gdb/
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
c378eb4e 143/* link map access functions. */
13437d4b
KB
144
145static CORE_ADDR
b23518f0 146lm_addr_from_link_map (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
b23518f0 156has_lm_dynamic_from_link_map (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
b23518f0 164lm_dynamic_from_link_map (struct so_list *so)
cc10cae3
AO
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
b23518f0 174lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3
AO
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 180
b23518f0 181 l_addr = lm_addr_from_link_map (so);
cc10cae3 182
b23518f0 183 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
184 goto set_addr;
185
b23518f0 186 l_dynaddr = lm_dynamic_from_link_map (so);
cc10cae3
AO
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
02835898
JK
240 l_addr = l_dynaddr - dynaddr;
241
4e1fc9c9
JK
242 if ((l_addr & (minpagesize - 1)) == 0
243 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 244 {
701ed6dc 245 if (info_verbose)
ccf26247
JK
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
cc10cae3 250 }
79d4c408 251 else
02835898
JK
252 {
253 /* There is no way to verify the library file matches. prelink
254 can during prelinking of an unprelinked file (or unprelinking
255 of a prelinked file) shift the DYNAMIC segment by arbitrary
256 offset without any page size alignment. There is no way to
257 find out the ELF header and/or Program Headers for a limited
258 verification if it they match. One could do a verification
259 of the DYNAMIC segment. Still the found address is the best
260 one GDB could find. */
261
262 warning (_(".dynamic section for \"%s\" "
263 "is not at the expected address "
264 "(wrong library or version mismatch?)"), so->so_name);
265 }
cc10cae3
AO
266 }
267
268 set_addr:
269 so->lm_info->l_addr = l_addr;
270 }
271
272 return so->lm_info->l_addr;
273}
274
13437d4b 275static CORE_ADDR
b23518f0 276lm_next (struct so_list *so)
13437d4b 277{
4b188b9f 278 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 279 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 280
cfaefc65 281 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 282 ptr_type);
13437d4b
KB
283}
284
492928e4 285static CORE_ADDR
b23518f0 286lm_prev (struct so_list *so)
492928e4
JK
287{
288 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
289 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
290
291 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
292 ptr_type);
293}
294
13437d4b 295static CORE_ADDR
b23518f0 296lm_name (struct so_list *so)
13437d4b 297{
4b188b9f 298 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 299 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 300
cfaefc65 301 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 302 ptr_type);
13437d4b
KB
303}
304
6c95b8df 305/* Per pspace SVR4 specific data. */
13437d4b 306
1a816a87
PA
307struct svr4_info
308{
c378eb4e 309 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
1a816a87 322
6c95b8df
PA
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327};
1a816a87 328
6c95b8df
PA
329/* Per-program-space data key. */
330static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 331
6c95b8df
PA
332static void
333svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 334{
6c95b8df 335 struct svr4_info *info;
1a816a87 336
6c95b8df
PA
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
1a816a87
PA
339}
340
6c95b8df
PA
341/* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
34439770 343
6c95b8df
PA
344static struct svr4_info *
345get_svr4_info (void)
1a816a87 346{
6c95b8df 347 struct svr4_info *info;
1a816a87 348
6c95b8df
PA
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
34439770 352
6c95b8df
PA
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
1a816a87 356}
93a57060 357
13437d4b
KB
358/* Local function prototypes */
359
bc043ef3 360static int match_main (const char *);
13437d4b 361
97ec2c2f
UW
362/* Read program header TYPE from inferior memory. The header is found
363 by scanning the OS auxillary vector.
364
09919ac2
JK
365 If TYPE == -1, return the program headers instead of the contents of
366 one program header.
367
97ec2c2f
UW
368 Return a pointer to allocated memory holding the program header contents,
369 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
370 size of those contents is returned to P_SECT_SIZE. Likewise, the target
371 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
372
373static gdb_byte *
374read_program_header (int type, int *p_sect_size, int *p_arch_size)
375{
e17a4113 376 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
377 CORE_ADDR at_phdr, at_phent, at_phnum;
378 int arch_size, sect_size;
379 CORE_ADDR sect_addr;
380 gdb_byte *buf;
381
382 /* Get required auxv elements from target. */
383 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
384 return 0;
385 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
386 return 0;
387 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
388 return 0;
389 if (!at_phdr || !at_phnum)
390 return 0;
391
392 /* Determine ELF architecture type. */
393 if (at_phent == sizeof (Elf32_External_Phdr))
394 arch_size = 32;
395 else if (at_phent == sizeof (Elf64_External_Phdr))
396 arch_size = 64;
397 else
398 return 0;
399
09919ac2
JK
400 /* Find the requested segment. */
401 if (type == -1)
402 {
403 sect_addr = at_phdr;
404 sect_size = at_phent * at_phnum;
405 }
406 else if (arch_size == 32)
97ec2c2f
UW
407 {
408 Elf32_External_Phdr phdr;
409 int i;
410
411 /* Search for requested PHDR. */
412 for (i = 0; i < at_phnum; i++)
413 {
414 if (target_read_memory (at_phdr + i * sizeof (phdr),
415 (gdb_byte *)&phdr, sizeof (phdr)))
416 return 0;
417
e17a4113
UW
418 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
419 4, byte_order) == type)
97ec2c2f
UW
420 break;
421 }
422
423 if (i == at_phnum)
424 return 0;
425
426 /* Retrieve address and size. */
e17a4113
UW
427 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
428 4, byte_order);
429 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
430 4, byte_order);
97ec2c2f
UW
431 }
432 else
433 {
434 Elf64_External_Phdr phdr;
435 int i;
436
437 /* Search for requested PHDR. */
438 for (i = 0; i < at_phnum; i++)
439 {
440 if (target_read_memory (at_phdr + i * sizeof (phdr),
441 (gdb_byte *)&phdr, sizeof (phdr)))
442 return 0;
