gdb/
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
c378eb4e 143/* link map access functions. */
13437d4b
KB
144
145static CORE_ADDR
cc10cae3 146LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
2c0b251b 156HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
164LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
174LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3
AO
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
4e1fc9c9
JK
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
242 {
243 l_addr = l_dynaddr - dynaddr;
79d4c408 244
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408
DJ
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262}
263
13437d4b
KB
264static CORE_ADDR
265LM_NEXT (struct so_list *so)
266{
4b188b9f 267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 269
cfaefc65 270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 271 ptr_type);
13437d4b
KB
272}
273
492928e4
JK
274static CORE_ADDR
275LM_PREV (struct so_list *so)
276{
277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279
280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 ptr_type);
282}
283
13437d4b
KB
284static CORE_ADDR
285LM_NAME (struct so_list *so)
286{
4b188b9f 287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 289
cfaefc65 290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 291 ptr_type);
13437d4b
KB
292}
293
13437d4b
KB
294static int
295IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296{
e499d0f1
DJ
297 /* Assume that everything is a library if the dynamic loader was loaded
298 late by a static executable. */
0763ab81 299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
300 return 0;
301
492928e4 302 return LM_PREV (so) == 0;
13437d4b
KB
303}
304
6c95b8df 305/* Per pspace SVR4 specific data. */
13437d4b 306
1a816a87
PA
307struct svr4_info
308{
c378eb4e 309 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
1a816a87 322
6c95b8df
PA
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327};
1a816a87 328
6c95b8df
PA
329/* Per-program-space data key. */
330static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 331
6c95b8df
PA
332static void
333svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 334{
6c95b8df 335 struct svr4_info *info;
1a816a87 336
6c95b8df
PA
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
1a816a87
PA
339}
340
6c95b8df
PA
341/* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
34439770 343
6c95b8df
PA
344static struct svr4_info *
345get_svr4_info (void)
1a816a87 346{
6c95b8df 347 struct svr4_info *info;
1a816a87 348
6c95b8df
PA
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
34439770 352
6c95b8df
PA
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
1a816a87 356}
93a57060 357
13437d4b
KB
358/* Local function prototypes */
359
bc043ef3 360static int match_main (const char *);
13437d4b
KB
361
362/*
363
364 LOCAL FUNCTION
365
366 bfd_lookup_symbol -- lookup the value for a specific symbol
367
368 SYNOPSIS
369
2bbe3cc1 370 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
371
372 DESCRIPTION
373
374 An expensive way to lookup the value of a single symbol for
375 bfd's that are only temporary anyway. This is used by the
376 shared library support to find the address of the debugger
2bbe3cc1 377 notification routine in the shared library.
13437d4b 378
2bbe3cc1
DJ
379 The returned symbol may be in a code or data section; functions
380 will normally be in a code section, but may be in a data section
381 if this architecture uses function descriptors.
87f84c9d 382
13437d4b
KB
383 Note that 0 is specifically allowed as an error return (no
384 such symbol).
385 */
386
387static CORE_ADDR
bc043ef3 388bfd_lookup_symbol (bfd *abfd, const char *symname)
13437d4b 389{
435b259c 390 long storage_needed;
13437d4b
KB
391 asymbol *sym;
392 asymbol **symbol_table;
393 unsigned int number_of_symbols;
394 unsigned int i;
395 struct cleanup *back_to;
396 CORE_ADDR symaddr = 0;
397
398 storage_needed = bfd_get_symtab_upper_bound (abfd);
399
400 if (storage_needed > 0)
401 {
402 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 403 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
404 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
405
406 for (i = 0; i < number_of_symbols; i++)
407 {
408 sym = *symbol_table++;
6314a349 409 if (strcmp (sym->name, symname) == 0
2bbe3cc1 410 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 411 {
2bbe3cc1 412 /* BFD symbols are section relative. */
13437d4b
KB
413 symaddr = sym->value + sym->section->vma;
414 break;
415 }
416 }
417 do_cleanups (back_to);
418 }
419
420 if (symaddr)
421 return symaddr;
422
423 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
424 have to check the dynamic string table too. */
425
426 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
427
428 if (storage_needed > 0)
429 {
430 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 431 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
432 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
433
434 for (i = 0; i < number_of_symbols; i++)
435 {
436 sym = *symbol_table++;
87f84c9d 437
6314a349 438 if (strcmp (sym->name, symname) == 0
2bbe3cc1 439 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 440 {
2bbe3cc1 441 /* BFD symbols are section relative. */
13437d4b
KB
442 symaddr = sym->value + sym->section->vma;
443 break;
444 }
445 }
446 do_cleanups (back_to);
447 }
448
449 return symaddr;
450}
451
97ec2c2f
UW
452
453/* Read program header TYPE from inferior memory. The header is found
454 by scanning the OS auxillary vector.
455
09919ac2
JK
456 If TYPE == -1, return the program headers instead of the contents of
457 one program header.
458
97ec2c2f
UW
459 Return a pointer to allocated memory holding the program header contents,
460 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
461 size of those contents is returned to P_SECT_SIZE. Likewise, the target
462 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
463
464static gdb_byte *
465read_program_header (int type, int *p_sect_size, int *p_arch_size)
466{
e17a4113 467 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
468 CORE_ADDR at_phdr, at_phent, at_phnum;
469 int arch_size, sect_size;
470 CORE_ADDR sect_addr;
471 gdb_byte *buf;
472
473 /* Get required auxv elements from target. */
474 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
475 return 0;
476 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
479 return 0;
480 if (!at_phdr || !at_phnum)
481 return 0;
482
483 /* Determine ELF architecture type. */
484 if (at_phent == sizeof (Elf32_External_Phdr))
485 arch_size = 32;
486 else if (at_phent == sizeof (Elf64_External_Phdr))
487 arch_size = 64;
488 else
489 return 0;
490
09919ac2
JK
491 /* Find the requested segment. */
492 if (type == -1)
493 {
494 sect_addr = at_phdr;
495 sect_size = at_phent * at_phnum;
496 }
497 else if (arch_size == 32)
97ec2c2f
UW
498 {
499 Elf32_External_Phdr phdr;
500 int i;
501
502 /* Search for requested PHDR. */
503 for (i = 0; i < at_phnum; i++)
504 {
505 if (target_read_memory (at_phdr + i * sizeof (phdr),
506 (gdb_byte *)&phdr, sizeof (phdr)))
507 return 0;
508
e17a4113
UW
509 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
510 4, byte_order) == type)
97ec2c2f
UW
511 break;
512 }
513
514 if (i == at_phnum)
515 return 0;
516
517 /* Retrieve address and size. */
e17a4113
UW
518 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
519 4, byte_order);
520 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
521 4, byte_order);
97ec2c2f
UW
522 }
523 else
524 {
525 Elf64_External_Phdr phdr;
526 int i;
527
528 /* Search for requested PHDR. */
529 for (i = 0; i < at_phnum; i++)
530 {
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
e17a4113
UW
535 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
536 4, byte_order) == type)
97ec2c2f
UW
537 break;
538 }
539
540 if (i == at_phnum)
541 return 0;
542
543 /* Retrieve address and size. */
e17a4113
UW
544 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
545 8, byte_order);
546 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
547 8, byte_order);
97ec2c2f
UW
548 }
549
550 /* Read in requested program header. */
551 buf = xmalloc (sect_size);
552 if (target_read_memory (sect_addr, buf, sect_size))
553 {
554 xfree (buf);
555 return NULL;
556 }
557
558 if (p_arch_size)
559 *p_arch_size = arch_size;
560 if (p_sect_size)
561 *p_sect_size = sect_size;
562
563 return buf;
564}
565
566
567/* Return program interpreter string. */
568static gdb_byte *
569find_program_interpreter (void)
570{
571 gdb_byte *buf = NULL;
572
573 /* If we have an exec_bfd, use its section table. */
574 if (exec_bfd
575 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
576 {
577 struct bfd_section *interp_sect;
578
579 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
580 if (interp_sect != NULL)
581 {
97ec2c2f
UW
582 int sect_size = bfd_section_size (exec_bfd, interp_sect);
583
584 buf = xmalloc (sect_size);
585 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
586 }
587 }
588
589 /* If we didn't find it, use the target auxillary vector. */
590 if (!buf)
591 buf = read_program_header (PT_INTERP, NULL, NULL);
592
593 return buf;
594}
595
596
c378eb4e 597/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
