Eliminate catch_errors
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
13437d4b
KB
54/* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
bc043ef3 62static const char * const solib_break_names[] =
13437d4b
KB
63{
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
4c7dcb84 68 "__dl_rtld_db_dlactivity",
1f72e589 69 "_rtld_debug_state",
4c0122c8 70
13437d4b
KB
71 NULL
72};
13437d4b 73
bc043ef3 74static const char * const bkpt_names[] =
13437d4b 75{
13437d4b 76 "_start",
ad3dcc5c 77 "__start",
13437d4b
KB
78 "main",
79 NULL
80};
13437d4b 81
bc043ef3 82static const char * const main_name_list[] =
13437d4b
KB
83{
84 "main_$main",
85 NULL
86};
87
f9e14852
GB
88/* What to do when a probe stop occurs. */
89
90enum probe_action
91{
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107};
108
109/* A probe's name and its associated action. */
110
111struct probe_info
112{
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118};
119
120/* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124static const struct probe_info probe_info[] =
125{
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133};
134
135#define NUM_PROBES ARRAY_SIZE (probe_info)
136
4d7b2d5b
JB
137/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140static int
141svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142{
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163}
164
165static int
166svr4_same (struct so_list *gdb, struct so_list *inferior)
167{
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169}
170
d0e449a1 171static lm_info_svr4 *
3957565a 172lm_info_read (CORE_ADDR lm_addr)
13437d4b 173{
4b188b9f 174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a 175 gdb_byte *lm;
d0e449a1 176 lm_info_svr4 *lm_info;
3957565a
JK
177 struct cleanup *back_to;
178
224c3ddb 179 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
3957565a
JK
180 back_to = make_cleanup (xfree, lm);
181
182 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
183 {
184 warning (_("Error reading shared library list entry at %s"),
f5656ead 185 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
186 lm_info = NULL;
187 }
188 else
189 {
f5656ead 190 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 191
76e75227 192 lm_info = new lm_info_svr4;
3957565a
JK
193 lm_info->lm_addr = lm_addr;
194
195 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
196 ptr_type);
197 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
198 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
199 ptr_type);
200 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
201 ptr_type);
202 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
203 ptr_type);
204 }
205
206 do_cleanups (back_to);
207
208 return lm_info;
13437d4b
KB
209}
210
cc10cae3 211static int
b23518f0 212has_lm_dynamic_from_link_map (void)
cc10cae3
AO
213{
214 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
215
cfaefc65 216 return lmo->l_ld_offset >= 0;
cc10cae3
AO
217}
218
cc10cae3 219static CORE_ADDR
f65ce5fb 220lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 221{
d0e449a1
SM
222 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
223
224 if (!li->l_addr_p)
cc10cae3
AO
225 {
226 struct bfd_section *dyninfo_sect;
28f34a8f 227 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 228
d0e449a1 229 l_addr = li->l_addr_inferior;
cc10cae3 230
b23518f0 231 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
232 goto set_addr;
233
d0e449a1 234 l_dynaddr = li->l_ld;
cc10cae3
AO
235
236 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
237 if (dyninfo_sect == NULL)
238 goto set_addr;
239
240 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
241
242 if (dynaddr + l_addr != l_dynaddr)
243 {
28f34a8f 244 CORE_ADDR align = 0x1000;
4e1fc9c9 245 CORE_ADDR minpagesize = align;
28f34a8f 246
cc10cae3
AO
247 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
248 {
249 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
250 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
251 int i;
252
253 align = 1;
254
255 for (i = 0; i < ehdr->e_phnum; i++)
256 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
257 align = phdr[i].p_align;
4e1fc9c9
JK
258
259 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
260 }
261
262 /* Turn it into a mask. */
263 align--;
264
265 /* If the changes match the alignment requirements, we
266 assume we're using a core file that was generated by the
267 same binary, just prelinked with a different base offset.
268 If it doesn't match, we may have a different binary, the
269 same binary with the dynamic table loaded at an unrelated
270 location, or anything, really. To avoid regressions,
271 don't adjust the base offset in the latter case, although
272 odds are that, if things really changed, debugging won't
5c0d192f
JK
273 quite work.
274
275 One could expect more the condition
276 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
277 but the one below is relaxed for PPC. The PPC kernel supports
278 either 4k or 64k page sizes. To be prepared for 64k pages,
279 PPC ELF files are built using an alignment requirement of 64k.
280 However, when running on a kernel supporting 4k pages, the memory
281 mapping of the library may not actually happen on a 64k boundary!
282
283 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
284 equivalent to the possibly expected check above.)
285
286 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 287
02835898
JK
288 l_addr = l_dynaddr - dynaddr;
289
4e1fc9c9
JK
290 if ((l_addr & (minpagesize - 1)) == 0
291 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 292 {
701ed6dc 293 if (info_verbose)
ccf26247
JK
294 printf_unfiltered (_("Using PIC (Position Independent Code) "
295 "prelink displacement %s for \"%s\".\n"),
f5656ead 296 paddress (target_gdbarch (), l_addr),
ccf26247 297 so->so_name);
cc10cae3 298 }
79d4c408 299 else
02835898
JK
300 {
301 /* There is no way to verify the library file matches. prelink
302 can during prelinking of an unprelinked file (or unprelinking
303 of a prelinked file) shift the DYNAMIC segment by arbitrary
304 offset without any page size alignment. There is no way to
305 find out the ELF header and/or Program Headers for a limited
306 verification if it they match. One could do a verification
307 of the DYNAMIC segment. Still the found address is the best
308 one GDB could find. */
309
310 warning (_(".dynamic section for \"%s\" "
311 "is not at the expected address "
312 "(wrong library or version mismatch?)"), so->so_name);
313 }
cc10cae3
AO
314 }
315
316 set_addr:
d0e449a1
SM
317 li->l_addr = l_addr;
318 li->l_addr_p = 1;
cc10cae3
AO
319 }
320
d0e449a1 321 return li->l_addr;
cc10cae3
AO
322}
323
6c95b8df 324/* Per pspace SVR4 specific data. */
13437d4b 325
1a816a87
PA
326struct svr4_info
327{
c378eb4e 328 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
329
330 /* Validity flag for debug_loader_offset. */
331 int debug_loader_offset_p;
332
333 /* Load address for the dynamic linker, inferred. */
334 CORE_ADDR debug_loader_offset;
335
336 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
337 char *debug_loader_name;
338
339 /* Load map address for the main executable. */
340 CORE_ADDR main_lm_addr;
1a816a87 341
6c95b8df
PA
342 CORE_ADDR interp_text_sect_low;
343 CORE_ADDR interp_text_sect_high;
344 CORE_ADDR interp_plt_sect_low;
345 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
346
347 /* Nonzero if the list of objects was last obtained from the target
348 via qXfer:libraries-svr4:read. */
349 int using_xfer;
350
351 /* Table of struct probe_and_action instances, used by the
352 probes-based interface to map breakpoint addresses to probes
353 and their associated actions. Lookup is performed using
354 probe_and_action->probe->address. */
355 htab_t probes_table;
356
357 /* List of objects loaded into the inferior, used by the probes-
358 based interface. */
359 struct so_list *solib_list;
6c95b8df 360};
1a816a87 361
6c95b8df
PA
362/* Per-program-space data key. */
363static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 364
f9e14852
GB
365/* Free the probes table. */
366
367static void
368free_probes_table (struct svr4_info *info)
369{
370 if (info->probes_table == NULL)
371 return;
372
373 htab_delete (info->probes_table);
374 info->probes_table = NULL;
375}
376
377/* Free the solib list. */
378
379static void
380free_solib_list (struct svr4_info *info)
381{
382 svr4_free_library_list (&info->solib_list);
383 info->solib_list = NULL;
384}
385
6c95b8df
PA
386static void
387svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 388{
19ba03f4 389 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
390
391 free_probes_table (info);
392 free_solib_list (info);
393
6c95b8df 394 xfree (info);
1a816a87
PA
395}
396
6c95b8df
PA
397/* Get the current svr4 data. If none is found yet, add it now. This
398 function always returns a valid object. */
34439770 399
6c95b8df
PA
400static struct svr4_info *
401get_svr4_info (void)
1a816a87 402{
6c95b8df 403 struct svr4_info *info;
1a816a87 404
19ba03f4
SM
405 info = (struct svr4_info *) program_space_data (current_program_space,
406 solib_svr4_pspace_data);
6c95b8df
PA
407 if (info != NULL)
408 return info;
34439770 409
41bf6aca 410 info = XCNEW (struct svr4_info);
6c95b8df
PA
411 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
412 return info;
1a816a87 413}
93a57060 414
13437d4b
KB
415/* Local function prototypes */
416
bc043ef3 417static int match_main (const char *);
13437d4b 418
97ec2c2f
UW
419/* Read program header TYPE from inferior memory. The header is found
420 by scanning the OS auxillary vector.
421
09919ac2
JK
422 If TYPE == -1, return the program headers instead of the contents of
423 one program header.