443
e17a4113
UW
444 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
445 4, byte_order) == type)
97ec2c2f
UW
446 break;
447 }
448
449 if (i == at_phnum)
450 return 0;
451
452 /* Retrieve address and size. */
e17a4113
UW
453 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
454 8, byte_order);
455 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
456 8, byte_order);
97ec2c2f
UW
457 }
458
459 /* Read in requested program header. */
460 buf = xmalloc (sect_size);
461 if (target_read_memory (sect_addr, buf, sect_size))
462 {
463 xfree (buf);
464 return NULL;
465 }
466
467 if (p_arch_size)
468 *p_arch_size = arch_size;
469 if (p_sect_size)
470 *p_sect_size = sect_size;
471
472 return buf;
473}
474
475
476/* Return program interpreter string. */
477static gdb_byte *
478find_program_interpreter (void)
479{
480 gdb_byte *buf = NULL;
481
482 /* If we have an exec_bfd, use its section table. */
483 if (exec_bfd
484 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
485 {
486 struct bfd_section *interp_sect;
487
488 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
489 if (interp_sect != NULL)
490 {
97ec2c2f
UW
491 int sect_size = bfd_section_size (exec_bfd, interp_sect);
492
493 buf = xmalloc (sect_size);
494 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
495 }
496 }
497
498 /* If we didn't find it, use the target auxillary vector. */
499 if (!buf)
500 buf = read_program_header (PT_INTERP, NULL, NULL);
501
502 return buf;
503}
504
505
c378eb4e 506/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
507 returned and the corresponding PTR is set. */
508
509static int
510scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
511{
512 int arch_size, step, sect_size;
513 long dyn_tag;
b381ea14 514 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 515 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
516 Elf32_External_Dyn *x_dynp_32;
517 Elf64_External_Dyn *x_dynp_64;
518 struct bfd_section *sect;
61f0d762 519 struct target_section *target_section;
3a40aaa0
UW
520
521 if (abfd == NULL)
522 return 0;
0763ab81
PA
523
524 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
525 return 0;
526
3a40aaa0
UW
527 arch_size = bfd_get_arch_size (abfd);
528 if (arch_size == -1)
0763ab81 529 return 0;
3a40aaa0
UW
530
531 /* Find the start address of the .dynamic section. */
532 sect = bfd_get_section_by_name (abfd, ".dynamic");
533 if (sect == NULL)
534 return 0;
61f0d762
JK
535
536 for (target_section = current_target_sections->sections;
537 target_section < current_target_sections->sections_end;
538 target_section++)
539 if (sect == target_section->the_bfd_section)
540 break;
b381ea14
JK
541 if (target_section < current_target_sections->sections_end)
542 dyn_addr = target_section->addr;
543 else
544 {
545 /* ABFD may come from OBJFILE acting only as a symbol file without being
546 loaded into the target (see add_symbol_file_command). This case is
547 such fallback to the file VMA address without the possibility of
548 having the section relocated to its actual in-memory address. */
549
550 dyn_addr = bfd_section_vma (abfd, sect);
551 }
3a40aaa0 552
65728c26
DJ
553 /* Read in .dynamic from the BFD. We will get the actual value
554 from memory later. */
3a40aaa0 555 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
556 buf = bufstart = alloca (sect_size);
557 if (!bfd_get_section_contents (abfd, sect,
558 buf, 0, sect_size))
559 return 0;
3a40aaa0
UW
560
561 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
562 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
563 : sizeof (Elf64_External_Dyn);
564 for (bufend = buf + sect_size;
565 buf < bufend;
566 buf += step)
567 {
568 if (arch_size == 32)
569 {
570 x_dynp_32 = (Elf32_External_Dyn *) buf;
571 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
572 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
573 }
65728c26 574 else
3a40aaa0
UW
575 {
576 x_dynp_64 = (Elf64_External_Dyn *) buf;
577 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
578 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
579 }
580 if (dyn_tag == DT_NULL)
581 return 0;
582 if (dyn_tag == dyntag)
583 {
65728c26
DJ
584 /* If requested, try to read the runtime value of this .dynamic
585 entry. */
3a40aaa0 586 if (ptr)
65728c26 587 {
b6da22b0 588 struct type *ptr_type;
65728c26
DJ
589 gdb_byte ptr_buf[8];
590 CORE_ADDR ptr_addr;
591
b6da22b0 592 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 593 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 594 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 595 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
596 *ptr = dyn_ptr;
597 }
598 return 1;
3a40aaa0
UW
599 }
600 }
601
602 return 0;
603}
604
97ec2c2f
UW
605/* Scan for DYNTAG in .dynamic section of the target's main executable,
606 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
607 returned and the corresponding PTR is set. */
608
609static int
610scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
611{
e17a4113 612 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
613 int sect_size, arch_size, step;
614 long dyn_tag;
615 CORE_ADDR dyn_ptr;
616 gdb_byte *bufend, *bufstart, *buf;
617
618 /* Read in .dynamic section. */
619 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
620 if (!buf)
621 return 0;
622
623 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
624 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
625 : sizeof (Elf64_External_Dyn);
626 for (bufend = buf + sect_size;
627 buf < bufend;
628 buf += step)
629 {
630 if (arch_size == 32)
631 {
632 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 633
e17a4113
UW
634 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
635 4, byte_order);
636 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
637 4, byte_order);
97ec2c2f
UW
638 }
639 else
640 {
641 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 642
e17a4113
UW
643 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
644 8, byte_order);
645 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
646 8, byte_order);
97ec2c2f
UW
647 }
648 if (dyn_tag == DT_NULL)
649 break;
650
651 if (dyn_tag == dyntag)
652 {
653 if (ptr)
654 *ptr = dyn_ptr;
655
656 xfree (bufstart);
657 return 1;
658 }
659 }
660
661 xfree (bufstart);
662 return 0;
663}
664
7f86f058
PA
665/* Locate the base address of dynamic linker structs for SVR4 elf
666 targets.