598 returned and the corresponding PTR is set. */
599
600static int
601scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
602{
603 int arch_size, step, sect_size;
604 long dyn_tag;
b381ea14 605 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 606 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
607 Elf32_External_Dyn *x_dynp_32;
608 Elf64_External_Dyn *x_dynp_64;
609 struct bfd_section *sect;
61f0d762 610 struct target_section *target_section;
3a40aaa0
UW
611
612 if (abfd == NULL)
613 return 0;
0763ab81
PA
614
615 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
616 return 0;
617
3a40aaa0
UW
618 arch_size = bfd_get_arch_size (abfd);
619 if (arch_size == -1)
0763ab81 620 return 0;
3a40aaa0
UW
621
622 /* Find the start address of the .dynamic section. */
623 sect = bfd_get_section_by_name (abfd, ".dynamic");
624 if (sect == NULL)
625 return 0;
61f0d762
JK
626
627 for (target_section = current_target_sections->sections;
628 target_section < current_target_sections->sections_end;
629 target_section++)
630 if (sect == target_section->the_bfd_section)
631 break;
b381ea14
JK
632 if (target_section < current_target_sections->sections_end)
633 dyn_addr = target_section->addr;
634 else
635 {
636 /* ABFD may come from OBJFILE acting only as a symbol file without being
637 loaded into the target (see add_symbol_file_command). This case is
638 such fallback to the file VMA address without the possibility of
639 having the section relocated to its actual in-memory address. */
640
641 dyn_addr = bfd_section_vma (abfd, sect);
642 }
3a40aaa0 643
65728c26
DJ
644 /* Read in .dynamic from the BFD. We will get the actual value
645 from memory later. */
3a40aaa0 646 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
647 buf = bufstart = alloca (sect_size);
648 if (!bfd_get_section_contents (abfd, sect,
649 buf, 0, sect_size))
650 return 0;
3a40aaa0
UW
651
652 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
653 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
654 : sizeof (Elf64_External_Dyn);
655 for (bufend = buf + sect_size;
656 buf < bufend;
657 buf += step)
658 {
659 if (arch_size == 32)
660 {
661 x_dynp_32 = (Elf32_External_Dyn *) buf;
662 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
663 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
664 }
65728c26 665 else
3a40aaa0
UW
666 {
667 x_dynp_64 = (Elf64_External_Dyn *) buf;
668 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
669 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
670 }
671 if (dyn_tag == DT_NULL)
672 return 0;
673 if (dyn_tag == dyntag)
674 {
65728c26
DJ
675 /* If requested, try to read the runtime value of this .dynamic
676 entry. */
3a40aaa0 677 if (ptr)
65728c26 678 {
b6da22b0 679 struct type *ptr_type;
65728c26
DJ
680 gdb_byte ptr_buf[8];
681 CORE_ADDR ptr_addr;
682
b6da22b0 683 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 684 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 685 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 686 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
687 *ptr = dyn_ptr;
688 }
689 return 1;
3a40aaa0
UW
690 }
691 }
692
693 return 0;
694}
695
97ec2c2f
UW
696/* Scan for DYNTAG in .dynamic section of the target's main executable,
697 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
698 returned and the corresponding PTR is set. */
699
700static int
701scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
702{
e17a4113 703 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
704 int sect_size, arch_size, step;
705 long dyn_tag;
706 CORE_ADDR dyn_ptr;
707 gdb_byte *bufend, *bufstart, *buf;
708
709 /* Read in .dynamic section. */
710 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
711 if (!buf)
712 return 0;
713
714 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
715 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
716 : sizeof (Elf64_External_Dyn);
717 for (bufend = buf + sect_size;
718 buf < bufend;
719 buf += step)
720 {
721 if (arch_size == 32)
722 {
723 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 724
e17a4113
UW
725 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
726 4, byte_order);
727 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
728 4, byte_order);
97ec2c2f
UW
729 }
730 else
731 {
732 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 733
e17a4113
UW
734 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 8, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 8, byte_order);
97ec2c2f
UW
738 }
739 if (dyn_tag == DT_NULL)
740 break;
741
742 if (dyn_tag == dyntag)
743 {
744 if (ptr)
745 *ptr = dyn_ptr;
746
747 xfree (bufstart);
748 return 1;
749 }
750 }
751
752 xfree (bufstart);
753 return 0;
754}
755
3a40aaa0 756
13437d4b
KB
757/*
758
759 LOCAL FUNCTION
760
761 elf_locate_base -- locate the base address of dynamic linker structs
762 for SVR4 elf targets.
763
764 SYNOPSIS
765
766 CORE_ADDR elf_locate_base (void)
767
768 DESCRIPTION
769
770 For SVR4 elf targets the address of the dynamic linker's runtime
771 structure is contained within the dynamic info section in the
772 executable file. The dynamic section is also mapped into the
773 inferior address space. Because the runtime loader fills in the
774 real address before starting the inferior, we have to read in the
775 dynamic info section from the inferior address space.
776 If there are any errors while trying to find the address, we
777 silently return 0, otherwise the found address is returned.
778
779 */
780
781static CORE_ADDR
782elf_locate_base (void)
783{
3a40aaa0
UW
784 struct minimal_symbol *msymbol;
785 CORE_ADDR dyn_ptr;
13437d4b 786
65728c26
DJ
787 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
788 instead of DT_DEBUG, although they sometimes contain an unused
789 DT_DEBUG. */
97ec2c2f
UW
790 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
791 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 792 {
b6da22b0 793 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 794 gdb_byte *pbuf;
b6da22b0 795 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 796
3a40aaa0
UW
797 pbuf = alloca (pbuf_size);
798 /* DT_MIPS_RLD_MAP contains a pointer to the address
799 of the dynamic link structure. */
800 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 801 return 0;
b6da22b0 802 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
803 }
804
65728c26 805 /* Find DT_DEBUG. */
97ec2c2f
UW
806 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
807 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
808 return dyn_ptr;
809
3a40aaa0
UW
810 /* This may be a static executable. Look for the symbol
811 conventionally named _r_debug, as a last resort. */
812 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
813 if (msymbol != NULL)
814 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
815
816 /* DT_DEBUG entry not found. */
817 return 0;
818}
819
13437d4b
KB
820/*
821
822 LOCAL FUNCTION
823
824 locate_base -- locate the base address of dynamic linker structs
825
826 SYNOPSIS
827
1a816a87 828 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
829
830 DESCRIPTION
831
832 For both the SunOS and SVR4 shared library implementations, if the
833 inferior executable has been linked dynamically, there is a single
834 address somewhere in the inferior's data space which is the key to
835 locating all of the dynamic linker's runtime structures. This
836 address is the value of the debug base symbol. The job of this
837 function is to find and return that address, or to return 0 if there
838 is no such address (the executable is statically linked for example).
839
840 For SunOS, the job is almost trivial, since the dynamic linker and
841 all of it's structures are statically linked to the executable at
842 link time. Thus the symbol for the address we are looking for has
843 already been added to the minimal symbol table for the executable's
844 objfile at the time the symbol file's symbols were read, and all we
845 have to do is look it up there. Note that we explicitly do NOT want
846 to find the copies in the shared library.
847
848 The SVR4 version is a bit more complicated because the address
849 is contained somewhere in the dynamic info section. We have to go
850 to a lot more work to discover the address of the debug base symbol.
851 Because of this complexity, we cache the value we find and return that
852 value on subsequent invocations. Note there is no copy in the
853 executable symbol tables.
854
855 */
856
857static CORE_ADDR
1a816a87 858locate_base (struct svr4_info *info)
13437d4b 859{
13437d4b
KB
860 /* Check to see if we have a currently valid address, and if so, avoid
861 doing all this work again and just return the cached address. If
862 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
863 section for ELF executables. There's no point in doing any of this
864 though if we don't have some link map offsets to work with. */
13437d4b 865
1a816a87 866 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 867 info->debug_base = elf_locate_base ();
1a816a87 868 return info->debug_base;
13437d4b
KB
869}
870
e4cd0d6a 871/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
872 return its address in the inferior. Return zero if the address
873 could not be determined.
