Replace VEX.DNS with VEX.NDS in comments.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4c38e0a4 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
1c4dcb57 53
13437d4b
KB
54/* Link map info to include in an allocated so_list entry */
55
56struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
4066fc10 61 gdb_byte *lm;
cc10cae3
AO
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
93a57060
DJ
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
13437d4b
KB
72 };
73
74/* On SVR4 systems, a list of symbols in the dynamic linker where
75 GDB can try to place a breakpoint to monitor shared library
76 events.
77
78 If none of these symbols are found, or other errors occur, then
79 SVR4 systems will fall back to using a symbol as the "startup
80 mapping complete" breakpoint address. */
81
13437d4b
KB
82static char *solib_break_names[] =
83{
84 "r_debug_state",
85 "_r_debug_state",
86 "_dl_debug_state",
87 "rtld_db_dlactivity",
1f72e589 88 "_rtld_debug_state",
4c0122c8 89
13437d4b
KB
90 NULL
91};
13437d4b 92
13437d4b
KB
93static char *bkpt_names[] =
94{
13437d4b 95 "_start",
ad3dcc5c 96 "__start",
13437d4b
KB
97 "main",
98 NULL
99};
13437d4b 100
13437d4b
KB
101static char *main_name_list[] =
102{
103 "main_$main",
104 NULL
105};
106
4d7b2d5b
JB
107/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
108 the same shared library. */
109
110static int
111svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
112{
113 if (strcmp (gdb_so_name, inferior_so_name) == 0)
114 return 1;
115
116 /* On Solaris, when starting inferior we think that dynamic linker is
117 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
118 contains /lib/ld.so.1. Sometimes one file is a link to another, but
119 sometimes they have identical content, but are not linked to each
120 other. We don't restrict this check for Solaris, but the chances
121 of running into this situation elsewhere are very low. */
122 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
123 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
124 return 1;
125
126 /* Similarly, we observed the same issue with sparc64, but with
127 different locations. */
128 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
129 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
130 return 1;
131
132 return 0;
133}
134
135static int
136svr4_same (struct so_list *gdb, struct so_list *inferior)
137{
138 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
139}
140
13437d4b
KB
141/* link map access functions */
142
143static CORE_ADDR
cc10cae3 144LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 145{
4b188b9f 146 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 147 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 148
cfaefc65 149 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 150 ptr_type);
13437d4b
KB
151}
152
cc10cae3 153static int
2c0b251b 154HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
155{
156 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
157
cfaefc65 158 return lmo->l_ld_offset >= 0;
cc10cae3
AO
159}
160
161static CORE_ADDR
162LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
163{
164 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 165 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 166
cfaefc65 167 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 168 ptr_type);
cc10cae3
AO
169}
170
171static CORE_ADDR
172LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
173{
174 if (so->lm_info->l_addr == (CORE_ADDR)-1)
175 {
176 struct bfd_section *dyninfo_sect;
177 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
178
179 l_addr = LM_ADDR_FROM_LINK_MAP (so);
180
181 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
182 goto set_addr;
183
184 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
185
186 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
187 if (dyninfo_sect == NULL)
188 goto set_addr;
189
190 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
191
192 if (dynaddr + l_addr != l_dynaddr)
193 {
cc10cae3
AO
194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
195 {
196 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
197 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
198 int i;
199
200 align = 1;
201
202 for (i = 0; i < ehdr->e_phnum; i++)
203 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
204 align = phdr[i].p_align;
205 }
206
207 /* Turn it into a mask. */
208 align--;
209
210 /* If the changes match the alignment requirements, we
211 assume we're using a core file that was generated by the
212 same binary, just prelinked with a different base offset.
213 If it doesn't match, we may have a different binary, the
214 same binary with the dynamic table loaded at an unrelated
215 location, or anything, really. To avoid regressions,
216 don't adjust the base offset in the latter case, although
217 odds are that, if things really changed, debugging won't
218 quite work. */
f1e55806 219 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
220 {
221 l_addr = l_dynaddr - dynaddr;
79d4c408
DJ
222
223 warning (_(".dynamic section for \"%s\" "
224 "is not at the expected address"), so->so_name);
cc10cae3
AO
225 warning (_("difference appears to be caused by prelink, "
226 "adjusting expectations"));
227 }
79d4c408
DJ
228 else
229 warning (_(".dynamic section for \"%s\" "
230 "is not at the expected address "
231 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
232 }
233
234 set_addr:
235 so->lm_info->l_addr = l_addr;
236 }
237
238 return so->lm_info->l_addr;
239}
240
13437d4b
KB
241static CORE_ADDR
242LM_NEXT (struct so_list *so)
243{
4b188b9f 244 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 245 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 246
cfaefc65 247 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 248 ptr_type);
13437d4b
KB
249}
250
251static CORE_ADDR
252LM_NAME (struct so_list *so)
253{
4b188b9f 254 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 255 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 256
cfaefc65 257 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 258 ptr_type);
13437d4b
KB
259}
260
13437d4b
KB
261static int
262IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
263{
4b188b9f 264 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 265 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 266
e499d0f1
DJ
267 /* Assume that everything is a library if the dynamic loader was loaded
268 late by a static executable. */
0763ab81 269 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
270 return 0;
271
cfaefc65 272 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
b6da22b0 273 ptr_type) == 0;
13437d4b
KB
274}
275
6c95b8df 276/* Per pspace SVR4 specific data. */
13437d4b 277
1a816a87
PA
278struct svr4_info
279{
1a816a87
PA
280 CORE_ADDR debug_base; /* Base of dynamic linker structures */
281
282 /* Validity flag for debug_loader_offset. */
283 int debug_loader_offset_p;
284
285 /* Load address for the dynamic linker, inferred. */
286 CORE_ADDR debug_loader_offset;
287
288 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
289 char *debug_loader_name;
290
291 /* Load map address for the main executable. */
292 CORE_ADDR main_lm_addr;
1a816a87 293
6c95b8df
PA
294 CORE_ADDR interp_text_sect_low;
295 CORE_ADDR interp_text_sect_high;
296 CORE_ADDR interp_plt_sect_low;
297 CORE_ADDR interp_plt_sect_high;
298};
1a816a87 299
6c95b8df
PA
300/* Per-program-space data key. */
301static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 302
6c95b8df
PA
303static void
304svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 305{
6c95b8df 306 struct svr4_info *info;
1a816a87 307
6c95b8df
PA
308 info = program_space_data (pspace, solib_svr4_pspace_data);
309 xfree (info);
1a816a87
PA
310}
311
6c95b8df
PA
312/* Get the current svr4 data. If none is found yet, add it now. This
313 function always returns a valid object. */
34439770 314
6c95b8df
PA
315static struct svr4_info *
316get_svr4_info (void)
1a816a87 317{
6c95b8df 318 struct svr4_info *info;
1a816a87 319
6c95b8df
PA
320 info = program_space_data (current_program_space, solib_svr4_pspace_data);
321 if (info != NULL)
322 return info;
34439770 323
6c95b8df
PA
324 info = XZALLOC (struct svr4_info);
325 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
326 return info;
1a816a87 327}
93a57060 328
13437d4b
KB
329/* Local function prototypes */
330
331static int match_main (char *);
332
2bbe3cc1 333static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
334
335/*
336
337 LOCAL FUNCTION
338
339 bfd_lookup_symbol -- lookup the value for a specific symbol
340
341 SYNOPSIS
342
2bbe3cc1 343 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
344
345 DESCRIPTION
346
347 An expensive way to lookup the value of a single symbol for
348 bfd's that are only temporary anyway. This is used by the
349 shared library support to find the address of the debugger
2bbe3cc1 350 notification routine in the shared library.