13437d4b
KB
667
668 For SVR4 elf targets the address of the dynamic linker's runtime
669 structure is contained within the dynamic info section in the
670 executable file. The dynamic section is also mapped into the
671 inferior address space. Because the runtime loader fills in the
672 real address before starting the inferior, we have to read in the
673 dynamic info section from the inferior address space.
674 If there are any errors while trying to find the address, we
7f86f058 675 silently return 0, otherwise the found address is returned. */
13437d4b
KB
676
677static CORE_ADDR
678elf_locate_base (void)
679{
3a40aaa0
UW
680 struct minimal_symbol *msymbol;
681 CORE_ADDR dyn_ptr;
13437d4b 682
65728c26
DJ
683 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
684 instead of DT_DEBUG, although they sometimes contain an unused
685 DT_DEBUG. */
97ec2c2f
UW
686 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
687 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 688 {
b6da22b0 689 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 690 gdb_byte *pbuf;
b6da22b0 691 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 692
3a40aaa0
UW
693 pbuf = alloca (pbuf_size);
694 /* DT_MIPS_RLD_MAP contains a pointer to the address
695 of the dynamic link structure. */
696 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 697 return 0;
b6da22b0 698 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
699 }
700
65728c26 701 /* Find DT_DEBUG. */
97ec2c2f
UW
702 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
703 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
704 return dyn_ptr;
705
3a40aaa0
UW
706 /* This may be a static executable. Look for the symbol
707 conventionally named _r_debug, as a last resort. */
708 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
709 if (msymbol != NULL)
710 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
711
712 /* DT_DEBUG entry not found. */
713 return 0;
714}
715
7f86f058 716/* Locate the base address of dynamic linker structs.
13437d4b
KB
717
718 For both the SunOS and SVR4 shared library implementations, if the
719 inferior executable has been linked dynamically, there is a single
720 address somewhere in the inferior's data space which is the key to
721 locating all of the dynamic linker's runtime structures. This
722 address is the value of the debug base symbol. The job of this
723 function is to find and return that address, or to return 0 if there
724 is no such address (the executable is statically linked for example).
725
726 For SunOS, the job is almost trivial, since the dynamic linker and
727 all of it's structures are statically linked to the executable at
728 link time. Thus the symbol for the address we are looking for has
729 already been added to the minimal symbol table for the executable's
730 objfile at the time the symbol file's symbols were read, and all we
731 have to do is look it up there. Note that we explicitly do NOT want
732 to find the copies in the shared library.
733
734 The SVR4 version is a bit more complicated because the address
735 is contained somewhere in the dynamic info section. We have to go
736 to a lot more work to discover the address of the debug base symbol.
737 Because of this complexity, we cache the value we find and return that
738 value on subsequent invocations. Note there is no copy in the
7f86f058 739 executable symbol tables. */
13437d4b
KB
740
741static CORE_ADDR
1a816a87 742locate_base (struct svr4_info *info)
13437d4b 743{
13437d4b
KB
744 /* Check to see if we have a currently valid address, and if so, avoid
745 doing all this work again and just return the cached address. If
746 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
747 section for ELF executables. There's no point in doing any of this
748 though if we don't have some link map offsets to work with. */
13437d4b 749
1a816a87 750 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 751 info->debug_base = elf_locate_base ();
1a816a87 752 return info->debug_base;
13437d4b
KB
753}
754
e4cd0d6a 755/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
756 return its address in the inferior. Return zero if the address
757 could not be determined.
13437d4b 758
e4cd0d6a
MK
759 FIXME: Perhaps we should validate the info somehow, perhaps by
760 checking r_version for a known version number, or r_state for
761 RT_CONSISTENT. */
13437d4b
KB
762
763static CORE_ADDR
1a816a87 764solib_svr4_r_map (struct svr4_info *info)
13437d4b 765{
4b188b9f 766 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 767 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
768 CORE_ADDR addr = 0;
769 volatile struct gdb_exception ex;
13437d4b 770
08597104
JB
771 TRY_CATCH (ex, RETURN_MASK_ERROR)
772 {
773 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
774 ptr_type);
775 }
776 exception_print (gdb_stderr, ex);
777 return addr;
e4cd0d6a 778}
13437d4b 779
7cd25cfc
DJ
780/* Find r_brk from the inferior's debug base. */
781
782static CORE_ADDR
1a816a87 783solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
784{
785 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 786 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 787
1a816a87
PA
788 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
789 ptr_type);
7cd25cfc
DJ
790}
791
e4cd0d6a
MK
792/* Find the link map for the dynamic linker (if it is not in the
793 normal list of loaded shared objects). */
13437d4b 794
e4cd0d6a 795static CORE_ADDR
1a816a87 796solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
797{
798 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 799 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 800 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 801 ULONGEST version;
