for PPC. The PPC kernel supports
274 either 4k or 64k page sizes. To be prepared for 64k pages,
275 PPC ELF files are built using an alignment requirement of 64k.
276 However, when running on a kernel supporting 4k pages, the memory
277 mapping of the library may not actually happen on a 64k boundary!
278
279 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
280 equivalent to the possibly expected check above.)
281
282 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 283
02835898
JK
284 l_addr = l_dynaddr - dynaddr;
285
4e1fc9c9
JK
286 if ((l_addr & (minpagesize - 1)) == 0
287 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 288 {
701ed6dc 289 if (info_verbose)
ccf26247
JK
290 printf_unfiltered (_("Using PIC (Position Independent Code) "
291 "prelink displacement %s for \"%s\".\n"),
f5656ead 292 paddress (target_gdbarch (), l_addr),
ccf26247 293 so->so_name);
cc10cae3 294 }
79d4c408 295 else
02835898
JK
296 {
297 /* There is no way to verify the library file matches. prelink
298 can during prelinking of an unprelinked file (or unprelinking
299 of a prelinked file) shift the DYNAMIC segment by arbitrary
300 offset without any page size alignment. There is no way to
301 find out the ELF header and/or Program Headers for a limited
302 verification if it they match. One could do a verification
303 of the DYNAMIC segment. Still the found address is the best
304 one GDB could find. */
305
306 warning (_(".dynamic section for \"%s\" "
307 "is not at the expected address "
308 "(wrong library or version mismatch?)"), so->so_name);
309 }
cc10cae3
AO
310 }
311
312 set_addr:
d0e449a1
SM
313 li->l_addr = l_addr;
314 li->l_addr_p = 1;
cc10cae3
AO
315 }
316
d0e449a1 317 return li->l_addr;
cc10cae3
AO
318}
319
6c95b8df 320/* Per pspace SVR4 specific data. */
13437d4b 321
1a816a87
PA
322struct svr4_info
323{
c378eb4e 324 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
325
326 /* Validity flag for debug_loader_offset. */
327 int debug_loader_offset_p;
328
329 /* Load address for the dynamic linker, inferred. */
330 CORE_ADDR debug_loader_offset;
331
332 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
333 char *debug_loader_name;
334
335 /* Load map address for the main executable. */
336 CORE_ADDR main_lm_addr;
1a816a87 337
6c95b8df
PA
338 CORE_ADDR interp_text_sect_low;
339 CORE_ADDR interp_text_sect_high;
340 CORE_ADDR interp_plt_sect_low;
341 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
342
343 /* Nonzero if the list of objects was last obtained from the target
344 via qXfer:libraries-svr4:read. */
345 int using_xfer;
346
347 /* Table of struct probe_and_action instances, used by the
348 probes-based interface to map breakpoint addresses to probes
349 and their associated actions. Lookup is performed using
935676c9 350 probe_and_action->prob->address. */
f9e14852
GB
351 htab_t probes_table;
352
353 /* List of objects loaded into the inferior, used by the probes-
354 based interface. */
355 struct so_list *solib_list;
6c95b8df 356};
1a816a87 357
6c95b8df
PA
358/* Per-program-space data key. */
359static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 360
f9e14852
GB
361/* Free the probes table. */
362
363static void
364free_probes_table (struct svr4_info *info)
365{
366 if (info->probes_table == NULL)
367 return;
368
369 htab_delete (info->probes_table);
370 info->probes_table = NULL;
371}
372
373/* Free the solib list. */
374
375static void
376free_solib_list (struct svr4_info *info)
377{
378 svr4_free_library_list (&info->solib_list);
379 info->solib_list = NULL;
380}
381
6c95b8df
PA
382static void
383svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 384{
19ba03f4 385 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
386
387 free_probes_table (info);
388 free_solib_list (info);
389
6c95b8df 390 xfree (info);
1a816a87
PA
391}
392
6c95b8df
PA
393/* Get the current svr4 data. If none is found yet, add it now. This
394 function always returns a valid object. */
34439770 395
6c95b8df
PA
396static struct svr4_info *
397get_svr4_info (void)
1a816a87 398{
6c95b8df 399 struct svr4_info *info;
1a816a87 400
19ba03f4
SM
401 info = (struct svr4_info *) program_space_data (current_program_space,
402 solib_svr4_pspace_data);
6c95b8df
PA
403 if (info != NULL)
404 return info;
34439770 405
41bf6aca 406 info = XCNEW (struct svr4_info);
6c95b8df
PA
407 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
408 return info;
1a816a87 409}
93a57060 410
13437d4b
KB
411/* Local function prototypes */
412
bc043ef3 413static int match_main (const char *);
13437d4b 414
97ec2c2f 415/* Read program header TYPE from inferior memory. The header is found
17658d46 416 by scanning the OS auxiliary vector.
97ec2c2f 417
09919ac2
JK
418 If TYPE == -1, return the program headers instead of the contents of
419 one program header.
420
17658d46
SM
421 Return vector of bytes holding the program header contents, or an empty
422 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
423 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
424 the base address of the section is returned in *BASE_ADDR. */
97ec2c2f 425
17658d46
SM
426static gdb::optional<gdb::byte_vector>
427read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
97ec2c2f 428{
f5656ead 429 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 430 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
431 int arch_size, sect_size;
432 CORE_ADDR sect_addr;
43136979 433 int pt_phdr_p = 0;
97ec2c2f
UW
434
435 /* Get required auxv elements from target. */
8b88a78e 436 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
17658d46 437 return {};
8b88a78e 438 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
17658d46 439 return {};
8b88a78e 440 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
17658d46 441 return {};
97ec2c2f 442 if (!at_phdr || !at_phnum)
17658d46 443 return {};
97ec2c2f
UW
444
445 /* Determine ELF architecture type. */
446 if (at_phent == sizeof (Elf32_External_Phdr))
447 arch_size = 32;
448 else if (at_phent == sizeof (Elf64_External_Phdr))
449 arch_size = 64;
450 else
17658d46 451 return {};
97ec2c2f 452
09919ac2
JK
453 /* Find the requested segment. */
454 if (type == -1)
455 {
456 sect_addr = at_phdr;
457 sect_size = at_phent * at_phnum;
458 }
459 else if (arch_size == 32)
97ec2c2f
UW
460 {
461 Elf32_External_Phdr phdr;
462 int i;
463
464 /* Search for requested PHDR. */
465 for (i = 0; i < at_phnum; i++)
466 {
43136979
AR
467 int p_type;
468
97ec2c2f
UW
469 if (target_read_memory (at_phdr + i * sizeof (phdr),
470 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 471 return {};
97ec2c2f 472
43136979
AR
473 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
474 4, byte_order);
475
476 if (p_type == PT_PHDR)
477 {
478 pt_phdr_p = 1;
479 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
480 4, byte_order);
481 }
482
483 if (p_type == type)
97ec2c2f
UW
484 break;
485 }
486
487 if (i == at_phnum)
17658d46 488 return {};
97ec2c2f
UW
489
490 /* Retrieve address and size. */
e17a4113
UW
491 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
492 4, byte_order);
493 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
494 4, byte_order);
97ec2c2f
UW
495 }
496 else
497 {
498 Elf64_External_Phdr phdr;
499 int i;
500
501 /* Search for requested PHDR. */
502 for (i = 0; i < at_phnum; i++)
503 {
43136979
AR
504 int p_type;
505
97ec2c2f
UW
506 if (target_read_memory (at_phdr + i * sizeof (phdr),
507 (gdb_byte *)&phdr, sizeof (phdr)))
17658d46 508 return {};
97ec2c2f 509
43136979
AR
510 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
511 4, byte_order);
512
513 if (p_type == PT_PHDR)
514 {
515 pt_phdr_p = 1;
516 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
517 8, byte_order);
518 }
519
520 if (p_type == type)
97ec2c2f
UW
521 break;
522 }
523
524 if (i == at_phnum)
17658d46 525 return {};
97ec2c2f
UW
526
527 /* Retrieve address and size. */
e17a4113
UW
528 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
529 8, byte_order);
530 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
531 8, byte_order);
97ec2c2f
UW
532 }
533
43136979
AR
534 /* PT_PHDR is optional, but we really need it
535 for PIE to make this work in general. */
536
537 if (pt_phdr_p)
538 {
539 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
540 Relocation offset is the difference between the two. */
541 sect_addr = sect_addr + (at_phdr - pt_phdr);
542 }
543
97ec2c2f 544 /* Read in requested program header. */
17658d46
SM
545 gdb::byte_vector buf (sect_size);
546 if (target_read_memory (sect_addr, buf.data (), sect_size))
547 return {};
97ec2c2f
UW
548
549 if (p_arch_size)
550 *p_arch_size = arch_size;
a738da3a
MF
551 if (base_addr)
552 *base_addr = sect_addr;
97ec2c2f
UW
553
554 return buf;
555}
556
557
558/* Return program interpreter string. */
17658d46 559static gdb::optional<gdb::byte_vector>
97ec2c2f
UW
560find_program_interpreter (void)
561{
97ec2c2f
UW
562 /* If we have an exec_bfd, use its section table. */
563 if (exec_bfd
564 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
565 {
566 struct bfd_section *interp_sect;
567
568 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
569 if (interp_sect != NULL)
570 {
97ec2c2f
UW
571 int sect_size = bfd_section_size (exec_bfd, interp_sect);
572
17658d46
SM
573 gdb::byte_vector buf (sect_size);
574 bfd_get_section_contents (exec_bfd, interp_sect, buf.data (), 0,
575 sect_size);
576 return buf;
97ec2c2f
UW
577 }
578 }
579
17658d46
SM
580 /* If we didn't find it, use the target auxiliary vector. */
581 return read_program_header (PT_INTERP, NULL, NULL);
97ec2c2f
UW
582}
583
584
b6d7a4bf
SM
585/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
586 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
587
588static int
a738da3a
MF
589scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
590 CORE_ADDR *ptr_addr)
3a40aaa0
UW
591{
592 int arch_size, step, sect_size;
b6d7a4bf 593 long current_dyntag;
b381ea14 594 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 595 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
596 Elf32_External_Dyn *x_dynp_32;
597 Elf64_External_Dyn *x_dynp_64;
598 struct bfd_section *sect;
61f0d762 599 struct target_section *target_section;
3a40aaa0
UW
600
601 if (abfd == NULL)
602 return 0;
0763ab81
PA
603
604 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
605 return 0;
606
3a40aaa0
UW
607 arch_size = bfd_get_arch_size (abfd);
608 if (arch_size == -1)
0763ab81 609 return 0;
3a40aaa0
UW
610
611 /* Find the start address of the .dynamic section. */
612 sect = bfd_get_section_by_name (abfd, ".dynamic");
613 if (sect == NULL)
614 return 0;
61f0d762
JK
615
616 for (target_section = current_target_sections->sections;
617 target_section < current_target_sections->sections_end;
618 target_section++)
619 if (sect == target_section->the_bfd_section)
620 break;
b381ea14
JK
621 if (target_section < current_target_sections->sections_end)
622 dyn_addr = target_section->addr;
623 else
624 {
625 /* ABFD may come from OBJFILE acting only as a symbol file without being
626 loaded into the target (see add_symbol_file_command). This case is
627 such fallback to the file VMA address without the possibility of
628 having the section relocated to its actual in-memory address. */
629
630 dyn_addr = bfd_section_vma (abfd, sect);
631 }
3a40aaa0 632
65728c26
DJ
633 /* Read in .dynamic from the BFD. We will get the actual value
634 from memory later. */
3a40aaa0 635 sect_size = bfd_section_size (abfd, sect);
224c3ddb 636 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
637 if (!bfd_get_section_contents (abfd, sect,
638 buf, 0, sect_size))
639 return 0;
3a40aaa0
UW
640
641 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
642 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
643 : sizeof (Elf64_External_Dyn);
644 for (bufend = buf + sect_size;
645 buf < bufend;
646 buf += step)
647 {
648 if (arch_size == 32)
649 {
650 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 651 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
652 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
653 }
65728c26 654 else
3a40aaa0
UW
655 {
656 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 657 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
658 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
659 }
b6d7a4bf 660 if (current_dyntag == DT_NULL)
3a40aaa0 661 return 0;
b6d7a4bf 662 if (current_dyntag == desired_dyntag)
3a40aaa0 663 {
65728c26
DJ
664 /* If requested, try to read the runtime value of this .dynamic
665 entry. */
3a40aaa0 666 if (ptr)
65728c26 667 {
b6da22b0 668 struct type *ptr_type;
65728c26 669 gdb_byte ptr_buf[8];
a738da3a 670 CORE_ADDR ptr_addr_1;
65728c26 671
f5656ead 672 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
673 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
674 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 675 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 676 *ptr = dyn_ptr;
a738da3a
MF
677 if (ptr_addr)
678 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
679 }
680 return 1;
3a40aaa0
UW
681 }
682 }
683
684 return 0;
685}
686
b6d7a4bf
SM
687/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
689 is returned and the corresponding PTR is set. */
97ec2c2f
UW
690
691static int
a738da3a
MF
692scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
693 CORE_ADDR *ptr_addr)
97ec2c2f 694{
f5656ead 695 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
17658d46 696 int arch_size, step;
b6d7a4bf 697 long current_dyntag;
97ec2c2f 698 CORE_ADDR dyn_ptr;
a738da3a 699 CORE_ADDR base_addr;
97ec2c2f
UW
700
701 /* Read in .dynamic section. */
17658d46
SM
702 gdb::optional<gdb::byte_vector> ph_data
703 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
704 if (!ph_data)
97ec2c2f
UW
705 return 0;
706
707 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
708 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
709 : sizeof (Elf64_External_Dyn);
17658d46
SM
710 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
711 buf < bufend; buf += step)
97ec2c2f
UW
712 {
713 if (arch_size == 32)
714 {
715 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 716
b6d7a4bf 717 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
718 4, byte_order);
719 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
720 4, byte_order);
97ec2c2f
UW
721 }
722 else
723 {
724 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 725
b6d7a4bf 726 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
727 8, byte_order);
728 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
729 8, byte_order);
97ec2c2f 730 }
b6d7a4bf 731 if (current_dyntag == DT_NULL)
97ec2c2f
UW
732 break;
733
b6d7a4bf 734 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
735 {
736 if (ptr)
737 *ptr = dyn_ptr;
738
a738da3a 739 if (ptr_addr)
17658d46 740 *ptr_addr = base_addr + buf - ph_data->data ();
a738da3a 741
97ec2c2f
UW
742 return 1;
743 }
744 }
745
97ec2c2f
UW
746 return 0;
747}
748
7f86f058
PA
749/* Locate the base address of dynamic linker structs for SVR4 elf
750 targets.