13437d4b 351
2bbe3cc1
DJ
352 The returned symbol may be in a code or data section; functions
353 will normally be in a code section, but may be in a data section
354 if this architecture uses function descriptors.
87f84c9d 355
13437d4b
KB
356 Note that 0 is specifically allowed as an error return (no
357 such symbol).
358 */
359
360static CORE_ADDR
2bbe3cc1 361bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 362{
435b259c 363 long storage_needed;
13437d4b
KB
364 asymbol *sym;
365 asymbol **symbol_table;
366 unsigned int number_of_symbols;
367 unsigned int i;
368 struct cleanup *back_to;
369 CORE_ADDR symaddr = 0;
370
371 storage_needed = bfd_get_symtab_upper_bound (abfd);
372
373 if (storage_needed > 0)
374 {
375 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 376 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
377 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
378
379 for (i = 0; i < number_of_symbols; i++)
380 {
381 sym = *symbol_table++;
6314a349 382 if (strcmp (sym->name, symname) == 0
2bbe3cc1 383 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 384 {
2bbe3cc1 385 /* BFD symbols are section relative. */
13437d4b
KB
386 symaddr = sym->value + sym->section->vma;
387 break;
388 }
389 }
390 do_cleanups (back_to);
391 }
392
393 if (symaddr)
394 return symaddr;
395
396 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
397 have to check the dynamic string table too. */
398
399 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
400
401 if (storage_needed > 0)
402 {
403 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 404 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
405 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
406
407 for (i = 0; i < number_of_symbols; i++)
408 {
409 sym = *symbol_table++;
87f84c9d 410
6314a349 411 if (strcmp (sym->name, symname) == 0
2bbe3cc1 412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 413 {
2bbe3cc1 414 /* BFD symbols are section relative. */
13437d4b
KB
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 return symaddr;
423}
424
97ec2c2f
UW
425
426/* Read program header TYPE from inferior memory. The header is found
427 by scanning the OS auxillary vector.
428
429 Return a pointer to allocated memory holding the program header contents,
430 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
431 size of those contents is returned to P_SECT_SIZE. Likewise, the target
432 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
433
434static gdb_byte *
435read_program_header (int type, int *p_sect_size, int *p_arch_size)
436{
e17a4113 437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
438 CORE_ADDR at_phdr, at_phent, at_phnum;
439 int arch_size, sect_size;
440 CORE_ADDR sect_addr;
441 gdb_byte *buf;
442
443 /* Get required auxv elements from target. */
444 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
445 return 0;
446 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
447 return 0;
448 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
449 return 0;
450 if (!at_phdr || !at_phnum)
451 return 0;
452
453 /* Determine ELF architecture type. */
454 if (at_phent == sizeof (Elf32_External_Phdr))
455 arch_size = 32;
456 else if (at_phent == sizeof (Elf64_External_Phdr))
457 arch_size = 64;
458 else
459 return 0;
460
461 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
462 if (arch_size == 32)
463 {
464 Elf32_External_Phdr phdr;
465 int i;
466
467 /* Search for requested PHDR. */
468 for (i = 0; i < at_phnum; i++)
469 {
470 if (target_read_memory (at_phdr + i * sizeof (phdr),
471 (gdb_byte *)&phdr, sizeof (phdr)))
472 return 0;
473
e17a4113
UW
474 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
475 4, byte_order) == type)
97ec2c2f
UW
476 break;
477 }
478
479 if (i == at_phnum)
480 return 0;
481
482 /* Retrieve address and size. */
e17a4113
UW
483 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
484 4, byte_order);
485 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
486 4, byte_order);
97ec2c2f
UW
487 }
488 else
489 {
490 Elf64_External_Phdr phdr;
491 int i;
492
493 /* Search for requested PHDR. */
494 for (i = 0; i < at_phnum; i++)
495 {
496 if (target_read_memory (at_phdr + i * sizeof (phdr),
497 (gdb_byte *)&phdr, sizeof (phdr)))
498 return 0;
499
e17a4113
UW
500 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
501 4, byte_order) == type)
97ec2c2f
UW
502 break;
503 }
504
505 if (i == at_phnum)
506 return 0;
507
508 /* Retrieve address and size. */
e17a4113
UW
509 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
510 8, byte_order);
511 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
512 8, byte_order);
97ec2c2f
UW
513 }
514
515 /* Read in requested program header. */
516 buf = xmalloc (sect_size);
517 if (target_read_memory (sect_addr, buf, sect_size))
518 {
519 xfree (buf);
520 return NULL;
521 }
522
523 if (p_arch_size)
524 *p_arch_size = arch_size;
525 if (p_sect_size)
526 *p_sect_size = sect_size;
527
528 return buf;
529}
530
531
532/* Return program interpreter string. */
533static gdb_byte *
534find_program_interpreter (void)
535{
536 gdb_byte *buf = NULL;
537
538 /* If we have an exec_bfd, use its section table. */
539 if (exec_bfd
540 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
541 {
542 struct bfd_section *interp_sect;
543
544 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
545 if (interp_sect != NULL)
546 {
547 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
548 int sect_size = bfd_section_size (exec_bfd, interp_sect);
549
550 buf = xmalloc (sect_size);
551 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
552 }
553 }
554
555 /* If we didn't find it, use the target auxillary vector. */
556 if (!buf)
557 buf = read_program_header (PT_INTERP, NULL, NULL);
558
559 return buf;
560}
561
562
3a40aaa0
UW
563/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
564 returned and the corresponding PTR is set. */
565
566static int
567scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
568{
569 int arch_size, step, sect_size;
570 long dyn_tag;
571 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 572 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
573 Elf32_External_Dyn *x_dynp_32;
574 Elf64_External_Dyn *x_dynp_64;
575 struct bfd_section *sect;
576
577 if (abfd == NULL)
578 return 0;
0763ab81
PA
579
580 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
581 return 0;
582
3a40aaa0
UW
583 arch_size = bfd_get_arch_size (abfd);
584 if (arch_size == -1)
0763ab81 585 return 0;
3a40aaa0
UW
586
587 /* Find the start address of the .dynamic section. */
588 sect = bfd_get_section_by_name (abfd, ".dynamic");
589 if (sect == NULL)
590 return 0;
591 dyn_addr = bfd_section_vma (abfd, sect);
592
65728c26
DJ
593 /* Read in .dynamic from the BFD. We will get the actual value
594 from memory later. */
3a40aaa0 595 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
596 buf = bufstart = alloca (sect_size);
597 if (!bfd_get_section_contents (abfd, sect,
598 buf, 0, sect_size))
599 return 0;
3a40aaa0
UW
600
601 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
602 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
603 : sizeof (Elf64_External_Dyn);
604 for (bufend = buf + sect_size;
605 buf < bufend;
606 buf += step)
607 {
608 if (arch_size == 32)
609 {
610 x_dynp_32 = (Elf32_External_Dyn *) buf;
611 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
612 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
613 }
65728c26 614 else
3a40aaa0
UW
615 {
616 x_dynp_64 = (Elf64_External_Dyn *) buf;
617 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
618 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
619 }
620 if (dyn_tag == DT_NULL)
621 return 0;
622 if (dyn_tag == dyntag)
623 {
65728c26
DJ
624 /* If requested, try to read the runtime value of this .dynamic
625 entry. */
3a40aaa0 626 if (ptr)
65728c26 627 {
b6da22b0 628 struct type *ptr_type;
65728c26
DJ
629 gdb_byte ptr_buf[8];
630 CORE_ADDR ptr_addr;
631
b6da22b0 632 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
65728c26
DJ
633 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
634 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 635 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
636 *ptr = dyn_ptr;
637 }
638 return 1;
3a40aaa0
UW
639 }
640 }
641
642 return 0;
643}
644
97ec2c2f
UW
645/* Scan for DYNTAG in .dynamic section of the target's main executable,
646 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
647 returned and the corresponding PTR is set. */
648
649static int
650scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
651{
e17a4113 652 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
653 int sect_size, arch_size, step;
654 long dyn_tag;
655 CORE_ADDR dyn_ptr;
656 gdb_byte *bufend, *bufstart, *buf;
657
658 /* Read in .dynamic section. */
659 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
660 if (!buf)
661 return 0;
662
663 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
664 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
665 : sizeof (Elf64_External_Dyn);
666 for (bufend = buf + sect_size;
667 buf < bufend;
668 buf += step)
669 {
670 if (arch_size == 32)
671 {
672 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
e17a4113
UW
673 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
674 4, byte_order);
675 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
676 4, byte_order);
97ec2c2f
UW
677 }
678 else
679 {
680 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
e17a4113
UW
681 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
682 8, byte_order);
683 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
684 8, byte_order);
97ec2c2f
UW
685 }
686 if (dyn_tag == DT_NULL)
687 break;
688
689 if (dyn_tag == dyntag)
690 {
691 if (ptr)
692 *ptr = dyn_ptr;
693
694 xfree (bufstart);
695 return 1;
696 }
697 }
698
699 xfree (bufstart);
700 return 0;
701}
702
3a40aaa0 703
13437d4b
KB
704/*
705
706 LOCAL FUNCTION
707
708 elf_locate_base -- locate the base address of dynamic linker structs
709 for SVR4 elf targets.