424
97ec2c2f
UW
425 Return a pointer to allocated memory holding the program header contents,
426 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
427 size of those contents is returned to P_SECT_SIZE. Likewise, the target
a738da3a
MF
428 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
429 the base address of the section is returned in BASE_ADDR. */
97ec2c2f
UW
430
431static gdb_byte *
a738da3a
MF
432read_program_header (int type, int *p_sect_size, int *p_arch_size,
433 CORE_ADDR *base_addr)
97ec2c2f 434{
f5656ead 435 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 436 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
437 int arch_size, sect_size;
438 CORE_ADDR sect_addr;
439 gdb_byte *buf;
43136979 440 int pt_phdr_p = 0;
97ec2c2f
UW
441
442 /* Get required auxv elements from target. */
443 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
444 return 0;
445 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
446 return 0;
447 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
448 return 0;
449 if (!at_phdr || !at_phnum)
450 return 0;
451
452 /* Determine ELF architecture type. */
453 if (at_phent == sizeof (Elf32_External_Phdr))
454 arch_size = 32;
455 else if (at_phent == sizeof (Elf64_External_Phdr))
456 arch_size = 64;
457 else
458 return 0;
459
09919ac2
JK
460 /* Find the requested segment. */
461 if (type == -1)
462 {
463 sect_addr = at_phdr;
464 sect_size = at_phent * at_phnum;
465 }
466 else if (arch_size == 32)
97ec2c2f
UW
467 {
468 Elf32_External_Phdr phdr;
469 int i;
470
471 /* Search for requested PHDR. */
472 for (i = 0; i < at_phnum; i++)
473 {
43136979
AR
474 int p_type;
475
97ec2c2f
UW
476 if (target_read_memory (at_phdr + i * sizeof (phdr),
477 (gdb_byte *)&phdr, sizeof (phdr)))
478 return 0;
479
43136979
AR
480 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
481 4, byte_order);
482
483 if (p_type == PT_PHDR)
484 {
485 pt_phdr_p = 1;
486 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
487 4, byte_order);
488 }
489
490 if (p_type == type)
97ec2c2f
UW
491 break;
492 }
493
494 if (i == at_phnum)
495 return 0;
496
497 /* Retrieve address and size. */
e17a4113
UW
498 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
499 4, byte_order);
500 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
501 4, byte_order);
97ec2c2f
UW
502 }
503 else
504 {
505 Elf64_External_Phdr phdr;
506 int i;
507
508 /* Search for requested PHDR. */
509 for (i = 0; i < at_phnum; i++)
510 {
43136979
AR
511 int p_type;
512
97ec2c2f
UW
513 if (target_read_memory (at_phdr + i * sizeof (phdr),
514 (gdb_byte *)&phdr, sizeof (phdr)))
515 return 0;
516
43136979
AR
517 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
518 4, byte_order);
519
520 if (p_type == PT_PHDR)
521 {
522 pt_phdr_p = 1;
523 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
524 8, byte_order);
525 }
526
527 if (p_type == type)
97ec2c2f
UW
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
e17a4113
UW
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
536 8, byte_order);
537 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
538 8, byte_order);
97ec2c2f
UW
539 }
540
43136979
AR
541 /* PT_PHDR is optional, but we really need it
542 for PIE to make this work in general. */
543
544 if (pt_phdr_p)
545 {
546 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
547 Relocation offset is the difference between the two. */
548 sect_addr = sect_addr + (at_phdr - pt_phdr);
549 }
550
97ec2c2f 551 /* Read in requested program header. */
224c3ddb 552 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
553 if (target_read_memory (sect_addr, buf, sect_size))
554 {
555 xfree (buf);
556 return NULL;
557 }
558
559 if (p_arch_size)
560 *p_arch_size = arch_size;
561 if (p_sect_size)
562 *p_sect_size = sect_size;
a738da3a
MF
563 if (base_addr)
564 *base_addr = sect_addr;
97ec2c2f
UW
565
566 return buf;
567}
568
569
570/* Return program interpreter string. */
001f13d8 571static char *
97ec2c2f
UW
572find_program_interpreter (void)
573{
574 gdb_byte *buf = NULL;
575
576 /* If we have an exec_bfd, use its section table. */
577 if (exec_bfd
578 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
579 {
580 struct bfd_section *interp_sect;
581
582 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
583 if (interp_sect != NULL)
584 {
97ec2c2f
UW
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
224c3ddb 587 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
a738da3a 594 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
97ec2c2f 595
001f13d8 596 return (char *) buf;
97ec2c2f
UW
597}
598
599
b6d7a4bf
SM
600/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
601 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
602
603static int
a738da3a
MF
604scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
605 CORE_ADDR *ptr_addr)
3a40aaa0
UW
606{
607 int arch_size, step, sect_size;
b6d7a4bf 608 long current_dyntag;
b381ea14 609 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 610 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
611 Elf32_External_Dyn *x_dynp_32;
612 Elf64_External_Dyn *x_dynp_64;
613 struct bfd_section *sect;
61f0d762 614 struct target_section *target_section;
3a40aaa0
UW
615
616 if (abfd == NULL)
617 return 0;
0763ab81
PA
618
619 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
620 return 0;
621
3a40aaa0
UW
622 arch_size = bfd_get_arch_size (abfd);
623 if (arch_size == -1)
0763ab81 624 return 0;
3a40aaa0
UW
625
626 /* Find the start address of the .dynamic section. */
627 sect = bfd_get_section_by_name (abfd, ".dynamic");
628 if (sect == NULL)
629 return 0;
61f0d762
JK
630
631 for (target_section = current_target_sections->sections;
632 target_section < current_target_sections->sections_end;
633 target_section++)
634 if (sect == target_section->the_bfd_section)
635 break;
b381ea14
JK
636 if (target_section < current_target_sections->sections_end)
637 dyn_addr = target_section->addr;
638 else
639 {
640 /* ABFD may come from OBJFILE acting only as a symbol file without being
641 loaded into the target (see add_symbol_file_command). This case is
642 such fallback to the file VMA address without the possibility of
643 having the section relocated to its actual in-memory address. */
644
645 dyn_addr = bfd_section_vma (abfd, sect);
646 }
3a40aaa0 647
65728c26
DJ
648 /* Read in .dynamic from the BFD. We will get the actual value
649 from memory later. */
3a40aaa0 650 sect_size = bfd_section_size (abfd, sect);
224c3ddb 651 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
652 if (!bfd_get_section_contents (abfd, sect,
653 buf, 0, sect_size))
654 return 0;
3a40aaa0
UW
655
656 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
657 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
658 : sizeof (Elf64_External_Dyn);
659 for (bufend = buf + sect_size;
660 buf < bufend;
661 buf += step)
662 {
663 if (arch_size == 32)
664 {
665 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 666 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
667 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
668 }
65728c26 669 else
3a40aaa0
UW
670 {
671 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 672 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
673 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
674 }
b6d7a4bf 675 if (current_dyntag == DT_NULL)
3a40aaa0 676 return 0;
b6d7a4bf 677 if (current_dyntag == desired_dyntag)
3a40aaa0 678 {
65728c26
DJ
679 /* If requested, try to read the runtime value of this .dynamic
680 entry. */
3a40aaa0 681 if (ptr)
65728c26 682 {
b6da22b0 683 struct type *ptr_type;
65728c26 684 gdb_byte ptr_buf[8];
a738da3a 685 CORE_ADDR ptr_addr_1;
65728c26 686
f5656ead 687 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
688 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
689 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 690 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 691 *ptr = dyn_ptr;
a738da3a
MF
692 if (ptr_addr)
693 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
694 }
695 return 1;
3a40aaa0
UW
696 }
697 }
698
699 return 0;
700}
701
b6d7a4bf
SM
702/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
703 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
704 is returned and the corresponding PTR is set. */
97ec2c2f
UW
705
706static int
a738da3a
MF
707scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
708 CORE_ADDR *ptr_addr)
97ec2c2f 709{
f5656ead 710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 711 int sect_size, arch_size, step;
b6d7a4bf 712 long current_dyntag;
97ec2c2f 713 CORE_ADDR dyn_ptr;
a738da3a 714 CORE_ADDR base_addr;
97ec2c2f
UW
715 gdb_byte *bufend, *bufstart, *buf;
716
717 /* Read in .dynamic section. */
a738da3a
MF
718 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
719 &base_addr);
97ec2c2f
UW
720 if (!buf)
721 return 0;
722
723 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
724 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
725 : sizeof (Elf64_External_Dyn);
726 for (bufend = buf + sect_size;
727 buf < bufend;
728 buf += step)
729 {
730 if (arch_size == 32)
731 {
732 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 733
b6d7a4bf 734 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
735 4, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 4, byte_order);
97ec2c2f
UW
738 }
739 else
740 {
741 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 742
b6d7a4bf 743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
744 8, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 8, byte_order);
97ec2c2f 747 }
b6d7a4bf 748 if (current_dyntag == DT_NULL)
97ec2c2f
UW
749 break;
750
b6d7a4bf 751 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
752 {
753 if (ptr)
754 *ptr = dyn_ptr;
755
a738da3a
MF
756 if (ptr_addr)
757 *ptr_addr = base_addr + buf - bufstart;
758
97ec2c2f
UW
759 xfree (bufstart);
760 return 1;
761 }
762 }
763
764 xfree (bufstart);
765 return 0;
766}
767
7f86f058
PA
768/* Locate the base address of dynamic linker structs for SVR4 elf
769 targets.
13437d4b
KB
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
7f86f058 778 silently return 0, otherwise the found address is returned. */
13437d4b
KB
779
780static CORE_ADDR
781elf_locate_base (void)
782{
3b7344d5 783 struct bound_minimal_symbol msymbol;
a738da3a 784 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 785
65728c26
DJ
786 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
787 instead of DT_DEBUG, although they sometimes contain an unused
788 DT_DEBUG. */
a738da3a
MF
789 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 791 {
f5656ead 792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 793 gdb_byte *pbuf;
b6da22b0 794 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 795
224c3ddb 796 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
797 /* DT_MIPS_RLD_MAP contains a pointer to the address
798 of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 800 return 0;
b6da22b0 801 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
802 }
803
a738da3a
MF
804 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
805 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
806 in non-PIE. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
224c3ddb 814 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
815 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
816 DT slot to the address of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
65728c26 822 /* Find DT_DEBUG. */
a738da3a
MF
823 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
824 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
825 return dyn_ptr;
826
3a40aaa0
UW
827 /* This may be a static executable. Look for the symbol
828 conventionally named _r_debug, as a last resort. */
829 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 830 if (msymbol.minsym != NULL)
77e371c0 831 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
832
833 /* DT_DEBUG entry not found. */
834 return 0;
835}
836
7f86f058 837/* Locate the base address of dynamic linker structs.
13437d4b
KB
838
839 For both the SunOS and SVR4 shared library implementations, if the
840 inferior executable has been linked dynamically, there is a single
841 address somewhere in the inferior's data space which is the key to
842 locating all of the dynamic linker's runtime structures. This
843 address is the value of the debug base symbol. The job of this
844 function is to find and return that address, or to return 0 if there
845 is no such address (the executable is statically linked for example).
846
847 For SunOS, the job is almost trivial, since the dynamic linker and
848 all of it's structures are statically linked to the executable at
849 link time. Thus the symbol for the address we are looking for has
850 already been added to the minimal symbol table for the executable's
851 objfile at the time the symbol file's symbols were read, and all we
852 have to do is look it up there. Note that we explicitly do NOT want
853 to find the copies in the shared library.
854
855 The SVR4 version is a bit more complicated because the address
856 is contained somewhere in the dynamic info section. We have to go
857 to a lot more work to discover the address of the debug base symbol.
858 Because of this complexity, we cache the value we find and return that
859 value on subsequent invocations. Note there is no copy in the
7f86f058 860 executable symbol tables. */
13437d4b
KB
861
862static CORE_ADDR
1a816a87 863locate_base (struct svr4_info *info)
13437d4b 864{
13437d4b
KB
865 /* Check to see if we have a currently valid address, and if so, avoid
866 doing all this work again and just return the cached address. If
867 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
868 section for ELF executables. There's no point in doing any of this
869 though if we don't have some link map offsets to work with. */
13437d4b 870
1a816a87 871 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 872 info->debug_base = elf_locate_base ();
1a816a87 873 return info->debug_base;
13437d4b
KB
874}
875
e4cd0d6a 876/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
877 return its address in the inferior. Return zero if the address
878 could not be determined.