13437d4b
KB
751
752 For SVR4 elf targets the address of the dynamic linker's runtime
753 structure is contained within the dynamic info section in the
754 executable file. The dynamic section is also mapped into the
755 inferior address space. Because the runtime loader fills in the
756 real address before starting the inferior, we have to read in the
757 dynamic info section from the inferior address space.
758 If there are any errors while trying to find the address, we
7f86f058 759 silently return 0, otherwise the found address is returned. */
13437d4b
KB
760
761static CORE_ADDR
762elf_locate_base (void)
763{
3b7344d5 764 struct bound_minimal_symbol msymbol;
a738da3a 765 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 766
65728c26
DJ
767 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
768 instead of DT_DEBUG, although they sometimes contain an unused
769 DT_DEBUG. */
a738da3a
MF
770 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
771 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 772 {
f5656ead 773 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 774 gdb_byte *pbuf;
b6da22b0 775 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 776
224c3ddb 777 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
778 /* DT_MIPS_RLD_MAP contains a pointer to the address
779 of the dynamic link structure. */
780 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 781 return 0;
b6da22b0 782 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
783 }
784
a738da3a
MF
785 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
786 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
787 in non-PIE. */
788 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
789 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
790 {
791 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
792 gdb_byte *pbuf;
793 int pbuf_size = TYPE_LENGTH (ptr_type);
794
224c3ddb 795 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
796 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
797 DT slot to the address of the dynamic link structure. */
798 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
799 return 0;
800 return extract_typed_address (pbuf, ptr_type);
801 }
802
65728c26 803 /* Find DT_DEBUG. */
a738da3a
MF
804 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
805 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
806 return dyn_ptr;
807
3a40aaa0
UW
808 /* This may be a static executable. Look for the symbol
809 conventionally named _r_debug, as a last resort. */
810 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 811 if (msymbol.minsym != NULL)
77e371c0 812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816}
817
7f86f058 818/* Locate the base address of dynamic linker structs.
13437d4b
KB
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
7f86f058 841 executable symbol tables. */
13437d4b
KB
842
843static CORE_ADDR
1a816a87 844locate_base (struct svr4_info *info)
13437d4b 845{
13437d4b
KB
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
13437d4b 851
1a816a87 852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 853 info->debug_base = elf_locate_base ();
1a816a87 854 return info->debug_base;
13437d4b
KB
855}
856
e4cd0d6a 857/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
858 return its address in the inferior. Return zero if the address
859 could not be determined.
13437d4b 860
e4cd0d6a
MK
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
13437d4b
KB
864
865static CORE_ADDR
1a816a87 866solib_svr4_r_map (struct svr4_info *info)
13437d4b 867{
4b188b9f 868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 870 CORE_ADDR addr = 0;
13437d4b 871
a70b8144 872 try
08597104
JB
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875 ptr_type);
876 }
230d2906 877 catch (const gdb_exception_error &ex)
492d29ea
PA
878 {
879 exception_print (gdb_stderr, ex);
880 }
492d29ea 881
08597104 882 return addr;
e4cd0d6a 883}
13437d4b 884
7cd25cfc
DJ
885/* Find r_brk from the inferior's debug base. */
886
887static CORE_ADDR
1a816a87 888solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
889{
890 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 891 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 892
1a816a87
PA
893 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
894 ptr_type);
7cd25cfc
DJ
895}
896
e4cd0d6a
MK
897/* Find the link map for the dynamic linker (if it is not in the
898 normal list of loaded shared objects). */
13437d4b 899
e4cd0d6a 900static CORE_ADDR
1a816a87 901solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
902{
903 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
904 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
905 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
906 ULONGEST version = 0;
907
a70b8144 908 try
416f679e
SDJ
909 {
910 /* Check version, and return zero if `struct r_debug' doesn't have
911 the r_ldsomap member. */
912 version
913 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
914 lmo->r_version_size, byte_order);
915 }
230d2906 916 catch (const gdb_exception_error &ex)
416f679e
SDJ
917 {
918 exception_print (gdb_stderr, ex);
919 }
13437d4b 920
e4cd0d6a
MK
921 if (version < 2 || lmo->r_ldsomap_offset == -1)
922 return 0;
13437d4b 923
1a816a87 924 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 925 ptr_type);
13437d4b
KB
926}
927
de18c1d8
JM
928/* On Solaris systems with some versions of the dynamic linker,
929 ld.so's l_name pointer points to the SONAME in the string table
930 rather than into writable memory. So that GDB can find shared
931 libraries when loading a core file generated by gcore, ensure that
932 memory areas containing the l_name string are saved in the core
933 file. */
934
935static int
936svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
937{
938 struct svr4_info *info;
939 CORE_ADDR ldsomap;
74de0234 940 CORE_ADDR name_lm;
de18c1d8
JM
941
942 info = get_svr4_info ();
943
944 info->debug_base = 0;
945 locate_base (info);
946 if (!info->debug_base)
947 return 0;
948
949 ldsomap = solib_svr4_r_ldsomap (info);
950 if (!ldsomap)
951 return 0;
952
a7961323 953 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
d0e449a1 954 name_lm = li != NULL ? li->l_name : 0;
de18c1d8 955
74de0234 956 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
957}
958
bf469271 959/* See solist.h. */
13437d4b
KB
960
961static int
bf469271 962open_symbol_file_object (int from_tty)
13437d4b
KB
963{
964 CORE_ADDR lm, l_name;
e83e4e24 965 gdb::unique_xmalloc_ptr<char> filename;
13437d4b 966 int errcode;
4b188b9f 967 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 968 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 969 int l_name_size = TYPE_LENGTH (ptr_type);
a7961323 970 gdb::byte_vector l_name_buf (l_name_size);
6c95b8df 971 struct svr4_info *info = get_svr4_info ();
ecf45d2c
SL
972 symfile_add_flags add_flags = 0;
973
974 if (from_tty)
975 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
976
977 if (symfile_objfile)
9e2f0ad4 978 if (!query (_("Attempt to reload symbols from process? ")))
a7961323 979 return 0;
13437d4b 980
7cd25cfc 981 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
982 info->debug_base = 0;
983 if (locate_base (info) == 0)
a7961323 984 return 0; /* failed somehow... */
13437d4b
KB
985
986 /* First link map member should be the executable. */
1a816a87 987 lm = solib_svr4_r_map (info);
e4cd0d6a 988 if (lm == 0)
a7961323 989 return 0; /* failed somehow... */
13437d4b
KB
990
991 /* Read address of name from target memory to GDB. */
a7961323 992 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
13437d4b 993
cfaefc65 994 /* Convert the address to host format. */
a7961323 995 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
13437d4b 996
13437d4b 997 if (l_name == 0)
a7961323 998 return 0; /* No filename. */
13437d4b
KB
999
1000 /* Now fetch the filename from target memory. */
1001 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1002
1003 if (errcode)
1004 {
8a3fe4f8 1005 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1006 safe_strerror (errcode));
1007 return 0;
1008 }
1009
13437d4b 1010 /* Have a pathname: read the symbol file. */
e83e4e24 1011 symbol_file_add_main (filename.get (), add_flags);
13437d4b
KB
1012
1013 return 1;
1014}
13437d4b 1015
2268b414
JK
1016/* Data exchange structure for the XML parser as returned by
1017 svr4_current_sos_via_xfer_libraries. */
1018
1019struct svr4_library_list
1020{
1021 struct so_list *head, **tailp;
1022
1023 /* Inferior address of struct link_map used for the main executable. It is
1024 NULL if not known. */
1025 CORE_ADDR main_lm;
1026};
1027
93f2a35e
JK
1028/* Implementation for target_so_ops.free_so. */
1029
1030static void
1031svr4_free_so (struct so_list *so)
1032{
76e75227
SM
1033 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1034
1035 delete li;
93f2a35e
JK
1036}
1037
0892cb63
DE
1038/* Implement target_so_ops.clear_so. */
1039
1040static void
1041svr4_clear_so (struct so_list *so)
1042{
d0e449a1
SM
1043 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1044
1045 if (li != NULL)
1046 li->l_addr_p = 0;
0892cb63
DE
1047}
1048
93f2a35e
JK
1049/* Free so_list built so far (called via cleanup). */
1050
1051static void
1052svr4_free_library_list (void *p_list)
1053{
1054 struct so_list *list = *(struct so_list **) p_list;
1055
1056 while (list != NULL)
1057 {
1058 struct so_list *next = list->next;
1059
3756ef7e 1060 free_so (list);
93f2a35e
JK
1061 list = next;
1062 }
1063}
1064
f9e14852
GB
1065/* Copy library list. */
1066
1067static struct so_list *
1068svr4_copy_library_list (struct so_list *src)
1069{
1070 struct so_list *dst = NULL;
1071 struct so_list **link = &dst;
1072
1073 while (src != NULL)
1074 {
fe978cb0 1075 struct so_list *newobj;
f9e14852 1076
8d749320 1077 newobj = XNEW (struct so_list);
fe978cb0 1078 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1079
76e75227
SM
1080 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1081 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1082
fe978cb0
PA
1083 newobj->next = NULL;
1084 *link = newobj;
1085 link = &newobj->next;
f9e14852
GB
1086
1087 src = src->next;
1088 }
1089
1090 return dst;
1091}
1092
2268b414
JK
1093#ifdef HAVE_LIBEXPAT
1094
1095#include "xml-support.h"
1096
1097/* Handle the start of a <library> element. Note: new elements are added
1098 at the tail of the list, keeping the list in order. */
1099
1100static void
1101library_list_start_library (struct gdb_xml_parser *parser,
1102 const struct gdb_xml_element *element,
4d0fdd9b
SM
1103 void *user_data,
1104 std::vector<gdb_xml_value> &attributes)
2268b414 1105{
19ba03f4
SM
1106 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1107 const char *name
4d0fdd9b 1108 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
19ba03f4 1109 ULONGEST *lmp
4d0fdd9b 1110 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
19ba03f4 1111 ULONGEST *l_addrp
4d0fdd9b 1112 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
19ba03f4 1113 ULONGEST *l_ldp
4d0fdd9b 1114 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
2268b414
JK
1115 struct so_list *new_elem;
1116
41bf6aca 1117 new_elem = XCNEW (struct so_list);
76e75227 1118 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1119 new_elem->lm_info = li;
1120 li->lm_addr = *lmp;
1121 li->l_addr_inferior = *l_addrp;
1122 li->l_ld = *l_ldp;
2268b414
JK
1123
1124 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1125 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1126 strcpy (new_elem->so_original_name, new_elem->so_name);
1127
1128 *list->tailp = new_elem;
1129 list->tailp = &new_elem->next;
1130}
1131
1132/* Handle the start of a <library-list-svr4> element. */
1133
1134static void
1135svr4_library_list_start_list (struct gdb_xml_parser *parser,
1136 const struct gdb_xml_element *element,
4d0fdd9b
SM
1137 void *user_data,
1138 std::vector<gdb_xml_value> &attributes)
2268b414 1139{
19ba03f4
SM
1140 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1141 const char *version
4d0fdd9b 1142 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
2268b414
JK
1143 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1144
1145 if (strcmp (version, "1.0") != 0)
1146 gdb_xml_error (parser,
1147 _("SVR4 Library list has unsupported version \"%s\""),
1148 version);
1149
1150 if (main_lm)
4d0fdd9b 1151 list->main_lm = *(ULONGEST *) main_lm->value.get ();
2268b414
JK
1152}
1153
1154/* The allowed elements and attributes for an XML library list.
