remove comment in machoread.c (macho_symfile_read)
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
c378eb4e 143/* link map access functions. */
13437d4b
KB
144
145static CORE_ADDR
b23518f0 146lm_addr_from_link_map (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
b23518f0 156has_lm_dynamic_from_link_map (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
b23518f0 164lm_dynamic_from_link_map (struct so_list *so)
cc10cae3
AO
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
b23518f0 174lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3
AO
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 180
b23518f0 181 l_addr = lm_addr_from_link_map (so);
cc10cae3 182
b23518f0 183 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
184 goto set_addr;
185
b23518f0 186 l_dynaddr = lm_dynamic_from_link_map (so);
cc10cae3
AO
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
02835898
JK
240 l_addr = l_dynaddr - dynaddr;
241
4e1fc9c9
JK
242 if ((l_addr & (minpagesize - 1)) == 0
243 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 244 {
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408 251 else
02835898
JK
252 {
253 /* There is no way to verify the library file matches. prelink
254 can during prelinking of an unprelinked file (or unprelinking
255 of a prelinked file) shift the DYNAMIC segment by arbitrary
256 offset without any page size alignment. There is no way to
257 find out the ELF header and/or Program Headers for a limited
258 verification if it they match. One could do a verification
259 of the DYNAMIC segment. Still the found address is the best
260 one GDB could find. */
261
262 warning (_(".dynamic section for \"%s\" "
263 "is not at the expected address "
264 "(wrong library or version mismatch?)"), so->so_name);
265 }
cc10cae3
AO
266 }
267
268 set_addr:
269 so->lm_info->l_addr = l_addr;
270 }
271
272 return so->lm_info->l_addr;
273}
274
13437d4b 275static CORE_ADDR
b23518f0 276lm_next (struct so_list *so)
13437d4b 277{
4b188b9f 278 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 279 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 280
cfaefc65 281 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 282 ptr_type);
13437d4b
KB
283}
284
492928e4 285static CORE_ADDR
b23518f0 286lm_prev (struct so_list *so)
492928e4
JK
287{
288 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
289 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
290
291 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
292 ptr_type);
293}
294
13437d4b 295static CORE_ADDR
b23518f0 296lm_name (struct so_list *so)
13437d4b 297{
4b188b9f 298 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 299 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 300
cfaefc65 301 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 302 ptr_type);
13437d4b
KB
303}
304
13437d4b 305static int
b23518f0 306ignore_first_link_map_entry (struct so_list *so)
13437d4b 307{
e499d0f1
DJ
308 /* Assume that everything is a library if the dynamic loader was loaded
309 late by a static executable. */
0763ab81 310 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
311 return 0;
312
b23518f0 313 return lm_prev (so) == 0;
13437d4b
KB
314}
315
6c95b8df 316/* Per pspace SVR4 specific data. */
13437d4b 317
1a816a87
PA
318struct svr4_info
319{
c378eb4e 320 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
321
322 /* Validity flag for debug_loader_offset. */
323 int debug_loader_offset_p;
324
325 /* Load address for the dynamic linker, inferred. */
326 CORE_ADDR debug_loader_offset;
327
328 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
329 char *debug_loader_name;
330
331 /* Load map address for the main executable. */
332 CORE_ADDR main_lm_addr;
1a816a87 333
6c95b8df
PA
334 CORE_ADDR interp_text_sect_low;
335 CORE_ADDR interp_text_sect_high;
336 CORE_ADDR interp_plt_sect_low;
337 CORE_ADDR interp_plt_sect_high;
338};
1a816a87 339
6c95b8df
PA
340/* Per-program-space data key. */
341static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 342
6c95b8df
PA
343static void
344svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 345{
6c95b8df 346 struct svr4_info *info;
1a816a87 347
6c95b8df
PA
348 info = program_space_data (pspace, solib_svr4_pspace_data);
349 xfree (info);
1a816a87
PA
350}
351
6c95b8df
PA
352/* Get the current svr4 data. If none is found yet, add it now. This
353 function always returns a valid object. */
34439770 354
6c95b8df
PA
355static struct svr4_info *
356get_svr4_info (void)
1a816a87 357{
6c95b8df 358 struct svr4_info *info;
1a816a87 359
6c95b8df
PA
360 info = program_space_data (current_program_space, solib_svr4_pspace_data);
361 if (info != NULL)
362 return info;
34439770 363
6c95b8df
PA
364 info = XZALLOC (struct svr4_info);
365 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
366 return info;
1a816a87 367}
93a57060 368
13437d4b
KB
369/* Local function prototypes */
370
bc043ef3 371static int match_main (const char *);
13437d4b
KB
372
373/*
374
375 LOCAL FUNCTION
376
377 bfd_lookup_symbol -- lookup the value for a specific symbol
378
379 SYNOPSIS
380
2bbe3cc1 381 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
382
383 DESCRIPTION
384
385 An expensive way to lookup the value of a single symbol for
386 bfd's that are only temporary anyway. This is used by the
387 shared library support to find the address of the debugger
2bbe3cc1 388 notification routine in the shared library.
13437d4b 389
2bbe3cc1
DJ
390 The returned symbol may be in a code or data section; functions
391 will normally be in a code section, but may be in a data section
392 if this architecture uses function descriptors.
87f84c9d 393
13437d4b
KB
394 Note that 0 is specifically allowed as an error return (no
395 such symbol).
396 */
397
398static CORE_ADDR
bc043ef3 399bfd_lookup_symbol (bfd *abfd, const char *symname)
13437d4b 400{
435b259c 401 long storage_needed;
13437d4b
KB
402 asymbol *sym;
403 asymbol **symbol_table;
404 unsigned int number_of_symbols;
405 unsigned int i;
406 struct cleanup *back_to;
407 CORE_ADDR symaddr = 0;
408
409 storage_needed = bfd_get_symtab_upper_bound (abfd);
410
411 if (storage_needed > 0)
412 {
413 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 414 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
415 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
416
417 for (i = 0; i < number_of_symbols; i++)
418 {
419 sym = *symbol_table++;
6314a349 420 if (strcmp (sym->name, symname) == 0
2bbe3cc1 421 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 422 {
2bbe3cc1 423 /* BFD symbols are section relative. */
13437d4b
KB
424 symaddr = sym->value + sym->section->vma;
425 break;
426 }
427 }
428 do_cleanups (back_to);
429 }
430
431 if (symaddr)
432 return symaddr;
433
434 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
435 have to check the dynamic string table too. */
436
437 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
438
439 if (storage_needed > 0)
440 {
441 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 442 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
443 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
444
445 for (i = 0; i < number_of_symbols; i++)
446 {
447 sym = *symbol_table++;
87f84c9d 448
6314a349 449 if (strcmp (sym->name, symname) == 0
2bbe3cc1 450 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 451 {
2bbe3cc1 452 /* BFD symbols are section relative. */
13437d4b
KB
453 symaddr = sym->value + sym->section->vma;
454 break;
455 }
456 }
457 do_cleanups (back_to);
458 }
459
460 return symaddr;
461}
462
97ec2c2f
UW
463
464/* Read program header TYPE from inferior memory. The header is found
465 by scanning the OS auxillary vector.
466
09919ac2
JK
467 If TYPE == -1, return the program headers instead of the contents of
468 one program header.