13437d4b 874
e4cd0d6a
MK
875 FIXME: Perhaps we should validate the info somehow, perhaps by
876 checking r_version for a known version number, or r_state for
877 RT_CONSISTENT. */
13437d4b
KB
878
879static CORE_ADDR
1a816a87 880solib_svr4_r_map (struct svr4_info *info)
13437d4b 881{
4b188b9f 882 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 883 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
884 CORE_ADDR addr = 0;
885 volatile struct gdb_exception ex;
13437d4b 886
08597104
JB
887 TRY_CATCH (ex, RETURN_MASK_ERROR)
888 {
889 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
890 ptr_type);
891 }
892 exception_print (gdb_stderr, ex);
893 return addr;
e4cd0d6a 894}
13437d4b 895
7cd25cfc
DJ
896/* Find r_brk from the inferior's debug base. */
897
898static CORE_ADDR
1a816a87 899solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
900{
901 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 902 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 903
1a816a87
PA
904 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
905 ptr_type);
7cd25cfc
DJ
906}
907
e4cd0d6a
MK
908/* Find the link map for the dynamic linker (if it is not in the
909 normal list of loaded shared objects). */
13437d4b 910
e4cd0d6a 911static CORE_ADDR
1a816a87 912solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
913{
914 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 915 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 916 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 917 ULONGEST version;
13437d4b 918
e4cd0d6a
MK
919 /* Check version, and return zero if `struct r_debug' doesn't have
920 the r_ldsomap member. */
1a816a87
PA
921 version
922 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 923 lmo->r_version_size, byte_order);
e4cd0d6a
MK
924 if (version < 2 || lmo->r_ldsomap_offset == -1)
925 return 0;
13437d4b 926
1a816a87 927 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 928 ptr_type);
13437d4b
KB
929}
930
de18c1d8
JM
931/* On Solaris systems with some versions of the dynamic linker,
932 ld.so's l_name pointer points to the SONAME in the string table
933 rather than into writable memory. So that GDB can find shared
934 libraries when loading a core file generated by gcore, ensure that
935 memory areas containing the l_name string are saved in the core
936 file. */
937
938static int
939svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
940{
941 struct svr4_info *info;
942 CORE_ADDR ldsomap;
943 struct so_list *new;
944 struct cleanup *old_chain;
945 struct link_map_offsets *lmo;
946 CORE_ADDR lm_name;
947
948 info = get_svr4_info ();
949
950 info->debug_base = 0;
951 locate_base (info);
952 if (!info->debug_base)
953 return 0;
954
955 ldsomap = solib_svr4_r_ldsomap (info);
956 if (!ldsomap)
957 return 0;
958
959 lmo = svr4_fetch_link_map_offsets ();
960 new = XZALLOC (struct so_list);
961 old_chain = make_cleanup (xfree, new);
962 new->lm_info = xmalloc (sizeof (struct lm_info));
963 make_cleanup (xfree, new->lm_info);
964 new->lm_info->l_addr = (CORE_ADDR)-1;
965 new->lm_info->lm_addr = ldsomap;
966 new->lm_info->lm = xzalloc (lmo->link_map_size);
967 make_cleanup (xfree, new->lm_info->lm);
968 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
969 lm_name = LM_NAME (new);
970 do_cleanups (old_chain);
971
972 return (lm_name >= vaddr && lm_name < vaddr + size);
973}
974
13437d4b
KB
975/*
976
977 LOCAL FUNCTION
978
979 open_symbol_file_object
980
981 SYNOPSIS
982
983 void open_symbol_file_object (void *from_tty)
984
985 DESCRIPTION
986
987 If no open symbol file, attempt to locate and open the main symbol
988 file. On SVR4 systems, this is the first link map entry. If its
989 name is here, we can open it. Useful when attaching to a process
990 without first loading its symbol file.
991
992 If FROM_TTYP dereferences to a non-zero integer, allow messages to
993 be printed. This parameter is a pointer rather than an int because
994 open_symbol_file_object() is called via catch_errors() and
c378eb4e 995 catch_errors() requires a pointer argument. */
13437d4b
KB
996
997static int
998open_symbol_file_object (void *from_ttyp)
999{
1000 CORE_ADDR lm, l_name;
1001 char *filename;
1002 int errcode;
1003 int from_tty = *(int *)from_ttyp;
4b188b9f 1004 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
1005 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1006 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 1007 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 1008 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1009 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
1010
1011 if (symfile_objfile)
9e2f0ad4 1012 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
1013 return 0;
1014
7cd25cfc 1015 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1016 info->debug_base = 0;
1017 if (locate_base (info) == 0)
c378eb4e 1018 return 0; /* failed somehow... */
13437d4b
KB
1019
1020 /* First link map member should be the executable. */
1a816a87 1021 lm = solib_svr4_r_map (info);
e4cd0d6a 1022 if (lm == 0)
c378eb4e 1023 return 0; /* failed somehow... */
13437d4b
KB
1024
1025 /* Read address of name from target memory to GDB. */
cfaefc65 1026 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1027
cfaefc65 1028 /* Convert the address to host format. */
b6da22b0 1029 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
1030
1031 /* Free l_name_buf. */
1032 do_cleanups (cleanups);
1033
1034 if (l_name == 0)
1035 return 0; /* No filename. */
1036
1037 /* Now fetch the filename from target memory. */
1038 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1039 make_cleanup (xfree, filename);
13437d4b
KB
1040
1041 if (errcode)
1042 {
8a3fe4f8 1043 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1044 safe_strerror (errcode));
1045 return 0;
1046 }
1047
13437d4b 1048 /* Have a pathname: read the symbol file. */
1adeb98a 1049 symbol_file_add_main (filename, from_tty);
13437d4b
KB
1050
1051 return 1;
1052}
13437d4b 1053
34439770
DJ
1054/* If no shared library information is available from the dynamic
1055 linker, build a fallback list from other sources. */
1056
1057static struct so_list *
1058svr4_default_sos (void)
1059{
6c95b8df 1060 struct svr4_info *info = get_svr4_info ();
1a816a87 1061
34439770
DJ
1062 struct so_list *head = NULL;
1063 struct so_list **link_ptr = &head;
1064
1a816a87 1065 if (info->debug_loader_offset_p)
34439770
DJ
1066 {
1067 struct so_list *new = XZALLOC (struct so_list);
1068
1069 new->lm_info = xmalloc (sizeof (struct lm_info));
1070
1071 /* Nothing will ever check the cached copy of the link
1072 map if we set l_addr. */
1a816a87 1073 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1074 new->lm_info->lm_addr = 0;
34439770
DJ
1075 new->lm_info->lm = NULL;
1076
1a816a87
PA
1077 strncpy (new->so_name, info->debug_loader_name,
1078 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1079 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1080 strcpy (new->so_original_name, new->so_name);
1081
1082 *link_ptr = new;
1083 link_ptr = &new->next;
1084 }
1085
1086 return head;
1087}
1088
13437d4b
KB
1089/* LOCAL FUNCTION
1090
1091 current_sos -- build a list of currently loaded shared objects
1092
1093 SYNOPSIS
1094
1095 struct so_list *current_sos ()
1096
1097 DESCRIPTION
1098
1099 Build a list of `struct so_list' objects describing the shared
1100 objects currently loaded in the inferior. This list does not
1101 include an entry for the main executable file.