13437d4b 802
e4cd0d6a
MK
803 /* Check version, and return zero if `struct r_debug' doesn't have
804 the r_ldsomap member. */
1a816a87
PA
805 version
806 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 807 lmo->r_version_size, byte_order);
e4cd0d6a
MK
808 if (version < 2 || lmo->r_ldsomap_offset == -1)
809 return 0;
13437d4b 810
1a816a87 811 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 812 ptr_type);
13437d4b
KB
813}
814
de18c1d8
JM
815/* On Solaris systems with some versions of the dynamic linker,
816 ld.so's l_name pointer points to the SONAME in the string table
817 rather than into writable memory. So that GDB can find shared
818 libraries when loading a core file generated by gcore, ensure that
819 memory areas containing the l_name string are saved in the core
820 file. */
821
822static int
823svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
824{
825 struct svr4_info *info;
826 CORE_ADDR ldsomap;
827 struct so_list *new;
828 struct cleanup *old_chain;
829 struct link_map_offsets *lmo;
74de0234 830 CORE_ADDR name_lm;
de18c1d8
JM
831
832 info = get_svr4_info ();
833
834 info->debug_base = 0;
835 locate_base (info);
836 if (!info->debug_base)
837 return 0;
838
839 ldsomap = solib_svr4_r_ldsomap (info);
840 if (!ldsomap)
841 return 0;
842
843 lmo = svr4_fetch_link_map_offsets ();
844 new = XZALLOC (struct so_list);
845 old_chain = make_cleanup (xfree, new);
846 new->lm_info = xmalloc (sizeof (struct lm_info));
847 make_cleanup (xfree, new->lm_info);
848 new->lm_info->l_addr = (CORE_ADDR)-1;
849 new->lm_info->lm_addr = ldsomap;
850 new->lm_info->lm = xzalloc (lmo->link_map_size);
851 make_cleanup (xfree, new->lm_info->lm);
852 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
74de0234 853 name_lm = lm_name (new);
de18c1d8
JM
854 do_cleanups (old_chain);
855
74de0234 856 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
857}
858
7f86f058 859/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 860
7f86f058
PA
861 If no open symbol file, attempt to locate and open the main symbol
862 file. On SVR4 systems, this is the first link map entry. If its
863 name is here, we can open it. Useful when attaching to a process
864 without first loading its symbol file. */
13437d4b
KB
865
866static int
867open_symbol_file_object (void *from_ttyp)
868{
869 CORE_ADDR lm, l_name;
870 char *filename;
871 int errcode;
872 int from_tty = *(int *)from_ttyp;
4b188b9f 873 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
874 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
875 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 876 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 877 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 878 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
879
880 if (symfile_objfile)
9e2f0ad4 881 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
882 {
883 do_cleanups (cleanups);
884 return 0;
885 }
13437d4b 886
7cd25cfc 887 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
888 info->debug_base = 0;
889 if (locate_base (info) == 0)
3bb47e8b
TT
890 {
891 do_cleanups (cleanups);
892 return 0; /* failed somehow... */
893 }
13437d4b
KB
894
895 /* First link map member should be the executable. */
1a816a87 896 lm = solib_svr4_r_map (info);
e4cd0d6a 897 if (lm == 0)
3bb47e8b
TT
898 {
899 do_cleanups (cleanups);
900 return 0; /* failed somehow... */
901 }
13437d4b
KB
902
903 /* Read address of name from target memory to GDB. */
cfaefc65 904 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 905
cfaefc65 906 /* Convert the address to host format. */
b6da22b0 907 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 908
13437d4b 909 if (l_name == 0)
3bb47e8b
TT
910 {
911 do_cleanups (cleanups);
912 return 0; /* No filename. */
913 }
13437d4b
KB
914
915 /* Now fetch the filename from target memory. */
916 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 917 make_cleanup (xfree, filename);
13437d4b
KB
918
919 if (errcode)
920 {
8a3fe4f8 921 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 922 safe_strerror (errcode));
3bb47e8b 923 do_cleanups (cleanups);
13437d4b
KB
924 return 0;
925 }
926
13437d4b 927 /* Have a pathname: read the symbol file. */
1adeb98a 928 symbol_file_add_main (filename, from_tty);
13437d4b 929
3bb47e8b 930 do_cleanups (cleanups);
13437d4b
KB
931 return 1;
932}
13437d4b 933
cb08cc53
JK
934/* Implementation for target_so_ops.free_so. */
935
936static void
937svr4_free_so (struct so_list *so)
938{
939 if (so->lm_info)
940 xfree (so->lm_info->lm);
941 xfree (so->lm_info);
942}
943
944/* Free so_list built so far (called via cleanup). */
945
946static void
947svr4_free_library_list (void *p_list)
948{
949 struct so_list *list = *(struct so_list **) p_list;
950
951 while (list != NULL)
952 {
953 struct so_list *next = list->next;
954
955 svr4_free_so (list);
956 list = next;
957 }
958}
959
34439770
DJ
960/* If no shared library information is available from the dynamic
961 linker, build a fallback list from other sources. */
962
963static struct so_list *
964svr4_default_sos (void)
965{
6c95b8df 966 struct svr4_info *info = get_svr4_info ();
8e5c319d 967 struct so_list *new;
1a816a87 968
8e5c319d
JK
969 if (!info->debug_loader_offset_p)
970 return NULL;
34439770 971
8e5c319d 972 new = XZALLOC (struct so_list);
34439770 973
8e5c319d 974 new->lm_info = xmalloc (sizeof (struct lm_info));
34439770 975
8e5c319d
JK
976 /* Nothing will ever check the cached copy of the link
977 map if we set l_addr. */
978 new->lm_info->l_addr = info->debug_loader_offset;
979 new->lm_info->lm_addr = 0;
980 new->lm_info->lm = NULL;
34439770 981
8e5c319d
JK
982 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