1155 The root element is a <library-list>. */
1156
1157static const struct gdb_xml_attribute svr4_library_attributes[] =
1158{
1159 { "name", GDB_XML_AF_NONE, NULL, NULL },
1160 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1161 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1162 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1163 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1164};
1165
1166static const struct gdb_xml_element svr4_library_list_children[] =
1167{
1168 {
1169 "library", svr4_library_attributes, NULL,
1170 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1171 library_list_start_library, NULL
1172 },
1173 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1174};
1175
1176static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1177{
1178 { "version", GDB_XML_AF_NONE, NULL, NULL },
1179 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1180 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1181};
1182
1183static const struct gdb_xml_element svr4_library_list_elements[] =
1184{
1185 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1186 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1187 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1188};
1189
2268b414
JK
1190/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1191
1192 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1193 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1194 empty, caller is responsible for freeing all its entries. */
1195
1196static int
1197svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1198{
2b6ff1c0
TT
1199 auto cleanup = make_scope_exit ([&] ()
1200 {
1201 svr4_free_library_list (&list->head);
1202 });
2268b414
JK
1203
1204 memset (list, 0, sizeof (*list));
1205 list->tailp = &list->head;
2eca4a8d 1206 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1207 svr4_library_list_elements, document, list) == 0)
1208 {
1209 /* Parsed successfully, keep the result. */
2b6ff1c0 1210 cleanup.release ();
2268b414
JK
1211 return 1;
1212 }
1213
2268b414
JK
1214 return 0;
1215}
1216
f9e14852 1217/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1218
1219 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1220 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1221 empty, caller is responsible for freeing all its entries.
1222
1223 Note that ANNEX must be NULL if the remote does not explicitly allow
1224 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1225 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1226
1227static int
f9e14852
GB
1228svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1229 const char *annex)
2268b414 1230{
f9e14852
GB
1231 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1232
2268b414 1233 /* Fetch the list of shared libraries. */
9018be22 1234 gdb::optional<gdb::char_vector> svr4_library_document
8b88a78e 1235 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
b7b030ad 1236 annex);
9018be22 1237 if (!svr4_library_document)
2268b414
JK
1238 return 0;
1239
9018be22 1240 return svr4_parse_libraries (svr4_library_document->data (), list);
2268b414
JK
1241}
1242
1243#else
1244
1245static int
f9e14852
GB
1246svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1247 const char *annex)
2268b414
JK
1248{
1249 return 0;
1250}
1251
1252#endif
1253
34439770
DJ
1254/* If no shared library information is available from the dynamic
1255 linker, build a fallback list from other sources. */
1256
1257static struct so_list *
1258svr4_default_sos (void)
1259{
6c95b8df 1260 struct svr4_info *info = get_svr4_info ();
fe978cb0 1261 struct so_list *newobj;
1a816a87 1262
8e5c319d
JK
1263 if (!info->debug_loader_offset_p)
1264 return NULL;
34439770 1265
fe978cb0 1266 newobj = XCNEW (struct so_list);
76e75227 1267 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1268 newobj->lm_info = li;
34439770 1269
3957565a 1270 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1271 li->l_addr = info->debug_loader_offset;
1272 li->l_addr_p = 1;
34439770 1273
fe978cb0
PA
1274 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1275 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1276 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1277
fe978cb0 1278 return newobj;
34439770
DJ
1279}
1280
f9e14852
GB
1281/* Read the whole inferior libraries chain starting at address LM.
1282 Expect the first entry in the chain's previous entry to be PREV_LM.
1283 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1284 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1285 to it. Returns nonzero upon success. If zero is returned the
1286 entries stored to LINK_PTR_PTR are still valid although they may
1287 represent only part of the inferior library list. */
13437d4b 1288
f9e14852
GB
1289static int
1290svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1291 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1292{
c725e7b6 1293 CORE_ADDR first_l_name = 0;
f9e14852 1294 CORE_ADDR next_lm;
13437d4b 1295
cb08cc53 1296 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1297 {
cb08cc53 1298 int errcode;
e83e4e24 1299 gdb::unique_xmalloc_ptr<char> buffer;
13437d4b 1300
b3bc8453 1301 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1302
a7961323 1303 lm_info_svr4 *li = lm_info_read (lm).release ();
d0e449a1
SM
1304 newobj->lm_info = li;
1305 if (li == NULL)
b3bc8453 1306 return 0;
13437d4b 1307
d0e449a1 1308 next_lm = li->l_next;
492928e4 1309
d0e449a1 1310 if (li->l_prev != prev_lm)
492928e4 1311 {
2268b414 1312 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1313 paddress (target_gdbarch (), prev_lm),
d0e449a1 1314 paddress (target_gdbarch (), li->l_prev));
f9e14852 1315 return 0;
492928e4 1316 }
13437d4b
KB
1317
1318 /* For SVR4 versions, the first entry in the link map is for the
1319 inferior executable, so we must ignore it. For some versions of
1320 SVR4, it has no name. For others (Solaris 2.3 for example), it
1321 does have a name, so we can no longer use a missing name to
c378eb4e 1322 decide when to ignore it. */
d0e449a1 1323 if (ignore_first && li->l_prev == 0)
93a57060 1324 {
cb08cc53
JK
1325 struct svr4_info *info = get_svr4_info ();
1326
d0e449a1
SM
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
cb08cc53 1329 continue;
93a57060 1330 }
13437d4b 1331
cb08cc53 1332 /* Extract this shared object's name. */
d0e449a1
SM
1333 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1334 &errcode);
cb08cc53
JK
1335 if (errcode != 0)
1336 {
7d760051
UW
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
d0e449a1 1341 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1342 warning (_("Can't read pathname for load map: %s."),
1343 safe_strerror (errcode));
cb08cc53 1344 continue;
13437d4b
KB
1345 }
1346
e83e4e24 1347 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
fe978cb0
PA
1348 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1349 strcpy (newobj->so_original_name, newobj->so_name);
492928e4 1350
cb08cc53
JK
1351 /* If this entry has no name, or its name matches the name
1352 for the main executable, don't include it in the list. */
fe978cb0 1353 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1354 continue;
e4cd0d6a 1355
fe978cb0 1356 newobj->next = 0;
b3bc8453
TT
1357 /* Don't free it now. */
1358 **link_ptr_ptr = newobj.release ();
1359 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1360 }
f9e14852
GB
1361
1362 return 1;
cb08cc53
JK
1363}
1364
f9e14852
GB
1365/* Read the full list of currently loaded shared objects directly
1366 from the inferior, without referring to any libraries read and
1367 stored by the probes interface. Handle special cases relating
1368 to the first elements of the list. */
cb08cc53
JK
1369
1370static struct so_list *
f9e14852 1371svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1372{
1373 CORE_ADDR lm;
1374 struct so_list *head = NULL;
1375 struct so_list **link_ptr = &head;
cb08cc53 1376 int ignore_first;
2268b414
JK
1377 struct svr4_library_list library_list;
1378
0c5bf5a9
JK
1379 /* Fall back to manual examination of the target if the packet is not
1380 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1381 tests a case where gdbserver cannot find the shared libraries list while
1382 GDB itself is able to find it via SYMFILE_OBJFILE.
1383
1384 Unfortunately statically linked inferiors will also fall back through this
1385 suboptimal code path. */
1386
f9e14852
GB
1387 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1388 NULL);
1389 if (info->using_xfer)
2268b414
JK
1390 {
1391 if (library_list.main_lm)
f9e14852 1392 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1393
1394 return library_list.head ? library_list.head : svr4_default_sos ();
1395 }
cb08cc53 1396
cb08cc53
JK
1397 /* Always locate the debug struct, in case it has moved. */
1398 info->debug_base = 0;
1399 locate_base (info);
1400
1401 /* If we can't find the dynamic linker's base structure, this
1402 must not be a dynamically linked executable. Hmm. */
1403 if (! info->debug_base)
1404 return svr4_default_sos ();
1405
1406 /* Assume that everything is a library if the dynamic loader was loaded
1407 late by a static executable. */
1408 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1409 ignore_first = 0;
1410 else
1411 ignore_first = 1;
1412
2b6ff1c0
TT
1413 auto cleanup = make_scope_exit ([&] ()
1414 {
1415 svr4_free_library_list (&head);
1416 });
cb08cc53
JK
1417
1418 /* Walk the inferior's link map list, and build our list of
1419 `struct so_list' nodes. */
1420 lm = solib_svr4_r_map (info);
1421 if (lm)
f9e14852 1422 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1423
1424 /* On Solaris, the dynamic linker is not in the normal list of
1425 shared objects, so make sure we pick it up too. Having
1426 symbol information for the dynamic linker is quite crucial
1427 for skipping dynamic linker resolver code. */
1428 lm = solib_svr4_r_ldsomap (info);
1429 if (lm)
f9e14852 1430 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53 1431
2b6ff1c0 1432 cleanup.release ();
13437d4b 1433
34439770
DJ
1434 if (head == NULL)
1435 return svr4_default_sos ();
1436
13437d4b
KB
1437 return head;
1438}
1439
8b9a549d
PA
1440/* Implement the main part of the "current_sos" target_so_ops
1441 method. */
f9e14852
GB
1442
1443static struct so_list *
8b9a549d 1444svr4_current_sos_1 (void)
f9e14852
GB
1445{
1446 struct svr4_info *info = get_svr4_info ();
1447
1448 /* If the solib list has been read and stored by the probes
1449 interface then we return a copy of the stored list. */
1450 if (info->solib_list != NULL)
1451 return svr4_copy_library_list (info->solib_list);
1452
1453 /* Otherwise obtain the solib list directly from the inferior. */
1454 return svr4_current_sos_direct (info);
1455}
1456
8b9a549d
PA
1457/* Implement the "current_sos" target_so_ops method. */
1458
1459static struct so_list *
1460svr4_current_sos (void)
1461{
1462 struct so_list *so_head = svr4_current_sos_1 ();
1463 struct mem_range vsyscall_range;
1464
1465 /* Filter out the vDSO module, if present. Its symbol file would
1466 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1467 managed by symfile-mem.c:add_vsyscall_page. */
1468 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1469 && vsyscall_range.length != 0)
1470 {
1471 struct so_list **sop;
1472
1473 sop = &so_head;
1474 while (*sop != NULL)
1475 {
1476 struct so_list *so = *sop;
1477
1478 /* We can't simply match the vDSO by starting address alone,
1479 because lm_info->l_addr_inferior (and also l_addr) do not
1480 necessarily represent the real starting address of the
1481 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1482 field (the ".dynamic" section of the shared object)
1483 always points at the absolute/resolved address though.