1102
1103 Note that we only gather information directly available from the
1104 inferior --- we don't examine any of the shared library files
1105 themselves. The declaration of `struct so_list' says which fields
1106 we provide values for. */
1107
1108static struct so_list *
1109svr4_current_sos (void)
1110{
492928e4 1111 CORE_ADDR lm, prev_lm;
13437d4b
KB
1112 struct so_list *head = 0;
1113 struct so_list **link_ptr = &head;
e4cd0d6a 1114 CORE_ADDR ldsomap = 0;
1a816a87
PA
1115 struct svr4_info *info;
1116
6c95b8df 1117 info = get_svr4_info ();
13437d4b 1118
7cd25cfc 1119 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1120 info->debug_base = 0;
1121 locate_base (info);
13437d4b 1122
7cd25cfc
DJ
1123 /* If we can't find the dynamic linker's base structure, this
1124 must not be a dynamically linked executable. Hmm. */
1a816a87 1125 if (! info->debug_base)
7cd25cfc 1126 return svr4_default_sos ();
13437d4b
KB
1127
1128 /* Walk the inferior's link map list, and build our list of
1129 `struct so_list' nodes. */
492928e4 1130 prev_lm = 0;
1a816a87 1131 lm = solib_svr4_r_map (info);
34439770 1132
13437d4b
KB
1133 while (lm)
1134 {
4b188b9f 1135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1136 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1137 struct cleanup *old_chain = make_cleanup (xfree, new);
492928e4 1138 CORE_ADDR next_lm;
13437d4b 1139
13437d4b 1140 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1141 make_cleanup (xfree, new->lm_info);
13437d4b 1142
831004b7 1143 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1144 new->lm_info->lm_addr = lm;
f4456994 1145 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1146 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1147
1148 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1149
492928e4
JK
1150 next_lm = LM_NEXT (new);
1151
1152 if (LM_PREV (new) != prev_lm)
1153 {
1154 warning (_("Corrupted shared library list"));
1155 free_so (new);
1156 next_lm = 0;
1157 }
13437d4b
KB
1158
1159 /* For SVR4 versions, the first entry in the link map is for the
1160 inferior executable, so we must ignore it. For some versions of
1161 SVR4, it has no name. For others (Solaris 2.3 for example), it
1162 does have a name, so we can no longer use a missing name to
c378eb4e 1163 decide when to ignore it. */
492928e4 1164 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1165 {
1a816a87 1166 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1167 free_so (new);
1168 }
13437d4b
KB
1169 else
1170 {
1171 int errcode;
1172 char *buffer;
1173
1174 /* Extract this shared object's name. */
1175 target_read_string (LM_NAME (new), &buffer,
1176 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1177 if (errcode != 0)
8a3fe4f8
AC
1178 warning (_("Can't read pathname for load map: %s."),
1179 safe_strerror (errcode));
13437d4b
KB
1180 else
1181 {
1182 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1183 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1184 strcpy (new->so_original_name, new->so_name);
1185 }
ea5bf0a1 1186 xfree (buffer);
13437d4b
KB
1187
1188 /* If this entry has no name, or its name matches the name
1189 for the main executable, don't include it in the list. */
1190 if (! new->so_name[0]
1191 || match_main (new->so_name))
1192 free_so (new);
1193 else
1194 {
1195 new->next = 0;
1196 *link_ptr = new;
1197 link_ptr = &new->next;
1198 }
1199 }
1200
492928e4
JK
1201 prev_lm = lm;
1202 lm = next_lm;
1203
e4cd0d6a
MK
1204 /* On Solaris, the dynamic linker is not in the normal list of
1205 shared objects, so make sure we pick it up too. Having
1206 symbol information for the dynamic linker is quite crucial
1207 for skipping dynamic linker resolver code. */
1208 if (lm == 0 && ldsomap == 0)
492928e4
JK
1209 {
1210 lm = ldsomap = solib_svr4_r_ldsomap (info);
1211 prev_lm = 0;
1212 }
e4cd0d6a 1213
13437d4b
KB
1214 discard_cleanups (old_chain);
1215 }
1216
34439770
DJ
1217 if (head == NULL)
1218 return svr4_default_sos ();
1219
13437d4b
KB
1220 return head;
1221}
1222
93a57060 1223/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1224
1225CORE_ADDR
1226svr4_fetch_objfile_link_map (struct objfile *objfile)
1227{
93a57060 1228 struct so_list *so;
6c95b8df 1229 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1230
93a57060 1231 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1232 if (info->main_lm_addr == 0)
93a57060 1233 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1234
93a57060
DJ
1235 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1236 if (objfile == symfile_objfile)
1a816a87 1237 return info->main_lm_addr;
93a57060
DJ
1238
1239 /* The other link map addresses may be found by examining the list
1240 of shared libraries. */
1241 for (so = master_so_list (); so; so = so->next)
1242 if (so->objfile == objfile)
1243 return so->lm_info->lm_addr;
1244
1245 /* Not found! */
bc4a16ae
EZ
1246 return 0;
1247}
13437d4b
KB
1248
1249/* On some systems, the only way to recognize the link map entry for
1250 the main executable file is by looking at its name. Return
1251 non-zero iff SONAME matches one of the known main executable names. */
1252
1253static int
bc043ef3 1254match_main (const char *soname)
13437d4b 1255{
bc043ef3 1256 const char * const *mainp;
13437d4b
KB
1257
1258 for (mainp = main_name_list; *mainp != NULL; mainp++)
1259 {
1260 if (strcmp (soname, *mainp) == 0)
1261 return (1);
1262 }
1263
1264 return (0);
1265}
1266
13437d4b
KB
1267/* Return 1 if PC lies in the dynamic symbol resolution code of the
1268 SVR4 run time loader. */
13437d4b 1269
7d522c90 1270int
d7fa2ae2 1271svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1272{
6c95b8df
PA
1273 struct svr4_info *info = get_svr4_info ();
1274
1275 return ((pc >= info->interp_text_sect_low
1276 && pc < info->interp_text_sect_high)
1277 || (pc >= info->interp_plt_sect_low
1278 && pc < info->interp_plt_sect_high)
0875794a
JK
1279 || in_plt_section (pc, NULL)
1280 || in_gnu_ifunc_stub (pc));
13437d4b 1281}
13437d4b 1282
2f4950cd
AC
1283/* Given an executable's ABFD and target, compute the entry-point
1284 address. */
1285
1286static CORE_ADDR
1287exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1288{
1289 /* KevinB wrote ... for most targets, the address returned by
1290 bfd_get_start_address() is the entry point for the start
1291 function. But, for some targets, bfd_get_start_address() returns
1292 the address of a function descriptor from which the entry point
1293 address may be extracted. This address is extracted by
1294 gdbarch_convert_from_func_ptr_addr(). The method
1295 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1296 function for targets which don't use function descriptors. */
1cf3db46 1297 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1298 bfd_get_start_address (abfd),
1299 targ);
1300}
13437d4b
KB
1301
1302/*
1303
1304 LOCAL FUNCTION
1305
1306 enable_break -- arrange for dynamic linker to hit breakpoint
1307
1308 SYNOPSIS
1309
1310 int enable_break (void)
1311
1312 DESCRIPTION
1313
1314 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1315 debugger interface, support for arranging for the inferior to hit
1316 a breakpoint after mapping in the shared libraries. This function
1317 enables that breakpoint.
1318
1319 For SunOS, there is a special flag location (in_debugger) which we
1320 set to 1. When the dynamic linker sees this flag set, it will set
1321 a breakpoint at a location known only to itself, after saving the
1322 original contents of that place and the breakpoint address itself,
1323 in it's own internal structures. When we resume the inferior, it
1324 will eventually take a SIGTRAP when it runs into the breakpoint.
1325 We handle this (in a different place) by restoring the contents of
1326 the breakpointed location (which is only known after it stops),
1327 chasing around to locate the shared libraries that have been
1328 loaded, then resuming.
1329
1330 For SVR4, the debugger interface structure contains a member (r_brk)
1331 which is statically initialized at the time the shared library is
1332 built, to the offset of a function (_r_debug_state) which is guaran-
1333 teed to be called once before mapping in a library, and again when
1334 the mapping is complete. At the time we are examining this member,
1335 it contains only the unrelocated offset of the function, so we have
1336 to do our own relocation. Later, when the dynamic linker actually
1337 runs, it relocates r_brk to be the actual address of _r_debug_state().
1338
1339 The debugger interface structure also contains an enumeration which
1340 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1341 depending upon whether or not the library is being mapped or unmapped,
1342 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1343 */
1344
1345static int
268a4a75 1346enable_break (struct svr4_info *info, int from_tty)
13437d4b 1347{
13437d4b 1348 struct minimal_symbol *msymbol;
bc043ef3 1349 const char * const *bkpt_namep;
13437d4b 1350 asection *interp_sect;
97ec2c2f 1351 gdb_byte *interp_name;
7cd25cfc 1352 CORE_ADDR sym_addr;
13437d4b 1353
6c95b8df
PA
1354 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1355 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1356
7cd25cfc
DJ
1357 /* If we already have a shared library list in the target, and
1358 r_debug contains r_brk, set the breakpoint there - this should
1359 mean r_brk has already been relocated. Assume the dynamic linker
1360 is the object containing r_brk. */
1361
268a4a75 1362 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1363 sym_addr = 0;
1a816a87
PA
1364 if (info->debug_base && solib_svr4_r_map (info) != 0)
1365 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1366
1367 if (sym_addr != 0)
1368 {
1369 struct obj_section *os;
1370
b36ec657 1371 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1372 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1373 sym_addr,
1374 &current_target));
b36ec657 1375
48379de6
DE
1376 /* On at least some versions of Solaris there's a dynamic relocation
1377 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1378 we get control before the dynamic linker has self-relocated.
1379 Check if SYM_ADDR is in a known section, if it is assume we can
1380 trust its value. This is just a heuristic though, it could go away
1381 or be replaced if it's getting in the way.
1382
1383 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1384 however it's spelled in your particular system) is ARM or Thumb.