469
97ec2c2f
UW
470 Return a pointer to allocated memory holding the program header contents,
471 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
472 size of those contents is returned to P_SECT_SIZE. Likewise, the target
473 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
474
475static gdb_byte *
476read_program_header (int type, int *p_sect_size, int *p_arch_size)
477{
e17a4113 478 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
479 CORE_ADDR at_phdr, at_phent, at_phnum;
480 int arch_size, sect_size;
481 CORE_ADDR sect_addr;
482 gdb_byte *buf;
483
484 /* Get required auxv elements from target. */
485 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
486 return 0;
487 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
488 return 0;
489 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
490 return 0;
491 if (!at_phdr || !at_phnum)
492 return 0;
493
494 /* Determine ELF architecture type. */
495 if (at_phent == sizeof (Elf32_External_Phdr))
496 arch_size = 32;
497 else if (at_phent == sizeof (Elf64_External_Phdr))
498 arch_size = 64;
499 else
500 return 0;
501
09919ac2
JK
502 /* Find the requested segment. */
503 if (type == -1)
504 {
505 sect_addr = at_phdr;
506 sect_size = at_phent * at_phnum;
507 }
508 else if (arch_size == 32)
97ec2c2f
UW
509 {
510 Elf32_External_Phdr phdr;
511 int i;
512
513 /* Search for requested PHDR. */
514 for (i = 0; i < at_phnum; i++)
515 {
516 if (target_read_memory (at_phdr + i * sizeof (phdr),
517 (gdb_byte *)&phdr, sizeof (phdr)))
518 return 0;
519
e17a4113
UW
520 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
521 4, byte_order) == type)
97ec2c2f
UW
522 break;
523 }
524
525 if (i == at_phnum)
526 return 0;
527
528 /* Retrieve address and size. */
e17a4113
UW
529 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
530 4, byte_order);
531 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
532 4, byte_order);
97ec2c2f
UW
533 }
534 else
535 {
536 Elf64_External_Phdr phdr;
537 int i;
538
539 /* Search for requested PHDR. */
540 for (i = 0; i < at_phnum; i++)
541 {
542 if (target_read_memory (at_phdr + i * sizeof (phdr),
543 (gdb_byte *)&phdr, sizeof (phdr)))
544 return 0;
545
e17a4113
UW
546 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
547 4, byte_order) == type)
97ec2c2f
UW
548 break;
549 }
550
551 if (i == at_phnum)
552 return 0;
553
554 /* Retrieve address and size. */
e17a4113
UW
555 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
556 8, byte_order);
557 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
558 8, byte_order);
97ec2c2f
UW
559 }
560
561 /* Read in requested program header. */
562 buf = xmalloc (sect_size);
563 if (target_read_memory (sect_addr, buf, sect_size))
564 {
565 xfree (buf);
566 return NULL;
567 }
568
569 if (p_arch_size)
570 *p_arch_size = arch_size;
571 if (p_sect_size)
572 *p_sect_size = sect_size;
573
574 return buf;
575}
576
577
578/* Return program interpreter string. */
579static gdb_byte *
580find_program_interpreter (void)
581{
582 gdb_byte *buf = NULL;
583
584 /* If we have an exec_bfd, use its section table. */
585 if (exec_bfd
586 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
587 {
588 struct bfd_section *interp_sect;
589
590 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
591 if (interp_sect != NULL)
592 {
97ec2c2f
UW
593 int sect_size = bfd_section_size (exec_bfd, interp_sect);
594
595 buf = xmalloc (sect_size);
596 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
597 }
598 }
599
600 /* If we didn't find it, use the target auxillary vector. */
601 if (!buf)
602 buf = read_program_header (PT_INTERP, NULL, NULL);
603
604 return buf;
605}
606
607
c378eb4e 608/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
609 returned and the corresponding PTR is set. */
610
611static int
612scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
613{
614 int arch_size, step, sect_size;
615 long dyn_tag;
b381ea14 616 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 617 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
618 Elf32_External_Dyn *x_dynp_32;
619 Elf64_External_Dyn *x_dynp_64;
620 struct bfd_section *sect;
61f0d762 621 struct target_section *target_section;
3a40aaa0
UW
622
623 if (abfd == NULL)
624 return 0;
0763ab81
PA
625
626 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
627 return 0;
628
3a40aaa0
UW
629 arch_size = bfd_get_arch_size (abfd);
630 if (arch_size == -1)
0763ab81 631 return 0;
3a40aaa0
UW
632
633 /* Find the start address of the .dynamic section. */
634 sect = bfd_get_section_by_name (abfd, ".dynamic");
635 if (sect == NULL)
636 return 0;
61f0d762
JK
637
638 for (target_section = current_target_sections->sections;
639 target_section < current_target_sections->sections_end;
640 target_section++)
641 if (sect == target_section->the_bfd_section)
642 break;
b381ea14
JK
643 if (target_section < current_target_sections->sections_end)
644 dyn_addr = target_section->addr;
645 else
646 {
647 /* ABFD may come from OBJFILE acting only as a symbol file without being
648 loaded into the target (see add_symbol_file_command). This case is
649 such fallback to the file VMA address without the possibility of
650 having the section relocated to its actual in-memory address. */
651
652 dyn_addr = bfd_section_vma (abfd, sect);
653 }
3a40aaa0 654
65728c26
DJ
655 /* Read in .dynamic from the BFD. We will get the actual value
656 from memory later. */
3a40aaa0 657 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
658 buf = bufstart = alloca (sect_size);
659 if (!bfd_get_section_contents (abfd, sect,
660 buf, 0, sect_size))
661 return 0;
3a40aaa0
UW
662
663 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
664 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
665 : sizeof (Elf64_External_Dyn);
666 for (bufend = buf + sect_size;
667 buf < bufend;
668 buf += step)
669 {
670 if (arch_size == 32)
671 {
672 x_dynp_32 = (Elf32_External_Dyn *) buf;
673 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
674 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
675 }
65728c26 676 else
3a40aaa0
UW
677 {
678 x_dynp_64 = (Elf64_External_Dyn *) buf;
679 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
680 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
681 }
682 if (dyn_tag == DT_NULL)
683 return 0;
684 if (dyn_tag == dyntag)
685 {
65728c26
DJ
686 /* If requested, try to read the runtime value of this .dynamic
687 entry. */
3a40aaa0 688 if (ptr)
65728c26 689 {
b6da22b0 690 struct type *ptr_type;
65728c26
DJ
691 gdb_byte ptr_buf[8];
692 CORE_ADDR ptr_addr;
693
b6da22b0 694 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 695 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 696 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 697 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
698 *ptr = dyn_ptr;
699 }
700 return 1;
3a40aaa0
UW
701 }
702 }
703
704 return 0;
705}
706
97ec2c2f
UW
707/* Scan for DYNTAG in .dynamic section of the target's main executable,
708 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
709 returned and the corresponding PTR is set. */
710
711static int
712scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
713{
e17a4113 714 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
715 int sect_size, arch_size, step;
716 long dyn_tag;
717 CORE_ADDR dyn_ptr;
718 gdb_byte *bufend, *bufstart, *buf;
719
720 /* Read in .dynamic section. */
721 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
722 if (!buf)
723 return 0;
724
725 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
726 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
727 : sizeof (Elf64_External_Dyn);
728 for (bufend = buf + sect_size;
729 buf < bufend;
730 buf += step)
731 {
732 if (arch_size == 32)
733 {
734 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 735
e17a4113
UW
736 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
737 4, byte_order);
738 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
739 4, byte_order);
97ec2c2f
UW
740 }
741 else
742 {
743 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 744
e17a4113
UW
745 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
746 8, byte_order);
747 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
748 8, byte_order);
97ec2c2f
UW
749 }
750 if (dyn_tag == DT_NULL)
751 break;
752
753 if (dyn_tag == dyntag)
754 {
755 if (ptr)
756 *ptr = dyn_ptr;
757
758 xfree (bufstart);
759 return 1;
760 }
761 }
762
763 xfree (bufstart);
764 return 0;
765}
766
3a40aaa0 767
13437d4b
KB
768/*
769
770 LOCAL FUNCTION
771
772 elf_locate_base -- locate the base address of dynamic linker structs
773 for SVR4 elf targets.
774
775 SYNOPSIS
776
777 CORE_ADDR elf_locate_base (void)
778
779 DESCRIPTION
780
781 For SVR4 elf targets the address of the dynamic linker's runtime
782 structure is contained within the dynamic info section in the
783 executable file. The dynamic section is also mapped into the
784 inferior address space. Because the runtime loader fills in the
785 real address before starting the inferior, we have to read in the
786 dynamic info section from the inferior address space.
787 If there are any errors while trying to find the address, we
788 silently return 0, otherwise the found address is returned.
789
790 */
791
792static CORE_ADDR
793elf_locate_base (void)
794{
3a40aaa0
UW
795 struct minimal_symbol *msymbol;
796 CORE_ADDR dyn_ptr;
13437d4b 797
65728c26
DJ
798 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
799 instead of DT_DEBUG, although they sometimes contain an unused
800 DT_DEBUG. */
97ec2c2f
UW
801 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
802 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 803 {
b6da22b0 804 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 805 gdb_byte *pbuf;
b6da22b0 806 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 807
3a40aaa0
UW
808 pbuf = alloca (pbuf_size);
809 /* DT_MIPS_RLD_MAP contains a pointer to the address
810 of the dynamic link structure. */
811 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 812 return 0;
b6da22b0 813 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
814 }
815
65728c26 816 /* Find DT_DEBUG. */
97ec2c2f
UW
817 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
818 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
819 return dyn_ptr;
820
3a40aaa0
UW
821 /* This may be a static executable. Look for the symbol
822 conventionally named _r_debug, as a last resort. */
823 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
824 if (msymbol != NULL)
825 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
826
827 /* DT_DEBUG entry not found. */
828 return 0;
829}
830
13437d4b
KB
831/*
832
833 LOCAL FUNCTION
834
835 locate_base -- locate the base address of dynamic linker structs
836
837 SYNOPSIS
838
1a816a87 839 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
840
841 DESCRIPTION
842
843 For both the SunOS and SVR4 shared library implementations, if the
844 inferior executable has been linked dynamically, there is a single
845 address somewhere in the inferior's data space which is the key to
846 locating all of the dynamic linker's runtime structures. This
847 address is the value of the debug base symbol. The job of this
848 function is to find and return that address, or to return 0 if there
849 is no such address (the executable is statically linked for example).