1484 So check whether that address is inside the vDSO's
1485 mapping instead.
1486
1487 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1488 0-based ELF, and we see:
1489
1490 (gdb) info auxv
1491 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1492 (gdb) p/x *_r_debug.r_map.l_next
1493 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1494
1495 And on Linux 2.6.32 (x86_64) we see:
1496
1497 (gdb) info auxv
1498 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1499 (gdb) p/x *_r_debug.r_map.l_next
1500 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1501
1502 Dumping that vDSO shows:
1503
1504 (gdb) info proc mappings
1505 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1506 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1507 # readelf -Wa vdso.bin
1508 [...]
1509 Entry point address: 0xffffffffff700700
1510 [...]
1511 Section Headers:
1512 [Nr] Name Type Address Off Size
1513 [ 0] NULL 0000000000000000 000000 000000
1514 [ 1] .hash HASH ffffffffff700120 000120 000038
1515 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1516 [...]
1517 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1518 */
d0e449a1
SM
1519
1520 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1521
1522 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1523 {
1524 *sop = so->next;
1525 free_so (so);
1526 break;
1527 }
1528
1529 sop = &so->next;
1530 }
1531 }
1532
1533 return so_head;
1534}
1535
93a57060 1536/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1537
1538CORE_ADDR
1539svr4_fetch_objfile_link_map (struct objfile *objfile)
1540{
93a57060 1541 struct so_list *so;
6c95b8df 1542 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1543
93a57060 1544 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1545 if (info->main_lm_addr == 0)
e696b3ad 1546 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1547
93a57060
DJ
1548 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1549 if (objfile == symfile_objfile)
1a816a87 1550 return info->main_lm_addr;
93a57060 1551
df22c1e5
JB
1552 /* If OBJFILE is a separate debug object file, look for the
1553 original object file. */
1554 if (objfile->separate_debug_objfile_backlink != NULL)
1555 objfile = objfile->separate_debug_objfile_backlink;
1556
93a57060
DJ
1557 /* The other link map addresses may be found by examining the list
1558 of shared libraries. */
1559 for (so = master_so_list (); so; so = so->next)
1560 if (so->objfile == objfile)
d0e449a1
SM
1561 {
1562 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1563
1564 return li->lm_addr;
1565 }
93a57060
DJ
1566
1567 /* Not found! */
bc4a16ae
EZ
1568 return 0;
1569}
13437d4b
KB
1570
1571/* On some systems, the only way to recognize the link map entry for
1572 the main executable file is by looking at its name. Return
1573 non-zero iff SONAME matches one of the known main executable names. */
1574
1575static int
bc043ef3 1576match_main (const char *soname)
13437d4b 1577{
bc043ef3 1578 const char * const *mainp;
13437d4b
KB
1579
1580 for (mainp = main_name_list; *mainp != NULL; mainp++)
1581 {
1582 if (strcmp (soname, *mainp) == 0)
1583 return (1);
1584 }
1585
1586 return (0);
1587}
1588
13437d4b
KB
1589/* Return 1 if PC lies in the dynamic symbol resolution code of the
1590 SVR4 run time loader. */
13437d4b 1591
7d522c90 1592int
d7fa2ae2 1593svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1594{
6c95b8df
PA
1595 struct svr4_info *info = get_svr4_info ();
1596
1597 return ((pc >= info->interp_text_sect_low
1598 && pc < info->interp_text_sect_high)
1599 || (pc >= info->interp_plt_sect_low
1600 && pc < info->interp_plt_sect_high)
3e5d3a5a 1601 || in_plt_section (pc)
0875794a 1602 || in_gnu_ifunc_stub (pc));
13437d4b 1603}
13437d4b 1604
2f4950cd
AC
1605/* Given an executable's ABFD and target, compute the entry-point
1606 address. */
1607
1608static CORE_ADDR
1609exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1610{
8c2b9656
YQ
1611 CORE_ADDR addr;
1612
2f4950cd
AC
1613 /* KevinB wrote ... for most targets, the address returned by
1614 bfd_get_start_address() is the entry point for the start
1615 function. But, for some targets, bfd_get_start_address() returns
1616 the address of a function descriptor from which the entry point
1617 address may be extracted. This address is extracted by
1618 gdbarch_convert_from_func_ptr_addr(). The method
1619 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1620 function for targets which don't use function descriptors. */
8c2b9656 1621 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1622 bfd_get_start_address (abfd),
1623 targ);
8c2b9656 1624 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1625}
13437d4b 1626
f9e14852
GB
1627/* A probe and its associated action. */
1628
1629struct probe_and_action
1630{
1631 /* The probe. */
935676c9 1632 probe *prob;
f9e14852 1633
729662a5
TT
1634 /* The relocated address of the probe. */
1635 CORE_ADDR address;
1636
f9e14852
GB
1637 /* The action. */
1638 enum probe_action action;
1639};
1640
1641/* Returns a hash code for the probe_and_action referenced by p. */
1642
1643static hashval_t
1644hash_probe_and_action (const void *p)
1645{
19ba03f4 1646 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1647
729662a5 1648 return (hashval_t) pa->address;
f9e14852
GB
1649}
1650
1651/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1652 are equal. */
1653
1654static int
1655equal_probe_and_action (const void *p1, const void *p2)
1656{
19ba03f4
SM
1657 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1658 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1659
729662a5 1660 return pa1->address == pa2->address;
f9e14852
GB
1661}
1662
1663/* Register a solib event probe and its associated action in the
1664 probes table. */
1665
1666static void
935676c9 1667register_solib_event_probe (probe *prob, CORE_ADDR address,
729662a5 1668 enum probe_action action)
f9e14852
GB
1669{
1670 struct svr4_info *info = get_svr4_info ();
1671 struct probe_and_action lookup, *pa;
1672 void **slot;
1673
1674 /* Create the probes table, if necessary. */
1675 if (info->probes_table == NULL)
1676 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1677 equal_probe_and_action,
1678 xfree, xcalloc, xfree);
1679
935676c9 1680 lookup.prob = prob;
729662a5 1681 lookup.address = address;
f9e14852
GB
1682 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1683 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1684
1685 pa = XCNEW (struct probe_and_action);
935676c9 1686 pa->prob = prob;
729662a5 1687 pa->address = address;
f9e14852
GB
1688 pa->action = action;
1689
1690 *slot = pa;
1691}
1692
1693/* Get the solib event probe at the specified location, and the
1694 action associated with it. Returns NULL if no solib event probe
1695 was found. */
1696
1697static struct probe_and_action *
1698solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1699{
f9e14852
GB
1700 struct probe_and_action lookup;
1701 void **slot;
1702
729662a5 1703 lookup.address = address;
f9e14852
GB
1704 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1705
1706 if (slot == NULL)
1707 return NULL;
1708
1709 return (struct probe_and_action *) *slot;
1710}
1711
1712/* Decide what action to take when the specified solib event probe is
1713 hit. */
1714
1715static enum probe_action
1716solib_event_probe_action (struct probe_and_action *pa)
1717{
1718 enum probe_action action;
73c6b475 1719 unsigned probe_argc = 0;
08a6411c 1720 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1721
1722 action = pa->action;
1723 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1724 return action;
1725
1726 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1727
1728 /* Check that an appropriate number of arguments has been supplied.
1729 We expect:
1730 arg0: Lmid_t lmid (mandatory)
1731 arg1: struct r_debug *debug_base (mandatory)
1732 arg2: struct link_map *new (optional, for incremental updates) */
a70b8144 1733 try
3bd7e5b7 1734 {
935676c9 1735 probe_argc = pa->prob->get_argument_count (frame);
3bd7e5b7 1736 }
230d2906 1737 catch (const gdb_exception_error &ex)
3bd7e5b7
SDJ
1738 {
1739 exception_print (gdb_stderr, ex);
1740 probe_argc = 0;
1741 }
3bd7e5b7 1742
935676c9
SDJ
1743 /* If get_argument_count throws an exception, probe_argc will be set
1744 to zero. However, if pa->prob does not have arguments, then
1745 get_argument_count will succeed but probe_argc will also be zero.