1385 That knowledge is encoded in the address, if it's Thumb the low bit
1386 is 1. However, we've stripped that info above and it's not clear
1387 what all the consequences are of passing a non-addr_bits_remove'd
1388 address to create_solib_event_breakpoint. The call to
1389 find_pc_section verifies we know about the address and have some
1390 hope of computing the right kind of breakpoint to use (via
1391 symbol info). It does mean that GDB needs to be pointed at a
1392 non-stripped version of the dynamic linker in order to obtain
1393 information it already knows about. Sigh. */
1394
7cd25cfc
DJ
1395 os = find_pc_section (sym_addr);
1396 if (os != NULL)
1397 {
1398 /* Record the relocated start and end address of the dynamic linker
1399 text and plt section for svr4_in_dynsym_resolve_code. */
1400 bfd *tmp_bfd;
1401 CORE_ADDR load_addr;
1402
1403 tmp_bfd = os->objfile->obfd;
1404 load_addr = ANOFFSET (os->objfile->section_offsets,
1405 os->objfile->sect_index_text);
1406
1407 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1408 if (interp_sect)
1409 {
6c95b8df 1410 info->interp_text_sect_low =
7cd25cfc 1411 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1412 info->interp_text_sect_high =
1413 info->interp_text_sect_low
1414 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1415 }
1416 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1417 if (interp_sect)
1418 {
6c95b8df 1419 info->interp_plt_sect_low =
7cd25cfc 1420 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1421 info->interp_plt_sect_high =
1422 info->interp_plt_sect_low
1423 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1424 }
1425
a6d9a66e 1426 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1427 return 1;
1428 }
1429 }
1430
97ec2c2f 1431 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1432 into the old breakpoint at symbol code. */
97ec2c2f
UW
1433 interp_name = find_program_interpreter ();
1434 if (interp_name)
13437d4b 1435 {
8ad2fcde
KB
1436 CORE_ADDR load_addr = 0;
1437 int load_addr_found = 0;
2ec9a4f8 1438 int loader_found_in_list = 0;
f8766ec1 1439 struct so_list *so;
e4f7b8c8 1440 bfd *tmp_bfd = NULL;
2f4950cd 1441 struct target_ops *tmp_bfd_target;
f1838a98 1442 volatile struct gdb_exception ex;
13437d4b 1443
7cd25cfc 1444 sym_addr = 0;
13437d4b
KB
1445
1446 /* Now we need to figure out where the dynamic linker was
1447 loaded so that we can load its symbols and place a breakpoint
1448 in the dynamic linker itself.
1449
1450 This address is stored on the stack. However, I've been unable
1451 to find any magic formula to find it for Solaris (appears to
1452 be trivial on GNU/Linux). Therefore, we have to try an alternate
1453 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1454
f1838a98
UW
1455 TRY_CATCH (ex, RETURN_MASK_ALL)
1456 {
97ec2c2f 1457 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1458 }
13437d4b
KB
1459 if (tmp_bfd == NULL)
1460 goto bkpt_at_symbol;
1461
2f4950cd
AC
1462 /* Now convert the TMP_BFD into a target. That way target, as
1463 well as BFD operations can be used. Note that closing the
1464 target will also close the underlying bfd. */
1465 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1466
f8766ec1
KB
1467 /* On a running target, we can get the dynamic linker's base
1468 address from the shared library table. */
f8766ec1
KB
1469 so = master_so_list ();
1470 while (so)
8ad2fcde 1471 {
97ec2c2f 1472 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1473 {
1474 load_addr_found = 1;
2ec9a4f8 1475 loader_found_in_list = 1;
cc10cae3 1476 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1477 break;
1478 }
f8766ec1 1479 so = so->next;
8ad2fcde
KB
1480 }
1481
8d4e36ba
JB
1482 /* If we were not able to find the base address of the loader
1483 from our so_list, then try using the AT_BASE auxilliary entry. */
1484 if (!load_addr_found)
1485 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1486 {
1487 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1488
1489 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1490 that `+ load_addr' will overflow CORE_ADDR width not creating
1491 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1492 GDB. */
1493
d182d057 1494 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1495 {
d182d057 1496 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1497 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1498 tmp_bfd_target);
1499
1500 gdb_assert (load_addr < space_size);
1501
1502 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1503 64bit ld.so with 32bit executable, it should not happen. */
1504
1505 if (tmp_entry_point < space_size
1506 && tmp_entry_point + load_addr >= space_size)
1507 load_addr -= space_size;
1508 }
1509
1510 load_addr_found = 1;
1511 }
8d4e36ba 1512
8ad2fcde
KB
1513 /* Otherwise we find the dynamic linker's base address by examining
1514 the current pc (which should point at the entry point for the
8d4e36ba
JB
1515 dynamic linker) and subtracting the offset of the entry point.
1516
1517 This is more fragile than the previous approaches, but is a good
1518 fallback method because it has actually been working well in
1519 most cases. */
8ad2fcde 1520 if (!load_addr_found)
fb14de7b 1521 {
c2250ad1
UW
1522 struct regcache *regcache
1523 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1524
fb14de7b
UW
1525 load_addr = (regcache_read_pc (regcache)
1526 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1527 }
2ec9a4f8
DJ
1528
1529 if (!loader_found_in_list)
34439770 1530 {
1a816a87
PA
1531 info->debug_loader_name = xstrdup (interp_name);
1532 info->debug_loader_offset_p = 1;
1533 info->debug_loader_offset = load_addr;
268a4a75 1534 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1535 }
13437d4b
KB
1536
1537 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1538 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1539 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1540 if (interp_sect)
1541 {
6c95b8df 1542 info->interp_text_sect_low =
13437d4b 1543 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1544 info->interp_text_sect_high =
1545 info->interp_text_sect_low
1546 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1547 }
1548 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1549 if (interp_sect)
1550 {
6c95b8df 1551 info->interp_plt_sect_low =
13437d4b 1552 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1553 info->interp_plt_sect_high =
1554 info->interp_plt_sect_low
1555 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1556 }
1557
1558 /* Now try to set a breakpoint in the dynamic linker. */
1559 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1560 {
2bbe3cc1 1561 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1562 if (sym_addr != 0)
1563 break;
1564 }
1565
2bbe3cc1
DJ
1566 if (sym_addr != 0)
1567 /* Convert 'sym_addr' from a function pointer to an address.
1568 Because we pass tmp_bfd_target instead of the current
1569 target, this will always produce an unrelocated value. */
1cf3db46 1570 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1571 sym_addr,
1572 tmp_bfd_target);
1573
2f4950cd
AC
1574 /* We're done with both the temporary bfd and target. Remember,
1575 closing the target closes the underlying bfd. */
1576 target_close (tmp_bfd_target, 0);
13437d4b
KB
1577
1578 if (sym_addr != 0)
1579 {
a6d9a66e 1580 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1581 xfree (interp_name);
13437d4b
KB
1582 return 1;
1583 }
1584
1585 /* For whatever reason we couldn't set a breakpoint in the dynamic
1586 linker. Warn and drop into the old code. */
1587 bkpt_at_symbol:
97ec2c2f 1588 xfree (interp_name);
82d03102
PG
1589 warning (_("Unable to find dynamic linker breakpoint function.\n"
1590 "GDB will be unable to debug shared library initializers\n"
1591 "and track explicitly loaded dynamic code."));
13437d4b 1592 }
13437d4b 1593
e499d0f1
DJ
1594 /* Scan through the lists of symbols, trying to look up the symbol and
1595 set a breakpoint there. Terminate loop when we/if we succeed. */
1596
1597 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1598 {
1599 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1600 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1601 {
de64a9ac
JM
1602 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1603 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1604 sym_addr,
1605 &current_target);
1606 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1607 return 1;
1608 }
1609 }
13437d4b 1610
c6490bf2 1611 if (!current_inferior ()->attach_flag)
13437d4b 1612 {
c6490bf2 1613 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1614 {
c6490bf2
KB
1615 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1616 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1617 {
1618 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1619 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1620 sym_addr,
1621 &current_target);
1622 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1623 return 1;
1624 }
13437d4b
KB
1625 }
1626 }
542c95c2 1627 return 0;
13437d4b
KB
1628}
1629
1630/*
1631
1632 LOCAL FUNCTION
1633
1634 special_symbol_handling -- additional shared library symbol handling
1635
1636 SYNOPSIS
1637
1638 void special_symbol_handling ()
1639
1640 DESCRIPTION
1641
1642 Once the symbols from a shared object have been loaded in the usual
1643 way, we are called to do any system specific symbol handling that
1644 is needed.