710
711 SYNOPSIS
712
713 CORE_ADDR elf_locate_base (void)
714
715 DESCRIPTION
716
717 For SVR4 elf targets the address of the dynamic linker's runtime
718 structure is contained within the dynamic info section in the
719 executable file. The dynamic section is also mapped into the
720 inferior address space. Because the runtime loader fills in the
721 real address before starting the inferior, we have to read in the
722 dynamic info section from the inferior address space.
723 If there are any errors while trying to find the address, we
724 silently return 0, otherwise the found address is returned.
725
726 */
727
728static CORE_ADDR
729elf_locate_base (void)
730{
3a40aaa0
UW
731 struct minimal_symbol *msymbol;
732 CORE_ADDR dyn_ptr;
13437d4b 733
65728c26
DJ
734 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
735 instead of DT_DEBUG, although they sometimes contain an unused
736 DT_DEBUG. */
97ec2c2f
UW
737 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
738 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 739 {
b6da22b0 740 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 741 gdb_byte *pbuf;
b6da22b0 742 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
743 pbuf = alloca (pbuf_size);
744 /* DT_MIPS_RLD_MAP contains a pointer to the address
745 of the dynamic link structure. */
746 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 747 return 0;
b6da22b0 748 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
749 }
750
65728c26 751 /* Find DT_DEBUG. */
97ec2c2f
UW
752 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
753 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
754 return dyn_ptr;
755
3a40aaa0
UW
756 /* This may be a static executable. Look for the symbol
757 conventionally named _r_debug, as a last resort. */
758 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
759 if (msymbol != NULL)
760 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
761
762 /* DT_DEBUG entry not found. */
763 return 0;
764}
765
13437d4b
KB
766/*
767
768 LOCAL FUNCTION
769
770 locate_base -- locate the base address of dynamic linker structs
771
772 SYNOPSIS
773
1a816a87 774 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
775
776 DESCRIPTION
777
778 For both the SunOS and SVR4 shared library implementations, if the
779 inferior executable has been linked dynamically, there is a single
780 address somewhere in the inferior's data space which is the key to
781 locating all of the dynamic linker's runtime structures. This
782 address is the value of the debug base symbol. The job of this
783 function is to find and return that address, or to return 0 if there
784 is no such address (the executable is statically linked for example).
785
786 For SunOS, the job is almost trivial, since the dynamic linker and
787 all of it's structures are statically linked to the executable at
788 link time. Thus the symbol for the address we are looking for has
789 already been added to the minimal symbol table for the executable's
790 objfile at the time the symbol file's symbols were read, and all we
791 have to do is look it up there. Note that we explicitly do NOT want
792 to find the copies in the shared library.
793
794 The SVR4 version is a bit more complicated because the address
795 is contained somewhere in the dynamic info section. We have to go
796 to a lot more work to discover the address of the debug base symbol.
797 Because of this complexity, we cache the value we find and return that
798 value on subsequent invocations. Note there is no copy in the
799 executable symbol tables.
800
801 */
802
803static CORE_ADDR
1a816a87 804locate_base (struct svr4_info *info)
13437d4b 805{
13437d4b
KB
806 /* Check to see if we have a currently valid address, and if so, avoid
807 doing all this work again and just return the cached address. If
808 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
809 section for ELF executables. There's no point in doing any of this
810 though if we don't have some link map offsets to work with. */
13437d4b 811
1a816a87 812 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 813 info->debug_base = elf_locate_base ();
1a816a87 814 return info->debug_base;
13437d4b
KB
815}
816
e4cd0d6a
MK
817/* Find the first element in the inferior's dynamic link map, and
818 return its address in the inferior.
13437d4b 819
e4cd0d6a
MK
820 FIXME: Perhaps we should validate the info somehow, perhaps by
821 checking r_version for a known version number, or r_state for
822 RT_CONSISTENT. */
13437d4b
KB
823
824static CORE_ADDR
1a816a87 825solib_svr4_r_map (struct svr4_info *info)
13437d4b 826{
4b188b9f 827 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 828 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 829
1a816a87
PA
830 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
831 ptr_type);
e4cd0d6a 832}
13437d4b 833
7cd25cfc
DJ
834/* Find r_brk from the inferior's debug base. */
835
836static CORE_ADDR
1a816a87 837solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
838{
839 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 840 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 841
1a816a87
PA
842 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
843 ptr_type);
7cd25cfc
DJ
844}
845
e4cd0d6a
MK
846/* Find the link map for the dynamic linker (if it is not in the
847 normal list of loaded shared objects). */
13437d4b 848
e4cd0d6a 849static CORE_ADDR
1a816a87 850solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
851{
852 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 853 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 854 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 855 ULONGEST version;
13437d4b 856
e4cd0d6a
MK
857 /* Check version, and return zero if `struct r_debug' doesn't have
858 the r_ldsomap member. */
1a816a87
PA
859 version
860 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 861 lmo->r_version_size, byte_order);
e4cd0d6a
MK
862 if (version < 2 || lmo->r_ldsomap_offset == -1)
863 return 0;
13437d4b 864
1a816a87 865 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 866 ptr_type);
13437d4b
KB
867}
868
de18c1d8
JM
869/* On Solaris systems with some versions of the dynamic linker,
870 ld.so's l_name pointer points to the SONAME in the string table
871 rather than into writable memory. So that GDB can find shared
872 libraries when loading a core file generated by gcore, ensure that
873 memory areas containing the l_name string are saved in the core
874 file. */
875
876static int
877svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
878{
879 struct svr4_info *info;
880 CORE_ADDR ldsomap;
881 struct so_list *new;
882 struct cleanup *old_chain;
883 struct link_map_offsets *lmo;
884 CORE_ADDR lm_name;
885
886 info = get_svr4_info ();
887
888 info->debug_base = 0;
889 locate_base (info);
890 if (!info->debug_base)
891 return 0;
892
893 ldsomap = solib_svr4_r_ldsomap (info);
894 if (!ldsomap)
895 return 0;
896
897 lmo = svr4_fetch_link_map_offsets ();
898 new = XZALLOC (struct so_list);
899 old_chain = make_cleanup (xfree, new);
900 new->lm_info = xmalloc (sizeof (struct lm_info));
901 make_cleanup (xfree, new->lm_info);
902 new->lm_info->l_addr = (CORE_ADDR)-1;
903 new->lm_info->lm_addr = ldsomap;
904 new->lm_info->lm = xzalloc (lmo->link_map_size);
905 make_cleanup (xfree, new->lm_info->lm);
906 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
907 lm_name = LM_NAME (new);
908 do_cleanups (old_chain);
909
910 return (lm_name >= vaddr && lm_name < vaddr + size);
911}
912
13437d4b
KB
913/*
914
915 LOCAL FUNCTION
916
917 open_symbol_file_object
918
919 SYNOPSIS
920
921 void open_symbol_file_object (void *from_tty)
922
923 DESCRIPTION
924
925 If no open symbol file, attempt to locate and open the main symbol
926 file. On SVR4 systems, this is the first link map entry. If its
927 name is here, we can open it. Useful when attaching to a process
928 without first loading its symbol file.