1746 Both cases happen because of different things, but they are
1747 treated equally here: action will be set to
3bd7e5b7 1748 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1749 if (probe_argc == 2)
1750 action = FULL_RELOAD;
1751 else if (probe_argc < 2)
1752 action = PROBES_INTERFACE_FAILED;
1753
1754 return action;
1755}
1756
1757/* Populate the shared object list by reading the entire list of
1758 shared objects from the inferior. Handle special cases relating
1759 to the first elements of the list. Returns nonzero on success. */
1760
1761static int
1762solist_update_full (struct svr4_info *info)
1763{
1764 free_solib_list (info);
1765 info->solib_list = svr4_current_sos_direct (info);
1766
1767 return 1;
1768}
1769
1770/* Update the shared object list starting from the link-map entry
1771 passed by the linker in the probe's third argument. Returns
1772 nonzero if the list was successfully updated, or zero to indicate
1773 failure. */
1774
1775static int
1776solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1777{
1778 struct so_list *tail;
1779 CORE_ADDR prev_lm;
1780
1781 /* svr4_current_sos_direct contains logic to handle a number of
1782 special cases relating to the first elements of the list. To
1783 avoid duplicating this logic we defer to solist_update_full
1784 if the list is empty. */
1785 if (info->solib_list == NULL)
1786 return 0;
1787
1788 /* Fall back to a full update if we are using a remote target
1789 that does not support incremental transfers. */
1790 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1791 return 0;
1792
1793 /* Walk to the end of the list. */
1794 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1795 /* Nothing. */;
d0e449a1
SM
1796
1797 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1798 prev_lm = li->lm_addr;
f9e14852
GB
1799
1800 /* Read the new objects. */
1801 if (info->using_xfer)
1802 {
1803 struct svr4_library_list library_list;
1804 char annex[64];
1805
1806 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1807 phex_nz (lm, sizeof (lm)),
1808 phex_nz (prev_lm, sizeof (prev_lm)));
1809 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1810 return 0;
1811
1812 tail->next = library_list.head;
1813 }
1814 else
1815 {
1816 struct so_list **link = &tail->next;
1817
1818 /* IGNORE_FIRST may safely be set to zero here because the
1819 above check and deferral to solist_update_full ensures
1820 that this call to svr4_read_so_list will never see the
1821 first element. */
1822 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1823 return 0;
1824 }
1825
1826 return 1;
1827}
1828
1829/* Disable the probes-based linker interface and revert to the
1830 original interface. We don't reset the breakpoints as the
1831 ones set up for the probes-based interface are adequate. */
1832
1833static void
d01c5877 1834disable_probes_interface ()
f9e14852
GB
1835{
1836 struct svr4_info *info = get_svr4_info ();
1837
1838 warning (_("Probes-based dynamic linker interface failed.\n"
1839 "Reverting to original interface.\n"));
1840
1841 free_probes_table (info);
1842 free_solib_list (info);
1843}
1844
1845/* Update the solib list as appropriate when using the
1846 probes-based linker interface. Do nothing if using the
1847 standard interface. */
1848
1849static void
1850svr4_handle_solib_event (void)
1851{
1852 struct svr4_info *info = get_svr4_info ();
1853 struct probe_and_action *pa;
1854 enum probe_action action;
ad1c917a 1855 struct value *val = NULL;
f9e14852 1856 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1857 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1858
1859 /* Do nothing if not using the probes interface. */
1860 if (info->probes_table == NULL)
1861 return;
1862
1863 /* If anything goes wrong we revert to the original linker
1864 interface. */
d01c5877 1865 auto cleanup = make_scope_exit (disable_probes_interface);
f9e14852
GB
1866
1867 pc = regcache_read_pc (get_current_regcache ());
1868 pa = solib_event_probe_at (info, pc);
1869 if (pa == NULL)
d01c5877 1870 return;
f9e14852
GB
1871
1872 action = solib_event_probe_action (pa);
1873 if (action == PROBES_INTERFACE_FAILED)
d01c5877 1874 return;
f9e14852
GB
1875
1876 if (action == DO_NOTHING)
1877 {
d01c5877 1878 cleanup.release ();
f9e14852
GB
1879 return;
1880 }
1881
935676c9 1882 /* evaluate_argument looks up symbols in the dynamic linker
f9e14852
GB
1883 using find_pc_section. find_pc_section is accelerated by a cache
1884 called the section map. The section map is invalidated every
1885 time a shared library is loaded or unloaded, and if the inferior
1886 is generating a lot of shared library events then the section map
1887 will be updated every time svr4_handle_solib_event is called.
1888 We called find_pc_section in svr4_create_solib_event_breakpoints,
1889 so we can guarantee that the dynamic linker's sections are in the
1890 section map. We can therefore inhibit section map updates across
935676c9 1891 these calls to evaluate_argument and save a lot of time. */
06424eac
TT
1892 {
1893 scoped_restore inhibit_updates
1894 = inhibit_section_map_updates (current_program_space);
f9e14852 1895
a70b8144 1896 try
06424eac
TT
1897 {
1898 val = pa->prob->evaluate_argument (1, frame);
1899 }
230d2906 1900 catch (const gdb_exception_error &ex)
06424eac
TT
1901 {
1902 exception_print (gdb_stderr, ex);
1903 val = NULL;
1904 }
f9e14852 1905
06424eac 1906 if (val == NULL)
d01c5877 1907 return;
f9e14852 1908
06424eac
TT
1909 debug_base = value_as_address (val);
1910 if (debug_base == 0)
d01c5877 1911 return;
f9e14852 1912
06424eac
TT
1913 /* Always locate the debug struct, in case it moved. */
1914 info->debug_base = 0;
1915 if (locate_base (info) == 0)
d01c5877 1916 return;
3bd7e5b7 1917
06424eac
TT
1918 /* GDB does not currently support libraries loaded via dlmopen
1919 into namespaces other than the initial one. We must ignore
1920 any namespace other than the initial namespace here until
1921 support for this is added to GDB. */
1922 if (debug_base != info->debug_base)
1923 action = DO_NOTHING;
f9e14852 1924
06424eac
TT
1925 if (action == UPDATE_OR_RELOAD)
1926 {
a70b8144 1927 try
06424eac
TT
1928 {
1929 val = pa->prob->evaluate_argument (2, frame);
1930 }
230d2906 1931 catch (const gdb_exception_error &ex)
06424eac
TT
1932 {
1933 exception_print (gdb_stderr, ex);
06424eac
TT
1934 return;
1935 }
06424eac
TT
1936
1937 if (val != NULL)
1938 lm = value_as_address (val);
1939
1940 if (lm == 0)
1941 action = FULL_RELOAD;
1942 }
f9e14852 1943
06424eac
TT
1944 /* Resume section map updates. Closing the scope is
1945 sufficient. */
1946 }
f9e14852
GB
1947
1948 if (action == UPDATE_OR_RELOAD)
1949 {
1950 if (!solist_update_incremental (info, lm))
1951 action = FULL_RELOAD;
1952 }
1953
1954 if (action == FULL_RELOAD)
1955 {
1956 if (!solist_update_full (info))
d01c5877 1957 return;
f9e14852
GB
1958 }
1959
d01c5877 1960 cleanup.release ();
f9e14852
GB
1961}
1962
1963/* Helper function for svr4_update_solib_event_breakpoints. */
1964
1965static int
1966svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1967{
1968 struct bp_location *loc;
1969
1970 if (b->type != bp_shlib_event)
1971 {
1972 /* Continue iterating. */
1973 return 0;
1974 }
1975
1976 for (loc = b->loc; loc != NULL; loc = loc->next)
1977 {
1978 struct svr4_info *info;
1979 struct probe_and_action *pa;
1980
19ba03f4
SM
1981 info = ((struct svr4_info *)
1982 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
1983 if (info == NULL || info->probes_table == NULL)
1984 continue;
1985
1986 pa = solib_event_probe_at (info, loc->address);
1987 if (pa == NULL)
1988 continue;
1989
1990 if (pa->action == DO_NOTHING)
1991 {
1992 if (b->enable_state == bp_disabled && stop_on_solib_events)
1993 enable_breakpoint (b);
1994 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1995 disable_breakpoint (b);
1996 }
1997
1998 break;
1999 }
2000
2001 /* Continue iterating. */
2002 return 0;
2003}
2004
2005/* Enable or disable optional solib event breakpoints as appropriate.
2006 Called whenever stop_on_solib_events is changed. */
2007
2008static void
2009svr4_update_solib_event_breakpoints (void)
2010{
2011 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2012}
2013
2014/* Create and register solib event breakpoints. PROBES is an array
2015 of NUM_PROBES elements, each of which is vector of probes. A
2016 solib event breakpoint will be created and registered for each
2017 probe. */
2018
2019static void
2020svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
45461e0d 2021 const std::vector<probe *> *probes,
729662a5 2022 struct objfile *objfile)
f9e14852 2023{
45461e0d 2024 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2025 {
2026 enum probe_action action = probe_info[i].action;
f9e14852 2027
45461e0d 2028 for (probe *p : probes[i])
f9e14852 2029 {
935676c9 2030 CORE_ADDR address = p->get_relocated_address (objfile);
729662a5
TT
2031
2032 create_solib_event_breakpoint (gdbarch, address);
45461e0d 2033 register_solib_event_probe (p, address, action);
f9e14852
GB
2034 }
2035 }
2036
2037 svr4_update_solib_event_breakpoints ();
2038}
2039
2040/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2041 before and after mapping and unmapping shared libraries. The sole
2042 purpose of this method is to allow debuggers to set a breakpoint so
2043 they can track these changes.
2044
2045 Some versions of the glibc dynamic linker contain named probes
2046 to allow more fine grained stopping. Given the address of the
2047 original marker function, this function attempts to find these
2048 probes, and if found, sets breakpoints on those instead. If the
2049 probes aren't found, a single breakpoint is set on the original
2050 marker function. */
2051
2052static void
2053svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2054 CORE_ADDR address)
2055{
2056 struct obj_section *os;
2057
2058 os = find_pc_section (address);
2059 if (os != NULL)
2060 {
2061 int with_prefix;
2062
2063 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2064 {
45461e0d 2065 std::vector<probe *> probes[NUM_PROBES];
f9e14852 2066 int all_probes_found = 1;
25f9533e 2067 int checked_can_use_probe_arguments = 0;
f9e14852 2068
45461e0d 2069 for (int i = 0; i < NUM_PROBES; i++)
f9e14852
GB
2070 {
2071 const char *name = probe_info[i].name;
935676c9 2072 probe *p;
f9e14852
GB
2073 char buf[32];
2074
2075 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2076 shipped with an early version of the probes code in
2077 which the probes' names were prefixed with "rtld_"
2078 and the "map_failed" probe did not exist. The
2079 locations of the probes are otherwise the same, so
2080 we check for probes with prefixed names if probes
2081 with unprefixed names are not present. */
2082 if (with_prefix)
2083 {
2084 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2085 name = buf;
2086 }
2087
2088 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2089
2090 /* The "map_failed" probe did not exist in early
2091 versions of the probes code in which the probes'
2092 names were prefixed with "rtld_". */
2093 if (strcmp (name, "rtld_map_failed") == 0)
2094 continue;
2095
45461e0d 2096 if (probes[i].empty ())
f9e14852
GB
2097 {
2098 all_probes_found = 0;
2099 break;
2100 }
25f9533e
SDJ
2101
2102 /* Ensure probe arguments can be evaluated. */
2103 if (!checked_can_use_probe_arguments)
2104 {
45461e0d 2105 p = probes[i][0];
935676c9 2106 if (!p->can_evaluate_arguments ())
25f9533e
SDJ
2107 {
2108 all_probes_found = 0;
2109 break;
2110 }
2111 checked_can_use_probe_arguments = 1;
2112 }
f9e14852
GB
2113 }
2114
2115 if (all_probes_found)
729662a5 2116 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852 2117
f9e14852
GB
2118 if (all_probes_found)
2119 return;
2120 }
2121 }
2122
2123 create_solib_event_breakpoint (gdbarch, address);
2124}
2125
cb457ae2
YQ
2126/* Helper function for gdb_bfd_lookup_symbol. */
2127
2128static int
3953f15c 2129cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2130{
2131 return (strcmp (sym->name, (const char *) data) == 0
2132 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2133}
7f86f058 2134/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2135
2136 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2137 debugger interface, support for arranging for the inferior to hit
2138 a breakpoint after mapping in the shared libraries. This function
2139 enables that breakpoint.
2140
2141 For SunOS, there is a special flag location (in_debugger) which we
2142 set to 1. When the dynamic linker sees this flag set, it will set
2143 a breakpoint at a location known only to itself, after saving the
2144 original contents of that place and the breakpoint address itself,
2145 in it's own internal structures. When we resume the inferior, it
2146 will eventually take a SIGTRAP when it runs into the breakpoint.
2147 We handle this (in a different place) by restoring the contents of
2148 the breakpointed location (which is only known after it stops),
2149 chasing around to locate the shared libraries that have been
2150 loaded, then resuming.
2151
2152 For SVR4, the debugger interface structure contains a member (r_brk)
2153 which is statically initialized at the time the shared library is
2154 built, to the offset of a function (_r_debug_state) which is guaran-
2155 teed to be called once before mapping in a library, and again when
2156 the mapping is complete. At the time we are examining this member,
2157 it contains only the unrelocated offset of the function, so we have
2158 to do our own relocation. Later, when the dynamic linker actually
2159 runs, it relocates r_brk to be the actual address of _r_debug_state().