1645
ab31aa69 1646 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1647 linkers structures to find symbol definitions for "common" symbols
1648 and adding them to the minimal symbol table for the runtime common
1649 objfile.
1650
ab31aa69
KB
1651 However, for SVR4, there's nothing to do.
1652
13437d4b
KB
1653 */
1654
1655static void
1656svr4_special_symbol_handling (void)
1657{
13437d4b
KB
1658}
1659
09919ac2
JK
1660/* Read the ELF program headers from ABFD. Return the contents and
1661 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1662
09919ac2
JK
1663static gdb_byte *
1664read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1665{
09919ac2
JK
1666 Elf_Internal_Ehdr *ehdr;
1667 gdb_byte *buf;
e2a44558 1668
09919ac2 1669 ehdr = elf_elfheader (abfd);
b8040f19 1670
09919ac2
JK
1671 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1672 if (*phdrs_size == 0)
1673 return NULL;
1674
1675 buf = xmalloc (*phdrs_size);
1676 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1677 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1678 {
1679 xfree (buf);
1680 return NULL;
1681 }
1682
1683 return buf;
b8040f19
JK
1684}
1685
01c30d6e
JK
1686/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1687 exec_bfd. Otherwise return 0.
1688
1689 We relocate all of the sections by the same amount. This
c378eb4e 1690 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1691 According to the System V Application Binary Interface,
1692 Edition 4.1, page 5-5:
1693
1694 ... Though the system chooses virtual addresses for
1695 individual processes, it maintains the segments' relative
1696 positions. Because position-independent code uses relative
1697 addressesing between segments, the difference between
1698 virtual addresses in memory must match the difference
1699 between virtual addresses in the file. The difference
1700 between the virtual address of any segment in memory and
1701 the corresponding virtual address in the file is thus a
1702 single constant value for any one executable or shared
1703 object in a given process. This difference is the base
1704 address. One use of the base address is to relocate the
1705 memory image of the program during dynamic linking.
1706
1707 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1708 ABI and is left unspecified in some of the earlier editions.
1709
1710 Decide if the objfile needs to be relocated. As indicated above, we will
1711 only be here when execution is stopped. But during attachment PC can be at
1712 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1713 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1714 regcache_read_pc would point to the interpreter and not the main executable.
1715
1716 So, to summarize, relocations are necessary when the start address obtained
1717 from the executable is different from the address in auxv AT_ENTRY entry.
1718
1719 [ The astute reader will note that we also test to make sure that
1720 the executable in question has the DYNAMIC flag set. It is my
1721 opinion that this test is unnecessary (undesirable even). It
1722 was added to avoid inadvertent relocation of an executable
1723 whose e_type member in the ELF header is not ET_DYN. There may
1724 be a time in the future when it is desirable to do relocations
1725 on other types of files as well in which case this condition
1726 should either be removed or modified to accomodate the new file
1727 type. - Kevin, Nov 2000. ] */
b8040f19 1728
01c30d6e
JK
1729static int
1730svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1731{
41752192
JK
1732 /* ENTRY_POINT is a possible function descriptor - before
1733 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1734 CORE_ADDR entry_point, displacement;
b8040f19
JK
1735
1736 if (exec_bfd == NULL)
1737 return 0;
1738
09919ac2
JK
1739 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1740 being executed themselves and PIE (Position Independent Executable)
1741 executables are ET_DYN. */
1742
1743 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1744 return 0;
1745
1746 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1747 return 0;
1748
1749 displacement = entry_point - bfd_get_start_address (exec_bfd);
1750
1751 /* Verify the DISPLACEMENT candidate complies with the required page
1752 alignment. It is cheaper than the program headers comparison below. */
1753
1754 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1755 {
1756 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1757
1758 /* p_align of PT_LOAD segments does not specify any alignment but
1759 only congruency of addresses:
1760 p_offset % p_align == p_vaddr % p_align
1761 Kernel is free to load the executable with lower alignment. */
1762
1763 if ((displacement & (elf->minpagesize - 1)) != 0)
1764 return 0;
1765 }
1766
1767 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1768 comparing their program headers. If the program headers in the auxilliary
1769 vector do not match the program headers in the executable, then we are
1770 looking at a different file than the one used by the kernel - for
1771 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1772
1773 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1774 {
1775 /* Be optimistic and clear OK only if GDB was able to verify the headers
1776 really do not match. */
1777 int phdrs_size, phdrs2_size, ok = 1;
1778 gdb_byte *buf, *buf2;
0a1e94c7 1779 int arch_size;
09919ac2 1780
0a1e94c7 1781 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1782 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1783 if (buf != NULL && buf2 != NULL)
1784 {
1785 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1786
1787 /* We are dealing with three different addresses. EXEC_BFD
1788 represents current address in on-disk file. target memory content
1789 may be different from EXEC_BFD as the file may have been prelinked
1790 to a different address after the executable has been loaded.
1791 Moreover the address of placement in target memory can be
3e43a32a
MS
1792 different from what the program headers in target memory say -
1793 this is the goal of PIE.
0a1e94c7
JK
1794
1795 Detected DISPLACEMENT covers both the offsets of PIE placement and
1796 possible new prelink performed after start of the program. Here
1797 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1798 content offset for the verification purpose. */
1799
1800 if (phdrs_size != phdrs2_size
1801 || bfd_get_arch_size (exec_bfd) != arch_size)
1802 ok = 0;
3e43a32a
MS
1803 else if (arch_size == 32
1804 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1805 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1806 {
1807 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1808 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1809 CORE_ADDR displacement = 0;
1810 int i;
1811
1812 /* DISPLACEMENT could be found more easily by the difference of
1813 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1814 already have enough information to compute that displacement
1815 with what we've read. */
1816
1817 for (i = 0; i < ehdr2->e_phnum; i++)
1818 if (phdr2[i].p_type == PT_LOAD)
1819 {
1820 Elf32_External_Phdr *phdrp;
1821 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1822 CORE_ADDR vaddr, paddr;
1823 CORE_ADDR displacement_vaddr = 0;
1824 CORE_ADDR displacement_paddr = 0;
1825
1826 phdrp = &((Elf32_External_Phdr *) buf)[i];
1827 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1828 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1829
1830 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1831 byte_order);
1832 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1833
1834 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1835 byte_order);
1836 displacement_paddr = paddr - phdr2[i].p_paddr;
1837
1838 if (displacement_vaddr == displacement_paddr)
1839 displacement = displacement_vaddr;
1840
1841 break;
1842 }
1843
1844 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1845
1846 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1847 {
1848 Elf32_External_Phdr *phdrp;
1849 Elf32_External_Phdr *phdr2p;
1850 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1851 CORE_ADDR vaddr, paddr;
43b8e241 1852 asection *plt2_asect;
0a1e94c7
JK
1853
1854 phdrp = &((Elf32_External_Phdr *) buf)[i];
1855 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1856 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1857 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1858
1859 /* PT_GNU_STACK is an exception by being never relocated by
1860 prelink as its addresses are always zero. */
1861
1862 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1863 continue;
1864
1865 /* Check also other adjustment combinations - PR 11786. */
1866
3e43a32a
MS
1867 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1868 byte_order);
0a1e94c7
JK
1869 vaddr -= displacement;
1870 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1871
3e43a32a
MS
1872 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1873 byte_order);
0a1e94c7
JK
1874 paddr -= displacement;
1875 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1876
1877 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1878 continue;
1879
43b8e241
JK
1880 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1881 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1882 if (plt2_asect)
1883 {
1884 int content2;
1885 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1886 CORE_ADDR filesz;
1887
1888 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1889 & SEC_HAS_CONTENTS) != 0;
1890
1891 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1892 byte_order);
1893
1894 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1895 FILESZ is from the in-memory image. */
1896 if (content2)
1897 filesz += bfd_get_section_size (plt2_asect);
1898 else
1899 filesz -= bfd_get_section_size (plt2_asect);
1900
1901 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1902 filesz);
1903