13437d4b 879
e4cd0d6a
MK
880 FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
13437d4b
KB
883
884static CORE_ADDR
1a816a87 885solib_svr4_r_map (struct svr4_info *info)
13437d4b 886{
4b188b9f 887 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 888 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 889 CORE_ADDR addr = 0;
13437d4b 890
492d29ea 891 TRY
08597104
JB
892 {
893 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
894 ptr_type);
895 }
492d29ea
PA
896 CATCH (ex, RETURN_MASK_ERROR)
897 {
898 exception_print (gdb_stderr, ex);
899 }
900 END_CATCH
901
08597104 902 return addr;
e4cd0d6a 903}
13437d4b 904
7cd25cfc
DJ
905/* Find r_brk from the inferior's debug base. */
906
907static CORE_ADDR
1a816a87 908solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
909{
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 912
1a816a87
PA
913 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
914 ptr_type);
7cd25cfc
DJ
915}
916
e4cd0d6a
MK
917/* Find the link map for the dynamic linker (if it is not in the
918 normal list of loaded shared objects). */
13437d4b 919
e4cd0d6a 920static CORE_ADDR
1a816a87 921solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
922{
923 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
924 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
925 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
926 ULONGEST version = 0;
927
928 TRY
929 {
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 }
936 CATCH (ex, RETURN_MASK_ERROR)
937 {
938 exception_print (gdb_stderr, ex);
939 }
940 END_CATCH
13437d4b 941
e4cd0d6a
MK
942 if (version < 2 || lmo->r_ldsomap_offset == -1)
943 return 0;
13437d4b 944
1a816a87 945 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 946 ptr_type);
13437d4b
KB
947}
948
de18c1d8
JM
949/* On Solaris systems with some versions of the dynamic linker,
950 ld.so's l_name pointer points to the SONAME in the string table
951 rather than into writable memory. So that GDB can find shared
952 libraries when loading a core file generated by gcore, ensure that
953 memory areas containing the l_name string are saved in the core
954 file. */
955
956static int
957svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
958{
959 struct svr4_info *info;
960 CORE_ADDR ldsomap;
fe978cb0 961 struct so_list *newobj;
de18c1d8 962 struct cleanup *old_chain;
74de0234 963 CORE_ADDR name_lm;
de18c1d8
JM
964
965 info = get_svr4_info ();
966
967 info->debug_base = 0;
968 locate_base (info);
969 if (!info->debug_base)
970 return 0;
971
972 ldsomap = solib_svr4_r_ldsomap (info);
973 if (!ldsomap)
974 return 0;
975
fe978cb0
PA
976 newobj = XCNEW (struct so_list);
977 old_chain = make_cleanup (xfree, newobj);
d0e449a1
SM
978 lm_info_svr4 *li = lm_info_read (ldsomap);
979 newobj->lm_info = li;
fe978cb0 980 make_cleanup (xfree, newobj->lm_info);
d0e449a1 981 name_lm = li != NULL ? li->l_name : 0;
de18c1d8
JM
982 do_cleanups (old_chain);
983
74de0234 984 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
985}
986
bf469271 987/* See solist.h. */
13437d4b
KB
988
989static int
bf469271 990open_symbol_file_object (int from_tty)
13437d4b
KB
991{
992 CORE_ADDR lm, l_name;
993 char *filename;
994 int errcode;
4b188b9f 995 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 996 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 997 int l_name_size = TYPE_LENGTH (ptr_type);
224c3ddb 998 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
b8c9b27d 999 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1000 struct svr4_info *info = get_svr4_info ();
ecf45d2c
SL
1001 symfile_add_flags add_flags = 0;
1002
1003 if (from_tty)
1004 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
1005
1006 if (symfile_objfile)
9e2f0ad4 1007 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
1008 {
1009 do_cleanups (cleanups);
1010 return 0;
1011 }
13437d4b 1012
7cd25cfc 1013 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1014 info->debug_base = 0;
1015 if (locate_base (info) == 0)
3bb47e8b
TT
1016 {
1017 do_cleanups (cleanups);
1018 return 0; /* failed somehow... */
1019 }
13437d4b
KB
1020
1021 /* First link map member should be the executable. */
1a816a87 1022 lm = solib_svr4_r_map (info);
e4cd0d6a 1023 if (lm == 0)
3bb47e8b
TT
1024 {
1025 do_cleanups (cleanups);
1026 return 0; /* failed somehow... */
1027 }
13437d4b
KB
1028
1029 /* Read address of name from target memory to GDB. */
cfaefc65 1030 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1031
cfaefc65 1032 /* Convert the address to host format. */
b6da22b0 1033 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1034
13437d4b 1035 if (l_name == 0)
3bb47e8b
TT
1036 {
1037 do_cleanups (cleanups);
1038 return 0; /* No filename. */
1039 }
13437d4b
KB
1040
1041 /* Now fetch the filename from target memory. */
1042 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1043 make_cleanup (xfree, filename);
13437d4b
KB
1044
1045 if (errcode)
1046 {
8a3fe4f8 1047 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1048 safe_strerror (errcode));
3bb47e8b 1049 do_cleanups (cleanups);
13437d4b
KB
1050 return 0;
1051 }
1052
13437d4b 1053 /* Have a pathname: read the symbol file. */
ecf45d2c 1054 symbol_file_add_main (filename, add_flags);
13437d4b 1055
3bb47e8b 1056 do_cleanups (cleanups);
13437d4b
KB
1057 return 1;
1058}
13437d4b 1059
2268b414
JK
1060/* Data exchange structure for the XML parser as returned by
1061 svr4_current_sos_via_xfer_libraries. */
1062
1063struct svr4_library_list
1064{
1065 struct so_list *head, **tailp;
1066
1067 /* Inferior address of struct link_map used for the main executable. It is
1068 NULL if not known. */
1069 CORE_ADDR main_lm;
1070};
1071
93f2a35e
JK
1072/* Implementation for target_so_ops.free_so. */
1073
1074static void
1075svr4_free_so (struct so_list *so)
1076{
76e75227
SM
1077 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1078
1079 delete li;
93f2a35e
JK
1080}
1081
0892cb63
DE
1082/* Implement target_so_ops.clear_so. */
1083
1084static void
1085svr4_clear_so (struct so_list *so)
1086{
d0e449a1
SM
1087 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1088
1089 if (li != NULL)
1090 li->l_addr_p = 0;
0892cb63
DE
1091}
1092
93f2a35e
JK
1093/* Free so_list built so far (called via cleanup). */
1094
1095static void
1096svr4_free_library_list (void *p_list)
1097{
1098 struct so_list *list = *(struct so_list **) p_list;
1099
1100 while (list != NULL)
1101 {
1102 struct so_list *next = list->next;
1103
3756ef7e 1104 free_so (list);
93f2a35e
JK
1105 list = next;
1106 }
1107}
1108
f9e14852
GB
1109/* Copy library list. */
1110
1111static struct so_list *
1112svr4_copy_library_list (struct so_list *src)
1113{
1114 struct so_list *dst = NULL;
1115 struct so_list **link = &dst;
1116
1117 while (src != NULL)
1118 {
fe978cb0 1119 struct so_list *newobj;
f9e14852 1120
8d749320 1121 newobj = XNEW (struct so_list);
fe978cb0 1122 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1123
76e75227
SM
1124 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1125 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1126
fe978cb0
PA
1127 newobj->next = NULL;
1128 *link = newobj;
1129 link = &newobj->next;
f9e14852
GB
1130
1131 src = src->next;
1132 }
1133
1134 return dst;
1135}
1136
2268b414
JK
1137#ifdef HAVE_LIBEXPAT
1138
1139#include "xml-support.h"
1140
1141/* Handle the start of a <library> element. Note: new elements are added
1142 at the tail of the list, keeping the list in order. */
1143
1144static void
1145library_list_start_library (struct gdb_xml_parser *parser,
1146 const struct gdb_xml_element *element,
1147 void *user_data, VEC(gdb_xml_value_s) *attributes)
1148{
19ba03f4
SM
1149 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1150 const char *name
1151 = (const char *) xml_find_attribute (attributes, "name")->value;
1152 ULONGEST *lmp
bc84451b 1153 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
19ba03f4 1154 ULONGEST *l_addrp
bc84451b 1155 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
19ba03f4 1156 ULONGEST *l_ldp
bc84451b 1157 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
2268b414
JK
1158 struct so_list *new_elem;
1159
41bf6aca 1160 new_elem = XCNEW (struct so_list);
76e75227 1161 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1162 new_elem->lm_info = li;
1163 li->lm_addr = *lmp;
1164 li->l_addr_inferior = *l_addrp;
1165 li->l_ld = *l_ldp;
2268b414
JK
1166
1167 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1168 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1169 strcpy (new_elem->so_original_name, new_elem->so_name);
1170
1171 *list->tailp = new_elem;
1172 list->tailp = &new_elem->next;
1173}
1174
1175/* Handle the start of a <library-list-svr4> element. */
1176
1177static void
1178svr4_library_list_start_list (struct gdb_xml_parser *parser,
1179 const struct gdb_xml_element *element,
1180 void *user_data, VEC(gdb_xml_value_s) *attributes)
1181{
19ba03f4
SM
1182 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1183 const char *version
1184 = (const char *) xml_find_attribute (attributes, "version")->value;
2268b414
JK
1185 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1186
1187 if (strcmp (version, "1.0") != 0)
1188 gdb_xml_error (parser,
1189 _("SVR4 Library list has unsupported version \"%s\""),
1190 version);
1191
1192 if (main_lm)
1193 list->main_lm = *(ULONGEST *) main_lm->value;
1194}
1195
1196/* The allowed elements and attributes for an XML library list.
1197 The root element is a <library-list>. */
1198
1199static const struct gdb_xml_attribute svr4_library_attributes[] =
1200{
1201 { "name", GDB_XML_AF_NONE, NULL, NULL },
1202 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1203 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1204 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1205 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1206};
1207
1208static const struct gdb_xml_element svr4_library_list_children[] =
1209{
1210 {
1211 "library", svr4_library_attributes, NULL,
1212 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1213 library_list_start_library, NULL
1214 },
1215 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1216};
1217
1218static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1219{
1220 { "version", GDB_XML_AF_NONE, NULL, NULL },
1221 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1222 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1223};
1224
1225static const struct gdb_xml_element svr4_library_list_elements[] =
1226{
1227 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1228 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1229 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1230};
1231
2268b414
JK
1232/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1233
1234 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1235 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1236 empty, caller is responsible for freeing all its entries. */
1237
1238static int
1239svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1240{
1241 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1242 &list->head);
1243
1244 memset (list, 0, sizeof (*list));
1245 list->tailp = &list->head;
2eca4a8d 1246 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1247 svr4_library_list_elements, document, list) == 0)
1248 {
1249 /* Parsed successfully, keep the result. */
1250 discard_cleanups (back_to);
1251 return 1;
1252 }
1253
1254 do_cleanups (back_to);
1255 return 0;
1256}
1257
f9e14852 1258/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1259
1260 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1261 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1262 empty, caller is responsible for freeing all its entries.
1263
1264 Note that ANNEX must be NULL if the remote does not explicitly allow
1265 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1266 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1267
1268static int
f9e14852
GB
1269svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1270 const char *annex)
2268b414
JK
1271{
1272 char *svr4_library_document;
1273 int result;
1274 struct cleanup *back_to;
1275
f9e14852
GB
1276 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1277
2268b414
JK
1278 /* Fetch the list of shared libraries. */
1279 svr4_library_document = target_read_stralloc (&current_target,
1280 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1281 annex);
2268b414
JK
1282 if (svr4_library_document == NULL)
1283 return 0;
1284
1285 back_to = make_cleanup (xfree, svr4_library_document);
1286 result = svr4_parse_libraries (svr4_library_document, list);
1287 do_cleanups (back_to);
1288
1289 return result;
1290}
1291
1292#else
1293
1294static int
f9e14852
GB
1295svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1296 const char *annex)
2268b414
JK
1297{
1298 return 0;
1299}
1300
1301#endif
1302
34439770
DJ
1303/* If no shared library information is available from the dynamic
1304 linker, build a fallback list from other sources. */
1305
1306static struct so_list *
1307svr4_default_sos (void)
1308{
6c95b8df 1309 struct svr4_info *info = get_svr4_info ();
fe978cb0 1310 struct so_list *newobj;
1a816a87 1311
8e5c319d
JK
1312 if (!info->debug_loader_offset_p)
1313 return NULL;
34439770 1314
fe978cb0 1315 newobj = XCNEW (struct so_list);
76e75227 1316 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1317 newobj->lm_info = li;
34439770 1318
3957565a 1319 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1320 li->l_addr = info->debug_loader_offset;
1321 li->l_addr_p = 1;
34439770 1322
fe978cb0
PA
1323 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1324 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1325 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1326
fe978cb0 1327 return newobj;
34439770
DJ
1328}
1329
f9e14852
GB
1330/* Read the whole inferior libraries chain starting at address LM.