850
851 For SunOS, the job is almost trivial, since the dynamic linker and
852 all of it's structures are statically linked to the executable at
853 link time. Thus the symbol for the address we are looking for has
854 already been added to the minimal symbol table for the executable's
855 objfile at the time the symbol file's symbols were read, and all we
856 have to do is look it up there. Note that we explicitly do NOT want
857 to find the copies in the shared library.
858
859 The SVR4 version is a bit more complicated because the address
860 is contained somewhere in the dynamic info section. We have to go
861 to a lot more work to discover the address of the debug base symbol.
862 Because of this complexity, we cache the value we find and return that
863 value on subsequent invocations. Note there is no copy in the
864 executable symbol tables.
865
866 */
867
868static CORE_ADDR
1a816a87 869locate_base (struct svr4_info *info)
13437d4b 870{
13437d4b
KB
871 /* Check to see if we have a currently valid address, and if so, avoid
872 doing all this work again and just return the cached address. If
873 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
874 section for ELF executables. There's no point in doing any of this
875 though if we don't have some link map offsets to work with. */
13437d4b 876
1a816a87 877 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 878 info->debug_base = elf_locate_base ();
1a816a87 879 return info->debug_base;
13437d4b
KB
880}
881
e4cd0d6a 882/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
883 return its address in the inferior. Return zero if the address
884 could not be determined.
13437d4b 885
e4cd0d6a
MK
886 FIXME: Perhaps we should validate the info somehow, perhaps by
887 checking r_version for a known version number, or r_state for
888 RT_CONSISTENT. */
13437d4b
KB
889
890static CORE_ADDR
1a816a87 891solib_svr4_r_map (struct svr4_info *info)
13437d4b 892{
4b188b9f 893 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 894 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
895 CORE_ADDR addr = 0;
896 volatile struct gdb_exception ex;
13437d4b 897
08597104
JB
898 TRY_CATCH (ex, RETURN_MASK_ERROR)
899 {
900 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
901 ptr_type);
902 }
903 exception_print (gdb_stderr, ex);
904 return addr;
e4cd0d6a 905}
13437d4b 906
7cd25cfc
DJ
907/* Find r_brk from the inferior's debug base. */
908
909static CORE_ADDR
1a816a87 910solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
911{
912 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 913 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 914
1a816a87
PA
915 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
916 ptr_type);
7cd25cfc
DJ
917}
918
e4cd0d6a
MK
919/* Find the link map for the dynamic linker (if it is not in the
920 normal list of loaded shared objects). */
13437d4b 921
e4cd0d6a 922static CORE_ADDR
1a816a87 923solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
924{
925 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 926 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 927 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 928 ULONGEST version;
13437d4b 929
e4cd0d6a
MK
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
1a816a87
PA
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 934 lmo->r_version_size, byte_order);
e4cd0d6a
MK
935 if (version < 2 || lmo->r_ldsomap_offset == -1)
936 return 0;
13437d4b 937
1a816a87 938 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 939 ptr_type);
13437d4b
KB
940}
941
de18c1d8
JM
942/* On Solaris systems with some versions of the dynamic linker,
943 ld.so's l_name pointer points to the SONAME in the string table
944 rather than into writable memory. So that GDB can find shared
945 libraries when loading a core file generated by gcore, ensure that
946 memory areas containing the l_name string are saved in the core
947 file. */
948
949static int
950svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
951{
952 struct svr4_info *info;
953 CORE_ADDR ldsomap;
954 struct so_list *new;
955 struct cleanup *old_chain;
956 struct link_map_offsets *lmo;
74de0234 957 CORE_ADDR name_lm;
de18c1d8
JM
958
959 info = get_svr4_info ();
960
961 info->debug_base = 0;
962 locate_base (info);
963 if (!info->debug_base)
964 return 0;
965
966 ldsomap = solib_svr4_r_ldsomap (info);
967 if (!ldsomap)
968 return 0;
969
970 lmo = svr4_fetch_link_map_offsets ();
971 new = XZALLOC (struct so_list);
972 old_chain = make_cleanup (xfree, new);
973 new->lm_info = xmalloc (sizeof (struct lm_info));
974 make_cleanup (xfree, new->lm_info);
975 new->lm_info->l_addr = (CORE_ADDR)-1;
976 new->lm_info->lm_addr = ldsomap;
977 new->lm_info->lm = xzalloc (lmo->link_map_size);
978 make_cleanup (xfree, new->lm_info->lm);
979 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
74de0234 980 name_lm = lm_name (new);
de18c1d8
JM
981 do_cleanups (old_chain);
982
74de0234 983 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
984}
985
13437d4b
KB
986/*
987
988 LOCAL FUNCTION
989
990 open_symbol_file_object
991
992 SYNOPSIS
993
994 void open_symbol_file_object (void *from_tty)
995
996 DESCRIPTION
997
998 If no open symbol file, attempt to locate and open the main symbol
999 file. On SVR4 systems, this is the first link map entry. If its
1000 name is here, we can open it. Useful when attaching to a process
1001 without first loading its symbol file.
1002
1003 If FROM_TTYP dereferences to a non-zero integer, allow messages to
1004 be printed. This parameter is a pointer rather than an int because
1005 open_symbol_file_object() is called via catch_errors() and
c378eb4e 1006 catch_errors() requires a pointer argument. */
13437d4b
KB
1007
1008static int
1009open_symbol_file_object (void *from_ttyp)
1010{
1011 CORE_ADDR lm, l_name;
1012 char *filename;
1013 int errcode;
1014 int from_tty = *(int *)from_ttyp;
4b188b9f 1015 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
1016 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1017 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 1018 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 1019 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1020 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1021
1022 if (symfile_objfile)
9e2f0ad4 1023 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
1024 {
1025 do_cleanups (cleanups);
1026 return 0;
1027 }
13437d4b 1028
7cd25cfc 1029 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1030 info->debug_base = 0;
1031 if (locate_base (info) == 0)
3bb47e8b
TT
1032 {
1033 do_cleanups (cleanups);
1034 return 0; /* failed somehow... */
1035 }
13437d4b
KB
1036
1037 /* First link map member should be the executable. */
1a816a87 1038 lm = solib_svr4_r_map (info);
e4cd0d6a 1039 if (lm == 0)
3bb47e8b
TT
1040 {
1041 do_cleanups (cleanups);
1042 return 0; /* failed somehow... */
1043 }
13437d4b
KB
1044
1045 /* Read address of name from target memory to GDB. */
cfaefc65 1046 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1047
cfaefc65 1048 /* Convert the address to host format. */
b6da22b0 1049 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1050
13437d4b 1051 if (l_name == 0)
3bb47e8b
TT
1052 {
1053 do_cleanups (cleanups);
1054 return 0; /* No filename. */
1055 }
13437d4b
KB
1056
1057 /* Now fetch the filename from target memory. */
1058 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1059 make_cleanup (xfree, filename);
13437d4b
KB
1060
1061 if (errcode)
1062 {
8a3fe4f8 1063 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1064 safe_strerror (errcode));
3bb47e8b 1065 do_cleanups (cleanups);
13437d4b
KB
1066 return 0;
1067 }
1068
13437d4b 1069 /* Have a pathname: read the symbol file. */
1adeb98a 1070 symbol_file_add_main (filename, from_tty);
13437d4b 1071
3bb47e8b 1072 do_cleanups (cleanups);
13437d4b
KB
1073 return 1;
1074}
13437d4b 1075
34439770
DJ
1076/* If no shared library information is available from the dynamic
1077 linker, build a fallback list from other sources. */
1078
1079static struct so_list *
1080svr4_default_sos (void)
1081{
6c95b8df 1082 struct svr4_info *info = get_svr4_info ();
1a816a87 1083
34439770
DJ
1084 struct so_list *head = NULL;
1085 struct so_list **link_ptr = &head;
1086
1a816a87 1087 if (info->debug_loader_offset_p)
34439770
DJ
1088 {
1089 struct so_list *new = XZALLOC (struct so_list);
1090
1091 new->lm_info = xmalloc (sizeof (struct lm_info));
1092
1093 /* Nothing will ever check the cached copy of the link
1094 map if we set l_addr. */
1a816a87 1095 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1096 new->lm_info->lm_addr = 0;
34439770
DJ
1097 new->lm_info->lm = NULL;
1098
1a816a87
PA
1099 strncpy (new->so_name, info->debug_loader_name,
1100 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1101 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1102 strcpy (new->so_original_name, new->so_name);
1103
1104 *link_ptr = new;
1105 link_ptr = &new->next;
1106 }
1107
1108 return head;
1109}
1110
13437d4b
KB
1111/* LOCAL FUNCTION
1112
1113 current_sos -- build a list of currently loaded shared objects
1114
1115 SYNOPSIS
1116
1117 struct so_list *current_sos ()
1118
1119 DESCRIPTION
1120
1121 Build a list of `struct so_list' objects describing the shared
1122 objects currently loaded in the inferior. This list does not
1123 include an entry for the main executable file.