983 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
984 strcpy (new->so_original_name, new->so_name);
34439770 985
8e5c319d 986 return new;
34439770
DJ
987}
988
cb08cc53
JK
989/* Read the whole inferior libraries chain starting at address LM. Add the
990 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
991 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
13437d4b 992
cb08cc53
JK
993static void
994svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
995 int ignore_first)
13437d4b 996{
cb08cc53 997 CORE_ADDR prev_lm = 0, next_lm;
13437d4b 998
cb08cc53 999 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1000 {
4b188b9f 1001 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cb08cc53
JK
1002 struct so_list *new;
1003 struct cleanup *old_chain;
1004 int errcode;
1005 char *buffer;
13437d4b 1006
cb08cc53
JK
1007 new = XZALLOC (struct so_list);
1008 old_chain = make_cleanup_free_so (new);
13437d4b 1009
cb08cc53
JK
1010 new->lm_info = xmalloc (sizeof (struct lm_info));
1011 new->lm_info->l_addr = (CORE_ADDR) -1;
93a57060 1012 new->lm_info->lm_addr = lm;
f4456994 1013 new->lm_info->lm = xzalloc (lmo->link_map_size);
13437d4b
KB
1014
1015 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1016
b23518f0 1017 next_lm = lm_next (new);
492928e4 1018
b23518f0 1019 if (lm_prev (new) != prev_lm)
492928e4
JK
1020 {
1021 warning (_("Corrupted shared library list"));
cb08cc53
JK
1022 do_cleanups (old_chain);
1023 break;
492928e4 1024 }
13437d4b
KB
1025
1026 /* For SVR4 versions, the first entry in the link map is for the
1027 inferior executable, so we must ignore it. For some versions of
1028 SVR4, it has no name. For others (Solaris 2.3 for example), it
1029 does have a name, so we can no longer use a missing name to
c378eb4e 1030 decide when to ignore it. */
cb08cc53 1031 if (ignore_first && lm_prev (new) == 0)
93a57060 1032 {
cb08cc53
JK
1033 struct svr4_info *info = get_svr4_info ();
1034
1a816a87 1035 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1036 do_cleanups (old_chain);
1037 continue;
93a57060 1038 }
13437d4b 1039
cb08cc53
JK
1040 /* Extract this shared object's name. */
1041 target_read_string (lm_name (new), &buffer,
1042 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1043 if (errcode != 0)
1044 {
1045 warning (_("Can't read pathname for load map: %s."),
1046 safe_strerror (errcode));
1047 do_cleanups (old_chain);
1048 continue;
13437d4b
KB
1049 }
1050
cb08cc53
JK
1051 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1052 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1053 strcpy (new->so_original_name, new->so_name);
1054 xfree (buffer);
492928e4 1055
cb08cc53
JK
1056 /* If this entry has no name, or its name matches the name
1057 for the main executable, don't include it in the list. */
1058 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1059 {
cb08cc53
JK
1060 do_cleanups (old_chain);
1061 continue;
492928e4 1062 }
e4cd0d6a 1063
13437d4b 1064 discard_cleanups (old_chain);
cb08cc53
JK
1065 new->next = 0;
1066 **link_ptr_ptr = new;
1067 *link_ptr_ptr = &new->next;
13437d4b 1068 }
cb08cc53
JK
1069}
1070
1071/* Implement the "current_sos" target_so_ops method. */
1072
1073static struct so_list *
1074svr4_current_sos (void)
1075{
1076 CORE_ADDR lm;
1077 struct so_list *head = NULL;
1078 struct so_list **link_ptr = &head;
1079 struct svr4_info *info;
1080 struct cleanup *back_to;
1081 int ignore_first;
1082
1083 info = get_svr4_info ();
1084
1085 /* Always locate the debug struct, in case it has moved. */
1086 info->debug_base = 0;
1087 locate_base (info);
1088
1089 /* If we can't find the dynamic linker's base structure, this
1090 must not be a dynamically linked executable. Hmm. */
1091 if (! info->debug_base)
1092 return svr4_default_sos ();
1093
1094 /* Assume that everything is a library if the dynamic loader was loaded
1095 late by a static executable. */
1096 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1097 ignore_first = 0;
1098 else
1099 ignore_first = 1;
1100
1101 back_to = make_cleanup (svr4_free_library_list, &head);
1102
1103 /* Walk the inferior's link map list, and build our list of
1104 `struct so_list' nodes. */
1105 lm = solib_svr4_r_map (info);
1106 if (lm)
1107 svr4_read_so_list (lm, &link_ptr, ignore_first);
1108
1109 /* On Solaris, the dynamic linker is not in the normal list of
1110 shared objects, so make sure we pick it up too. Having
1111 symbol information for the dynamic linker is quite crucial
1112 for skipping dynamic linker resolver code. */
1113 lm = solib_svr4_r_ldsomap (info);
1114 if (lm)
1115 svr4_read_so_list (lm, &link_ptr, 0);
1116
1117 discard_cleanups (back_to);
13437d4b 1118
34439770
DJ
1119 if (head == NULL)
1120 return svr4_default_sos ();
1121
13437d4b
KB
1122 return head;
1123}
1124
93a57060 1125/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1126
1127CORE_ADDR
1128svr4_fetch_objfile_link_map (struct objfile *objfile)
1129{
93a57060 1130 struct so_list *so;
6c95b8df 1131 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1132
93a57060 1133 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1134 if (info->main_lm_addr == 0)
93a57060 1135 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1136
93a57060
DJ
1137 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1138 if (objfile == symfile_objfile)
1a816a87 1139 return info->main_lm_addr;
93a57060
DJ
1140
1141 /* The other link map addresses may be found by examining the list
1142 of shared libraries. */
1143 for (so = master_so_list (); so; so = so->next)
1144 if (so->objfile == objfile)
1145 return so->lm_info->lm_addr;
1146
1147 /* Not found! */
bc4a16ae
EZ
1148 return 0;
1149}
13437d4b
KB