1331 Expect the first entry in the chain's previous entry to be PREV_LM.
1332 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1333 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1334 to it. Returns nonzero upon success. If zero is returned the
1335 entries stored to LINK_PTR_PTR are still valid although they may
1336 represent only part of the inferior library list. */
13437d4b 1337
f9e14852
GB
1338static int
1339svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1340 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1341{
c725e7b6 1342 CORE_ADDR first_l_name = 0;
f9e14852 1343 CORE_ADDR next_lm;
13437d4b 1344
cb08cc53 1345 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1346 {
cb08cc53
JK
1347 int errcode;
1348 char *buffer;
13437d4b 1349
b3bc8453 1350 so_list_up newobj (XCNEW (struct so_list));
13437d4b 1351
d0e449a1
SM
1352 lm_info_svr4 *li = lm_info_read (lm);
1353 newobj->lm_info = li;
1354 if (li == NULL)
b3bc8453 1355 return 0;
13437d4b 1356
d0e449a1 1357 next_lm = li->l_next;
492928e4 1358
d0e449a1 1359 if (li->l_prev != prev_lm)
492928e4 1360 {
2268b414 1361 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1362 paddress (target_gdbarch (), prev_lm),
d0e449a1 1363 paddress (target_gdbarch (), li->l_prev));
f9e14852 1364 return 0;
492928e4 1365 }
13437d4b
KB
1366
1367 /* For SVR4 versions, the first entry in the link map is for the
1368 inferior executable, so we must ignore it. For some versions of
1369 SVR4, it has no name. For others (Solaris 2.3 for example), it
1370 does have a name, so we can no longer use a missing name to
c378eb4e 1371 decide when to ignore it. */
d0e449a1 1372 if (ignore_first && li->l_prev == 0)
93a57060 1373 {
cb08cc53
JK
1374 struct svr4_info *info = get_svr4_info ();
1375
d0e449a1
SM
1376 first_l_name = li->l_name;
1377 info->main_lm_addr = li->lm_addr;
cb08cc53 1378 continue;
93a57060 1379 }
13437d4b 1380
cb08cc53 1381 /* Extract this shared object's name. */
d0e449a1
SM
1382 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1383 &errcode);
cb08cc53
JK
1384 if (errcode != 0)
1385 {
7d760051
UW
1386 /* If this entry's l_name address matches that of the
1387 inferior executable, then this is not a normal shared
1388 object, but (most likely) a vDSO. In this case, silently
1389 skip it; otherwise emit a warning. */
d0e449a1 1390 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1391 warning (_("Can't read pathname for load map: %s."),
1392 safe_strerror (errcode));
cb08cc53 1393 continue;
13437d4b
KB
1394 }
1395
fe978cb0
PA
1396 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1397 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1398 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1399 xfree (buffer);
492928e4 1400
cb08cc53
JK
1401 /* If this entry has no name, or its name matches the name
1402 for the main executable, don't include it in the list. */
fe978cb0 1403 if (! newobj->so_name[0] || match_main (newobj->so_name))
b3bc8453 1404 continue;
e4cd0d6a 1405
fe978cb0 1406 newobj->next = 0;
b3bc8453
TT
1407 /* Don't free it now. */
1408 **link_ptr_ptr = newobj.release ();
1409 *link_ptr_ptr = &(**link_ptr_ptr)->next;
13437d4b 1410 }
f9e14852
GB
1411
1412 return 1;
cb08cc53
JK
1413}
1414
f9e14852
GB
1415/* Read the full list of currently loaded shared objects directly
1416 from the inferior, without referring to any libraries read and
1417 stored by the probes interface. Handle special cases relating
1418 to the first elements of the list. */
cb08cc53
JK
1419
1420static struct so_list *
f9e14852 1421svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1422{
1423 CORE_ADDR lm;
1424 struct so_list *head = NULL;
1425 struct so_list **link_ptr = &head;
cb08cc53
JK
1426 struct cleanup *back_to;
1427 int ignore_first;
2268b414
JK
1428 struct svr4_library_list library_list;
1429
0c5bf5a9
JK
1430 /* Fall back to manual examination of the target if the packet is not
1431 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1432 tests a case where gdbserver cannot find the shared libraries list while
1433 GDB itself is able to find it via SYMFILE_OBJFILE.
1434
1435 Unfortunately statically linked inferiors will also fall back through this
1436 suboptimal code path. */
1437
f9e14852
GB
1438 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1439 NULL);
1440 if (info->using_xfer)
2268b414
JK
1441 {
1442 if (library_list.main_lm)
f9e14852 1443 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1444
1445 return library_list.head ? library_list.head : svr4_default_sos ();
1446 }
cb08cc53 1447
cb08cc53
JK
1448 /* Always locate the debug struct, in case it has moved. */
1449 info->debug_base = 0;
1450 locate_base (info);
1451
1452 /* If we can't find the dynamic linker's base structure, this
1453 must not be a dynamically linked executable. Hmm. */
1454 if (! info->debug_base)
1455 return svr4_default_sos ();
1456
1457 /* Assume that everything is a library if the dynamic loader was loaded
1458 late by a static executable. */
1459 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1460 ignore_first = 0;
1461 else
1462 ignore_first = 1;
1463
1464 back_to = make_cleanup (svr4_free_library_list, &head);
1465
1466 /* Walk the inferior's link map list, and build our list of
1467 `struct so_list' nodes. */
1468 lm = solib_svr4_r_map (info);
1469 if (lm)
f9e14852 1470 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1471
1472 /* On Solaris, the dynamic linker is not in the normal list of
1473 shared objects, so make sure we pick it up too. Having
1474 symbol information for the dynamic linker is quite crucial
1475 for skipping dynamic linker resolver code. */
1476 lm = solib_svr4_r_ldsomap (info);
1477 if (lm)
f9e14852 1478 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1479
1480 discard_cleanups (back_to);
13437d4b 1481
34439770
DJ
1482 if (head == NULL)
1483 return svr4_default_sos ();
1484
13437d4b
KB
1485 return head;
1486}
1487
8b9a549d
PA
1488/* Implement the main part of the "current_sos" target_so_ops
1489 method. */
f9e14852
GB
1490
1491static struct so_list *
8b9a549d 1492svr4_current_sos_1 (void)
f9e14852
GB
1493{
1494 struct svr4_info *info = get_svr4_info ();
1495
1496 /* If the solib list has been read and stored by the probes
1497 interface then we return a copy of the stored list. */
1498 if (info->solib_list != NULL)
1499 return svr4_copy_library_list (info->solib_list);
1500
1501 /* Otherwise obtain the solib list directly from the inferior. */
1502 return svr4_current_sos_direct (info);
1503}
1504
8b9a549d
PA
1505/* Implement the "current_sos" target_so_ops method. */
1506
1507static struct so_list *
1508svr4_current_sos (void)
1509{
1510 struct so_list *so_head = svr4_current_sos_1 ();
1511 struct mem_range vsyscall_range;
1512
1513 /* Filter out the vDSO module, if present. Its symbol file would
1514 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1515 managed by symfile-mem.c:add_vsyscall_page. */
1516 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1517 && vsyscall_range.length != 0)
1518 {
1519 struct so_list **sop;
1520
1521 sop = &so_head;
1522 while (*sop != NULL)
1523 {
1524 struct so_list *so = *sop;
1525
1526 /* We can't simply match the vDSO by starting address alone,
1527 because lm_info->l_addr_inferior (and also l_addr) do not
1528 necessarily represent the real starting address of the
1529 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1530 field (the ".dynamic" section of the shared object)
1531 always points at the absolute/resolved address though.
1532 So check whether that address is inside the vDSO's
1533 mapping instead.
1534
1535 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1536 0-based ELF, and we see:
1537
1538 (gdb) info auxv
1539 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1540 (gdb) p/x *_r_debug.r_map.l_next
1541 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1542
1543 And on Linux 2.6.32 (x86_64) we see:
1544
1545 (gdb) info auxv
1546 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1547 (gdb) p/x *_r_debug.r_map.l_next
1548 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1549
1550 Dumping that vDSO shows:
1551
1552 (gdb) info proc mappings
1553 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1554 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1555 # readelf -Wa vdso.bin
1556 [...]
1557 Entry point address: 0xffffffffff700700
1558 [...]
1559 Section Headers:
1560 [Nr] Name Type Address Off Size
1561 [ 0] NULL 0000000000000000 000000 000000
1562 [ 1] .hash HASH ffffffffff700120 000120 000038
1563 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1564 [...]
1565 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1566 */
d0e449a1
SM
1567
1568 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1569
1570 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1571 {
1572 *sop = so->next;
1573 free_so (so);
1574 break;
1575 }
1576
1577 sop = &so->next;
1578 }
1579 }
1580
1581 return so_head;
1582}
1583
93a57060 1584/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1585
1586CORE_ADDR
1587svr4_fetch_objfile_link_map (struct objfile *objfile)
1588{
93a57060 1589 struct so_list *so;
6c95b8df 1590 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1591
93a57060 1592 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1593 if (info->main_lm_addr == 0)
e696b3ad 1594 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1595
93a57060
DJ
1596 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1597 if (objfile == symfile_objfile)
1a816a87 1598 return info->main_lm_addr;
93a57060
DJ
1599
1600 /* The other link map addresses may be found by examining the list
1601 of shared libraries. */
1602 for (so = master_so_list (); so; so = so->next)
1603 if (so->objfile == objfile)
d0e449a1
SM
1604 {
1605 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1606
1607 return li->lm_addr;
1608 }
93a57060
DJ
1609
1610 /* Not found! */
bc4a16ae
EZ
1611 return 0;
1612}
13437d4b
KB
1613
1614/* On some systems, the only way to recognize the link map entry for
1615 the main executable file is by looking at its name. Return
1616 non-zero iff SONAME matches one of the known main executable names. */
1617
1618static int
bc043ef3 1619match_main (const char *soname)
13437d4b 1620{
bc043ef3 1621 const char * const *mainp;
13437d4b
KB
1622
1623 for (mainp = main_name_list; *mainp != NULL; mainp++)
1624 {
1625 if (strcmp (soname, *mainp) == 0)
1626 return (1);
1627 }
1628
1629 return (0);
1630}
1631
13437d4b
KB
1632/* Return 1 if PC lies in the dynamic symbol resolution code of the
1633 SVR4 run time loader. */
13437d4b 1634
7d522c90 1635int
d7fa2ae2 1636svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1637{
6c95b8df
PA
1638 struct svr4_info *info = get_svr4_info ();
1639
1640 return ((pc >= info->interp_text_sect_low
1641 && pc < info->interp_text_sect_high)
1642 || (pc >= info->interp_plt_sect_low
1643 && pc < info->interp_plt_sect_high)
3e5d3a5a 1644 || in_plt_section (pc)
0875794a 1645 || in_gnu_ifunc_stub (pc));
13437d4b 1646}
13437d4b 1647
2f4950cd
AC
1648/* Given an executable's ABFD and target, compute the entry-point
1649 address. */
1650
1651static CORE_ADDR
1652exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1653{
8c2b9656
YQ
1654 CORE_ADDR addr;
1655
2f4950cd
AC
1656 /* KevinB wrote ... for most targets, the address returned by
1657 bfd_get_start_address() is the entry point for the start
1658 function. But, for some targets, bfd_get_start_address() returns
1659 the address of a function descriptor from which the entry point
1660 address may be extracted. This address is extracted by
1661 gdbarch_convert_from_func_ptr_addr(). The method
1662 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1663 function for targets which don't use function descriptors. */
8c2b9656 1664 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1665 bfd_get_start_address (abfd),
1666 targ);
8c2b9656 1667 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1668}
13437d4b 1669
f9e14852
GB
1670/* A probe and its associated action. */
1671
1672struct probe_and_action
1673{
1674 /* The probe. */
1675 struct probe *probe;
1676
729662a5
TT
1677 /* The relocated address of the probe. */
1678 CORE_ADDR address;
1679
f9e14852
GB
1680 /* The action. */
1681 enum probe_action action;
1682};
1683
1684/* Returns a hash code for the probe_and_action referenced by p. */
1685
1686static hashval_t
1687hash_probe_and_action (const void *p)
1688{
19ba03f4 1689 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1690
729662a5 1691 return (hashval_t) pa->address;
f9e14852
GB
1692}
1693
1694/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1695 are equal. */
1696
1697static int
1698equal_probe_and_action (const void *p1, const void *p2)
1699{
19ba03f4
SM
1700 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1701 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1702
729662a5 1703 return pa1->address == pa2->address;
f9e14852
GB
1704}
1705
1706/* Register a solib event probe and its associated action in the
1707 probes table. */
1708
1709static void
729662a5
TT
1710register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1711 enum probe_action action)
f9e14852
GB
1712{
1713 struct svr4_info *info = get_svr4_info ();
1714 struct probe_and_action lookup, *pa;
1715 void **slot;
1716
1717 /* Create the probes table, if necessary. */
1718 if (info->probes_table == NULL)
1719 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1720 equal_probe_and_action,
1721 xfree, xcalloc, xfree);
1722
1723 lookup.probe = probe;
729662a5 1724 lookup.address = address;
f9e14852
GB
1725 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1726 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1727
1728 pa = XCNEW (struct probe_and_action);
1729 pa->probe = probe;
729662a5 1730 pa->address = address;
f9e14852
GB
1731 pa->action = action;
1732
1733 *slot = pa;
1734}
1735
1736/* Get the solib event probe at the specified location, and the
1737 action associated with it. Returns NULL if no solib event probe
1738 was found. */
1739
1740static struct probe_and_action *
1741solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1742{
f9e14852
GB
1743 struct probe_and_action lookup;
1744 void **slot;
1745
729662a5 1746 lookup.address = address;
f9e14852
GB
1747 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1748
1749 if (slot == NULL)
1750 return NULL;
1751
1752 return (struct probe_and_action *) *slot;
1753}
1754
1755/* Decide what action to take when the specified solib event probe is
1756 hit. */
1757
1758static enum probe_action
1759solib_event_probe_action (struct probe_and_action *pa)
1760{
1761 enum probe_action action;
73c6b475 1762 unsigned probe_argc = 0;
08a6411c 1763 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1764
1765 action = pa->action;
1766 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1767 return action;
1768
1769 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1770
1771 /* Check that an appropriate number of arguments has been supplied.