929
930 If FROM_TTYP dereferences to a non-zero integer, allow messages to
931 be printed. This parameter is a pointer rather than an int because
932 open_symbol_file_object() is called via catch_errors() and
933 catch_errors() requires a pointer argument. */
934
935static int
936open_symbol_file_object (void *from_ttyp)
937{
938 CORE_ADDR lm, l_name;
939 char *filename;
940 int errcode;
941 int from_tty = *(int *)from_ttyp;
4b188b9f 942 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
943 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
944 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 945 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 946 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 947 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
948
949 if (symfile_objfile)
9e2f0ad4 950 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
951 return 0;
952
7cd25cfc 953 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
954 info->debug_base = 0;
955 if (locate_base (info) == 0)
13437d4b
KB
956 return 0; /* failed somehow... */
957
958 /* First link map member should be the executable. */
1a816a87 959 lm = solib_svr4_r_map (info);
e4cd0d6a 960 if (lm == 0)
13437d4b
KB
961 return 0; /* failed somehow... */
962
963 /* Read address of name from target memory to GDB. */
cfaefc65 964 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 965
cfaefc65 966 /* Convert the address to host format. */
b6da22b0 967 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
968
969 /* Free l_name_buf. */
970 do_cleanups (cleanups);
971
972 if (l_name == 0)
973 return 0; /* No filename. */
974
975 /* Now fetch the filename from target memory. */
976 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 977 make_cleanup (xfree, filename);
13437d4b
KB
978
979 if (errcode)
980 {
8a3fe4f8 981 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
982 safe_strerror (errcode));
983 return 0;
984 }
985
13437d4b 986 /* Have a pathname: read the symbol file. */
1adeb98a 987 symbol_file_add_main (filename, from_tty);
13437d4b
KB
988
989 return 1;
990}
13437d4b 991
34439770
DJ
992/* If no shared library information is available from the dynamic
993 linker, build a fallback list from other sources. */
994
995static struct so_list *
996svr4_default_sos (void)
997{
6c95b8df 998 struct svr4_info *info = get_svr4_info ();
1a816a87 999
34439770
DJ
1000 struct so_list *head = NULL;
1001 struct so_list **link_ptr = &head;
1002
1a816a87 1003 if (info->debug_loader_offset_p)
34439770
DJ
1004 {
1005 struct so_list *new = XZALLOC (struct so_list);
1006
1007 new->lm_info = xmalloc (sizeof (struct lm_info));
1008
1009 /* Nothing will ever check the cached copy of the link
1010 map if we set l_addr. */
1a816a87 1011 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1012 new->lm_info->lm_addr = 0;
34439770
DJ
1013 new->lm_info->lm = NULL;
1014
1a816a87
PA
1015 strncpy (new->so_name, info->debug_loader_name,
1016 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1017 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1018 strcpy (new->so_original_name, new->so_name);
1019
1020 *link_ptr = new;
1021 link_ptr = &new->next;
1022 }
1023
1024 return head;
1025}
1026
13437d4b
KB
1027/* LOCAL FUNCTION
1028
1029 current_sos -- build a list of currently loaded shared objects
1030
1031 SYNOPSIS
1032
1033 struct so_list *current_sos ()
1034
1035 DESCRIPTION
1036
1037 Build a list of `struct so_list' objects describing the shared
1038 objects currently loaded in the inferior. This list does not
1039 include an entry for the main executable file.
1040
1041 Note that we only gather information directly available from the
1042 inferior --- we don't examine any of the shared library files
1043 themselves. The declaration of `struct so_list' says which fields
1044 we provide values for. */
1045
1046static struct so_list *
1047svr4_current_sos (void)
1048{
1049 CORE_ADDR lm;
1050 struct so_list *head = 0;
1051 struct so_list **link_ptr = &head;
e4cd0d6a 1052 CORE_ADDR ldsomap = 0;
1a816a87
PA
1053 struct svr4_info *info;
1054
6c95b8df 1055 info = get_svr4_info ();
13437d4b 1056
7cd25cfc 1057 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1058 info->debug_base = 0;
1059 locate_base (info);
13437d4b 1060
7cd25cfc
DJ
1061 /* If we can't find the dynamic linker's base structure, this
1062 must not be a dynamically linked executable. Hmm. */
1a816a87 1063 if (! info->debug_base)
7cd25cfc 1064 return svr4_default_sos ();
13437d4b
KB
1065
1066 /* Walk the inferior's link map list, and build our list of
1067 `struct so_list' nodes. */
1a816a87 1068 lm = solib_svr4_r_map (info);
34439770 1069
13437d4b
KB
1070 while (lm)
1071 {
4b188b9f 1072 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1073 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1074 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 1075
13437d4b 1076 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1077 make_cleanup (xfree, new->lm_info);
13437d4b 1078
831004b7 1079 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1080 new->lm_info->lm_addr = lm;
f4456994 1081 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1082 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1083
1084 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1085
1086 lm = LM_NEXT (new);
1087
1088 /* For SVR4 versions, the first entry in the link map is for the
1089 inferior executable, so we must ignore it. For some versions of
1090 SVR4, it has no name. For others (Solaris 2.3 for example), it
1091 does have a name, so we can no longer use a missing name to
1092 decide when to ignore it. */
e4cd0d6a 1093 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1094 {
1a816a87 1095 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1096 free_so (new);
1097 }
13437d4b
KB
1098 else
1099 {
1100 int errcode;
1101 char *buffer;
1102
1103 /* Extract this shared object's name. */
1104 target_read_string (LM_NAME (new), &buffer,
1105 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1106 if (errcode != 0)
8a3fe4f8
AC
1107 warning (_("Can't read pathname for load map: %s."),
1108 safe_strerror (errcode));
13437d4b
KB
1109 else
1110 {
1111 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1112 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1113 strcpy (new->so_original_name, new->so_name);
1114 }
ea5bf0a1 1115 xfree (buffer);
13437d4b
KB
1116
1117 /* If this entry has no name, or its name matches the name
1118 for the main executable, don't include it in the list. */
1119 if (! new->so_name[0]
1120 || match_main (new->so_name))
1121 free_so (new);
1122 else
1123 {
1124 new->next = 0;
1125 *link_ptr = new;
1126 link_ptr = &new->next;
1127 }
1128 }
1129
e4cd0d6a
MK
1130 /* On Solaris, the dynamic linker is not in the normal list of
1131 shared objects, so make sure we pick it up too. Having
1132 symbol information for the dynamic linker is quite crucial
1133 for skipping dynamic linker resolver code. */
1134 if (lm == 0 && ldsomap == 0)
1a816a87 1135 lm = ldsomap = solib_svr4_r_ldsomap (info);
e4cd0d6a 1136
13437d4b
KB
1137 discard_cleanups (old_chain);
1138 }
1139
34439770
DJ
1140 if (head == NULL)
1141 return svr4_default_sos ();
1142
13437d4b
KB
1143 return head;
1144}
1145
93a57060 1146/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1147
1148CORE_ADDR
1149svr4_fetch_objfile_link_map (struct objfile *objfile)
1150{
93a57060 1151 struct so_list *so;
6c95b8df 1152 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1153