1150
1151/* On some systems, the only way to recognize the link map entry for
1152 the main executable file is by looking at its name. Return
1153 non-zero iff SONAME matches one of the known main executable names. */
1154
1155static int
bc043ef3 1156match_main (const char *soname)
13437d4b 1157{
bc043ef3 1158 const char * const *mainp;
13437d4b
KB
1159
1160 for (mainp = main_name_list; *mainp != NULL; mainp++)
1161 {
1162 if (strcmp (soname, *mainp) == 0)
1163 return (1);
1164 }
1165
1166 return (0);
1167}
1168
13437d4b
KB
1169/* Return 1 if PC lies in the dynamic symbol resolution code of the
1170 SVR4 run time loader. */
13437d4b 1171
7d522c90 1172int
d7fa2ae2 1173svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1174{
6c95b8df
PA
1175 struct svr4_info *info = get_svr4_info ();
1176
1177 return ((pc >= info->interp_text_sect_low
1178 && pc < info->interp_text_sect_high)
1179 || (pc >= info->interp_plt_sect_low
1180 && pc < info->interp_plt_sect_high)
0875794a
JK
1181 || in_plt_section (pc, NULL)
1182 || in_gnu_ifunc_stub (pc));
13437d4b 1183}
13437d4b 1184
2f4950cd
AC
1185/* Given an executable's ABFD and target, compute the entry-point
1186 address. */
1187
1188static CORE_ADDR
1189exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1190{
1191 /* KevinB wrote ... for most targets, the address returned by
1192 bfd_get_start_address() is the entry point for the start
1193 function. But, for some targets, bfd_get_start_address() returns
1194 the address of a function descriptor from which the entry point
1195 address may be extracted. This address is extracted by
1196 gdbarch_convert_from_func_ptr_addr(). The method
1197 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1198 function for targets which don't use function descriptors. */
1cf3db46 1199 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1200 bfd_get_start_address (abfd),
1201 targ);
1202}
13437d4b 1203
cb457ae2
YQ
1204/* Helper function for gdb_bfd_lookup_symbol. */
1205
1206static int
1207cmp_name_and_sec_flags (asymbol *sym, void *data)
1208{
1209 return (strcmp (sym->name, (const char *) data) == 0
1210 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1211}
7f86f058 1212/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1213
1214 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1215 debugger interface, support for arranging for the inferior to hit
1216 a breakpoint after mapping in the shared libraries. This function
1217 enables that breakpoint.
1218
1219 For SunOS, there is a special flag location (in_debugger) which we
1220 set to 1. When the dynamic linker sees this flag set, it will set
1221 a breakpoint at a location known only to itself, after saving the
1222 original contents of that place and the breakpoint address itself,
1223 in it's own internal structures. When we resume the inferior, it
1224 will eventually take a SIGTRAP when it runs into the breakpoint.
1225 We handle this (in a different place) by restoring the contents of
1226 the breakpointed location (which is only known after it stops),
1227 chasing around to locate the shared libraries that have been
1228 loaded, then resuming.
1229
1230 For SVR4, the debugger interface structure contains a member (r_brk)
1231 which is statically initialized at the time the shared library is
1232 built, to the offset of a function (_r_debug_state) which is guaran-
1233 teed to be called once before mapping in a library, and again when
1234 the mapping is complete. At the time we are examining this member,
1235 it contains only the unrelocated offset of the function, so we have
1236 to do our own relocation. Later, when the dynamic linker actually
1237 runs, it relocates r_brk to be the actual address of _r_debug_state().
1238
1239 The debugger interface structure also contains an enumeration which
1240 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1241 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1242 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1243
1244static int
268a4a75 1245enable_break (struct svr4_info *info, int from_tty)
13437d4b 1246{
13437d4b 1247 struct minimal_symbol *msymbol;
bc043ef3 1248 const char * const *bkpt_namep;
13437d4b 1249 asection *interp_sect;
97ec2c2f 1250 gdb_byte *interp_name;
7cd25cfc 1251 CORE_ADDR sym_addr;
13437d4b 1252
6c95b8df
PA
1253 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1254 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1255
7cd25cfc
DJ
1256 /* If we already have a shared library list in the target, and
1257 r_debug contains r_brk, set the breakpoint there - this should
1258 mean r_brk has already been relocated. Assume the dynamic linker
1259 is the object containing r_brk. */
1260
268a4a75 1261 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1262 sym_addr = 0;
1a816a87
PA
1263 if (info->debug_base && solib_svr4_r_map (info) != 0)
1264 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1265
1266 if (sym_addr != 0)
1267 {
1268 struct obj_section *os;
1269
b36ec657 1270 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1271 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1272 sym_addr,
1273 &current_target));
b36ec657 1274
48379de6
DE
1275 /* On at least some versions of Solaris there's a dynamic relocation
1276 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1277 we get control before the dynamic linker has self-relocated.
1278 Check if SYM_ADDR is in a known section, if it is assume we can
1279 trust its value. This is just a heuristic though, it could go away
1280 or be replaced if it's getting in the way.
1281
1282 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1283 however it's spelled in your particular system) is ARM or Thumb.