1124
1125 Note that we only gather information directly available from the
1126 inferior --- we don't examine any of the shared library files
1127 themselves. The declaration of `struct so_list' says which fields
1128 we provide values for. */
1129
1130static struct so_list *
1131svr4_current_sos (void)
1132{
492928e4 1133 CORE_ADDR lm, prev_lm;
13437d4b
KB
1134 struct so_list *head = 0;
1135 struct so_list **link_ptr = &head;
e4cd0d6a 1136 CORE_ADDR ldsomap = 0;
1a816a87
PA
1137 struct svr4_info *info;
1138
6c95b8df 1139 info = get_svr4_info ();
13437d4b 1140
7cd25cfc 1141 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1142 info->debug_base = 0;
1143 locate_base (info);
13437d4b 1144
7cd25cfc
DJ
1145 /* If we can't find the dynamic linker's base structure, this
1146 must not be a dynamically linked executable. Hmm. */
1a816a87 1147 if (! info->debug_base)
7cd25cfc 1148 return svr4_default_sos ();
13437d4b
KB
1149
1150 /* Walk the inferior's link map list, and build our list of
1151 `struct so_list' nodes. */
492928e4 1152 prev_lm = 0;
1a816a87 1153 lm = solib_svr4_r_map (info);
34439770 1154
13437d4b
KB
1155 while (lm)
1156 {
4b188b9f 1157 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1158 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1159 struct cleanup *old_chain = make_cleanup (xfree, new);
492928e4 1160 CORE_ADDR next_lm;
13437d4b 1161
13437d4b 1162 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1163 make_cleanup (xfree, new->lm_info);
13437d4b 1164
831004b7 1165 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1166 new->lm_info->lm_addr = lm;
f4456994 1167 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1168 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1169
1170 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1171
b23518f0 1172 next_lm = lm_next (new);
492928e4 1173
b23518f0 1174 if (lm_prev (new) != prev_lm)
492928e4
JK
1175 {
1176 warning (_("Corrupted shared library list"));
1177 free_so (new);
1178 next_lm = 0;
1179 }
13437d4b
KB
1180
1181 /* For SVR4 versions, the first entry in the link map is for the
1182 inferior executable, so we must ignore it. For some versions of
1183 SVR4, it has no name. For others (Solaris 2.3 for example), it
1184 does have a name, so we can no longer use a missing name to
c378eb4e 1185 decide when to ignore it. */
b23518f0 1186 else if (ignore_first_link_map_entry (new) && ldsomap == 0)
93a57060 1187 {
1a816a87 1188 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1189 free_so (new);
1190 }
13437d4b
KB
1191 else
1192 {
1193 int errcode;
1194 char *buffer;
1195
1196 /* Extract this shared object's name. */
b23518f0 1197 target_read_string (lm_name (new), &buffer,
13437d4b
KB
1198 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1199 if (errcode != 0)
8a3fe4f8
AC
1200 warning (_("Can't read pathname for load map: %s."),
1201 safe_strerror (errcode));
13437d4b
KB
1202 else
1203 {
1204 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1205 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1206 strcpy (new->so_original_name, new->so_name);
1207 }
ea5bf0a1 1208 xfree (buffer);
13437d4b
KB
1209
1210 /* If this entry has no name, or its name matches the name
1211 for the main executable, don't include it in the list. */
1212 if (! new->so_name[0]
1213 || match_main (new->so_name))
1214 free_so (new);
1215 else
1216 {
1217 new->next = 0;
1218 *link_ptr = new;
1219 link_ptr = &new->next;
1220 }
1221 }
1222
492928e4
JK
1223 prev_lm = lm;
1224 lm = next_lm;
1225
e4cd0d6a
MK
1226 /* On Solaris, the dynamic linker is not in the normal list of
1227 shared objects, so make sure we pick it up too. Having
1228 symbol information for the dynamic linker is quite crucial
1229 for skipping dynamic linker resolver code. */
1230 if (lm == 0 && ldsomap == 0)
492928e4
JK
1231 {
1232 lm = ldsomap = solib_svr4_r_ldsomap (info);
1233 prev_lm = 0;
1234 }
e4cd0d6a 1235
13437d4b
KB
1236 discard_cleanups (old_chain);
1237 }
1238
34439770
DJ
1239 if (head == NULL)
1240 return svr4_default_sos ();
1241
13437d4b
KB
1242 return head;
1243}
1244
93a57060 1245/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1246
1247CORE_ADDR
1248svr4_fetch_objfile_link_map (struct objfile *objfile)
1249{
93a57060 1250 struct so_list *so;
6c95b8df 1251 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1252
93a57060 1253 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1254 if (info->main_lm_addr == 0)
93a57060 1255 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1256
93a57060
DJ
1257 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1258 if (objfile == symfile_objfile)
1a816a87 1259 return info->main_lm_addr;
93a57060
DJ
1260
1261 /* The other link map addresses may be found by examining the list
1262 of shared libraries. */
1263 for (so = master_so_list (); so; so = so->next)
1264 if (so->objfile == objfile)
1265 return so->lm_info->lm_addr;
1266
1267 /* Not found! */
bc4a16ae
EZ
1268 return 0;
1269}
13437d4b
KB
1270
1271/* On some systems, the only way to recognize the link map entry for
1272 the main executable file is by looking at its name. Return
1273 non-zero iff SONAME matches one of the known main executable names. */
1274
1275static int
bc043ef3 1276match_main (const char *soname)
13437d4b 1277{
bc043ef3 1278 const char * const *mainp;
13437d4b
KB
1279
1280 for (mainp = main_name_list; *mainp != NULL; mainp++)
1281 {
1282 if (strcmp (soname, *mainp) == 0)
1283 return (1);
1284 }
1285
1286 return (0);
1287}
1288
13437d4b
KB
1289/* Return 1 if PC lies in the dynamic symbol resolution code of the
1290 SVR4 run time loader. */
13437d4b 1291
7d522c90 1292int
d7fa2ae2 1293svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1294{
6c95b8df
PA
1295 struct svr4_info *info = get_svr4_info ();
1296
1297 return ((pc >= info->interp_text_sect_low
1298 && pc < info->interp_text_sect_high)
1299 || (pc >= info->interp_plt_sect_low
1300 && pc < info->interp_plt_sect_high)
0875794a
JK
1301 || in_plt_section (pc, NULL)
1302 || in_gnu_ifunc_stub (pc));
13437d4b 1303}
13437d4b 1304
2f4950cd
AC
1305/* Given an executable's ABFD and target, compute the entry-point
1306 address. */
1307
1308static CORE_ADDR
1309exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1310{
1311 /* KevinB wrote ... for most targets, the address returned by
1312 bfd_get_start_address() is the entry point for the start
1313 function. But, for some targets, bfd_get_start_address() returns
1314 the address of a function descriptor from which the entry point
1315 address may be extracted. This address is extracted by
1316 gdbarch_convert_from_func_ptr_addr(). The method
1317 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1318 function for targets which don't use function descriptors. */
1cf3db46 1319 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1320 bfd_get_start_address (abfd),
1321 targ);
1322}
13437d4b
KB
1323
1324/*
1325
1326 LOCAL FUNCTION
1327
1328 enable_break -- arrange for dynamic linker to hit breakpoint
1329
1330 SYNOPSIS
1331
1332 int enable_break (void)
1333
1334 DESCRIPTION
1335
1336 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1337 debugger interface, support for arranging for the inferior to hit
1338 a breakpoint after mapping in the shared libraries. This function
1339 enables that breakpoint.
1340
1341 For SunOS, there is a special flag location (in_debugger) which we
1342 set to 1. When the dynamic linker sees this flag set, it will set
1343 a breakpoint at a location known only to itself, after saving the
1344 original contents of that place and the breakpoint address itself,
1345 in it's own internal structures. When we resume the inferior, it
1346 will eventually take a SIGTRAP when it runs into the breakpoint.
1347 We handle this (in a different place) by restoring the contents of
1348 the breakpointed location (which is only known after it stops),
1349 chasing around to locate the shared libraries that have been
1350 loaded, then resuming.
1351
1352 For SVR4, the debugger interface structure contains a member (r_brk)
1353 which is statically initialized at the time the shared library is
1354 built, to the offset of a function (_r_debug_state) which is guaran-
1355 teed to be called once before mapping in a library, and again when
1356 the mapping is complete. At the time we are examining this member,
1357 it contains only the unrelocated offset of the function, so we have
1358 to do our own relocation. Later, when the dynamic linker actually
1359 runs, it relocates r_brk to be the actual address of _r_debug_state().