93a57060 1154 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1155 if (info->main_lm_addr == 0)
93a57060 1156 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1157
93a57060
DJ
1158 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1159 if (objfile == symfile_objfile)
1a816a87 1160 return info->main_lm_addr;
93a57060
DJ
1161
1162 /* The other link map addresses may be found by examining the list
1163 of shared libraries. */
1164 for (so = master_so_list (); so; so = so->next)
1165 if (so->objfile == objfile)
1166 return so->lm_info->lm_addr;
1167
1168 /* Not found! */
bc4a16ae
EZ
1169 return 0;
1170}
13437d4b
KB
1171
1172/* On some systems, the only way to recognize the link map entry for
1173 the main executable file is by looking at its name. Return
1174 non-zero iff SONAME matches one of the known main executable names. */
1175
1176static int
1177match_main (char *soname)
1178{
1179 char **mainp;
1180
1181 for (mainp = main_name_list; *mainp != NULL; mainp++)
1182 {
1183 if (strcmp (soname, *mainp) == 0)
1184 return (1);
1185 }
1186
1187 return (0);
1188}
1189
13437d4b
KB
1190/* Return 1 if PC lies in the dynamic symbol resolution code of the
1191 SVR4 run time loader. */
13437d4b 1192
7d522c90 1193int
d7fa2ae2 1194svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1195{
6c95b8df
PA
1196 struct svr4_info *info = get_svr4_info ();
1197
1198 return ((pc >= info->interp_text_sect_low
1199 && pc < info->interp_text_sect_high)
1200 || (pc >= info->interp_plt_sect_low
1201 && pc < info->interp_plt_sect_high)
13437d4b
KB
1202 || in_plt_section (pc, NULL));
1203}
13437d4b 1204
2f4950cd
AC
1205/* Given an executable's ABFD and target, compute the entry-point
1206 address. */
1207
1208static CORE_ADDR
1209exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1210{
1211 /* KevinB wrote ... for most targets, the address returned by
1212 bfd_get_start_address() is the entry point for the start
1213 function. But, for some targets, bfd_get_start_address() returns
1214 the address of a function descriptor from which the entry point
1215 address may be extracted. This address is extracted by
1216 gdbarch_convert_from_func_ptr_addr(). The method
1217 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1218 function for targets which don't use function descriptors. */
1cf3db46 1219 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1220 bfd_get_start_address (abfd),
1221 targ);
1222}
13437d4b
KB
1223
1224/*
1225
1226 LOCAL FUNCTION
1227
1228 enable_break -- arrange for dynamic linker to hit breakpoint
1229
1230 SYNOPSIS
1231
1232 int enable_break (void)
1233
1234 DESCRIPTION
1235
1236 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1237 debugger interface, support for arranging for the inferior to hit
1238 a breakpoint after mapping in the shared libraries. This function
1239 enables that breakpoint.
1240
1241 For SunOS, there is a special flag location (in_debugger) which we
1242 set to 1. When the dynamic linker sees this flag set, it will set
1243 a breakpoint at a location known only to itself, after saving the
1244 original contents of that place and the breakpoint address itself,
1245 in it's own internal structures. When we resume the inferior, it
1246 will eventually take a SIGTRAP when it runs into the breakpoint.
1247 We handle this (in a different place) by restoring the contents of
1248 the breakpointed location (which is only known after it stops),
1249 chasing around to locate the shared libraries that have been
1250 loaded, then resuming.
1251
1252 For SVR4, the debugger interface structure contains a member (r_brk)
1253 which is statically initialized at the time the shared library is
1254 built, to the offset of a function (_r_debug_state) which is guaran-
1255 teed to be called once before mapping in a library, and again when
1256 the mapping is complete. At the time we are examining this member,
1257 it contains only the unrelocated offset of the function, so we have
1258 to do our own relocation. Later, when the dynamic linker actually
1259 runs, it relocates r_brk to be the actual address of _r_debug_state().
1260
1261 The debugger interface structure also contains an enumeration which
1262 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1263 depending upon whether or not the library is being mapped or unmapped,
1264 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1265 */
1266
1267static int
268a4a75 1268enable_break (struct svr4_info *info, int from_tty)
13437d4b 1269{
13437d4b
KB
1270 struct minimal_symbol *msymbol;
1271 char **bkpt_namep;
1272 asection *interp_sect;
97ec2c2f 1273 gdb_byte *interp_name;
7cd25cfc 1274 CORE_ADDR sym_addr;
13437d4b
KB
1275
1276 /* First, remove all the solib event breakpoints. Their addresses
1277 may have changed since the last time we ran the program. */
1278 remove_solib_event_breakpoints ();
1279
6c95b8df
PA
1280 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1281 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1282
7cd25cfc
DJ
1283 /* If we already have a shared library list in the target, and
1284 r_debug contains r_brk, set the breakpoint there - this should
1285 mean r_brk has already been relocated. Assume the dynamic linker
1286 is the object containing r_brk. */
1287
268a4a75 1288 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1289 sym_addr = 0;
1a816a87
PA
1290 if (info->debug_base && solib_svr4_r_map (info) != 0)
1291 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1292
1293 if (sym_addr != 0)
1294 {
1295 struct obj_section *os;
1296
b36ec657 1297 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1298 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1299 sym_addr,
1300 &current_target));
1301
7cd25cfc
DJ
1302 os = find_pc_section (sym_addr);
1303 if (os != NULL)
1304 {
1305 /* Record the relocated start and end address of the dynamic linker
1306 text and plt section for svr4_in_dynsym_resolve_code. */
1307 bfd *tmp_bfd;
1308 CORE_ADDR load_addr;
1309
1310 tmp_bfd = os->objfile->obfd;
1311 load_addr = ANOFFSET (os->objfile->section_offsets,
1312 os->objfile->sect_index_text);
1313
1314 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1315 if (interp_sect)
1316 {
6c95b8df 1317 info->interp_text_sect_low =
7cd25cfc 1318 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1319 info->interp_text_sect_high =
1320 info->interp_text_sect_low
1321 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1322 }
1323 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1324 if (interp_sect)
1325 {
6c95b8df 1326 info->interp_plt_sect_low =
7cd25cfc 1327 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1328 info->interp_plt_sect_high =
1329 info->interp_plt_sect_low
1330 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1331 }
1332
a6d9a66e 1333 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1334 return 1;
1335 }
1336 }
1337
97ec2c2f 1338 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1339 into the old breakpoint at symbol code. */
97ec2c2f
UW
1340 interp_name = find_program_interpreter ();
1341 if (interp_name)
13437d4b 1342 {
8ad2fcde
KB
1343 CORE_ADDR load_addr = 0;
1344 int load_addr_found = 0;
2ec9a4f8 1345 int loader_found_in_list = 0;
f8766ec1 1346 struct so_list *so;
e4f7b8c8 1347 bfd *tmp_bfd = NULL;
2f4950cd 1348 struct target_ops *tmp_bfd_target;
f1838a98 1349 volatile struct gdb_exception ex;
13437d4b 1350
7cd25cfc 1351 sym_addr = 0;
13437d4b
KB
1352
1353 /* Now we need to figure out where the dynamic linker was
1354 loaded so that we can load its symbols and place a breakpoint
1355 in the dynamic linker itself.