1904 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1905 continue;
1906 }
1907
0a1e94c7
JK
1908 ok = 0;
1909 break;
1910 }
1911 }
3e43a32a
MS
1912 else if (arch_size == 64
1913 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1914 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1915 {
1916 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1917 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1918 CORE_ADDR displacement = 0;
1919 int i;
1920
1921 /* DISPLACEMENT could be found more easily by the difference of
1922 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1923 already have enough information to compute that displacement
1924 with what we've read. */
1925
1926 for (i = 0; i < ehdr2->e_phnum; i++)
1927 if (phdr2[i].p_type == PT_LOAD)
1928 {
1929 Elf64_External_Phdr *phdrp;
1930 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1931 CORE_ADDR vaddr, paddr;
1932 CORE_ADDR displacement_vaddr = 0;
1933 CORE_ADDR displacement_paddr = 0;
1934
1935 phdrp = &((Elf64_External_Phdr *) buf)[i];
1936 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1937 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1938
1939 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1940 byte_order);
1941 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1942
1943 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1944 byte_order);
1945 displacement_paddr = paddr - phdr2[i].p_paddr;
1946
1947 if (displacement_vaddr == displacement_paddr)
1948 displacement = displacement_vaddr;
1949
1950 break;
1951 }
1952
1953 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1954
1955 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1956 {
1957 Elf64_External_Phdr *phdrp;
1958 Elf64_External_Phdr *phdr2p;
1959 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1960 CORE_ADDR vaddr, paddr;
43b8e241 1961 asection *plt2_asect;
0a1e94c7
JK
1962
1963 phdrp = &((Elf64_External_Phdr *) buf)[i];
1964 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1965 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1966 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1967
1968 /* PT_GNU_STACK is an exception by being never relocated by
1969 prelink as its addresses are always zero. */
1970
1971 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1972 continue;
1973
1974 /* Check also other adjustment combinations - PR 11786. */
1975
3e43a32a
MS
1976 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1977 byte_order);
0a1e94c7
JK
1978 vaddr -= displacement;
1979 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1980
3e43a32a
MS
1981 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1982 byte_order);
0a1e94c7
JK
1983 paddr -= displacement;
1984 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1985
1986 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1987 continue;
1988
43b8e241
JK
1989 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1990 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1991 if (plt2_asect)
1992 {
1993 int content2;
1994 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1995 CORE_ADDR filesz;
1996
1997 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1998 & SEC_HAS_CONTENTS) != 0;
1999
2000 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2001 byte_order);
2002
2003 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2004 FILESZ is from the in-memory image. */
2005 if (content2)
2006 filesz += bfd_get_section_size (plt2_asect);
2007 else
2008 filesz -= bfd_get_section_size (plt2_asect);
2009
2010 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2011 filesz);
2012
2013 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2014 continue;
2015 }
2016
0a1e94c7
JK
2017 ok = 0;
2018 break;
2019 }
2020 }
2021 else
2022 ok = 0;
2023 }
09919ac2
JK
2024
2025 xfree (buf);
2026 xfree (buf2);
2027
2028 if (!ok)
2029 return 0;
2030 }
b8040f19 2031
ccf26247
JK
2032 if (info_verbose)
2033 {
2034 /* It can be printed repeatedly as there is no easy way to check
2035 the executable symbols/file has been already relocated to
2036 displacement. */
2037
2038 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2039 "displacement %s for \"%s\".\n"),
2040 paddress (target_gdbarch, displacement),
2041 bfd_get_filename (exec_bfd));
2042 }
2043
01c30d6e
JK
2044 *displacementp = displacement;
2045 return 1;
b8040f19
JK
2046}
2047
2048/* Relocate the main executable. This function should be called upon
c378eb4e 2049 stopping the inferior process at the entry point to the program.
b8040f19
JK
2050 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2051 different, the main executable is relocated by the proper amount. */
2052
2053static void
2054svr4_relocate_main_executable (void)
2055{
01c30d6e
JK
2056 CORE_ADDR displacement;
2057
4e5799b6
JK
2058 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2059 probably contains the offsets computed using the PIE displacement
2060 from the previous run, which of course are irrelevant for this run.
2061 So we need to determine the new PIE displacement and recompute the
2062 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2063 already contains pre-computed offsets.
01c30d6e 2064
4e5799b6 2065 If we cannot compute the PIE displacement, either:
01c30d6e 2066
4e5799b6
JK
2067 - The executable is not PIE.
2068
2069 - SYMFILE_OBJFILE does not match the executable started in the target.
2070 This can happen for main executable symbols loaded at the host while
2071 `ld.so --ld-args main-executable' is loaded in the target.
2072
2073 Then we leave the section offsets untouched and use them as is for
2074 this run. Either:
2075
2076 - These section offsets were properly reset earlier, and thus
2077 already contain the correct values. This can happen for instance
2078 when reconnecting via the remote protocol to a target that supports
2079 the `qOffsets' packet.
2080
2081 - The section offsets were not reset earlier, and the best we can
c378eb4e 2082 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2083
2084 if (! svr4_exec_displacement (&displacement))
2085 return;
b8040f19 2086
01c30d6e
JK
2087 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2088 addresses. */
b8040f19
JK
2089
2090 if (symfile_objfile)
e2a44558 2091 {
e2a44558 2092 struct section_offsets *new_offsets;
b8040f19 2093 int i;
e2a44558 2094
b8040f19
JK
2095 new_offsets = alloca (symfile_objfile->num_sections
2096 * sizeof (*new_offsets));
e2a44558 2097
b8040f19
JK
2098 for (i = 0; i < symfile_objfile->num_sections; i++)
2099 new_offsets->offsets[i] = displacement;
e2a44558 2100
b8040f19 2101 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2102 }
51bee8e9
JK
2103 else if (exec_bfd)
2104 {
2105 asection *asect;
2106
2107 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2108 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2109 (bfd_section_vma (exec_bfd, asect)
2110 + displacement));
2111 }
e2a44558
KB
2112}
2113
13437d4b
KB
2114/*
2115
2116 GLOBAL FUNCTION
2117
2118 svr4_solib_create_inferior_hook -- shared library startup support
2119
2120 SYNOPSIS
2121
268a4a75 2122 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
2123
2124 DESCRIPTION
2125
2126 When gdb starts up the inferior, it nurses it along (through the
2127 shell) until it is ready to execute it's first instruction. At this
2128 point, this function gets called via expansion of the macro
2129 SOLIB_CREATE_INFERIOR_HOOK.
2130
2131 For SunOS executables, this first instruction is typically the
2132 one at "_start", or a similar text label, regardless of whether
2133 the executable is statically or dynamically linked. The runtime
2134 startup code takes care of dynamically linking in any shared
2135 libraries, once gdb allows the inferior to continue.
2136
2137 For SVR4 executables, this first instruction is either the first
2138 instruction in the dynamic linker (for dynamically linked
2139 executables) or the instruction at "start" for statically linked
2140 executables. For dynamically linked executables, the system
2141 first exec's /lib/libc.so.N, which contains the dynamic linker,
2142 and starts it running. The dynamic linker maps in any needed
2143 shared libraries, maps in the actual user executable, and then
2144 jumps to "start" in the user executable.
2145
2146 For both SunOS shared libraries, and SVR4 shared libraries, we
2147 can arrange to cooperate with the dynamic linker to discover the
2148 names of shared libraries that are dynamically linked, and the
2149 base addresses to which they are linked.
2150
2151 This function is responsible for discovering those names and
2152 addresses, and saving sufficient information about them to allow
2153 their symbols to be read at a later time.
2154
2155 FIXME
2156
2157 Between enable_break() and disable_break(), this code does not
2158 properly handle hitting breakpoints which the user might have
2159 set in the startup code or in the dynamic linker itself. Proper
2160 handling will probably have to wait until the implementation is
2161 changed to use the "breakpoint handler function" method.
2162
2163 Also, what if child has exit()ed? Must exit loop somehow.
2164 */
2165
e2a44558 2166static void
268a4a75 2167svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2168{
1cd337a5 2169#if defined(_SCO_DS)
d6b48e9c 2170 struct inferior *inf;
2020b7ab 2171 struct thread_info *tp;
1cd337a5 2172#endif /* defined(_SCO_DS) */
1a816a87
PA
2173 struct svr4_info *info;
2174
6c95b8df 2175 info = get_svr4_info ();
2020b7ab 2176
e2a44558 2177 /* Relocate the main executable if necessary. */
86e4bafc 2178 svr4_relocate_main_executable ();
e2a44558 2179
d5a921c9 2180 if (!svr4_have_link_map_offsets ())
513f5903 2181 return;
d5a921c9 2182
268a4a75 2183 if (!enable_break (info, from_tty))
542c95c2 2184 return;
13437d4b 2185
ab31aa69
KB
2186#if defined(_SCO_DS)
2187 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2188 special shared library breakpoints and the shared library breakpoint
2189 service routine.