1360
1361 The debugger interface structure also contains an enumeration which
1362 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1363 depending upon whether or not the library is being mapped or unmapped,
1364 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1365 */
1366
1367static int
268a4a75 1368enable_break (struct svr4_info *info, int from_tty)
13437d4b 1369{
13437d4b 1370 struct minimal_symbol *msymbol;
bc043ef3 1371 const char * const *bkpt_namep;
13437d4b 1372 asection *interp_sect;
97ec2c2f 1373 gdb_byte *interp_name;
7cd25cfc 1374 CORE_ADDR sym_addr;
13437d4b 1375
6c95b8df
PA
1376 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1377 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1378
7cd25cfc
DJ
1379 /* If we already have a shared library list in the target, and
1380 r_debug contains r_brk, set the breakpoint there - this should
1381 mean r_brk has already been relocated. Assume the dynamic linker
1382 is the object containing r_brk. */
1383
268a4a75 1384 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1385 sym_addr = 0;
1a816a87
PA
1386 if (info->debug_base && solib_svr4_r_map (info) != 0)
1387 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1388
1389 if (sym_addr != 0)
1390 {
1391 struct obj_section *os;
1392
b36ec657 1393 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1394 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1395 sym_addr,
1396 &current_target));
b36ec657 1397
48379de6
DE
1398 /* On at least some versions of Solaris there's a dynamic relocation
1399 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1400 we get control before the dynamic linker has self-relocated.
1401 Check if SYM_ADDR is in a known section, if it is assume we can
1402 trust its value. This is just a heuristic though, it could go away
1403 or be replaced if it's getting in the way.
1404
1405 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1406 however it's spelled in your particular system) is ARM or Thumb.
1407 That knowledge is encoded in the address, if it's Thumb the low bit
1408 is 1. However, we've stripped that info above and it's not clear
1409 what all the consequences are of passing a non-addr_bits_remove'd
1410 address to create_solib_event_breakpoint. The call to
1411 find_pc_section verifies we know about the address and have some
1412 hope of computing the right kind of breakpoint to use (via
1413 symbol info). It does mean that GDB needs to be pointed at a
1414 non-stripped version of the dynamic linker in order to obtain
1415 information it already knows about. Sigh. */
1416
7cd25cfc
DJ
1417 os = find_pc_section (sym_addr);
1418 if (os != NULL)
1419 {
1420 /* Record the relocated start and end address of the dynamic linker
1421 text and plt section for svr4_in_dynsym_resolve_code. */
1422 bfd *tmp_bfd;
1423 CORE_ADDR load_addr;
1424
1425 tmp_bfd = os->objfile->obfd;
1426 load_addr = ANOFFSET (os->objfile->section_offsets,
1427 os->objfile->sect_index_text);
1428
1429 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1430 if (interp_sect)
1431 {
6c95b8df 1432 info->interp_text_sect_low =
7cd25cfc 1433 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1434 info->interp_text_sect_high =
1435 info->interp_text_sect_low
1436 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1437 }
1438 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1439 if (interp_sect)
1440 {
6c95b8df 1441 info->interp_plt_sect_low =
7cd25cfc 1442 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1443 info->interp_plt_sect_high =
1444 info->interp_plt_sect_low
1445 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1446 }
1447
a6d9a66e 1448 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1449 return 1;
1450 }
1451 }
1452
97ec2c2f 1453 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1454 into the old breakpoint at symbol code. */
97ec2c2f
UW
1455 interp_name = find_program_interpreter ();
1456 if (interp_name)
13437d4b 1457 {
8ad2fcde
KB
1458 CORE_ADDR load_addr = 0;
1459 int load_addr_found = 0;
2ec9a4f8 1460 int loader_found_in_list = 0;
f8766ec1 1461 struct so_list *so;
e4f7b8c8 1462 bfd *tmp_bfd = NULL;
2f4950cd 1463 struct target_ops *tmp_bfd_target;
f1838a98 1464 volatile struct gdb_exception ex;
13437d4b 1465
7cd25cfc 1466 sym_addr = 0;
13437d4b
KB
1467
1468 /* Now we need to figure out where the dynamic linker was
1469 loaded so that we can load its symbols and place a breakpoint
1470 in the dynamic linker itself.
1471
1472 This address is stored on the stack. However, I've been unable
1473 to find any magic formula to find it for Solaris (appears to
1474 be trivial on GNU/Linux). Therefore, we have to try an alternate
1475 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1476
f1838a98
UW
1477 TRY_CATCH (ex, RETURN_MASK_ALL)
1478 {
97ec2c2f 1479 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1480 }
13437d4b
KB
1481 if (tmp_bfd == NULL)
1482 goto bkpt_at_symbol;
1483
2f4950cd
AC
1484 /* Now convert the TMP_BFD into a target. That way target, as
1485 well as BFD operations can be used. Note that closing the
1486 target will also close the underlying bfd. */
1487 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1488
f8766ec1
KB
1489 /* On a running target, we can get the dynamic linker's base
1490 address from the shared library table. */
f8766ec1
KB
1491 so = master_so_list ();
1492 while (so)
8ad2fcde 1493 {
97ec2c2f 1494 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1495 {
1496 load_addr_found = 1;
2ec9a4f8 1497 loader_found_in_list = 1;
b23518f0 1498 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1499 break;
1500 }
f8766ec1 1501 so = so->next;
8ad2fcde
KB
1502 }
1503
8d4e36ba
JB
1504 /* If we were not able to find the base address of the loader
1505 from our so_list, then try using the AT_BASE auxilliary entry. */
1506 if (!load_addr_found)
1507 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1508 {
1509 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1510
1511 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1512 that `+ load_addr' will overflow CORE_ADDR width not creating
1513 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1514 GDB. */
1515
d182d057 1516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1517 {
d182d057 1518 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1519 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1520 tmp_bfd_target);
1521
1522 gdb_assert (load_addr < space_size);
1523
1524 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1525 64bit ld.so with 32bit executable, it should not happen. */
1526
1527 if (tmp_entry_point < space_size
1528 && tmp_entry_point + load_addr >= space_size)
1529 load_addr -= space_size;
1530 }
1531
1532 load_addr_found = 1;
1533 }
8d4e36ba 1534
8ad2fcde
KB
1535 /* Otherwise we find the dynamic linker's base address by examining
1536 the current pc (which should point at the entry point for the
8d4e36ba
JB
1537 dynamic linker) and subtracting the offset of the entry point.
1538
1539 This is more fragile than the previous approaches, but is a good
1540 fallback method because it has actually been working well in
1541 most cases. */
8ad2fcde 1542 if (!load_addr_found)
fb14de7b 1543 {
c2250ad1
UW
1544 struct regcache *regcache
1545 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1546
fb14de7b
UW
1547 load_addr = (regcache_read_pc (regcache)
1548 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1549 }
2ec9a4f8
DJ
1550
1551 if (!loader_found_in_list)
34439770 1552 {
1a816a87
PA
1553 info->debug_loader_name = xstrdup (interp_name);
1554 info->debug_loader_offset_p = 1;
1555 info->debug_loader_offset = load_addr;
268a4a75 1556 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1557 }
13437d4b
KB
1558
1559 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1560 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1561 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1562 if (interp_sect)
1563 {
6c95b8df 1564 info->interp_text_sect_low =
13437d4b 1565 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1566 info->interp_text_sect_high =
1567 info->interp_text_sect_low
1568 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1569 }
1570 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1571 if (interp_sect)
1572 {
6c95b8df 1573 info->interp_plt_sect_low =
13437d4b 1574 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1575 info->interp_plt_sect_high =
1576 info->interp_plt_sect_low
1577 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1578 }
1579
1580 /* Now try to set a breakpoint in the dynamic linker. */
1581 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1582 {
2bbe3cc1 1583 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1584 if (sym_addr != 0)
1585 break;
1586 }
1587
2bbe3cc1
DJ
1588 if (sym_addr != 0)
1589 /* Convert 'sym_addr' from a function pointer to an address.