2160
2161 The debugger interface structure also contains an enumeration which
2162 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2163 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2164 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2165
2166static int
268a4a75 2167enable_break (struct svr4_info *info, int from_tty)
13437d4b 2168{
3b7344d5 2169 struct bound_minimal_symbol msymbol;
bc043ef3 2170 const char * const *bkpt_namep;
13437d4b 2171 asection *interp_sect;
7cd25cfc 2172 CORE_ADDR sym_addr;
13437d4b 2173
6c95b8df
PA
2174 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2175 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2176
7cd25cfc
DJ
2177 /* If we already have a shared library list in the target, and
2178 r_debug contains r_brk, set the breakpoint there - this should
2179 mean r_brk has already been relocated. Assume the dynamic linker
2180 is the object containing r_brk. */
2181
e696b3ad 2182 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2183 sym_addr = 0;
1a816a87
PA
2184 if (info->debug_base && solib_svr4_r_map (info) != 0)
2185 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2186
2187 if (sym_addr != 0)
2188 {
2189 struct obj_section *os;
2190
b36ec657 2191 sym_addr = gdbarch_addr_bits_remove
8b88a78e
PA
2192 (target_gdbarch (),
2193 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2194 sym_addr,
2195 current_top_target ()));
b36ec657 2196
48379de6
DE
2197 /* On at least some versions of Solaris there's a dynamic relocation
2198 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2199 we get control before the dynamic linker has self-relocated.
2200 Check if SYM_ADDR is in a known section, if it is assume we can
2201 trust its value. This is just a heuristic though, it could go away
2202 or be replaced if it's getting in the way.
2203
2204 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2205 however it's spelled in your particular system) is ARM or Thumb.
2206 That knowledge is encoded in the address, if it's Thumb the low bit
2207 is 1. However, we've stripped that info above and it's not clear
2208 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2209 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2210 find_pc_section verifies we know about the address and have some
2211 hope of computing the right kind of breakpoint to use (via
2212 symbol info). It does mean that GDB needs to be pointed at a
2213 non-stripped version of the dynamic linker in order to obtain
2214 information it already knows about. Sigh. */
2215
7cd25cfc
DJ
2216 os = find_pc_section (sym_addr);
2217 if (os != NULL)
2218 {
2219 /* Record the relocated start and end address of the dynamic linker
2220 text and plt section for svr4_in_dynsym_resolve_code. */
2221 bfd *tmp_bfd;
2222 CORE_ADDR load_addr;
2223
2224 tmp_bfd = os->objfile->obfd;
2225 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2226 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2227
2228 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2229 if (interp_sect)
2230 {
6c95b8df 2231 info->interp_text_sect_low =
7cd25cfc 2232 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2233 info->interp_text_sect_high =
2234 info->interp_text_sect_low
2235 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2236 }
2237 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2238 if (interp_sect)
2239 {
6c95b8df 2240 info->interp_plt_sect_low =
7cd25cfc 2241 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2242 info->interp_plt_sect_high =
2243 info->interp_plt_sect_low
2244 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2245 }
2246
f9e14852 2247 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2248 return 1;
2249 }
2250 }
2251
97ec2c2f 2252 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2253 into the old breakpoint at symbol code. */
17658d46
SM
2254 gdb::optional<gdb::byte_vector> interp_name_holder
2255 = find_program_interpreter ();
2256 if (interp_name_holder)
13437d4b 2257 {
17658d46 2258 const char *interp_name = (const char *) interp_name_holder->data ();
8ad2fcde
KB
2259 CORE_ADDR load_addr = 0;
2260 int load_addr_found = 0;
2ec9a4f8 2261 int loader_found_in_list = 0;
f8766ec1 2262 struct so_list *so;
2f4950cd 2263 struct target_ops *tmp_bfd_target;
13437d4b 2264
7cd25cfc 2265 sym_addr = 0;
13437d4b
KB
2266
2267 /* Now we need to figure out where the dynamic linker was
2268 loaded so that we can load its symbols and place a breakpoint
2269 in the dynamic linker itself.
2270
2271 This address is stored on the stack. However, I've been unable
2272 to find any magic formula to find it for Solaris (appears to
2273 be trivial on GNU/Linux). Therefore, we have to try an alternate
2274 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2275
192b62ce 2276 gdb_bfd_ref_ptr tmp_bfd;
a70b8144 2277 try
f1838a98 2278 {
97ec2c2f 2279 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2280 }
230d2906 2281 catch (const gdb_exception &ex)
492d29ea
PA
2282 {
2283 }
492d29ea 2284
13437d4b
KB
2285 if (tmp_bfd == NULL)
2286 goto bkpt_at_symbol;
2287
2f4950cd 2288 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2289 well as BFD operations can be used. target_bfd_reopen
2290 acquires its own reference. */
2291 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2292
f8766ec1
KB
2293 /* On a running target, we can get the dynamic linker's base
2294 address from the shared library table. */
f8766ec1
KB
2295 so = master_so_list ();
2296 while (so)
8ad2fcde 2297 {
97ec2c2f 2298 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2299 {
2300 load_addr_found = 1;
2ec9a4f8 2301 loader_found_in_list = 1;
192b62ce 2302 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2303 break;
2304 }
f8766ec1 2305 so = so->next;
8ad2fcde
KB
2306 }
2307
8d4e36ba
JB
2308 /* If we were not able to find the base address of the loader
2309 from our so_list, then try using the AT_BASE auxilliary entry. */
2310 if (!load_addr_found)
8b88a78e 2311 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
ad3a0e5b 2312 {
f5656ead 2313 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2314
2315 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2316 that `+ load_addr' will overflow CORE_ADDR width not creating
2317 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2318 GDB. */
2319
d182d057 2320 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2321 {
d182d057 2322 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2323 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2324 tmp_bfd_target);
2325
2326 gdb_assert (load_addr < space_size);
2327
2328 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2329 64bit ld.so with 32bit executable, it should not happen. */
2330
2331 if (tmp_entry_point < space_size
2332 && tmp_entry_point + load_addr >= space_size)
2333 load_addr -= space_size;
2334 }
2335
2336 load_addr_found = 1;
2337 }
8d4e36ba 2338
8ad2fcde
KB
2339 /* Otherwise we find the dynamic linker's base address by examining
2340 the current pc (which should point at the entry point for the
8d4e36ba
JB
2341 dynamic linker) and subtracting the offset of the entry point.
2342
2343 This is more fragile than the previous approaches, but is a good
2344 fallback method because it has actually been working well in
2345 most cases. */
8ad2fcde 2346 if (!load_addr_found)
fb14de7b 2347 {
c2250ad1 2348 struct regcache *regcache
f5656ead 2349 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2350
fb14de7b 2351 load_addr = (regcache_read_pc (regcache)
192b62ce 2352 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2353 }
2ec9a4f8
DJ
2354
2355 if (!loader_found_in_list)
34439770 2356 {
1a816a87
PA
2357 info->debug_loader_name = xstrdup (interp_name);
2358 info->debug_loader_offset_p = 1;
2359 info->debug_loader_offset = load_addr;
e696b3ad 2360 solib_add (NULL, from_tty, auto_solib_add);
34439770 2361 }
13437d4b
KB
2362
2363 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2364 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2365 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2366 if (interp_sect)
2367 {
6c95b8df 2368 info->interp_text_sect_low =
192b62ce 2369 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2370 info->interp_text_sect_high =
2371 info->interp_text_sect_low
192b62ce 2372 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2373 }
192b62ce 2374 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2375 if (interp_sect)
2376 {
6c95b8df 2377 info->interp_plt_sect_low =
192b62ce 2378 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2379 info->interp_plt_sect_high =
2380 info->interp_plt_sect_low
192b62ce 2381 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2382 }
2383
2384 /* Now try to set a breakpoint in the dynamic linker. */
2385 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2386 {
192b62ce
TT
2387 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2388 cmp_name_and_sec_flags,
3953f15c 2389 *bkpt_namep);
13437d4b
KB
2390 if (sym_addr != 0)
2391 break;
2392 }
2393
2bbe3cc1
DJ
2394 if (sym_addr != 0)
2395 /* Convert 'sym_addr' from a function pointer to an address.
2396 Because we pass tmp_bfd_target instead of the current
2397 target, this will always produce an unrelocated value. */
f5656ead 2398 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2399 sym_addr,
2400 tmp_bfd_target);
2401
695c3173
TT
2402 /* We're done with both the temporary bfd and target. Closing
2403 the target closes the underlying bfd, because it holds the
2404 only remaining reference. */
460014f5 2405 target_close (tmp_bfd_target);
13437d4b
KB
2406
2407 if (sym_addr != 0)
2408 {
f9e14852
GB
2409 svr4_create_solib_event_breakpoints (target_gdbarch (),
2410 load_addr + sym_addr);
13437d4b
KB
2411 return 1;
2412 }
2413
2414 /* For whatever reason we couldn't set a breakpoint in the dynamic
2415 linker. Warn and drop into the old code. */
2416 bkpt_at_symbol:
82d03102
PG
2417 warning (_("Unable to find dynamic linker breakpoint function.\n"
2418 "GDB will be unable to debug shared library initializers\n"
2419 "and track explicitly loaded dynamic code."));
13437d4b 2420 }
13437d4b 2421
e499d0f1
DJ
2422 /* Scan through the lists of symbols, trying to look up the symbol and
2423 set a breakpoint there. Terminate loop when we/if we succeed. */
2424
2425 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2426 {
2427 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2428 if ((msymbol.minsym != NULL)
77e371c0 2429 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2430 {
77e371c0 2431 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2432 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac 2433 sym_addr,
8b88a78e 2434 current_top_target ());
f9e14852 2435 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2436 return 1;
2437 }
2438 }
13437d4b 2439
17658d46 2440 if (interp_name_holder && !current_inferior ()->attach_flag)
13437d4b 2441 {
c6490bf2 2442 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2443 {
c6490bf2 2444 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2445 if ((msymbol.minsym != NULL)
77e371c0 2446 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2447 {
77e371c0 2448 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2449 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2 2450 sym_addr,
8b88a78e 2451 current_top_target ());
f9e14852 2452 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2453 return 1;
2454 }
13437d4b
KB
2455 }
2456 }
542c95c2 2457 return 0;
13437d4b
KB
2458}
2459
d1012b8e 2460/* Read the ELF program headers from ABFD. */
e2a44558 2461
d1012b8e
SM
2462static gdb::optional<gdb::byte_vector>
2463read_program_headers_from_bfd (bfd *abfd)
e2a44558 2464{
d1012b8e
SM
2465 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2466 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2467 if (phdrs_size == 0)
2468 return {};
09919ac2 2469
d1012b8e 2470 gdb::byte_vector buf (phdrs_size);
09919ac2 2471 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
d1012b8e
SM
2472 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2473 return {};
09919ac2
JK
2474
2475 return buf;
b8040f19
JK
2476}
2477
01c30d6e
JK
2478/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2479 exec_bfd. Otherwise return 0.
2480
2481 We relocate all of the sections by the same amount. This
c378eb4e 2482 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2483 According to the System V Application Binary Interface,
2484 Edition 4.1, page 5-5:
2485
2486 ... Though the system chooses virtual addresses for
2487 individual processes, it maintains the segments' relative
2488 positions. Because position-independent code uses relative
2489 addressesing between segments, the difference between
2490 virtual addresses in memory must match the difference
2491 between virtual addresses in the file. The difference
2492 between the virtual address of any segment in memory and
2493 the corresponding virtual address in the file is thus a
2494 single constant value for any one executable or shared
2495 object in a given process. This difference is the base
2496 address. One use of the base address is to relocate the
2497 memory image of the program during dynamic linking.
2498
2499 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2500 ABI and is left unspecified in some of the earlier editions.