1356
1357 This address is stored on the stack. However, I've been unable
1358 to find any magic formula to find it for Solaris (appears to
1359 be trivial on GNU/Linux). Therefore, we have to try an alternate
1360 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1361
f1838a98
UW
1362 TRY_CATCH (ex, RETURN_MASK_ALL)
1363 {
97ec2c2f 1364 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1365 }
13437d4b
KB
1366 if (tmp_bfd == NULL)
1367 goto bkpt_at_symbol;
1368
2f4950cd
AC
1369 /* Now convert the TMP_BFD into a target. That way target, as
1370 well as BFD operations can be used. Note that closing the
1371 target will also close the underlying bfd. */
1372 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1373
f8766ec1
KB
1374 /* On a running target, we can get the dynamic linker's base
1375 address from the shared library table. */
f8766ec1
KB
1376 so = master_so_list ();
1377 while (so)
8ad2fcde 1378 {
97ec2c2f 1379 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1380 {
1381 load_addr_found = 1;
2ec9a4f8 1382 loader_found_in_list = 1;
cc10cae3 1383 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1384 break;
1385 }
f8766ec1 1386 so = so->next;
8ad2fcde
KB
1387 }
1388
8d4e36ba
JB
1389 /* If we were not able to find the base address of the loader
1390 from our so_list, then try using the AT_BASE auxilliary entry. */
1391 if (!load_addr_found)
1392 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1393 load_addr_found = 1;
1394
8ad2fcde
KB
1395 /* Otherwise we find the dynamic linker's base address by examining
1396 the current pc (which should point at the entry point for the
8d4e36ba
JB
1397 dynamic linker) and subtracting the offset of the entry point.
1398
1399 This is more fragile than the previous approaches, but is a good
1400 fallback method because it has actually been working well in
1401 most cases. */
8ad2fcde 1402 if (!load_addr_found)
fb14de7b 1403 {
c2250ad1
UW
1404 struct regcache *regcache
1405 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b
UW
1406 load_addr = (regcache_read_pc (regcache)
1407 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1408 }
2ec9a4f8
DJ
1409
1410 if (!loader_found_in_list)
34439770 1411 {
1a816a87
PA
1412 info->debug_loader_name = xstrdup (interp_name);
1413 info->debug_loader_offset_p = 1;
1414 info->debug_loader_offset = load_addr;
268a4a75 1415 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1416 }
13437d4b
KB
1417
1418 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1419 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1420 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1421 if (interp_sect)
1422 {
6c95b8df 1423 info->interp_text_sect_low =
13437d4b 1424 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1425 info->interp_text_sect_high =
1426 info->interp_text_sect_low
1427 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1428 }
1429 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1430 if (interp_sect)
1431 {
6c95b8df 1432 info->interp_plt_sect_low =
13437d4b 1433 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1434 info->interp_plt_sect_high =
1435 info->interp_plt_sect_low
1436 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1437 }
1438
1439 /* Now try to set a breakpoint in the dynamic linker. */
1440 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1441 {
2bbe3cc1 1442 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1443 if (sym_addr != 0)
1444 break;
1445 }
1446
2bbe3cc1
DJ
1447 if (sym_addr != 0)
1448 /* Convert 'sym_addr' from a function pointer to an address.
1449 Because we pass tmp_bfd_target instead of the current
1450 target, this will always produce an unrelocated value. */
1cf3db46 1451 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1452 sym_addr,
1453 tmp_bfd_target);
1454
2f4950cd
AC
1455 /* We're done with both the temporary bfd and target. Remember,
1456 closing the target closes the underlying bfd. */
1457 target_close (tmp_bfd_target, 0);
13437d4b
KB
1458
1459 if (sym_addr != 0)
1460 {
a6d9a66e 1461 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1462 xfree (interp_name);
13437d4b
KB
1463 return 1;
1464 }
1465
1466 /* For whatever reason we couldn't set a breakpoint in the dynamic
1467 linker. Warn and drop into the old code. */
1468 bkpt_at_symbol:
97ec2c2f 1469 xfree (interp_name);
82d03102
PG
1470 warning (_("Unable to find dynamic linker breakpoint function.\n"
1471 "GDB will be unable to debug shared library initializers\n"
1472 "and track explicitly loaded dynamic code."));
13437d4b 1473 }
13437d4b 1474
e499d0f1
DJ
1475 /* Scan through the lists of symbols, trying to look up the symbol and
1476 set a breakpoint there. Terminate loop when we/if we succeed. */
1477
1478 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1479 {
1480 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1481 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1482 {
de64a9ac
JM
1483 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1484 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1485 sym_addr,
1486 &current_target);
1487 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1488 return 1;
1489 }
1490 }
13437d4b 1491
13437d4b
KB
1492 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1493 {
1494 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1495 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1496 {
de64a9ac
JM
1497 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1498 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1499 sym_addr,
1500 &current_target);
1501 create_solib_event_breakpoint (target_gdbarch, sym_addr);
13437d4b
KB
1502 return 1;
1503 }
1504 }
542c95c2 1505 return 0;
13437d4b
KB
1506}
1507
1508/*
1509
1510 LOCAL FUNCTION
1511
1512 special_symbol_handling -- additional shared library symbol handling
1513
1514 SYNOPSIS
1515
1516 void special_symbol_handling ()
1517
1518 DESCRIPTION
1519
1520 Once the symbols from a shared object have been loaded in the usual
1521 way, we are called to do any system specific symbol handling that
1522 is needed.
1523
ab31aa69 1524 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1525 linkers structures to find symbol definitions for "common" symbols
1526 and adding them to the minimal symbol table for the runtime common
1527 objfile.
1528
ab31aa69
KB
1529 However, for SVR4, there's nothing to do.
1530
13437d4b
KB
1531 */
1532
1533static void
1534svr4_special_symbol_handling (void)
1535{
13437d4b
KB
1536}
1537
e2a44558
KB
1538/* Relocate the main executable. This function should be called upon
1539 stopping the inferior process at the entry point to the program.
1540 The entry point from BFD is compared to the PC and if they are
1541 different, the main executable is relocated by the proper amount.