1284 That knowledge is encoded in the address, if it's Thumb the low bit
1285 is 1. However, we've stripped that info above and it's not clear
1286 what all the consequences are of passing a non-addr_bits_remove'd
1287 address to create_solib_event_breakpoint. The call to
1288 find_pc_section verifies we know about the address and have some
1289 hope of computing the right kind of breakpoint to use (via
1290 symbol info). It does mean that GDB needs to be pointed at a
1291 non-stripped version of the dynamic linker in order to obtain
1292 information it already knows about. Sigh. */
1293
7cd25cfc
DJ
1294 os = find_pc_section (sym_addr);
1295 if (os != NULL)
1296 {
1297 /* Record the relocated start and end address of the dynamic linker
1298 text and plt section for svr4_in_dynsym_resolve_code. */
1299 bfd *tmp_bfd;
1300 CORE_ADDR load_addr;
1301
1302 tmp_bfd = os->objfile->obfd;
1303 load_addr = ANOFFSET (os->objfile->section_offsets,
1304 os->objfile->sect_index_text);
1305
1306 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1307 if (interp_sect)
1308 {
6c95b8df 1309 info->interp_text_sect_low =
7cd25cfc 1310 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1311 info->interp_text_sect_high =
1312 info->interp_text_sect_low
1313 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1314 }
1315 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1316 if (interp_sect)
1317 {
6c95b8df 1318 info->interp_plt_sect_low =
7cd25cfc 1319 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1320 info->interp_plt_sect_high =
1321 info->interp_plt_sect_low
1322 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1323 }
1324
a6d9a66e 1325 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1326 return 1;
1327 }
1328 }
1329
97ec2c2f 1330 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1331 into the old breakpoint at symbol code. */
97ec2c2f
UW
1332 interp_name = find_program_interpreter ();
1333 if (interp_name)
13437d4b 1334 {
8ad2fcde
KB
1335 CORE_ADDR load_addr = 0;
1336 int load_addr_found = 0;
2ec9a4f8 1337 int loader_found_in_list = 0;
f8766ec1 1338 struct so_list *so;
e4f7b8c8 1339 bfd *tmp_bfd = NULL;
2f4950cd 1340 struct target_ops *tmp_bfd_target;
f1838a98 1341 volatile struct gdb_exception ex;
13437d4b 1342
7cd25cfc 1343 sym_addr = 0;
13437d4b
KB
1344
1345 /* Now we need to figure out where the dynamic linker was
1346 loaded so that we can load its symbols and place a breakpoint
1347 in the dynamic linker itself.
1348
1349 This address is stored on the stack. However, I've been unable
1350 to find any magic formula to find it for Solaris (appears to
1351 be trivial on GNU/Linux). Therefore, we have to try an alternate
1352 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1353
f1838a98
UW
1354 TRY_CATCH (ex, RETURN_MASK_ALL)
1355 {
97ec2c2f 1356 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1357 }
13437d4b
KB
1358 if (tmp_bfd == NULL)
1359 goto bkpt_at_symbol;
1360
2f4950cd
AC
1361 /* Now convert the TMP_BFD into a target. That way target, as
1362 well as BFD operations can be used. Note that closing the
1363 target will also close the underlying bfd. */
1364 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1365
f8766ec1
KB
1366 /* On a running target, we can get the dynamic linker's base
1367 address from the shared library table. */
f8766ec1
KB
1368 so = master_so_list ();
1369 while (so)
8ad2fcde 1370 {
97ec2c2f 1371 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1372 {
1373 load_addr_found = 1;
2ec9a4f8 1374 loader_found_in_list = 1;
b23518f0 1375 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1376 break;
1377 }
f8766ec1 1378 so = so->next;
8ad2fcde
KB
1379 }
1380
8d4e36ba
JB
1381 /* If we were not able to find the base address of the loader
1382 from our so_list, then try using the AT_BASE auxilliary entry. */
1383 if (!load_addr_found)
1384 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1385 {
1386 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1387
1388 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1389 that `+ load_addr' will overflow CORE_ADDR width not creating
1390 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1391 GDB. */
1392
d182d057 1393 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1394 {
d182d057 1395 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1396 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1397 tmp_bfd_target);
1398
1399 gdb_assert (load_addr < space_size);
1400
1401 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1402 64bit ld.so with 32bit executable, it should not happen. */
1403
1404 if (tmp_entry_point < space_size
1405 && tmp_entry_point + load_addr >= space_size)
1406 load_addr -= space_size;
1407 }
1408
1409 load_addr_found = 1;
1410 }
8d4e36ba 1411
8ad2fcde
KB
1412 /* Otherwise we find the dynamic linker's base address by examining
1413 the current pc (which should point at the entry point for the
8d4e36ba
JB
1414 dynamic linker) and subtracting the offset of the entry point.
1415
1416 This is more fragile than the previous approaches, but is a good
1417 fallback method because it has actually been working well in
1418 most cases. */
8ad2fcde 1419 if (!load_addr_found)
fb14de7b 1420 {
c2250ad1
UW
1421 struct regcache *regcache
1422 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1423
fb14de7b
UW
1424 load_addr = (regcache_read_pc (regcache)
1425 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1426 }
2ec9a4f8
DJ
1427
1428 if (!loader_found_in_list)
34439770 1429 {
1a816a87
PA
1430 info->debug_loader_name = xstrdup (interp_name);
1431 info->debug_loader_offset_p = 1;
1432 info->debug_loader_offset = load_addr;
268a4a75 1433 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1434 }
13437d4b
KB
1435
1436 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1437 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1438 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1439 if (interp_sect)
1440 {
6c95b8df 1441 info->interp_text_sect_low =
13437d4b 1442 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1443 info->interp_text_sect_high =
1444 info->interp_text_sect_low
1445 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1446 }
1447 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1448 if (interp_sect)
1449 {
6c95b8df 1450 info->interp_plt_sect_low =
13437d4b 1451 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1452 info->interp_plt_sect_high =
1453 info->interp_plt_sect_low
1454 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1455 }
1456
1457 /* Now try to set a breakpoint in the dynamic linker. */
1458 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1459 {
cb457ae2
YQ
1460 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1461 (void *) *bkpt_namep);
13437d4b
KB
1462 if (sym_addr != 0)
1463 break;
1464 }
1465
2bbe3cc1
DJ
1466 if (sym_addr != 0)
1467 /* Convert 'sym_addr' from a function pointer to an address.