1772 We expect:
1773 arg0: Lmid_t lmid (mandatory)
1774 arg1: struct r_debug *debug_base (mandatory)
1775 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1776 TRY
1777 {
1778 probe_argc = get_probe_argument_count (pa->probe, frame);
1779 }
1780 CATCH (ex, RETURN_MASK_ERROR)
1781 {
1782 exception_print (gdb_stderr, ex);
1783 probe_argc = 0;
1784 }
1785 END_CATCH
1786
1787 /* If get_probe_argument_count throws an exception, probe_argc will
1788 be set to zero. However, if pa->probe does not have arguments,
1789 then get_probe_argument_count will succeed but probe_argc will
1790 also be zero. Both cases happen because of different things, but
1791 they are treated equally here: action will be set to
1792 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1793 if (probe_argc == 2)
1794 action = FULL_RELOAD;
1795 else if (probe_argc < 2)
1796 action = PROBES_INTERFACE_FAILED;
1797
1798 return action;
1799}
1800
1801/* Populate the shared object list by reading the entire list of
1802 shared objects from the inferior. Handle special cases relating
1803 to the first elements of the list. Returns nonzero on success. */
1804
1805static int
1806solist_update_full (struct svr4_info *info)
1807{
1808 free_solib_list (info);
1809 info->solib_list = svr4_current_sos_direct (info);
1810
1811 return 1;
1812}
1813
1814/* Update the shared object list starting from the link-map entry
1815 passed by the linker in the probe's third argument. Returns
1816 nonzero if the list was successfully updated, or zero to indicate
1817 failure. */
1818
1819static int
1820solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1821{
1822 struct so_list *tail;
1823 CORE_ADDR prev_lm;
1824
1825 /* svr4_current_sos_direct contains logic to handle a number of
1826 special cases relating to the first elements of the list. To
1827 avoid duplicating this logic we defer to solist_update_full
1828 if the list is empty. */
1829 if (info->solib_list == NULL)
1830 return 0;
1831
1832 /* Fall back to a full update if we are using a remote target
1833 that does not support incremental transfers. */
1834 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1835 return 0;
1836
1837 /* Walk to the end of the list. */
1838 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1839 /* Nothing. */;
d0e449a1
SM
1840
1841 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1842 prev_lm = li->lm_addr;
f9e14852
GB
1843
1844 /* Read the new objects. */
1845 if (info->using_xfer)
1846 {
1847 struct svr4_library_list library_list;
1848 char annex[64];
1849
1850 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1851 phex_nz (lm, sizeof (lm)),
1852 phex_nz (prev_lm, sizeof (prev_lm)));
1853 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1854 return 0;
1855
1856 tail->next = library_list.head;
1857 }
1858 else
1859 {
1860 struct so_list **link = &tail->next;
1861
1862 /* IGNORE_FIRST may safely be set to zero here because the
1863 above check and deferral to solist_update_full ensures
1864 that this call to svr4_read_so_list will never see the
1865 first element. */
1866 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1867 return 0;
1868 }
1869
1870 return 1;
1871}
1872
1873/* Disable the probes-based linker interface and revert to the
1874 original interface. We don't reset the breakpoints as the
1875 ones set up for the probes-based interface are adequate. */
1876
1877static void
1878disable_probes_interface_cleanup (void *arg)
1879{
1880 struct svr4_info *info = get_svr4_info ();
1881
1882 warning (_("Probes-based dynamic linker interface failed.\n"
1883 "Reverting to original interface.\n"));
1884
1885 free_probes_table (info);
1886 free_solib_list (info);
1887}
1888
1889/* Update the solib list as appropriate when using the
1890 probes-based linker interface. Do nothing if using the
1891 standard interface. */
1892
1893static void
1894svr4_handle_solib_event (void)
1895{
1896 struct svr4_info *info = get_svr4_info ();
1897 struct probe_and_action *pa;
1898 enum probe_action action;
1899 struct cleanup *old_chain, *usm_chain;
ad1c917a 1900 struct value *val = NULL;
f9e14852 1901 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1902 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1903
1904 /* Do nothing if not using the probes interface. */
1905 if (info->probes_table == NULL)
1906 return;
1907
1908 /* If anything goes wrong we revert to the original linker
1909 interface. */
1910 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1911
1912 pc = regcache_read_pc (get_current_regcache ());
1913 pa = solib_event_probe_at (info, pc);
1914 if (pa == NULL)
1915 {
1916 do_cleanups (old_chain);
1917 return;
1918 }
1919
1920 action = solib_event_probe_action (pa);
1921 if (action == PROBES_INTERFACE_FAILED)
1922 {
1923 do_cleanups (old_chain);
1924 return;
1925 }
1926
1927 if (action == DO_NOTHING)
1928 {
1929 discard_cleanups (old_chain);
1930 return;
1931 }
1932
1933 /* evaluate_probe_argument looks up symbols in the dynamic linker
1934 using find_pc_section. find_pc_section is accelerated by a cache
1935 called the section map. The section map is invalidated every
1936 time a shared library is loaded or unloaded, and if the inferior
1937 is generating a lot of shared library events then the section map
1938 will be updated every time svr4_handle_solib_event is called.
1939 We called find_pc_section in svr4_create_solib_event_breakpoints,
1940 so we can guarantee that the dynamic linker's sections are in the
1941 section map. We can therefore inhibit section map updates across
1942 these calls to evaluate_probe_argument and save a lot of time. */
1943 inhibit_section_map_updates (current_program_space);
1944 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1945 current_program_space);
1946
3bd7e5b7
SDJ
1947 TRY
1948 {
1949 val = evaluate_probe_argument (pa->probe, 1, frame);
1950 }
1951 CATCH (ex, RETURN_MASK_ERROR)
1952 {
1953 exception_print (gdb_stderr, ex);
1954 val = NULL;
1955 }
1956 END_CATCH
1957
f9e14852
GB
1958 if (val == NULL)
1959 {
1960 do_cleanups (old_chain);
1961 return;
1962 }
1963
1964 debug_base = value_as_address (val);
1965 if (debug_base == 0)
1966 {
1967 do_cleanups (old_chain);
1968 return;
1969 }
1970
1971 /* Always locate the debug struct, in case it moved. */
1972 info->debug_base = 0;
1973 if (locate_base (info) == 0)
1974 {
1975 do_cleanups (old_chain);
1976 return;
1977 }
1978
1979 /* GDB does not currently support libraries loaded via dlmopen
1980 into namespaces other than the initial one. We must ignore
1981 any namespace other than the initial namespace here until
1982 support for this is added to GDB. */
1983 if (debug_base != info->debug_base)
1984 action = DO_NOTHING;
1985
1986 if (action == UPDATE_OR_RELOAD)
1987 {
3bd7e5b7
SDJ
1988 TRY
1989 {
1990 val = evaluate_probe_argument (pa->probe, 2, frame);
1991 }
1992 CATCH (ex, RETURN_MASK_ERROR)
1993 {
1994 exception_print (gdb_stderr, ex);
1995 do_cleanups (old_chain);
1996 return;
1997 }
1998 END_CATCH
1999
f9e14852
GB
2000 if (val != NULL)
2001 lm = value_as_address (val);
2002
2003 if (lm == 0)
2004 action = FULL_RELOAD;
2005 }
2006
2007 /* Resume section map updates. */
2008 do_cleanups (usm_chain);
2009
2010 if (action == UPDATE_OR_RELOAD)
2011 {
2012 if (!solist_update_incremental (info, lm))
2013 action = FULL_RELOAD;
2014 }
2015
2016 if (action == FULL_RELOAD)
2017 {
2018 if (!solist_update_full (info))
2019 {
2020 do_cleanups (old_chain);
2021 return;
2022 }
2023 }
2024
2025 discard_cleanups (old_chain);
2026}
2027
2028/* Helper function for svr4_update_solib_event_breakpoints. */
2029
2030static int
2031svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2032{
2033 struct bp_location *loc;
2034
2035 if (b->type != bp_shlib_event)
2036 {
2037 /* Continue iterating. */
2038 return 0;
2039 }
2040
2041 for (loc = b->loc; loc != NULL; loc = loc->next)
2042 {
2043 struct svr4_info *info;
2044 struct probe_and_action *pa;
2045
19ba03f4
SM
2046 info = ((struct svr4_info *)
2047 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2048 if (info == NULL || info->probes_table == NULL)
2049 continue;
2050
2051 pa = solib_event_probe_at (info, loc->address);
2052 if (pa == NULL)
2053 continue;
2054
2055 if (pa->action == DO_NOTHING)
2056 {
2057 if (b->enable_state == bp_disabled && stop_on_solib_events)
2058 enable_breakpoint (b);
2059 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2060 disable_breakpoint (b);
2061 }
2062
2063 break;
2064 }
2065
2066 /* Continue iterating. */
2067 return 0;
2068}
2069
2070/* Enable or disable optional solib event breakpoints as appropriate.
2071 Called whenever stop_on_solib_events is changed. */
2072
2073static void
2074svr4_update_solib_event_breakpoints (void)
2075{
2076 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2077}
2078
2079/* Create and register solib event breakpoints. PROBES is an array
2080 of NUM_PROBES elements, each of which is vector of probes. A
2081 solib event breakpoint will be created and registered for each
2082 probe. */
2083
2084static void
2085svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2086 VEC (probe_p) **probes,
2087 struct objfile *objfile)
f9e14852
GB
2088{
2089 int i;
2090
2091 for (i = 0; i < NUM_PROBES; i++)
2092 {
2093 enum probe_action action = probe_info[i].action;
2094 struct probe *probe;
2095 int ix;
2096
2097 for (ix = 0;
2098 VEC_iterate (probe_p, probes[i], ix, probe);
2099 ++ix)
2100 {
729662a5
TT
2101 CORE_ADDR address = get_probe_address (probe, objfile);
2102
2103 create_solib_event_breakpoint (gdbarch, address);
2104 register_solib_event_probe (probe, address, action);
f9e14852
GB
2105 }
2106 }
2107
2108 svr4_update_solib_event_breakpoints ();
2109}
2110
2111/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2112 before and after mapping and unmapping shared libraries. The sole
2113 purpose of this method is to allow debuggers to set a breakpoint so
2114 they can track these changes.
2115
2116 Some versions of the glibc dynamic linker contain named probes
2117 to allow more fine grained stopping. Given the address of the
2118 original marker function, this function attempts to find these
2119 probes, and if found, sets breakpoints on those instead. If the
2120 probes aren't found, a single breakpoint is set on the original
2121 marker function. */
2122
2123static void
2124svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2125 CORE_ADDR address)
2126{
2127 struct obj_section *os;
2128
2129 os = find_pc_section (address);
2130 if (os != NULL)
2131 {
2132 int with_prefix;
2133
2134 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2135 {
2136 VEC (probe_p) *probes[NUM_PROBES];
2137 int all_probes_found = 1;
25f9533e 2138 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2139 int i;
2140
2141 memset (probes, 0, sizeof (probes));
2142 for (i = 0; i < NUM_PROBES; i++)
2143 {
2144 const char *name = probe_info[i].name;
25f9533e 2145 struct probe *p;
f9e14852
GB
2146 char buf[32];
2147
2148 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2149 shipped with an early version of the probes code in
2150 which the probes' names were prefixed with "rtld_"
2151 and the "map_failed" probe did not exist. The
2152 locations of the probes are otherwise the same, so
2153 we check for probes with prefixed names if probes
2154 with unprefixed names are not present. */
2155 if (with_prefix)
2156 {
2157 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2158 name = buf;
2159 }
2160
2161 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2162
2163 /* The "map_failed" probe did not exist in early
2164 versions of the probes code in which the probes'
2165 names were prefixed with "rtld_". */
2166 if (strcmp (name, "rtld_map_failed") == 0)
2167 continue;
2168
2169 if (VEC_empty (probe_p, probes[i]))
2170 {
2171 all_probes_found = 0;
2172 break;
2173 }
25f9533e
SDJ
2174
2175 /* Ensure probe arguments can be evaluated. */
2176 if (!checked_can_use_probe_arguments)
2177 {
2178 p = VEC_index (probe_p, probes[i], 0);
2179 if (!can_evaluate_probe_arguments (p))
2180 {
2181 all_probes_found = 0;
2182 break;
2183 }
2184 checked_can_use_probe_arguments = 1;
2185 }
f9e14852
GB
2186 }
2187
2188 if (all_probes_found)
729662a5 2189 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2190
2191 for (i = 0; i < NUM_PROBES; i++)
2192 VEC_free (probe_p, probes[i]);
2193
2194 if (all_probes_found)
2195 return;
2196 }
2197 }
2198
2199 create_solib_event_breakpoint (gdbarch, address);
2200}
2201
cb457ae2
YQ
2202/* Helper function for gdb_bfd_lookup_symbol. */
2203
2204static int
3953f15c 2205cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2206{
2207 return (strcmp (sym->name, (const char *) data) == 0
2208 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2209}
7f86f058 2210/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2211
2212 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2213 debugger interface, support for arranging for the inferior to hit
2214 a breakpoint after mapping in the shared libraries. This function
2215 enables that breakpoint.