2501
2502 Decide if the objfile needs to be relocated. As indicated above, we will
2503 only be here when execution is stopped. But during attachment PC can be at
2504 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2505 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2506 regcache_read_pc would point to the interpreter and not the main executable.
2507
2508 So, to summarize, relocations are necessary when the start address obtained
2509 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2510
09919ac2
JK
2511 [ The astute reader will note that we also test to make sure that
2512 the executable in question has the DYNAMIC flag set. It is my
2513 opinion that this test is unnecessary (undesirable even). It
2514 was added to avoid inadvertent relocation of an executable
2515 whose e_type member in the ELF header is not ET_DYN. There may
2516 be a time in the future when it is desirable to do relocations
2517 on other types of files as well in which case this condition
2518 should either be removed or modified to accomodate the new file
2519 type. - Kevin, Nov 2000. ] */
b8040f19 2520
01c30d6e
JK
2521static int
2522svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2523{
41752192
JK
2524 /* ENTRY_POINT is a possible function descriptor - before
2525 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2526 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2527
2528 if (exec_bfd == NULL)
2529 return 0;
2530
09919ac2
JK
2531 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2532 being executed themselves and PIE (Position Independent Executable)
2533 executables are ET_DYN. */
2534
2535 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2536 return 0;
2537
8b88a78e 2538 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
09919ac2
JK
2539 return 0;
2540
8f61baf8 2541 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2542
8f61baf8 2543 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2544 alignment. It is cheaper than the program headers comparison below. */
2545
2546 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2547 {
2548 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2549
2550 /* p_align of PT_LOAD segments does not specify any alignment but
2551 only congruency of addresses:
2552 p_offset % p_align == p_vaddr % p_align
2553 Kernel is free to load the executable with lower alignment. */
2554
8f61baf8 2555 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2556 return 0;
2557 }
2558
2559 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2560 comparing their program headers. If the program headers in the auxilliary
2561 vector do not match the program headers in the executable, then we are
2562 looking at a different file than the one used by the kernel - for
2563 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2564
2565 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2566 {
d1012b8e 2567 /* Be optimistic and return 0 only if GDB was able to verify the headers
09919ac2 2568 really do not match. */
0a1e94c7 2569 int arch_size;
09919ac2 2570
17658d46
SM
2571 gdb::optional<gdb::byte_vector> phdrs_target
2572 = read_program_header (-1, &arch_size, NULL);
d1012b8e
SM
2573 gdb::optional<gdb::byte_vector> phdrs_binary
2574 = read_program_headers_from_bfd (exec_bfd);
2575 if (phdrs_target && phdrs_binary)
0a1e94c7 2576 {
f5656ead 2577 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2578
2579 /* We are dealing with three different addresses. EXEC_BFD
2580 represents current address in on-disk file. target memory content
2581 may be different from EXEC_BFD as the file may have been prelinked
2582 to a different address after the executable has been loaded.
2583 Moreover the address of placement in target memory can be
3e43a32a
MS
2584 different from what the program headers in target memory say -
2585 this is the goal of PIE.
0a1e94c7
JK
2586
2587 Detected DISPLACEMENT covers both the offsets of PIE placement and
2588 possible new prelink performed after start of the program. Here
2589 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2590 content offset for the verification purpose. */
2591
d1012b8e 2592 if (phdrs_target->size () != phdrs_binary->size ()
0a1e94c7 2593 || bfd_get_arch_size (exec_bfd) != arch_size)
d1012b8e 2594 return 0;
3e43a32a 2595 else if (arch_size == 32
17658d46
SM
2596 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2597 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
0a1e94c7
JK
2598 {
2599 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2600 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2601 CORE_ADDR displacement = 0;
2602 int i;
2603
2604 /* DISPLACEMENT could be found more easily by the difference of
2605 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2606 already have enough information to compute that displacement
2607 with what we've read. */
2608
2609 for (i = 0; i < ehdr2->e_phnum; i++)
2610 if (phdr2[i].p_type == PT_LOAD)
2611 {
2612 Elf32_External_Phdr *phdrp;
2613 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2614 CORE_ADDR vaddr, paddr;
2615 CORE_ADDR displacement_vaddr = 0;
2616 CORE_ADDR displacement_paddr = 0;
2617
17658d46 2618 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2619 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2620 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2621
2622 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2623 byte_order);
2624 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2625
2626 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2627 byte_order);
2628 displacement_paddr = paddr - phdr2[i].p_paddr;
2629
2630 if (displacement_vaddr == displacement_paddr)
2631 displacement = displacement_vaddr;
2632
2633 break;
2634 }
2635
17658d46
SM
2636 /* Now compare program headers from the target and the binary
2637 with optional DISPLACEMENT. */
0a1e94c7 2638
17658d46
SM
2639 for (i = 0;
2640 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2641 i++)
0a1e94c7
JK
2642 {
2643 Elf32_External_Phdr *phdrp;
2644 Elf32_External_Phdr *phdr2p;
2645 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2646 CORE_ADDR vaddr, paddr;
43b8e241 2647 asection *plt2_asect;
0a1e94c7 2648
17658d46 2649 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2650 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2651 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2652 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2653
2654 /* PT_GNU_STACK is an exception by being never relocated by
2655 prelink as its addresses are always zero. */
2656
2657 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2658 continue;
2659
2660 /* Check also other adjustment combinations - PR 11786. */
2661
3e43a32a
MS
2662 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2663 byte_order);
0a1e94c7
JK
2664 vaddr -= displacement;
2665 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2666
3e43a32a
MS
2667 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2668 byte_order);
0a1e94c7
JK
2669 paddr -= displacement;
2670 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2671
2672 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2673 continue;
2674
204b5331
DE
2675 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2676 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2677 Strip also modifies memsz of PT_TLS.
204b5331 2678 See PR 11786. */
c44deb73
SM
2679 if (phdr2[i].p_type == PT_GNU_RELRO
2680 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2681 {
2682 Elf32_External_Phdr tmp_phdr = *phdrp;
2683 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2684
2685 memset (tmp_phdr.p_filesz, 0, 4);
2686 memset (tmp_phdr.p_memsz, 0, 4);
2687 memset (tmp_phdr.p_flags, 0, 4);
2688 memset (tmp_phdr.p_align, 0, 4);
2689 memset (tmp_phdr2.p_filesz, 0, 4);
2690 memset (tmp_phdr2.p_memsz, 0, 4);
2691 memset (tmp_phdr2.p_flags, 0, 4);
2692 memset (tmp_phdr2.p_align, 0, 4);
2693
2694 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2695 == 0)
2696 continue;
2697 }
2698
43b8e241
JK
2699 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2700 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2701 if (plt2_asect)
2702 {
2703 int content2;
2704 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2705 CORE_ADDR filesz;
2706
2707 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2708 & SEC_HAS_CONTENTS) != 0;
2709
2710 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2711 byte_order);
2712
2713 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2714 FILESZ is from the in-memory image. */
2715 if (content2)
2716 filesz += bfd_get_section_size (plt2_asect);
2717 else
2718 filesz -= bfd_get_section_size (plt2_asect);
2719
2720 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2721 filesz);
2722
2723 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2724 continue;
2725 }
2726
d1012b8e 2727 return 0;
0a1e94c7
JK
2728 }
2729 }
3e43a32a 2730 else if (arch_size == 64
17658d46
SM
2731 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2732 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
0a1e94c7
JK
2733 {
2734 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2735 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2736 CORE_ADDR displacement = 0;
2737 int i;
2738
2739 /* DISPLACEMENT could be found more easily by the difference of
2740 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2741 already have enough information to compute that displacement
2742 with what we've read. */
2743
2744 for (i = 0; i < ehdr2->e_phnum; i++)
2745 if (phdr2[i].p_type == PT_LOAD)
2746 {
2747 Elf64_External_Phdr *phdrp;
2748 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2749 CORE_ADDR vaddr, paddr;
2750 CORE_ADDR displacement_vaddr = 0;
2751 CORE_ADDR displacement_paddr = 0;
2752
17658d46 2753 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2754 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2755 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2756
2757 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2758 byte_order);
2759 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2760
2761 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2762 byte_order);
2763 displacement_paddr = paddr - phdr2[i].p_paddr;
2764
2765 if (displacement_vaddr == displacement_paddr)
2766 displacement = displacement_vaddr;
2767
2768 break;
2769 }
2770
2771 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2772
17658d46
SM
2773 for (i = 0;
2774 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2775 i++)
0a1e94c7
JK
2776 {
2777 Elf64_External_Phdr *phdrp;
2778 Elf64_External_Phdr *phdr2p;
2779 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2780 CORE_ADDR vaddr, paddr;
43b8e241 2781 asection *plt2_asect;
0a1e94c7 2782
17658d46 2783 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
0a1e94c7
JK
2784 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2785 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
d1012b8e 2786 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
0a1e94c7
JK
2787
2788 /* PT_GNU_STACK is an exception by being never relocated by
2789 prelink as its addresses are always zero. */
2790
2791 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2792 continue;
2793
2794 /* Check also other adjustment combinations - PR 11786. */
2795
3e43a32a
MS
2796 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2797 byte_order);
0a1e94c7
JK
2798 vaddr -= displacement;
2799 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2800
3e43a32a
MS
2801 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2802 byte_order);
0a1e94c7
JK
2803 paddr -= displacement;
2804 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2805
2806 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2807 continue;
2808
204b5331
DE
2809 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2810 CentOS-5 has problems with filesz, memsz as well.
be2d111a 2811 Strip also modifies memsz of PT_TLS.
204b5331 2812 See PR 11786. */
c44deb73
SM
2813 if (phdr2[i].p_type == PT_GNU_RELRO
2814 || phdr2[i].p_type == PT_TLS)
204b5331
DE
2815 {
2816 Elf64_External_Phdr tmp_phdr = *phdrp;
2817 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2818
2819 memset (tmp_phdr.p_filesz, 0, 8);
2820 memset (tmp_phdr.p_memsz, 0, 8);
2821 memset (tmp_phdr.p_flags, 0, 4);
2822 memset (tmp_phdr.p_align, 0, 8);
2823 memset (tmp_phdr2.p_filesz, 0, 8);
2824 memset (tmp_phdr2.p_memsz, 0, 8);
2825 memset (tmp_phdr2.p_flags, 0, 4);
2826 memset (tmp_phdr2.p_align, 0, 8);
2827
2828 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2829 == 0)
2830 continue;
2831 }
2832
43b8e241
JK
2833 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2834 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2835 if (plt2_asect)
2836 {
2837 int content2;
2838 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2839 CORE_ADDR filesz;
2840
2841 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2842 & SEC_HAS_CONTENTS) != 0;
2843
2844 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2845 byte_order);
2846
2847 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2848 FILESZ is from the in-memory image. */
2849 if (content2)
2850 filesz += bfd_get_section_size (plt2_asect);
2851 else
2852 filesz -= bfd_get_section_size (plt2_asect);
2853
2854 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2855 filesz);
2856
2857 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2858 continue;
2859 }
2860
d1012b8e 2861 return 0;
0a1e94c7
JK
2862 }
2863 }
2864 else
d1012b8e 2865 return 0;
0a1e94c7 2866 }
09919ac2 2867 }
b8040f19 2868
ccf26247
JK
2869 if (info_verbose)
2870 {
2871 /* It can be printed repeatedly as there is no easy way to check
2872 the executable symbols/file has been already relocated to
2873 displacement. */
2874
2875 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2876 "displacement %s for \"%s\".\n"),
8f61baf8 2877 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2878 bfd_get_filename (exec_bfd));
2879 }
2880
8f61baf8 2881 *displacementp = exec_displacement;
01c30d6e 2882 return 1;
b8040f19
JK
2883}
2884
2885/* Relocate the main executable. This function should be called upon
c378eb4e 2886 stopping the inferior process at the entry point to the program.
b8040f19
JK
2887 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2888 different, the main executable is relocated by the proper amount. */
2889
2890static void
2891svr4_relocate_main_executable (void)
2892{
01c30d6e
JK
2893 CORE_ADDR displacement;
2894
4e5799b6
JK
2895 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2896 probably contains the offsets computed using the PIE displacement
2897 from the previous run, which of course are irrelevant for this run.