1542
1543 As written it will only attempt to relocate executables which
1544 lack interpreter sections. It seems likely that only dynamic
1545 linker executables will get relocated, though it should work
1546 properly for a position-independent static executable as well. */
1547
1548static void
1549svr4_relocate_main_executable (void)
1550{
1551 asection *interp_sect;
c2250ad1
UW
1552 struct regcache *regcache
1553 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b 1554 CORE_ADDR pc = regcache_read_pc (regcache);
e2a44558
KB
1555
1556 /* Decide if the objfile needs to be relocated. As indicated above,
1557 we will only be here when execution is stopped at the beginning
1558 of the program. Relocation is necessary if the address at which
1559 we are presently stopped differs from the start address stored in
1560 the executable AND there's no interpreter section. The condition
1561 regarding the interpreter section is very important because if
1562 there *is* an interpreter section, execution will begin there
1563 instead. When there is an interpreter section, the start address
1564 is (presumably) used by the interpreter at some point to start
1565 execution of the program.
1566
1567 If there is an interpreter, it is normal for it to be set to an
1568 arbitrary address at the outset. The job of finding it is
1569 handled in enable_break().
1570
1571 So, to summarize, relocations are necessary when there is no
1572 interpreter section and the start address obtained from the
1573 executable is different from the address at which GDB is
1574 currently stopped.
1575
1576 [ The astute reader will note that we also test to make sure that
1577 the executable in question has the DYNAMIC flag set. It is my
1578 opinion that this test is unnecessary (undesirable even). It
1579 was added to avoid inadvertent relocation of an executable
1580 whose e_type member in the ELF header is not ET_DYN. There may
1581 be a time in the future when it is desirable to do relocations
1582 on other types of files as well in which case this condition
1583 should either be removed or modified to accomodate the new file
1584 type. (E.g, an ET_EXEC executable which has been built to be
1585 position-independent could safely be relocated by the OS if
1586 desired. It is true that this violates the ABI, but the ABI
1587 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1588 */
1589
1590 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1591 if (interp_sect == NULL
1592 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1593 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
e2a44558
KB
1594 {
1595 struct cleanup *old_chain;
1596 struct section_offsets *new_offsets;
1597 int i, changed;
1598 CORE_ADDR displacement;
1599
1600 /* It is necessary to relocate the objfile. The amount to
1601 relocate by is simply the address at which we are stopped
1602 minus the starting address from the executable.
1603
1604 We relocate all of the sections by the same amount. This
1605 behavior is mandated by recent editions of the System V ABI.
1606 According to the System V Application Binary Interface,
1607 Edition 4.1, page 5-5:
1608
1609 ... Though the system chooses virtual addresses for
1610 individual processes, it maintains the segments' relative
1611 positions. Because position-independent code uses relative
1612 addressesing between segments, the difference between
1613 virtual addresses in memory must match the difference
1614 between virtual addresses in the file. The difference
1615 between the virtual address of any segment in memory and
1616 the corresponding virtual address in the file is thus a
1617 single constant value for any one executable or shared
1618 object in a given process. This difference is the base
1619 address. One use of the base address is to relocate the
1620 memory image of the program during dynamic linking.
1621
1622 The same language also appears in Edition 4.0 of the System V
1623 ABI and is left unspecified in some of the earlier editions. */
1624
2f4950cd 1625 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
e2a44558
KB
1626 changed = 0;
1627
13fc0c2f
KB
1628 new_offsets = xcalloc (symfile_objfile->num_sections,
1629 sizeof (struct section_offsets));
b8c9b27d 1630 old_chain = make_cleanup (xfree, new_offsets);
e2a44558
KB
1631
1632 for (i = 0; i < symfile_objfile->num_sections; i++)
1633 {
1634 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1635 changed = 1;
1636 new_offsets->offsets[i] = displacement;
1637 }
1638
1639 if (changed)
1640 objfile_relocate (symfile_objfile, new_offsets);
1641
1642 do_cleanups (old_chain);
1643 }
1644}
1645
13437d4b
KB
1646/*
1647
1648 GLOBAL FUNCTION
1649
1650 svr4_solib_create_inferior_hook -- shared library startup support
1651
1652 SYNOPSIS
1653
268a4a75 1654 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
1655
1656 DESCRIPTION
1657
1658 When gdb starts up the inferior, it nurses it along (through the
1659 shell) until it is ready to execute it's first instruction. At this
1660 point, this function gets called via expansion of the macro
1661 SOLIB_CREATE_INFERIOR_HOOK.
1662
1663 For SunOS executables, this first instruction is typically the
1664 one at "_start", or a similar text label, regardless of whether
1665 the executable is statically or dynamically linked. The runtime
1666 startup code takes care of dynamically linking in any shared
1667 libraries, once gdb allows the inferior to continue.
1668
1669 For SVR4 executables, this first instruction is either the first
1670 instruction in the dynamic linker (for dynamically linked
1671 executables) or the instruction at "start" for statically linked
1672 executables. For dynamically linked executables, the system
1673 first exec's /lib/libc.so.N, which contains the dynamic linker,
1674 and starts it running. The dynamic linker maps in any needed
1675 shared libraries, maps in the actual user executable, and then
1676 jumps to "start" in the user executable.
1677
1678 For both SunOS shared libraries, and SVR4 shared libraries, we
1679 can arrange to cooperate with the dynamic linker to discover the
1680 names of shared libraries that are dynamically linked, and the
1681 base addresses to which they are linked.
1682
1683 This function is responsible for discovering those names and
1684 addresses, and saving sufficient information about them to allow
1685 their symbols to be read at a later time.
1686
1687 FIXME
1688
1689 Between enable_break() and disable_break(), this code does not
1690 properly handle hitting breakpoints which the user might have
1691 set in the startup code or in the dynamic linker itself. Proper
1692 handling will probably have to wait until the implementation is
1693 changed to use the "breakpoint handler function" method.
1694
1695 Also, what if child has exit()ed? Must exit loop somehow.
1696 */
1697
e2a44558 1698static void
268a4a75 1699svr4_solib_create_inferior_hook (int from_tty)
13437d4b 1700{
d6b48e9c 1701 struct inferior *inf;
2020b7ab 1702 struct thread_info *tp;
1a816a87
PA
1703 struct svr4_info *info;
1704
6c95b8df 1705 info = get_svr4_info ();
2020b7ab 1706
e2a44558
KB
1707 /* Relocate the main executable if necessary. */
1708 svr4_relocate_main_executable ();
1709
d5a921c9 1710 if (!svr4_have_link_map_offsets ())
513f5903 1711 return;
d5a921c9 1712
268a4a75 1713 if (!enable_break (info, from_tty))
542c95c2 1714 return;
13437d4b 1715
ab31aa69
KB
1716#if defined(_SCO_DS)
1717 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1718 special shared library breakpoints and the shared library breakpoint
1719 service routine.
1720
1721 Now run the target. It will eventually hit the breakpoint, at
1722 which point all of the libraries will have been mapped in and we
1723 can go groveling around in the dynamic linker structures to find
1724 out what we need to know about them. */
1725
d6b48e9c 1726 inf = current_inferior ();
2020b7ab
PA
1727 tp = inferior_thread ();
1728
13437d4b 1729 clear_proceed_status ();
d6b48e9c 1730 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1731 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1732 do
1733 {
2020b7ab 1734 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1735 wait_for_inferior (0);
13437d4b 1736 }
2020b7ab 1737 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1738 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1739#endif /* defined(_SCO_DS) */
13437d4b
KB
1740}
1741
1742static void
1743svr4_clear_solib (void)
1744{
6c95b8df
PA
1745 struct svr4_info *info;
1746
1747 info = get_svr4_info ();
1748 info->debug_base = 0;
1749 info->debug_loader_offset_p = 0;
1750 info->debug_loader_offset = 0;
1751 xfree (info->debug_loader_name);
1752 info->debug_loader_name = NULL;
13437d4b
KB
1753}
1754
1755static void
1756svr4_free_so (struct so_list *so)
1757{
b8c9b27d
KB
1758 xfree (so->lm_info->lm);
1759 xfree (so->lm_info);
13437d4b
KB
1760}
1761
6bb7be43
JB
1762
1763/* Clear any bits of ADDR that wouldn't fit in a target-format
1764 data pointer. "Data pointer" here refers to whatever sort of
1765 address the dynamic linker uses to manage its sections. At the
1766 moment, we don't support shared libraries on any processors where
1767 code and data pointers are different sizes.