2216
2217 For SunOS, there is a special flag location (in_debugger) which we
2218 set to 1. When the dynamic linker sees this flag set, it will set
2219 a breakpoint at a location known only to itself, after saving the
2220 original contents of that place and the breakpoint address itself,
2221 in it's own internal structures. When we resume the inferior, it
2222 will eventually take a SIGTRAP when it runs into the breakpoint.
2223 We handle this (in a different place) by restoring the contents of
2224 the breakpointed location (which is only known after it stops),
2225 chasing around to locate the shared libraries that have been
2226 loaded, then resuming.
2227
2228 For SVR4, the debugger interface structure contains a member (r_brk)
2229 which is statically initialized at the time the shared library is
2230 built, to the offset of a function (_r_debug_state) which is guaran-
2231 teed to be called once before mapping in a library, and again when
2232 the mapping is complete. At the time we are examining this member,
2233 it contains only the unrelocated offset of the function, so we have
2234 to do our own relocation. Later, when the dynamic linker actually
2235 runs, it relocates r_brk to be the actual address of _r_debug_state().
2236
2237 The debugger interface structure also contains an enumeration which
2238 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2239 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2240 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2241
2242static int
268a4a75 2243enable_break (struct svr4_info *info, int from_tty)
13437d4b 2244{
3b7344d5 2245 struct bound_minimal_symbol msymbol;
bc043ef3 2246 const char * const *bkpt_namep;
13437d4b 2247 asection *interp_sect;
001f13d8 2248 char *interp_name;
7cd25cfc 2249 CORE_ADDR sym_addr;
13437d4b 2250
6c95b8df
PA
2251 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2252 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2253
7cd25cfc
DJ
2254 /* If we already have a shared library list in the target, and
2255 r_debug contains r_brk, set the breakpoint there - this should
2256 mean r_brk has already been relocated. Assume the dynamic linker
2257 is the object containing r_brk. */
2258
e696b3ad 2259 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2260 sym_addr = 0;
1a816a87
PA
2261 if (info->debug_base && solib_svr4_r_map (info) != 0)
2262 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2263
2264 if (sym_addr != 0)
2265 {
2266 struct obj_section *os;
2267
b36ec657 2268 sym_addr = gdbarch_addr_bits_remove
f5656ead 2269 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2270 sym_addr,
2271 &current_target));
b36ec657 2272
48379de6
DE
2273 /* On at least some versions of Solaris there's a dynamic relocation
2274 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2275 we get control before the dynamic linker has self-relocated.
2276 Check if SYM_ADDR is in a known section, if it is assume we can
2277 trust its value. This is just a heuristic though, it could go away
2278 or be replaced if it's getting in the way.
2279
2280 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2281 however it's spelled in your particular system) is ARM or Thumb.
2282 That knowledge is encoded in the address, if it's Thumb the low bit
2283 is 1. However, we've stripped that info above and it's not clear
2284 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2285 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2286 find_pc_section verifies we know about the address and have some
2287 hope of computing the right kind of breakpoint to use (via
2288 symbol info). It does mean that GDB needs to be pointed at a
2289 non-stripped version of the dynamic linker in order to obtain
2290 information it already knows about. Sigh. */
2291
7cd25cfc
DJ
2292 os = find_pc_section (sym_addr);
2293 if (os != NULL)
2294 {
2295 /* Record the relocated start and end address of the dynamic linker
2296 text and plt section for svr4_in_dynsym_resolve_code. */
2297 bfd *tmp_bfd;
2298 CORE_ADDR load_addr;
2299
2300 tmp_bfd = os->objfile->obfd;
2301 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2302 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2303
2304 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2305 if (interp_sect)
2306 {
6c95b8df 2307 info->interp_text_sect_low =
7cd25cfc 2308 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2309 info->interp_text_sect_high =
2310 info->interp_text_sect_low
2311 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2312 }
2313 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2314 if (interp_sect)
2315 {
6c95b8df 2316 info->interp_plt_sect_low =
7cd25cfc 2317 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2318 info->interp_plt_sect_high =
2319 info->interp_plt_sect_low
2320 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2321 }
2322
f9e14852 2323 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2324 return 1;
2325 }
2326 }
2327
97ec2c2f 2328 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2329 into the old breakpoint at symbol code. */
97ec2c2f
UW
2330 interp_name = find_program_interpreter ();
2331 if (interp_name)
13437d4b 2332 {
8ad2fcde
KB
2333 CORE_ADDR load_addr = 0;
2334 int load_addr_found = 0;
2ec9a4f8 2335 int loader_found_in_list = 0;
f8766ec1 2336 struct so_list *so;
2f4950cd 2337 struct target_ops *tmp_bfd_target;
13437d4b 2338
7cd25cfc 2339 sym_addr = 0;
13437d4b
KB
2340
2341 /* Now we need to figure out where the dynamic linker was
2342 loaded so that we can load its symbols and place a breakpoint
2343 in the dynamic linker itself.
2344
2345 This address is stored on the stack. However, I've been unable
2346 to find any magic formula to find it for Solaris (appears to
2347 be trivial on GNU/Linux). Therefore, we have to try an alternate
2348 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2349
192b62ce 2350 gdb_bfd_ref_ptr tmp_bfd;
492d29ea 2351 TRY
f1838a98 2352 {
97ec2c2f 2353 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2354 }
492d29ea
PA
2355 CATCH (ex, RETURN_MASK_ALL)
2356 {
2357 }
2358 END_CATCH
2359
13437d4b
KB
2360 if (tmp_bfd == NULL)
2361 goto bkpt_at_symbol;
2362
2f4950cd 2363 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2364 well as BFD operations can be used. target_bfd_reopen
2365 acquires its own reference. */
2366 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2367
f8766ec1
KB
2368 /* On a running target, we can get the dynamic linker's base
2369 address from the shared library table. */
f8766ec1
KB
2370 so = master_so_list ();
2371 while (so)
8ad2fcde 2372 {
97ec2c2f 2373 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2374 {
2375 load_addr_found = 1;
2ec9a4f8 2376 loader_found_in_list = 1;
192b62ce 2377 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2378 break;
2379 }
f8766ec1 2380 so = so->next;
8ad2fcde
KB
2381 }
2382
8d4e36ba
JB
2383 /* If we were not able to find the base address of the loader
2384 from our so_list, then try using the AT_BASE auxilliary entry. */
2385 if (!load_addr_found)
2386 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2387 {
f5656ead 2388 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2389
2390 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2391 that `+ load_addr' will overflow CORE_ADDR width not creating
2392 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2393 GDB. */
2394
d182d057 2395 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2396 {
d182d057 2397 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2398 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2399 tmp_bfd_target);
2400
2401 gdb_assert (load_addr < space_size);
2402
2403 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2404 64bit ld.so with 32bit executable, it should not happen. */
2405
2406 if (tmp_entry_point < space_size
2407 && tmp_entry_point + load_addr >= space_size)
2408 load_addr -= space_size;
2409 }
2410
2411 load_addr_found = 1;
2412 }
8d4e36ba 2413
8ad2fcde
KB
2414 /* Otherwise we find the dynamic linker's base address by examining
2415 the current pc (which should point at the entry point for the
8d4e36ba
JB
2416 dynamic linker) and subtracting the offset of the entry point.
2417
2418 This is more fragile than the previous approaches, but is a good
2419 fallback method because it has actually been working well in
2420 most cases. */
8ad2fcde 2421 if (!load_addr_found)
fb14de7b 2422 {
c2250ad1 2423 struct regcache *regcache
f5656ead 2424 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2425
fb14de7b 2426 load_addr = (regcache_read_pc (regcache)
192b62ce 2427 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2428 }
2ec9a4f8
DJ
2429
2430 if (!loader_found_in_list)
34439770 2431 {
1a816a87
PA
2432 info->debug_loader_name = xstrdup (interp_name);
2433 info->debug_loader_offset_p = 1;
2434 info->debug_loader_offset = load_addr;
e696b3ad 2435 solib_add (NULL, from_tty, auto_solib_add);
34439770 2436 }
13437d4b
KB
2437
2438 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2439 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2440 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2441 if (interp_sect)
2442 {
6c95b8df 2443 info->interp_text_sect_low =
192b62ce 2444 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2445 info->interp_text_sect_high =
2446 info->interp_text_sect_low
192b62ce 2447 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2448 }
192b62ce 2449 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2450 if (interp_sect)
2451 {
6c95b8df 2452 info->interp_plt_sect_low =
192b62ce 2453 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2454 info->interp_plt_sect_high =
2455 info->interp_plt_sect_low
192b62ce 2456 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2457 }
2458
2459 /* Now try to set a breakpoint in the dynamic linker. */
2460 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2461 {
192b62ce
TT
2462 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2463 cmp_name_and_sec_flags,
3953f15c 2464 *bkpt_namep);
13437d4b
KB
2465 if (sym_addr != 0)
2466 break;
2467 }
2468
2bbe3cc1
DJ
2469 if (sym_addr != 0)
2470 /* Convert 'sym_addr' from a function pointer to an address.
2471 Because we pass tmp_bfd_target instead of the current
2472 target, this will always produce an unrelocated value. */
f5656ead 2473 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2474 sym_addr,
2475 tmp_bfd_target);
2476
695c3173
TT
2477 /* We're done with both the temporary bfd and target. Closing
2478 the target closes the underlying bfd, because it holds the
2479 only remaining reference. */
460014f5 2480 target_close (tmp_bfd_target);
13437d4b
KB
2481
2482 if (sym_addr != 0)
2483 {
f9e14852
GB
2484 svr4_create_solib_event_breakpoints (target_gdbarch (),
2485 load_addr + sym_addr);
97ec2c2f 2486 xfree (interp_name);
13437d4b
KB
2487 return 1;
2488 }
2489
2490 /* For whatever reason we couldn't set a breakpoint in the dynamic
2491 linker. Warn and drop into the old code. */
2492 bkpt_at_symbol:
97ec2c2f 2493 xfree (interp_name);
82d03102
PG
2494 warning (_("Unable to find dynamic linker breakpoint function.\n"
2495 "GDB will be unable to debug shared library initializers\n"
2496 "and track explicitly loaded dynamic code."));
13437d4b 2497 }
13437d4b 2498
e499d0f1
DJ
2499 /* Scan through the lists of symbols, trying to look up the symbol and
2500 set a breakpoint there. Terminate loop when we/if we succeed. */
2501
2502 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2503 {
2504 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2505 if ((msymbol.minsym != NULL)
77e371c0 2506 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2507 {
77e371c0 2508 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2509 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2510 sym_addr,
2511 &current_target);
f9e14852 2512 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2513 return 1;
2514 }
2515 }
13437d4b 2516
fb139f32 2517 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2518 {
c6490bf2 2519 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2520 {
c6490bf2 2521 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2522 if ((msymbol.minsym != NULL)
77e371c0 2523 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2524 {
77e371c0 2525 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2526 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2527 sym_addr,
2528 &current_target);
f9e14852 2529 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2530 return 1;
2531 }
13437d4b
KB
2532 }
2533 }
542c95c2 2534 return 0;
13437d4b
KB
2535}
2536
09919ac2
JK
2537/* Read the ELF program headers from ABFD. Return the contents and
2538 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2539
09919ac2
JK
2540static gdb_byte *
2541read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2542{
09919ac2
JK
2543 Elf_Internal_Ehdr *ehdr;
2544 gdb_byte *buf;
e2a44558 2545
09919ac2 2546 ehdr = elf_elfheader (abfd);
b8040f19 2547
09919ac2
JK
2548 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2549 if (*phdrs_size == 0)
2550 return NULL;
2551
224c3ddb 2552 buf = (gdb_byte *) xmalloc (*phdrs_size);
09919ac2
JK
2553 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2554 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2555 {
2556 xfree (buf);
2557 return NULL;
2558 }
2559
2560 return buf;
b8040f19
JK
2561}
2562
01c30d6e
JK
2563/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2564 exec_bfd. Otherwise return 0.