2898 So we need to determine the new PIE displacement and recompute the
2899 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2900 already contains pre-computed offsets.
01c30d6e 2901
4e5799b6 2902 If we cannot compute the PIE displacement, either:
01c30d6e 2903
4e5799b6
JK
2904 - The executable is not PIE.
2905
2906 - SYMFILE_OBJFILE does not match the executable started in the target.
2907 This can happen for main executable symbols loaded at the host while
2908 `ld.so --ld-args main-executable' is loaded in the target.
2909
2910 Then we leave the section offsets untouched and use them as is for
2911 this run. Either:
2912
2913 - These section offsets were properly reset earlier, and thus
2914 already contain the correct values. This can happen for instance
2915 when reconnecting via the remote protocol to a target that supports
2916 the `qOffsets' packet.
2917
2918 - The section offsets were not reset earlier, and the best we can
c378eb4e 2919 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2920
2921 if (! svr4_exec_displacement (&displacement))
2922 return;
b8040f19 2923
01c30d6e
JK
2924 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2925 addresses. */
b8040f19
JK
2926
2927 if (symfile_objfile)
e2a44558 2928 {
e2a44558 2929 struct section_offsets *new_offsets;
b8040f19 2930 int i;
e2a44558 2931
224c3ddb
SM
2932 new_offsets = XALLOCAVEC (struct section_offsets,
2933 symfile_objfile->num_sections);
e2a44558 2934
b8040f19
JK
2935 for (i = 0; i < symfile_objfile->num_sections; i++)
2936 new_offsets->offsets[i] = displacement;
e2a44558 2937
b8040f19 2938 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2939 }
51bee8e9
JK
2940 else if (exec_bfd)
2941 {
2942 asection *asect;
2943
2944 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2945 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2946 (bfd_section_vma (exec_bfd, asect)
2947 + displacement));
2948 }
e2a44558
KB
2949}
2950
7f86f058 2951/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2952
2953 For SVR4 executables, this first instruction is either the first
2954 instruction in the dynamic linker (for dynamically linked
2955 executables) or the instruction at "start" for statically linked
2956 executables. For dynamically linked executables, the system
2957 first exec's /lib/libc.so.N, which contains the dynamic linker,
2958 and starts it running. The dynamic linker maps in any needed
2959 shared libraries, maps in the actual user executable, and then
2960 jumps to "start" in the user executable.
2961
7f86f058
PA
2962 We can arrange to cooperate with the dynamic linker to discover the
2963 names of shared libraries that are dynamically linked, and the base
2964 addresses to which they are linked.
13437d4b
KB
2965
2966 This function is responsible for discovering those names and
2967 addresses, and saving sufficient information about them to allow
d2e5c99a 2968 their symbols to be read at a later time. */
13437d4b 2969
e2a44558 2970static void
268a4a75 2971svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2972{
1a816a87
PA
2973 struct svr4_info *info;
2974
6c95b8df 2975 info = get_svr4_info ();
2020b7ab 2976
f9e14852
GB
2977 /* Clear the probes-based interface's state. */
2978 free_probes_table (info);
2979 free_solib_list (info);
2980
e2a44558 2981 /* Relocate the main executable if necessary. */
86e4bafc 2982 svr4_relocate_main_executable ();
e2a44558 2983
c91c8c16
PA
2984 /* No point setting a breakpoint in the dynamic linker if we can't
2985 hit it (e.g., a core file, or a trace file). */
2986 if (!target_has_execution)
2987 return;
2988
d5a921c9 2989 if (!svr4_have_link_map_offsets ())
513f5903 2990 return;
d5a921c9 2991
268a4a75 2992 if (!enable_break (info, from_tty))
542c95c2 2993 return;
13437d4b
KB
2994}
2995
2996static void
2997svr4_clear_solib (void)
2998{
6c95b8df
PA
2999 struct svr4_info *info;
3000
3001 info = get_svr4_info ();
3002 info->debug_base = 0;
3003 info->debug_loader_offset_p = 0;
3004 info->debug_loader_offset = 0;
3005 xfree (info->debug_loader_name);
3006 info->debug_loader_name = NULL;
13437d4b
KB
3007}
3008
6bb7be43
JB
3009/* Clear any bits of ADDR that wouldn't fit in a target-format
3010 data pointer. "Data pointer" here refers to whatever sort of
3011 address the dynamic linker uses to manage its sections. At the
3012 moment, we don't support shared libraries on any processors where
3013 code and data pointers are different sizes.
3014
3015 This isn't really the right solution. What we really need here is
3016 a way to do arithmetic on CORE_ADDR values that respects the
3017 natural pointer/address correspondence. (For example, on the MIPS,
3018 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3019 sign-extend the value. There, simply truncating the bits above
819844ad 3020 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3021 be a new gdbarch method or something. */
3022static CORE_ADDR
3023svr4_truncate_ptr (CORE_ADDR addr)
3024{
f5656ead 3025 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3026 /* We don't need to truncate anything, and the bit twiddling below
3027 will fail due to overflow problems. */
3028 return addr;
3029 else
f5656ead 3030 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3031}
3032
3033
749499cb
KB
3034static void
3035svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3036 struct target_section *sec)
749499cb 3037{
2b2848e2
DE
3038 bfd *abfd = sec->the_bfd_section->owner;
3039
3040 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3041 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3042}
4b188b9f 3043\f
749499cb 3044
4b188b9f 3045/* Architecture-specific operations. */
6bb7be43 3046
4b188b9f
MK
3047/* Per-architecture data key. */
3048static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3049
4b188b9f 3050struct solib_svr4_ops
e5e2b9ff 3051{
4b188b9f
MK
3052 /* Return a description of the layout of `struct link_map'. */
3053 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3054};
e5e2b9ff 3055
4b188b9f 3056/* Return a default for the architecture-specific operations. */
e5e2b9ff 3057
4b188b9f
MK
3058static void *
3059solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3060{
4b188b9f 3061 struct solib_svr4_ops *ops;
e5e2b9ff 3062
4b188b9f 3063 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3064 ops->fetch_link_map_offsets = NULL;
4b188b9f 3065 return ops;
e5e2b9ff
KB
3066}
3067
4b188b9f 3068/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3069 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3070
21479ded 3071void
e5e2b9ff
KB
3072set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3073 struct link_map_offsets *(*flmo) (void))
21479ded 3074{
19ba03f4
SM
3075 struct solib_svr4_ops *ops
3076 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3077
3078 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3079
3080 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3081}
3082
4b188b9f
MK
3083/* Fetch a link_map_offsets structure using the architecture-specific
3084 `struct link_map_offsets' fetcher. */
1c4dcb57 3085
4b188b9f
MK
3086static struct link_map_offsets *
3087svr4_fetch_link_map_offsets (void)
21479ded 3088{
19ba03f4
SM
3089 struct solib_svr4_ops *ops
3090 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3091 solib_svr4_data);
4b188b9f
MK
3092
3093 gdb_assert (ops->fetch_link_map_offsets);
3094 return ops->fetch_link_map_offsets ();
21479ded
KB
3095}
3096
4b188b9f
MK
3097/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3098
3099static int
3100svr4_have_link_map_offsets (void)
3101{
19ba03f4
SM
3102 struct solib_svr4_ops *ops
3103 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3104 solib_svr4_data);
433759f7 3105
4b188b9f
MK
3106 return (ops->fetch_link_map_offsets != NULL);
3107}
3108\f
3109
e4bbbda8
MK
3110/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3111 `struct r_debug' and a `struct link_map' that are binary compatible
3112 with the origional SVR4 implementation. */
3113
3114/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3115 for an ILP32 SVR4 system. */
d989b283 3116
e4bbbda8
MK
3117struct link_map_offsets *
3118svr4_ilp32_fetch_link_map_offsets (void)
3119{
3120 static struct link_map_offsets lmo;
3121 static struct link_map_offsets *lmp = NULL;
3122
3123 if (lmp == NULL)
3124 {
3125 lmp = &lmo;
3126
e4cd0d6a
MK
3127 lmo.r_version_offset = 0;
3128 lmo.r_version_size = 4;
e4bbbda8 3129 lmo.r_map_offset = 4;
7cd25cfc 3130 lmo.r_brk_offset = 8;
e4cd0d6a 3131 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3132
3133 /* Everything we need is in the first 20 bytes. */
3134 lmo.link_map_size = 20;
3135 lmo.l_addr_offset = 0;
e4bbbda8 3136 lmo.l_name_offset = 4;
cc10cae3 3137 lmo.l_ld_offset = 8;
e4bbbda8 3138 lmo.l_next_offset = 12;
e4bbbda8 3139 lmo.l_prev_offset = 16;
e4bbbda8
MK
3140 }
3141
3142 return lmp;
3143}
3144
3145/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3146 for an LP64 SVR4 system. */
d989b283 3147
e4bbbda8
MK
3148struct link_map_offsets *
3149svr4_lp64_fetch_link_map_offsets (void)
3150{
3151 static struct link_map_offsets lmo;
3152 static struct link_map_offsets *lmp = NULL;
3153
3154 if (lmp == NULL)
3155 {
3156 lmp = &lmo;
3157
e4cd0d6a
MK
3158 lmo.r_version_offset = 0;
3159 lmo.r_version_size = 4;
e4bbbda8 3160 lmo.r_map_offset = 8;
7cd25cfc 3161 lmo.r_brk_offset = 16;
e4cd0d6a 3162 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3163
3164 /* Everything we need is in the first 40 bytes. */
3165 lmo.link_map_size = 40;
3166 lmo.l_addr_offset = 0;
e4bbbda8 3167 lmo.l_name_offset = 8;
cc10cae3 3168 lmo.l_ld_offset = 16;
e4bbbda8 3169 lmo.l_next_offset = 24;
e4bbbda8 3170 lmo.l_prev_offset = 32;
e4bbbda8
MK
3171 }
3172
3173 return lmp;
3174}
3175\f
3176
7d522c90 3177struct target_so_ops svr4_so_ops;
13437d4b 3178
c378eb4e 3179/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3180 different rule for symbol lookup. The lookup begins here in the DSO, not in
3181 the main executable. */
3182
d12307c1 3183static struct block_symbol
efad9b6a 3184elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3185 const char *name,
21b556f4 3186 const domain_enum domain)
3a40aaa0 3187{
61f0d762
JK
3188 bfd *abfd;
3189
3190 if (objfile == symfile_objfile)
3191 abfd = exec_bfd;
3192 else
3193 {
3194 /* OBJFILE should have been passed as the non-debug one. */
3195 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3196
3197 abfd = objfile->obfd;
3198 }
3199
a738da3a 3200 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
6640a367 3201 return {};
3a40aaa0 3202
94af9270 3203 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3204}
3205
13437d4b
KB
3206void
3207_initialize_svr4_solib (void)
3208{
4b188b9f 3209 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3210 solib_svr4_pspace_data
8e260fc0 3211 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3212
749499cb 3213 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3214 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3215 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3216 svr4_so_ops.clear_solib = svr4_clear_solib;
3217 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3218 svr4_so_ops.current_sos = svr4_current_sos;
3219 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3220 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3221 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3222 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3223 svr4_so_ops.same = svr4_same;
de18c1d8 3224 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3225 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3226 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3227}
This page took 2.073666 seconds and 4 git commands to generate.