1590 Because we pass tmp_bfd_target instead of the current
1591 target, this will always produce an unrelocated value. */
1cf3db46 1592 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1593 sym_addr,
1594 tmp_bfd_target);
1595
2f4950cd
AC
1596 /* We're done with both the temporary bfd and target. Remember,
1597 closing the target closes the underlying bfd. */
1598 target_close (tmp_bfd_target, 0);
13437d4b
KB
1599
1600 if (sym_addr != 0)
1601 {
a6d9a66e 1602 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1603 xfree (interp_name);
13437d4b
KB
1604 return 1;
1605 }
1606
1607 /* For whatever reason we couldn't set a breakpoint in the dynamic
1608 linker. Warn and drop into the old code. */
1609 bkpt_at_symbol:
97ec2c2f 1610 xfree (interp_name);
82d03102
PG
1611 warning (_("Unable to find dynamic linker breakpoint function.\n"
1612 "GDB will be unable to debug shared library initializers\n"
1613 "and track explicitly loaded dynamic code."));
13437d4b 1614 }
13437d4b 1615
e499d0f1
DJ
1616 /* Scan through the lists of symbols, trying to look up the symbol and
1617 set a breakpoint there. Terminate loop when we/if we succeed. */
1618
1619 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1620 {
1621 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1622 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1623 {
de64a9ac
JM
1624 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1625 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1626 sym_addr,
1627 &current_target);
1628 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1629 return 1;
1630 }
1631 }
13437d4b 1632
c6490bf2 1633 if (!current_inferior ()->attach_flag)
13437d4b 1634 {
c6490bf2 1635 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1636 {
c6490bf2
KB
1637 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1638 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1639 {
1640 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1641 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1642 sym_addr,
1643 &current_target);
1644 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1645 return 1;
1646 }
13437d4b
KB
1647 }
1648 }
542c95c2 1649 return 0;
13437d4b
KB
1650}
1651
1652/*
1653
1654 LOCAL FUNCTION
1655
1656 special_symbol_handling -- additional shared library symbol handling
1657
1658 SYNOPSIS
1659
1660 void special_symbol_handling ()
1661
1662 DESCRIPTION
1663
1664 Once the symbols from a shared object have been loaded in the usual
1665 way, we are called to do any system specific symbol handling that
1666 is needed.
1667
ab31aa69 1668 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1669 linkers structures to find symbol definitions for "common" symbols
1670 and adding them to the minimal symbol table for the runtime common
1671 objfile.
1672
ab31aa69
KB
1673 However, for SVR4, there's nothing to do.
1674
13437d4b
KB
1675 */
1676
1677static void
1678svr4_special_symbol_handling (void)
1679{
13437d4b
KB
1680}
1681
09919ac2
JK
1682/* Read the ELF program headers from ABFD. Return the contents and
1683 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1684
09919ac2
JK
1685static gdb_byte *
1686read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1687{
09919ac2
JK
1688 Elf_Internal_Ehdr *ehdr;
1689 gdb_byte *buf;
e2a44558 1690
09919ac2 1691 ehdr = elf_elfheader (abfd);
b8040f19 1692
09919ac2
JK
1693 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1694 if (*phdrs_size == 0)
1695 return NULL;
1696
1697 buf = xmalloc (*phdrs_size);
1698 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1699 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1700 {
1701 xfree (buf);
1702 return NULL;
1703 }
1704
1705 return buf;
b8040f19
JK
1706}
1707
01c30d6e
JK
1708/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1709 exec_bfd. Otherwise return 0.
1710
1711 We relocate all of the sections by the same amount. This
c378eb4e 1712 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1713 According to the System V Application Binary Interface,
1714 Edition 4.1, page 5-5:
1715
1716 ... Though the system chooses virtual addresses for
1717 individual processes, it maintains the segments' relative
1718 positions. Because position-independent code uses relative
1719 addressesing between segments, the difference between
1720 virtual addresses in memory must match the difference
1721 between virtual addresses in the file. The difference
1722 between the virtual address of any segment in memory and
1723 the corresponding virtual address in the file is thus a
1724 single constant value for any one executable or shared
1725 object in a given process. This difference is the base
1726 address. One use of the base address is to relocate the
1727 memory image of the program during dynamic linking.
1728
1729 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1730 ABI and is left unspecified in some of the earlier editions.
1731
1732 Decide if the objfile needs to be relocated. As indicated above, we will
1733 only be here when execution is stopped. But during attachment PC can be at
1734 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1735 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1736 regcache_read_pc would point to the interpreter and not the main executable.
1737
1738 So, to summarize, relocations are necessary when the start address obtained
1739 from the executable is different from the address in auxv AT_ENTRY entry.
1740
1741 [ The astute reader will note that we also test to make sure that
1742 the executable in question has the DYNAMIC flag set. It is my
1743 opinion that this test is unnecessary (undesirable even). It
1744 was added to avoid inadvertent relocation of an executable
1745 whose e_type member in the ELF header is not ET_DYN. There may
1746 be a time in the future when it is desirable to do relocations
1747 on other types of files as well in which case this condition
1748 should either be removed or modified to accomodate the new file
1749 type. - Kevin, Nov 2000. ] */
b8040f19 1750
01c30d6e
JK
1751static int
1752svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1753{
41752192
JK
1754 /* ENTRY_POINT is a possible function descriptor - before
1755 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1756 CORE_ADDR entry_point, displacement;
b8040f19
JK
1757
1758 if (exec_bfd == NULL)
1759 return 0;
1760
09919ac2
JK
1761 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1762 being executed themselves and PIE (Position Independent Executable)
1763 executables are ET_DYN. */
1764
1765 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1766 return 0;
1767
1768 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1769 return 0;
1770
1771 displacement = entry_point - bfd_get_start_address (exec_bfd);
1772
1773 /* Verify the DISPLACEMENT candidate complies with the required page
1774 alignment. It is cheaper than the program headers comparison below. */
1775
1776 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1777 {
1778 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1779
1780 /* p_align of PT_LOAD segments does not specify any alignment but
1781 only congruency of addresses:
1782 p_offset % p_align == p_vaddr % p_align
1783 Kernel is free to load the executable with lower alignment. */
1784
1785 if ((displacement & (elf->minpagesize - 1)) != 0)
1786 return 0;
1787 }
1788
1789 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1790 comparing their program headers. If the program headers in the auxilliary
1791 vector do not match the program headers in the executable, then we are
1792 looking at a different file than the one used by the kernel - for
1793 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1794
1795 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1796 {
1797 /* Be optimistic and clear OK only if GDB was able to verify the headers
1798 really do not match. */
1799 int phdrs_size, phdrs2_size, ok = 1;
1800 gdb_byte *buf, *buf2;
0a1e94c7 1801 int arch_size;
09919ac2 1802
0a1e94c7 1803 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1804 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1805 if (buf != NULL && buf2 != NULL)
1806 {
1807 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1808
1809 /* We are dealing with three different addresses. EXEC_BFD
1810 represents current address in on-disk file. target memory content
1811 may be different from EXEC_BFD as the file may have been prelinked
1812 to a different address after the executable has been loaded.
1813 Moreover the address of placement in target memory can be
3e43a32a
MS
1814 different from what the program headers in target memory say -
1815 this is the goal of PIE.
0a1e94c7
JK
1816
1817 Detected DISPLACEMENT covers both the offsets of PIE placement and
1818 possible new prelink performed after start of the program. Here
1819 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1820 content offset for the verification purpose. */
1821
1822 if (phdrs_size != phdrs2_size
1823 || bfd_get_arch_size (exec_bfd) != arch_size)
1824 ok = 0;
3e43a32a
MS
1825 else if (arch_size == 32
1826 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1827 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1828 {
1829 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1830 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1831 CORE_ADDR displacement = 0;
1832 int i;
1833
1834 /* DISPLACEMENT could be found more easily by the difference of
1835 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1836 already have enough information to compute that displacement
1837 with what we've read. */
1838
1839 for (i = 0; i < ehdr2->e_phnum; i++)
1840 if (phdr2[i].p_type == PT_LOAD)
1841 {
1842 Elf32_External_Phdr *phdrp;
1843 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1844 CORE_ADDR vaddr, paddr;
1845 CORE_ADDR displacement_vaddr = 0;
1846 CORE_ADDR displacement_paddr = 0;
1847
1848 phdrp = &((Elf32_External_Phdr *) buf)[i];
1849 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1850 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1851
1852 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1853 byte_order);
1854 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1855
1856 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1857 byte_order);
1858 displacement_paddr = paddr - phdr2[i].p_paddr;
1859
1860 if (displacement_vaddr == displacement_paddr)
1861 displacement = displacement_vaddr;
1862
1863 break;
1864 }
1865
1866 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1867
1868 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1869 {
1870 Elf32_External_Phdr *phdrp;
1871 Elf32_External_Phdr *phdr2p;
1872 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1873 CORE_ADDR vaddr, paddr;
43b8e241 1874 asection *plt2_asect;
0a1e94c7
JK
1875
1876 phdrp = &((Elf32_External_Phdr *) buf)[i];
1877 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1878 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1879 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1880
1881 /* PT_GNU_STACK is an exception by being never relocated by
1882 prelink as its addresses are always zero. */
1883
1884 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1885 continue;
1886
1887 /* Check also other adjustment combinations - PR 11786. */
1888
3e43a32a
MS