2565
2566 We relocate all of the sections by the same amount. This
c378eb4e 2567 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2568 According to the System V Application Binary Interface,
2569 Edition 4.1, page 5-5:
2570
2571 ... Though the system chooses virtual addresses for
2572 individual processes, it maintains the segments' relative
2573 positions. Because position-independent code uses relative
2574 addressesing between segments, the difference between
2575 virtual addresses in memory must match the difference
2576 between virtual addresses in the file. The difference
2577 between the virtual address of any segment in memory and
2578 the corresponding virtual address in the file is thus a
2579 single constant value for any one executable or shared
2580 object in a given process. This difference is the base
2581 address. One use of the base address is to relocate the
2582 memory image of the program during dynamic linking.
2583
2584 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2585 ABI and is left unspecified in some of the earlier editions.
2586
2587 Decide if the objfile needs to be relocated. As indicated above, we will
2588 only be here when execution is stopped. But during attachment PC can be at
2589 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2590 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2591 regcache_read_pc would point to the interpreter and not the main executable.
2592
2593 So, to summarize, relocations are necessary when the start address obtained
2594 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2595
09919ac2
JK
2596 [ The astute reader will note that we also test to make sure that
2597 the executable in question has the DYNAMIC flag set. It is my
2598 opinion that this test is unnecessary (undesirable even). It
2599 was added to avoid inadvertent relocation of an executable
2600 whose e_type member in the ELF header is not ET_DYN. There may
2601 be a time in the future when it is desirable to do relocations
2602 on other types of files as well in which case this condition
2603 should either be removed or modified to accomodate the new file
2604 type. - Kevin, Nov 2000. ] */
b8040f19 2605
01c30d6e
JK
2606static int
2607svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2608{
41752192
JK
2609 /* ENTRY_POINT is a possible function descriptor - before
2610 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2611 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2612
2613 if (exec_bfd == NULL)
2614 return 0;
2615
09919ac2
JK
2616 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2617 being executed themselves and PIE (Position Independent Executable)
2618 executables are ET_DYN. */
2619
2620 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2621 return 0;
2622
2623 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2624 return 0;
2625
8f61baf8 2626 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2627
8f61baf8 2628 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2629 alignment. It is cheaper than the program headers comparison below. */
2630
2631 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2632 {
2633 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2634
2635 /* p_align of PT_LOAD segments does not specify any alignment but
2636 only congruency of addresses:
2637 p_offset % p_align == p_vaddr % p_align
2638 Kernel is free to load the executable with lower alignment. */
2639
8f61baf8 2640 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2641 return 0;
2642 }
2643
2644 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2645 comparing their program headers. If the program headers in the auxilliary
2646 vector do not match the program headers in the executable, then we are
2647 looking at a different file than the one used by the kernel - for
2648 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2649
2650 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2651 {
2652 /* Be optimistic and clear OK only if GDB was able to verify the headers
2653 really do not match. */
2654 int phdrs_size, phdrs2_size, ok = 1;
2655 gdb_byte *buf, *buf2;
0a1e94c7 2656 int arch_size;
09919ac2 2657
a738da3a 2658 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
09919ac2 2659 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2660 if (buf != NULL && buf2 != NULL)
2661 {
f5656ead 2662 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2663
2664 /* We are dealing with three different addresses. EXEC_BFD
2665 represents current address in on-disk file. target memory content
2666 may be different from EXEC_BFD as the file may have been prelinked
2667 to a different address after the executable has been loaded.
2668 Moreover the address of placement in target memory can be
3e43a32a
MS
2669 different from what the program headers in target memory say -
2670 this is the goal of PIE.
0a1e94c7
JK
2671
2672 Detected DISPLACEMENT covers both the offsets of PIE placement and
2673 possible new prelink performed after start of the program. Here
2674 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2675 content offset for the verification purpose. */
2676
2677 if (phdrs_size != phdrs2_size
2678 || bfd_get_arch_size (exec_bfd) != arch_size)
2679 ok = 0;
3e43a32a
MS
2680 else if (arch_size == 32
2681 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2682 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2683 {
2684 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2685 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2686 CORE_ADDR displacement = 0;
2687 int i;
2688
2689 /* DISPLACEMENT could be found more easily by the difference of
2690 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2691 already have enough information to compute that displacement
2692 with what we've read. */
2693
2694 for (i = 0; i < ehdr2->e_phnum; i++)
2695 if (phdr2[i].p_type == PT_LOAD)
2696 {
2697 Elf32_External_Phdr *phdrp;
2698 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2699 CORE_ADDR vaddr, paddr;
2700 CORE_ADDR displacement_vaddr = 0;
2701 CORE_ADDR displacement_paddr = 0;
2702
2703 phdrp = &((Elf32_External_Phdr *) buf)[i];
2704 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2705 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2706
2707 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2708 byte_order);
2709 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2710
2711 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2712 byte_order);
2713 displacement_paddr = paddr - phdr2[i].p_paddr;
2714
2715 if (displacement_vaddr == displacement_paddr)
2716 displacement = displacement_vaddr;
2717
2718 break;
2719 }
2720
2721 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2722
2723 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2724 {
2725 Elf32_External_Phdr *phdrp;
2726 Elf32_External_Phdr *phdr2p;
2727 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2728 CORE_ADDR vaddr, paddr;
43b8e241 2729 asection *plt2_asect;
0a1e94c7
JK
2730
2731 phdrp = &((Elf32_External_Phdr *) buf)[i];
2732 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2733 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2734 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2735
2736 /* PT_GNU_STACK is an exception by being never relocated by
2737 prelink as its addresses are always zero. */
2738
2739 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2740 continue;
2741
2742 /* Check also other adjustment combinations - PR 11786. */
2743
3e43a32a
MS
2744 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2745 byte_order);
0a1e94c7
JK
2746 vaddr -= displacement;
2747 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2748
3e43a32a
MS
2749 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2750 byte_order);
0a1e94c7
JK
2751 paddr -= displacement;
2752 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2753
2754 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2755 continue;
2756
204b5331
DE
2757 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2758 CentOS-5 has problems with filesz, memsz as well.
2759 See PR 11786. */
2760 if (phdr2[i].p_type == PT_GNU_RELRO)
2761 {
2762 Elf32_External_Phdr tmp_phdr = *phdrp;
2763 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2764
2765 memset (tmp_phdr.p_filesz, 0, 4);
2766 memset (tmp_phdr.p_memsz, 0, 4);
2767 memset (tmp_phdr.p_flags, 0, 4);
2768 memset (tmp_phdr.p_align, 0, 4);
2769 memset (tmp_phdr2.p_filesz, 0, 4);
2770 memset (tmp_phdr2.p_memsz, 0, 4);
2771 memset (tmp_phdr2.p_flags, 0, 4);
2772 memset (tmp_phdr2.p_align, 0, 4);
2773
2774 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2775 == 0)
2776 continue;
2777 }
2778
43b8e241
JK
2779 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2780 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2781 if (plt2_asect)
2782 {
2783 int content2;
2784 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2785 CORE_ADDR filesz;
2786
2787 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2788 & SEC_HAS_CONTENTS) != 0;
2789
2790 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2791 byte_order);
2792
2793 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2794 FILESZ is from the in-memory image. */
2795 if (content2)
2796 filesz += bfd_get_section_size (plt2_asect);
2797 else
2798 filesz -= bfd_get_section_size (plt2_asect);
2799
2800 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2801 filesz);
2802
2803 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2804 continue;
2805 }
2806
0a1e94c7
JK
2807 ok = 0;
2808 break;
2809 }
2810 }
3e43a32a
MS
2811 else if (arch_size == 64
2812 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2813 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2814 {
2815 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2816 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2817 CORE_ADDR displacement = 0;
2818 int i;
2819
2820 /* DISPLACEMENT could be found more easily by the difference of
2821 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2822 already have enough information to compute that displacement
2823 with what we've read. */
2824
2825 for (i = 0; i < ehdr2->e_phnum; i++)
2826 if (phdr2[i].p_type == PT_LOAD)
2827 {
2828 Elf64_External_Phdr *phdrp;
2829 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2830 CORE_ADDR vaddr, paddr;
2831 CORE_ADDR displacement_vaddr = 0;
2832 CORE_ADDR displacement_paddr = 0;
2833
2834 phdrp = &((Elf64_External_Phdr *) buf)[i];
2835 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2836 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2837
2838 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2839 byte_order);
2840 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2841
2842 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2843 byte_order);
2844 displacement_paddr = paddr - phdr2[i].p_paddr;
2845
2846 if (displacement_vaddr == displacement_paddr)
2847 displacement = displacement_vaddr;
2848
2849 break;
2850 }
2851
2852 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2853
2854 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2855 {
2856 Elf64_External_Phdr *phdrp;
2857 Elf64_External_Phdr *phdr2p;
2858 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2859 CORE_ADDR vaddr, paddr;
43b8e241 2860 asection *plt2_asect;
0a1e94c7
JK
2861
2862 phdrp = &((Elf64_External_Phdr *) buf)[i];
2863 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2864 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2865 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2866
2867 /* PT_GNU_STACK is an exception by being never relocated by
2868 prelink as its addresses are always zero. */
2869
2870 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2871 continue;
2872
2873 /* Check also other adjustment combinations - PR 11786. */
2874
3e43a32a
MS
2875 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2876 byte_order);
0a1e94c7
JK
2877 vaddr -= displacement;
2878 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2879
3e43a32a
MS
2880 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2881 byte_order);
0a1e94c7
JK
2882 paddr -= displacement;
2883 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2884
2885 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2886 continue;
2887
204b5331
DE
2888 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2889 CentOS-5 has problems with filesz, memsz as well.
2890 See PR 11786. */
2891 if (phdr2[i].p_type == PT_GNU_RELRO)
2892 {
2893 Elf64_External_Phdr tmp_phdr = *phdrp;
2894 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2895
2896 memset (tmp_phdr.p_filesz, 0, 8);
2897 memset (tmp_phdr.p_memsz, 0, 8);
2898 memset (tmp_phdr.p_flags, 0, 4);
2899 memset (tmp_phdr.p_align, 0, 8);
2900 memset (tmp_phdr2.p_filesz, 0, 8);
2901 memset (tmp_phdr2.p_memsz, 0, 8);
2902 memset (tmp_phdr2.p_flags, 0, 4);
2903 memset (tmp_phdr2.p_align, 0, 8);
2904
2905 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2906 == 0)
2907 continue;
2908 }
2909
43b8e241
JK
2910 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2911 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2912 if (plt2_asect)
2913 {
2914 int content2;
2915 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2916 CORE_ADDR filesz;
2917
2918 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2919 & SEC_HAS_CONTENTS) != 0;
2920
2921 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2922 byte_order);
2923
2924 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2925 FILESZ is from the in-memory image. */
2926 if (content2)
2927 filesz += bfd_get_section_size (plt2_asect);
2928 else
2929 filesz -= bfd_get_section_size (plt2_asect);
2930
2931 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2932 filesz);
2933
2934 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2935 continue;
2936 }
2937
0a1e94c7
JK
2938 ok = 0;
2939 break;
2940 }
2941 }
2942 else
2943 ok = 0;
2944 }
09919ac2
JK
2945
2946 xfree (buf);
2947 xfree (buf2);
2948
2949 if (!ok)
2950 return 0;
2951 }
b8040f19 2952
ccf26247
JK
2953 if (info_verbose)
2954 {
2955 /* It can be printed repeatedly as there is no easy way to check
2956 the executable symbols/file has been already relocated to
2957 displacement. */
2958
2959 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2960 "displacement %s for \"%s\".\n"),
8f61baf8 2961 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2962 bfd_get_filename (exec_bfd));
2963 }
2964
8f61baf8 2965 *displacementp = exec_displacement;
01c30d6e 2966 return 1;
b8040f19
JK
2967}
2968
2969/* Relocate the main executable. This function should be called upon
c378eb4e 2970 stopping the inferior process at the entry point to the program.
b8040f19
JK
2971 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2972 different, the main executable is relocated by the proper amount. */
2973
2974static void
2975svr4_relocate_main_executable (void)
2976{
01c30d6e
JK
2977 CORE_ADDR displacement;
2978
4e5799b6
JK
2979 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2980 probably contains the offsets computed using the PIE displacement
2981 from the previous run, which of course are irrelevant for this run.