2190
2191 Now run the target. It will eventually hit the breakpoint, at
2192 which point all of the libraries will have been mapped in and we
2193 can go groveling around in the dynamic linker structures to find
c378eb4e 2194 out what we need to know about them. */
13437d4b 2195
d6b48e9c 2196 inf = current_inferior ();
2020b7ab
PA
2197 tp = inferior_thread ();
2198
13437d4b 2199 clear_proceed_status ();
16c381f0
JK
2200 inf->control.stop_soon = STOP_QUIETLY;
2201 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2202 do
2203 {
16c381f0 2204 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
ae123ec6 2205 wait_for_inferior (0);
13437d4b 2206 }
16c381f0
JK
2207 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2208 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2209#endif /* defined(_SCO_DS) */
13437d4b
KB
2210}
2211
2212static void
2213svr4_clear_solib (void)
2214{
6c95b8df
PA
2215 struct svr4_info *info;
2216
2217 info = get_svr4_info ();
2218 info->debug_base = 0;
2219 info->debug_loader_offset_p = 0;
2220 info->debug_loader_offset = 0;
2221 xfree (info->debug_loader_name);
2222 info->debug_loader_name = NULL;
13437d4b
KB
2223}
2224
2225static void
2226svr4_free_so (struct so_list *so)
2227{
b8c9b27d
KB
2228 xfree (so->lm_info->lm);
2229 xfree (so->lm_info);
13437d4b
KB
2230}
2231
6bb7be43
JB
2232
2233/* Clear any bits of ADDR that wouldn't fit in a target-format
2234 data pointer. "Data pointer" here refers to whatever sort of
2235 address the dynamic linker uses to manage its sections. At the
2236 moment, we don't support shared libraries on any processors where
2237 code and data pointers are different sizes.
2238
2239 This isn't really the right solution. What we really need here is
2240 a way to do arithmetic on CORE_ADDR values that respects the
2241 natural pointer/address correspondence. (For example, on the MIPS,
2242 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2243 sign-extend the value. There, simply truncating the bits above
819844ad 2244 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2245 be a new gdbarch method or something. */
2246static CORE_ADDR
2247svr4_truncate_ptr (CORE_ADDR addr)
2248{
1cf3db46 2249 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2250 /* We don't need to truncate anything, and the bit twiddling below
2251 will fail due to overflow problems. */
2252 return addr;
2253 else
1cf3db46 2254 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2255}
2256
2257
749499cb
KB
2258static void
2259svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2260 struct target_section *sec)
749499cb 2261{
cc10cae3
AO
2262 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
2263 sec->bfd));
2264 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2265 sec->bfd));
749499cb 2266}
4b188b9f 2267\f
749499cb 2268
4b188b9f 2269/* Architecture-specific operations. */
6bb7be43 2270
4b188b9f
MK
2271/* Per-architecture data key. */
2272static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2273
4b188b9f 2274struct solib_svr4_ops
e5e2b9ff 2275{
4b188b9f
MK
2276 /* Return a description of the layout of `struct link_map'. */
2277 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2278};
e5e2b9ff 2279
4b188b9f 2280/* Return a default for the architecture-specific operations. */
e5e2b9ff 2281
4b188b9f
MK
2282static void *
2283solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2284{
4b188b9f 2285 struct solib_svr4_ops *ops;
e5e2b9ff 2286
4b188b9f 2287 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2288 ops->fetch_link_map_offsets = NULL;
4b188b9f 2289 return ops;
e5e2b9ff
KB
2290}
2291
4b188b9f 2292/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2293 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2294
21479ded 2295void
e5e2b9ff
KB
2296set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2297 struct link_map_offsets *(*flmo) (void))
21479ded 2298{
4b188b9f
MK
2299 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2300
2301 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2302
2303 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2304}
2305
4b188b9f
MK
2306/* Fetch a link_map_offsets structure using the architecture-specific
2307 `struct link_map_offsets' fetcher. */
1c4dcb57 2308
4b188b9f
MK
2309static struct link_map_offsets *
2310svr4_fetch_link_map_offsets (void)
21479ded 2311{
1cf3db46 2312 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2313
2314 gdb_assert (ops->fetch_link_map_offsets);
2315 return ops->fetch_link_map_offsets ();
21479ded
KB
2316}
2317
4b188b9f
MK
2318/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2319
2320static int
2321svr4_have_link_map_offsets (void)
2322{
1cf3db46 2323 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2324
4b188b9f
MK
2325 return (ops->fetch_link_map_offsets != NULL);
2326}
2327\f
2328
e4bbbda8
MK
2329/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2330 `struct r_debug' and a `struct link_map' that are binary compatible
2331 with the origional SVR4 implementation. */
2332
2333/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2334 for an ILP32 SVR4 system. */
2335
2336struct link_map_offsets *
2337svr4_ilp32_fetch_link_map_offsets (void)
2338{
2339 static struct link_map_offsets lmo;
2340 static struct link_map_offsets *lmp = NULL;
2341
2342 if (lmp == NULL)
2343 {
2344 lmp = &lmo;
2345
e4cd0d6a
MK
2346 lmo.r_version_offset = 0;
2347 lmo.r_version_size = 4;
e4bbbda8 2348 lmo.r_map_offset = 4;
7cd25cfc 2349 lmo.r_brk_offset = 8;
e4cd0d6a 2350 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2351
2352 /* Everything we need is in the first 20 bytes. */
2353 lmo.link_map_size = 20;
2354 lmo.l_addr_offset = 0;
e4bbbda8 2355 lmo.l_name_offset = 4;
cc10cae3 2356 lmo.l_ld_offset = 8;
e4bbbda8 2357 lmo.l_next_offset = 12;
e4bbbda8 2358 lmo.l_prev_offset = 16;
e4bbbda8
MK
2359 }
2360
2361 return lmp;
2362}
2363
2364/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2365 for an LP64 SVR4 system. */
2366
2367struct link_map_offsets *
2368svr4_lp64_fetch_link_map_offsets (void)
2369{
2370 static struct link_map_offsets lmo;
2371 static struct link_map_offsets *lmp = NULL;
2372
2373 if (lmp == NULL)
2374 {
2375 lmp = &lmo;
2376
e4cd0d6a
MK
2377 lmo.r_version_offset = 0;
2378 lmo.r_version_size = 4;
e4bbbda8 2379 lmo.r_map_offset = 8;
7cd25cfc 2380 lmo.r_brk_offset = 16;
e4cd0d6a 2381 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2382
2383 /* Everything we need is in the first 40 bytes. */
2384 lmo.link_map_size = 40;
2385 lmo.l_addr_offset = 0;
e4bbbda8 2386 lmo.l_name_offset = 8;
cc10cae3 2387 lmo.l_ld_offset = 16;
e4bbbda8 2388 lmo.l_next_offset = 24;
e4bbbda8 2389 lmo.l_prev_offset = 32;
e4bbbda8
MK
2390 }
2391
2392 return lmp;
2393}
2394\f
2395
7d522c90 2396struct target_so_ops svr4_so_ops;
13437d4b 2397
c378eb4e 2398/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2399 different rule for symbol lookup. The lookup begins here in the DSO, not in
2400 the main executable. */
2401
2402static struct symbol *
2403elf_lookup_lib_symbol (const struct objfile *objfile,
2404 const char *name,
21b556f4 2405 const domain_enum domain)
3a40aaa0 2406{
61f0d762
JK
2407 bfd *abfd;
2408
2409 if (objfile == symfile_objfile)
2410 abfd = exec_bfd;
2411 else
2412 {
2413 /* OBJFILE should have been passed as the non-debug one. */
2414 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2415
2416 abfd = objfile->obfd;
2417 }
2418
2419 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2420 return NULL;
2421
94af9270 2422 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2423}
2424
a78f21af
AC
2425extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2426
13437d4b
KB
2427void
2428_initialize_svr4_solib (void)
2429{
4b188b9f 2430 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2431 solib_svr4_pspace_data
2432 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2433
749499cb 2434 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2435 svr4_so_ops.free_so = svr4_free_so;
2436 svr4_so_ops.clear_solib = svr4_clear_solib;
2437 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2438 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2439 svr4_so_ops.current_sos = svr4_current_sos;
2440 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2441 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2442 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2443 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2444 svr4_so_ops.same = svr4_same;
de18c1d8 2445 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2446}
This page took 1.180587 seconds and 4 git commands to generate.