1768
1769 This isn't really the right solution. What we really need here is
1770 a way to do arithmetic on CORE_ADDR values that respects the
1771 natural pointer/address correspondence. (For example, on the MIPS,
1772 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1773 sign-extend the value. There, simply truncating the bits above
819844ad 1774 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1775 be a new gdbarch method or something. */
1776static CORE_ADDR
1777svr4_truncate_ptr (CORE_ADDR addr)
1778{
1cf3db46 1779 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1780 /* We don't need to truncate anything, and the bit twiddling below
1781 will fail due to overflow problems. */
1782 return addr;
1783 else
1cf3db46 1784 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1785}
1786
1787
749499cb
KB
1788static void
1789svr4_relocate_section_addresses (struct so_list *so,
0542c86d 1790 struct target_section *sec)
749499cb 1791{
cc10cae3
AO
1792 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1793 sec->bfd));
1794 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1795 sec->bfd));
749499cb 1796}
4b188b9f 1797\f
749499cb 1798
4b188b9f 1799/* Architecture-specific operations. */
6bb7be43 1800
4b188b9f
MK
1801/* Per-architecture data key. */
1802static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1803
4b188b9f 1804struct solib_svr4_ops
e5e2b9ff 1805{
4b188b9f
MK
1806 /* Return a description of the layout of `struct link_map'. */
1807 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1808};
e5e2b9ff 1809
4b188b9f 1810/* Return a default for the architecture-specific operations. */
e5e2b9ff 1811
4b188b9f
MK
1812static void *
1813solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1814{
4b188b9f 1815 struct solib_svr4_ops *ops;
e5e2b9ff 1816
4b188b9f 1817 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 1818 ops->fetch_link_map_offsets = NULL;
4b188b9f 1819 return ops;
e5e2b9ff
KB
1820}
1821
4b188b9f 1822/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 1823 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 1824
21479ded 1825void
e5e2b9ff
KB
1826set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1827 struct link_map_offsets *(*flmo) (void))
21479ded 1828{
4b188b9f
MK
1829 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1830
1831 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
1832
1833 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
1834}
1835
4b188b9f
MK
1836/* Fetch a link_map_offsets structure using the architecture-specific
1837 `struct link_map_offsets' fetcher. */
1c4dcb57 1838
4b188b9f
MK
1839static struct link_map_offsets *
1840svr4_fetch_link_map_offsets (void)
21479ded 1841{
1cf3db46 1842 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1843
1844 gdb_assert (ops->fetch_link_map_offsets);
1845 return ops->fetch_link_map_offsets ();
21479ded
KB
1846}
1847
4b188b9f
MK
1848/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1849
1850static int
1851svr4_have_link_map_offsets (void)
1852{
1cf3db46 1853 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1854 return (ops->fetch_link_map_offsets != NULL);
1855}
1856\f
1857
e4bbbda8
MK
1858/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1859 `struct r_debug' and a `struct link_map' that are binary compatible
1860 with the origional SVR4 implementation. */
1861
1862/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1863 for an ILP32 SVR4 system. */
1864
1865struct link_map_offsets *
1866svr4_ilp32_fetch_link_map_offsets (void)
1867{
1868 static struct link_map_offsets lmo;
1869 static struct link_map_offsets *lmp = NULL;
1870
1871 if (lmp == NULL)
1872 {
1873 lmp = &lmo;
1874
e4cd0d6a
MK
1875 lmo.r_version_offset = 0;
1876 lmo.r_version_size = 4;
e4bbbda8 1877 lmo.r_map_offset = 4;
7cd25cfc 1878 lmo.r_brk_offset = 8;
e4cd0d6a 1879 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1880
1881 /* Everything we need is in the first 20 bytes. */
1882 lmo.link_map_size = 20;
1883 lmo.l_addr_offset = 0;
e4bbbda8 1884 lmo.l_name_offset = 4;
cc10cae3 1885 lmo.l_ld_offset = 8;
e4bbbda8 1886 lmo.l_next_offset = 12;
e4bbbda8 1887 lmo.l_prev_offset = 16;
e4bbbda8
MK
1888 }
1889
1890 return lmp;
1891}
1892
1893/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1894 for an LP64 SVR4 system. */
1895
1896struct link_map_offsets *
1897svr4_lp64_fetch_link_map_offsets (void)
1898{
1899 static struct link_map_offsets lmo;
1900 static struct link_map_offsets *lmp = NULL;
1901
1902 if (lmp == NULL)
1903 {
1904 lmp = &lmo;
1905
e4cd0d6a
MK
1906 lmo.r_version_offset = 0;
1907 lmo.r_version_size = 4;
e4bbbda8 1908 lmo.r_map_offset = 8;
7cd25cfc 1909 lmo.r_brk_offset = 16;
e4cd0d6a 1910 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
1911
1912 /* Everything we need is in the first 40 bytes. */
1913 lmo.link_map_size = 40;
1914 lmo.l_addr_offset = 0;
e4bbbda8 1915 lmo.l_name_offset = 8;
cc10cae3 1916 lmo.l_ld_offset = 16;
e4bbbda8 1917 lmo.l_next_offset = 24;
e4bbbda8 1918 lmo.l_prev_offset = 32;
e4bbbda8
MK
1919 }
1920
1921 return lmp;
1922}
1923\f
1924
7d522c90 1925struct target_so_ops svr4_so_ops;
13437d4b 1926
3a40aaa0
UW
1927/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1928 different rule for symbol lookup. The lookup begins here in the DSO, not in
1929 the main executable. */
1930
1931static struct symbol *
1932elf_lookup_lib_symbol (const struct objfile *objfile,
1933 const char *name,
1934 const char *linkage_name,
21b556f4 1935 const domain_enum domain)
3a40aaa0
UW
1936{
1937 if (objfile->obfd == NULL
1938 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1939 return NULL;
1940
65728c26 1941 return lookup_global_symbol_from_objfile
21b556f4 1942 (objfile, name, linkage_name, domain);
3a40aaa0
UW
1943}
1944
a78f21af
AC
1945extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1946
13437d4b
KB
1947void
1948_initialize_svr4_solib (void)
1949{
4b188b9f 1950 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
1951 solib_svr4_pspace_data
1952 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 1953
749499cb 1954 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
1955 svr4_so_ops.free_so = svr4_free_so;
1956 svr4_so_ops.clear_solib = svr4_clear_solib;
1957 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1958 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1959 svr4_so_ops.current_sos = svr4_current_sos;
1960 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 1961 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 1962 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 1963 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 1964 svr4_so_ops.same = svr4_same;
de18c1d8 1965 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 1966}
This page took 1.015515 seconds and 4 git commands to generate.