2982 So we need to determine the new PIE displacement and recompute the
2983 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2984 already contains pre-computed offsets.
01c30d6e 2985
4e5799b6 2986 If we cannot compute the PIE displacement, either:
01c30d6e 2987
4e5799b6
JK
2988 - The executable is not PIE.
2989
2990 - SYMFILE_OBJFILE does not match the executable started in the target.
2991 This can happen for main executable symbols loaded at the host while
2992 `ld.so --ld-args main-executable' is loaded in the target.
2993
2994 Then we leave the section offsets untouched and use them as is for
2995 this run. Either:
2996
2997 - These section offsets were properly reset earlier, and thus
2998 already contain the correct values. This can happen for instance
2999 when reconnecting via the remote protocol to a target that supports
3000 the `qOffsets' packet.
3001
3002 - The section offsets were not reset earlier, and the best we can
c378eb4e 3003 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
3004
3005 if (! svr4_exec_displacement (&displacement))
3006 return;
b8040f19 3007
01c30d6e
JK
3008 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3009 addresses. */
b8040f19
JK
3010
3011 if (symfile_objfile)
e2a44558 3012 {
e2a44558 3013 struct section_offsets *new_offsets;
b8040f19 3014 int i;
e2a44558 3015
224c3ddb
SM
3016 new_offsets = XALLOCAVEC (struct section_offsets,
3017 symfile_objfile->num_sections);
e2a44558 3018
b8040f19
JK
3019 for (i = 0; i < symfile_objfile->num_sections; i++)
3020 new_offsets->offsets[i] = displacement;
e2a44558 3021
b8040f19 3022 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 3023 }
51bee8e9
JK
3024 else if (exec_bfd)
3025 {
3026 asection *asect;
3027
3028 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3029 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3030 (bfd_section_vma (exec_bfd, asect)
3031 + displacement));
3032 }
e2a44558
KB
3033}
3034
7f86f058 3035/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3036
3037 For SVR4 executables, this first instruction is either the first
3038 instruction in the dynamic linker (for dynamically linked
3039 executables) or the instruction at "start" for statically linked
3040 executables. For dynamically linked executables, the system
3041 first exec's /lib/libc.so.N, which contains the dynamic linker,
3042 and starts it running. The dynamic linker maps in any needed
3043 shared libraries, maps in the actual user executable, and then
3044 jumps to "start" in the user executable.
3045
7f86f058
PA
3046 We can arrange to cooperate with the dynamic linker to discover the
3047 names of shared libraries that are dynamically linked, and the base
3048 addresses to which they are linked.
13437d4b
KB
3049
3050 This function is responsible for discovering those names and
3051 addresses, and saving sufficient information about them to allow
d2e5c99a 3052 their symbols to be read at a later time. */
13437d4b 3053
e2a44558 3054static void
268a4a75 3055svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3056{
1a816a87
PA
3057 struct svr4_info *info;
3058
6c95b8df 3059 info = get_svr4_info ();
2020b7ab 3060
f9e14852
GB
3061 /* Clear the probes-based interface's state. */
3062 free_probes_table (info);
3063 free_solib_list (info);
3064
e2a44558 3065 /* Relocate the main executable if necessary. */
86e4bafc 3066 svr4_relocate_main_executable ();
e2a44558 3067
c91c8c16
PA
3068 /* No point setting a breakpoint in the dynamic linker if we can't
3069 hit it (e.g., a core file, or a trace file). */
3070 if (!target_has_execution)
3071 return;
3072
d5a921c9 3073 if (!svr4_have_link_map_offsets ())
513f5903 3074 return;
d5a921c9 3075
268a4a75 3076 if (!enable_break (info, from_tty))
542c95c2 3077 return;
13437d4b
KB
3078}
3079
3080static void
3081svr4_clear_solib (void)
3082{
6c95b8df
PA
3083 struct svr4_info *info;
3084
3085 info = get_svr4_info ();
3086 info->debug_base = 0;
3087 info->debug_loader_offset_p = 0;
3088 info->debug_loader_offset = 0;
3089 xfree (info->debug_loader_name);
3090 info->debug_loader_name = NULL;
13437d4b
KB
3091}
3092
6bb7be43
JB
3093/* Clear any bits of ADDR that wouldn't fit in a target-format
3094 data pointer. "Data pointer" here refers to whatever sort of
3095 address the dynamic linker uses to manage its sections. At the
3096 moment, we don't support shared libraries on any processors where
3097 code and data pointers are different sizes.
3098
3099 This isn't really the right solution. What we really need here is
3100 a way to do arithmetic on CORE_ADDR values that respects the
3101 natural pointer/address correspondence. (For example, on the MIPS,
3102 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3103 sign-extend the value. There, simply truncating the bits above
819844ad 3104 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3105 be a new gdbarch method or something. */
3106static CORE_ADDR
3107svr4_truncate_ptr (CORE_ADDR addr)
3108{
f5656ead 3109 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3110 /* We don't need to truncate anything, and the bit twiddling below
3111 will fail due to overflow problems. */
3112 return addr;
3113 else
f5656ead 3114 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3115}
3116
3117
749499cb
KB
3118static void
3119svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3120 struct target_section *sec)
749499cb 3121{
2b2848e2
DE
3122 bfd *abfd = sec->the_bfd_section->owner;
3123
3124 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3125 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3126}
4b188b9f 3127\f
749499cb 3128
4b188b9f 3129/* Architecture-specific operations. */
6bb7be43 3130
4b188b9f
MK
3131/* Per-architecture data key. */
3132static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3133
4b188b9f 3134struct solib_svr4_ops
e5e2b9ff 3135{
4b188b9f
MK
3136 /* Return a description of the layout of `struct link_map'. */
3137 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3138};
e5e2b9ff 3139
4b188b9f 3140/* Return a default for the architecture-specific operations. */
e5e2b9ff 3141
4b188b9f
MK
3142static void *
3143solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3144{
4b188b9f 3145 struct solib_svr4_ops *ops;
e5e2b9ff 3146
4b188b9f 3147 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3148 ops->fetch_link_map_offsets = NULL;
4b188b9f 3149 return ops;
e5e2b9ff
KB
3150}
3151
4b188b9f 3152/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3153 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3154
21479ded 3155void
e5e2b9ff
KB
3156set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3157 struct link_map_offsets *(*flmo) (void))
21479ded 3158{
19ba03f4
SM
3159 struct solib_svr4_ops *ops
3160 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3161
3162 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3163
3164 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3165}
3166
4b188b9f
MK
3167/* Fetch a link_map_offsets structure using the architecture-specific
3168 `struct link_map_offsets' fetcher. */
1c4dcb57 3169
4b188b9f
MK
3170static struct link_map_offsets *
3171svr4_fetch_link_map_offsets (void)
21479ded 3172{
19ba03f4
SM
3173 struct solib_svr4_ops *ops
3174 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3175 solib_svr4_data);
4b188b9f
MK
3176
3177 gdb_assert (ops->fetch_link_map_offsets);
3178 return ops->fetch_link_map_offsets ();
21479ded
KB
3179}
3180
4b188b9f
MK
3181/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3182
3183static int
3184svr4_have_link_map_offsets (void)
3185{
19ba03f4
SM
3186 struct solib_svr4_ops *ops
3187 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3188 solib_svr4_data);
433759f7 3189
4b188b9f
MK
3190 return (ops->fetch_link_map_offsets != NULL);
3191}
3192\f
3193
e4bbbda8
MK
3194/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3195 `struct r_debug' and a `struct link_map' that are binary compatible
3196 with the origional SVR4 implementation. */
3197
3198/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3199 for an ILP32 SVR4 system. */
d989b283 3200
e4bbbda8
MK
3201struct link_map_offsets *
3202svr4_ilp32_fetch_link_map_offsets (void)
3203{
3204 static struct link_map_offsets lmo;
3205 static struct link_map_offsets *lmp = NULL;
3206
3207 if (lmp == NULL)
3208 {
3209 lmp = &lmo;
3210
e4cd0d6a
MK
3211 lmo.r_version_offset = 0;
3212 lmo.r_version_size = 4;
e4bbbda8 3213 lmo.r_map_offset = 4;
7cd25cfc 3214 lmo.r_brk_offset = 8;
e4cd0d6a 3215 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3216
3217 /* Everything we need is in the first 20 bytes. */
3218 lmo.link_map_size = 20;
3219 lmo.l_addr_offset = 0;
e4bbbda8 3220 lmo.l_name_offset = 4;
cc10cae3 3221 lmo.l_ld_offset = 8;
e4bbbda8 3222 lmo.l_next_offset = 12;
e4bbbda8 3223 lmo.l_prev_offset = 16;
e4bbbda8
MK
3224 }
3225
3226 return lmp;
3227}
3228
3229/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3230 for an LP64 SVR4 system. */
d989b283 3231
e4bbbda8
MK
3232struct link_map_offsets *
3233svr4_lp64_fetch_link_map_offsets (void)
3234{
3235 static struct link_map_offsets lmo;
3236 static struct link_map_offsets *lmp = NULL;
3237
3238 if (lmp == NULL)
3239 {
3240 lmp = &lmo;
3241
e4cd0d6a
MK
3242 lmo.r_version_offset = 0;
3243 lmo.r_version_size = 4;
e4bbbda8 3244 lmo.r_map_offset = 8;
7cd25cfc 3245 lmo.r_brk_offset = 16;
e4cd0d6a 3246 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3247
3248 /* Everything we need is in the first 40 bytes. */
3249 lmo.link_map_size = 40;
3250 lmo.l_addr_offset = 0;
e4bbbda8 3251 lmo.l_name_offset = 8;
cc10cae3 3252 lmo.l_ld_offset = 16;
e4bbbda8 3253 lmo.l_next_offset = 24;
e4bbbda8 3254 lmo.l_prev_offset = 32;
e4bbbda8
MK
3255 }
3256
3257 return lmp;
3258}
3259\f
3260
7d522c90 3261struct target_so_ops svr4_so_ops;
13437d4b 3262
c378eb4e 3263/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3264 different rule for symbol lookup. The lookup begins here in the DSO, not in
3265 the main executable. */
3266
d12307c1 3267static struct block_symbol
efad9b6a 3268elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3269 const char *name,
21b556f4 3270 const domain_enum domain)
3a40aaa0 3271{
61f0d762
JK
3272 bfd *abfd;
3273
3274 if (objfile == symfile_objfile)
3275 abfd = exec_bfd;
3276 else
3277 {
3278 /* OBJFILE should have been passed as the non-debug one. */
3279 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3280
3281 abfd = objfile->obfd;
3282 }
3283
a738da3a 3284 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3285 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3286
94af9270 3287 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3288}
3289
13437d4b
KB
3290void
3291_initialize_svr4_solib (void)
3292{
4b188b9f 3293 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3294 solib_svr4_pspace_data
8e260fc0 3295 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3296
749499cb 3297 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3298 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3299 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3300 svr4_so_ops.clear_solib = svr4_clear_solib;
3301 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3302 svr4_so_ops.current_sos = svr4_current_sos;
3303 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3304 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3305 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3306 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3307 svr4_so_ops.same = svr4_same;
de18c1d8 3308 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3309 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3310 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3311}
This page took 2.353371 seconds and 4 git commands to generate.