1889 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1890 byte_order);
0a1e94c7
JK
1891 vaddr -= displacement;
1892 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1893
3e43a32a
MS
1894 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1895 byte_order);
0a1e94c7
JK
1896 paddr -= displacement;
1897 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1898
1899 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1900 continue;
1901
43b8e241
JK
1902 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1903 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1904 if (plt2_asect)
1905 {
1906 int content2;
1907 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1908 CORE_ADDR filesz;
1909
1910 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1911 & SEC_HAS_CONTENTS) != 0;
1912
1913 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1914 byte_order);
1915
1916 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1917 FILESZ is from the in-memory image. */
1918 if (content2)
1919 filesz += bfd_get_section_size (plt2_asect);
1920 else
1921 filesz -= bfd_get_section_size (plt2_asect);
1922
1923 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1924 filesz);
1925
1926 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1927 continue;
1928 }
1929
0a1e94c7
JK
1930 ok = 0;
1931 break;
1932 }
1933 }
3e43a32a
MS
1934 else if (arch_size == 64
1935 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1936 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1937 {
1938 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1939 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1940 CORE_ADDR displacement = 0;
1941 int i;
1942
1943 /* DISPLACEMENT could be found more easily by the difference of
1944 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1945 already have enough information to compute that displacement
1946 with what we've read. */
1947
1948 for (i = 0; i < ehdr2->e_phnum; i++)
1949 if (phdr2[i].p_type == PT_LOAD)
1950 {
1951 Elf64_External_Phdr *phdrp;
1952 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1953 CORE_ADDR vaddr, paddr;
1954 CORE_ADDR displacement_vaddr = 0;
1955 CORE_ADDR displacement_paddr = 0;
1956
1957 phdrp = &((Elf64_External_Phdr *) buf)[i];
1958 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1959 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1960
1961 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1962 byte_order);
1963 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1964
1965 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1966 byte_order);
1967 displacement_paddr = paddr - phdr2[i].p_paddr;
1968
1969 if (displacement_vaddr == displacement_paddr)
1970 displacement = displacement_vaddr;
1971
1972 break;
1973 }
1974
1975 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1976
1977 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1978 {
1979 Elf64_External_Phdr *phdrp;
1980 Elf64_External_Phdr *phdr2p;
1981 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1982 CORE_ADDR vaddr, paddr;
43b8e241 1983 asection *plt2_asect;
0a1e94c7
JK
1984
1985 phdrp = &((Elf64_External_Phdr *) buf)[i];
1986 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1987 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1988 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1989
1990 /* PT_GNU_STACK is an exception by being never relocated by
1991 prelink as its addresses are always zero. */
1992
1993 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1994 continue;
1995
1996 /* Check also other adjustment combinations - PR 11786. */
1997
3e43a32a
MS
1998 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1999 byte_order);
0a1e94c7
JK
2000 vaddr -= displacement;
2001 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2002
3e43a32a
MS
2003 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2004 byte_order);
0a1e94c7
JK
2005 paddr -= displacement;
2006 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2007
2008 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2009 continue;
2010
43b8e241
JK
2011 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2012 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2013 if (plt2_asect)
2014 {
2015 int content2;
2016 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2017 CORE_ADDR filesz;
2018
2019 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2020 & SEC_HAS_CONTENTS) != 0;
2021
2022 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2023 byte_order);
2024
2025 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2026 FILESZ is from the in-memory image. */
2027 if (content2)
2028 filesz += bfd_get_section_size (plt2_asect);
2029 else
2030 filesz -= bfd_get_section_size (plt2_asect);
2031
2032 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2033 filesz);
2034
2035 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2036 continue;
2037 }
2038
0a1e94c7
JK
2039 ok = 0;
2040 break;
2041 }
2042 }
2043 else
2044 ok = 0;
2045 }
09919ac2
JK
2046
2047 xfree (buf);
2048 xfree (buf2);
2049
2050 if (!ok)
2051 return 0;
2052 }
b8040f19 2053
ccf26247
JK
2054 if (info_verbose)
2055 {
2056 /* It can be printed repeatedly as there is no easy way to check
2057 the executable symbols/file has been already relocated to
2058 displacement. */
2059
2060 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2061 "displacement %s for \"%s\".\n"),
2062 paddress (target_gdbarch, displacement),
2063 bfd_get_filename (exec_bfd));
2064 }
2065
01c30d6e
JK
2066 *displacementp = displacement;
2067 return 1;
b8040f19
JK
2068}
2069
2070/* Relocate the main executable. This function should be called upon
c378eb4e 2071 stopping the inferior process at the entry point to the program.
b8040f19
JK
2072 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2073 different, the main executable is relocated by the proper amount. */
2074
2075static void
2076svr4_relocate_main_executable (void)
2077{
01c30d6e
JK
2078 CORE_ADDR displacement;
2079
4e5799b6
JK
2080 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2081 probably contains the offsets computed using the PIE displacement
2082 from the previous run, which of course are irrelevant for this run.
2083 So we need to determine the new PIE displacement and recompute the
2084 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2085 already contains pre-computed offsets.
01c30d6e 2086
4e5799b6 2087 If we cannot compute the PIE displacement, either:
01c30d6e 2088
4e5799b6
JK
2089 - The executable is not PIE.
2090
2091 - SYMFILE_OBJFILE does not match the executable started in the target.
2092 This can happen for main executable symbols loaded at the host while
2093 `ld.so --ld-args main-executable' is loaded in the target.
2094
2095 Then we leave the section offsets untouched and use them as is for
2096 this run. Either:
2097
2098 - These section offsets were properly reset earlier, and thus
2099 already contain the correct values. This can happen for instance
2100 when reconnecting via the remote protocol to a target that supports
2101 the `qOffsets' packet.
2102
2103 - The section offsets were not reset earlier, and the best we can
c378eb4e 2104 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2105
2106 if (! svr4_exec_displacement (&displacement))
2107 return;
b8040f19 2108
01c30d6e
JK
2109 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2110 addresses. */
b8040f19
JK
2111
2112 if (symfile_objfile)
e2a44558 2113 {
e2a44558 2114 struct section_offsets *new_offsets;
b8040f19 2115 int i;
e2a44558 2116
b8040f19
JK
2117 new_offsets = alloca (symfile_objfile->num_sections
2118 * sizeof (*new_offsets));
e2a44558 2119
b8040f19
JK
2120 for (i = 0; i < symfile_objfile->num_sections; i++)
2121 new_offsets->offsets[i] = displacement;
e2a44558 2122
b8040f19 2123 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2124 }
51bee8e9
JK
2125 else if (exec_bfd)
2126 {
2127 asection *asect;
2128
2129 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2130 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2131 (bfd_section_vma (exec_bfd, asect)
2132 + displacement));
2133 }
e2a44558
KB
2134}
2135
13437d4b
KB
2136/*
2137
2138 GLOBAL FUNCTION
2139
2140 svr4_solib_create_inferior_hook -- shared library startup support
2141
2142 SYNOPSIS
2143
268a4a75 2144 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
2145
2146 DESCRIPTION
2147
2148 When gdb starts up the inferior, it nurses it along (through the
2149 shell) until it is ready to execute it's first instruction. At this
2150 point, this function gets called via expansion of the macro
2151 SOLIB_CREATE_INFERIOR_HOOK.
2152
2153 For SunOS executables, this first instruction is typically the
2154 one at "_start", or a similar text label, regardless of whether
2155 the executable is statically or dynamically linked. The runtime
2156 startup code takes care of dynamically linking in any shared
2157 libraries, once gdb allows the inferior to continue.
2158
2159 For SVR4 executables, this first instruction is either the first
2160 instruction in the dynamic linker (for dynamically linked
2161 executables) or the instruction at "start" for statically linked
2162 executables. For dynamically linked executables, the system
2163 first exec's /lib/libc.so.N, which contains the dynamic linker,
2164 and starts it running. The dynamic linker maps in any needed
2165 shared libraries, maps in the actual user executable, and then
2166 jumps to "start" in the user executable.
2167
2168 For both SunOS shared libraries, and SVR4 shared libraries, we
2169 can arrange to cooperate with the dynamic linker to discover the
2170 names of shared libraries that are dynamically linked, and the
2171 base addresses to which they are linked.
2172
2173 This function is responsible for discovering those names and
2174 addresses, and saving sufficient information about them to allow
2175 their symbols to be read at a later time.
2176
2177 FIXME
2178
2179 Between enable_break() and disable_break(), this code does not
2180 properly handle hitting breakpoints which the user might have
2181 set in the startup code or in the dynamic linker itself. Proper
2182 handling will probably have to wait until the implementation is
2183 changed to use the "breakpoint handler function" method.
2184
2185 Also, what if child has exit()ed? Must exit loop somehow.
2186 */
2187
e2a44558 2188static void
268a4a75 2189svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2190{
1cd337a5 2191#if defined(_SCO_DS)
d6b48e9c 2192 struct inferior *inf;
2020b7ab 2193 struct thread_info *tp;
1cd337a5 2194#endif /* defined(_SCO_DS) */
1a816a87
PA
2195 struct svr4_info *info;
2196
6c95b8df 2197 info = get_svr4_info ();
2020b7ab 2198
e2a44558 2199 /* Relocate the main executable if necessary. */
86e4bafc 2200 svr4_relocate_main_executable ();
e2a44558 2201
c91c8c16
PA
2202 /* No point setting a breakpoint in the dynamic linker if we can't
2203 hit it (e.g., a core file, or a trace file). */
2204 if (!target_has_execution)
2205 return;
2206
d5a921c9 2207 if (!svr4_have_link_map_offsets ())
513f5903 2208 return;
d5a921c9 2209
268a4a75 2210 if (!enable_break (info, from_tty))
542c95c2 2211 return;
13437d4b 2212
ab31aa69
KB
2213#if defined(_SCO_DS)
2214 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2215 special shared library breakpoints and the shared library breakpoint
2216 service routine.
2217
2218 Now run the target. It will eventually hit the breakpoint, at
2219 which point all of the libraries will have been mapped in and we
2220 can go groveling around in the dynamic linker structures to find
c378eb4e 2221 out what we need to know about them. */
13437d4b 2222
d6b48e9c 2223 inf = current_inferior ();
2020b7ab
PA
2224 tp = inferior_thread ();
2225
13437d4b 2226 clear_proceed_status ();
16c381f0
JK
2227 inf->control.stop_soon = STOP_QUIETLY;
2228 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2229 do
2230 {
16c381f0 2231 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 2232 wait_for_inferior ();
13437d4b 2233 }
16c381f0
JK
2234 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2235 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2236#endif /* defined(_SCO_DS) */
13437d4b
KB
2237}
2238
2239static void
2240svr4_clear_solib (void)
2241{
6c95b8df
PA
2242 struct svr4_info *info;
2243
2244 info = get_svr4_info ();
2245 info->debug_base = 0;
2246 info->debug_loader_offset_p = 0;
2247 info->debug_loader_offset = 0;
2248 xfree (info->debug_loader_name);
2249 info->debug_loader_name = NULL;
13437d4b
KB
2250}
2251
2252static void
2253svr4_free_so (struct so_list *so)
2254{
b8c9b27d
KB
2255 xfree (so->lm_info->lm);
2256 xfree (so->lm_info);
13437d4b
KB
2257}
2258
6bb7be43
JB
2259
2260/* Clear any bits of ADDR that wouldn't fit in a target-format
2261 data pointer. "Data pointer" here refers to whatever sort of
2262 address the dynamic linker uses to manage its sections. At the
2263 moment, we don't support shared libraries on any processors where
2264 code and data pointers are different sizes.
2265
2266 This isn't really the right solution. What we really need here is
2267 a way to do arithmetic on CORE_ADDR values that respects the
2268 natural pointer/address correspondence. (For example, on the MIPS,
2269 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2270 sign-extend the value. There, simply truncating the bits above
819844ad 2271 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2272 be a new gdbarch method or something. */
2273static CORE_ADDR
2274svr4_truncate_ptr (CORE_ADDR addr)
2275{
1cf3db46 2276 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2277 /* We don't need to truncate anything, and the bit twiddling below
2278 will fail due to overflow problems. */
2279 return addr;
2280 else
1cf3db46 2281 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2282}
2283
2284
749499cb
KB
2285static void
2286svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2287 struct target_section *sec)
749499cb 2288{
b23518f0 2289 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2290 sec->bfd));
b23518f0 2291 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2292 sec->bfd));
749499cb 2293}
4b188b9f 2294\f
749499cb 2295
4b188b9f 2296/* Architecture-specific operations. */
6bb7be43 2297
4b188b9f
MK
2298/* Per-architecture data key. */
2299static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2300
4b188b9f 2301struct solib_svr4_ops
e5e2b9ff 2302{
4b188b9f
MK
2303 /* Return a description of the layout of `struct link_map'. */
2304 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2305};
e5e2b9ff 2306
4b188b9f 2307/* Return a default for the architecture-specific operations. */
e5e2b9ff 2308
4b188b9f
MK
2309static void *
2310solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2311{
4b188b9f 2312 struct solib_svr4_ops *ops;
e5e2b9ff 2313
4b188b9f 2314 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2315 ops->fetch_link_map_offsets = NULL;
4b188b9f 2316 return ops;
e5e2b9ff
KB
2317}
2318
4b188b9f 2319/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2320 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2321
21479ded 2322void
e5e2b9ff
KB
2323set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2324 struct link_map_offsets *(*flmo) (void))
21479ded 2325{
4b188b9f
MK
2326 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2327
2328 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2329
2330 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2331}
2332
4b188b9f
MK
2333/* Fetch a link_map_offsets structure using the architecture-specific
2334 `struct link_map_offsets' fetcher. */
1c4dcb57 2335
4b188b9f
MK
2336static struct link_map_offsets *
2337svr4_fetch_link_map_offsets (void)
21479ded 2338{
1cf3db46 2339 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2340
2341 gdb_assert (ops->fetch_link_map_offsets);
2342 return ops->fetch_link_map_offsets ();
21479ded
KB
2343}
2344
4b188b9f
MK
2345/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2346
2347static int
2348svr4_have_link_map_offsets (void)
2349{
1cf3db46 2350 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2351
4b188b9f
MK
2352 return (ops->fetch_link_map_offsets != NULL);
2353}
2354\f
2355
e4bbbda8
MK
2356/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2357 `struct r_debug' and a `struct link_map' that are binary compatible
2358 with the origional SVR4 implementation. */
2359
2360/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2361 for an ILP32 SVR4 system. */
2362
2363struct link_map_offsets *
2364svr4_ilp32_fetch_link_map_offsets (void)
2365{
2366 static struct link_map_offsets lmo;
2367 static struct link_map_offsets *lmp = NULL;
2368
2369 if (lmp == NULL)
2370 {
2371 lmp = &lmo;
2372
e4cd0d6a
MK
2373 lmo.r_version_offset = 0;
2374 lmo.r_version_size = 4;
e4bbbda8 2375 lmo.r_map_offset = 4;
7cd25cfc 2376 lmo.r_brk_offset = 8;
e4cd0d6a 2377 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2378
2379 /* Everything we need is in the first 20 bytes. */
2380 lmo.link_map_size = 20;
2381 lmo.l_addr_offset = 0;
e4bbbda8 2382 lmo.l_name_offset = 4;
cc10cae3 2383 lmo.l_ld_offset = 8;
e4bbbda8 2384 lmo.l_next_offset = 12;
e4bbbda8 2385 lmo.l_prev_offset = 16;
e4bbbda8
MK
2386 }
2387
2388 return lmp;
2389}
2390
2391/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2392 for an LP64 SVR4 system. */
2393
2394struct link_map_offsets *
2395svr4_lp64_fetch_link_map_offsets (void)
2396{
2397 static struct link_map_offsets lmo;
2398 static struct link_map_offsets *lmp = NULL;
2399
2400 if (lmp == NULL)
2401 {
2402 lmp = &lmo;
2403
e4cd0d6a
MK
2404 lmo.r_version_offset = 0;
2405 lmo.r_version_size = 4;
e4bbbda8 2406 lmo.r_map_offset = 8;
7cd25cfc 2407 lmo.r_brk_offset = 16;
e4cd0d6a 2408 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2409
2410 /* Everything we need is in the first 40 bytes. */
2411 lmo.link_map_size = 40;
2412 lmo.l_addr_offset = 0;
e4bbbda8 2413 lmo.l_name_offset = 8;
cc10cae3 2414 lmo.l_ld_offset = 16;
e4bbbda8 2415 lmo.l_next_offset = 24;
e4bbbda8 2416 lmo.l_prev_offset = 32;
e4bbbda8
MK
2417 }
2418
2419 return lmp;
2420}
2421\f
2422
7d522c90 2423struct target_so_ops svr4_so_ops;
13437d4b 2424
c378eb4e 2425/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2426 different rule for symbol lookup. The lookup begins here in the DSO, not in
2427 the main executable. */
2428
2429static struct symbol *
2430elf_lookup_lib_symbol (const struct objfile *objfile,
2431 const char *name,
21b556f4 2432 const domain_enum domain)
3a40aaa0 2433{
61f0d762
JK
2434 bfd *abfd;
2435
2436 if (objfile == symfile_objfile)
2437 abfd = exec_bfd;
2438 else
2439 {
2440 /* OBJFILE should have been passed as the non-debug one. */
2441 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2442
2443 abfd = objfile->obfd;
2444 }
2445
2446 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2447 return NULL;
2448
94af9270 2449 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2450}
2451
a78f21af
AC
2452extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2453
13437d4b
KB
2454void
2455_initialize_svr4_solib (void)
2456{
4b188b9f 2457 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2458 solib_svr4_pspace_data
2459 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2460
749499cb 2461 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2462 svr4_so_ops.free_so = svr4_free_so;
2463 svr4_so_ops.clear_solib = svr4_clear_solib;
2464 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2465 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2466 svr4_so_ops.current_sos = svr4_current_sos;
2467 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2468 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2469 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2470 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2471 svr4_so_ops.same = svr4_same;
de18c1d8 2472 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2473}
This page took 1.199806 seconds and 4 git commands to generate.