1468 Because we pass tmp_bfd_target instead of the current
1469 target, this will always produce an unrelocated value. */
1cf3db46 1470 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1471 sym_addr,
1472 tmp_bfd_target);
1473
2f4950cd
AC
1474 /* We're done with both the temporary bfd and target. Remember,
1475 closing the target closes the underlying bfd. */
1476 target_close (tmp_bfd_target, 0);
13437d4b
KB
1477
1478 if (sym_addr != 0)
1479 {
a6d9a66e 1480 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1481 xfree (interp_name);
13437d4b
KB
1482 return 1;
1483 }
1484
1485 /* For whatever reason we couldn't set a breakpoint in the dynamic
1486 linker. Warn and drop into the old code. */
1487 bkpt_at_symbol:
97ec2c2f 1488 xfree (interp_name);
82d03102
PG
1489 warning (_("Unable to find dynamic linker breakpoint function.\n"
1490 "GDB will be unable to debug shared library initializers\n"
1491 "and track explicitly loaded dynamic code."));
13437d4b 1492 }
13437d4b 1493
e499d0f1
DJ
1494 /* Scan through the lists of symbols, trying to look up the symbol and
1495 set a breakpoint there. Terminate loop when we/if we succeed. */
1496
1497 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1498 {
1499 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1500 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1501 {
de64a9ac
JM
1502 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1503 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1504 sym_addr,
1505 &current_target);
1506 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1507 return 1;
1508 }
1509 }
13437d4b 1510
c6490bf2 1511 if (!current_inferior ()->attach_flag)
13437d4b 1512 {
c6490bf2 1513 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1514 {
c6490bf2
KB
1515 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1516 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1517 {
1518 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1519 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1520 sym_addr,
1521 &current_target);
1522 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1523 return 1;
1524 }
13437d4b
KB
1525 }
1526 }
542c95c2 1527 return 0;
13437d4b
KB
1528}
1529
7f86f058 1530/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1531
1532static void
1533svr4_special_symbol_handling (void)
1534{
7f86f058 1535 /* Nothing to do. */
13437d4b
KB
1536}
1537
09919ac2
JK
1538/* Read the ELF program headers from ABFD. Return the contents and
1539 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1540
09919ac2
JK
1541static gdb_byte *
1542read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1543{
09919ac2
JK
1544 Elf_Internal_Ehdr *ehdr;
1545 gdb_byte *buf;
e2a44558 1546
09919ac2 1547 ehdr = elf_elfheader (abfd);
b8040f19 1548
09919ac2
JK
1549 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1550 if (*phdrs_size == 0)
1551 return NULL;
1552
1553 buf = xmalloc (*phdrs_size);
1554 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1555 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1556 {
1557 xfree (buf);
1558 return NULL;
1559 }
1560
1561 return buf;
b8040f19
JK
1562}
1563
01c30d6e
JK
1564/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1565 exec_bfd. Otherwise return 0.
1566
1567 We relocate all of the sections by the same amount. This
c378eb4e 1568 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1569 According to the System V Application Binary Interface,
1570 Edition 4.1, page 5-5:
1571
1572 ... Though the system chooses virtual addresses for
1573 individual processes, it maintains the segments' relative
1574 positions. Because position-independent code uses relative
1575 addressesing between segments, the difference between
1576 virtual addresses in memory must match the difference
1577 between virtual addresses in the file. The difference
1578 between the virtual address of any segment in memory and
1579 the corresponding virtual address in the file is thus a
1580 single constant value for any one executable or shared
1581 object in a given process. This difference is the base
1582 address. One use of the base address is to relocate the
1583 memory image of the program during dynamic linking.
1584
1585 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1586 ABI and is left unspecified in some of the earlier editions.
1587
1588 Decide if the objfile needs to be relocated. As indicated above, we will
1589 only be here when execution is stopped. But during attachment PC can be at
1590 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1591 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1592 regcache_read_pc would point to the interpreter and not the main executable.
1593
1594 So, to summarize, relocations are necessary when the start address obtained
1595 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1596
09919ac2
JK
1597 [ The astute reader will note that we also test to make sure that
1598 the executable in question has the DYNAMIC flag set. It is my
1599 opinion that this test is unnecessary (undesirable even). It
1600 was added to avoid inadvertent relocation of an executable
1601 whose e_type member in the ELF header is not ET_DYN. There may
1602 be a time in the future when it is desirable to do relocations
1603 on other types of files as well in which case this condition
1604 should either be removed or modified to accomodate the new file
1605 type. - Kevin, Nov 2000. ] */
b8040f19 1606
01c30d6e
JK
1607static int
1608svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1609{
41752192
JK
1610 /* ENTRY_POINT is a possible function descriptor - before
1611 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1612 CORE_ADDR entry_point, displacement;
b8040f19
JK
1613
1614 if (exec_bfd == NULL)
1615 return 0;
1616
09919ac2
JK
1617 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1618 being executed themselves and PIE (Position Independent Executable)
1619 executables are ET_DYN. */
1620
1621 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1622 return 0;
1623
1624 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1625 return 0;
1626
1627 displacement = entry_point - bfd_get_start_address (exec_bfd);
1628
1629 /* Verify the DISPLACEMENT candidate complies with the required page
1630 alignment. It is cheaper than the program headers comparison below. */
1631
1632 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1633 {
1634 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1635
1636 /* p_align of PT_LOAD segments does not specify any alignment but
1637 only congruency of addresses:
1638 p_offset % p_align == p_vaddr % p_align
1639 Kernel is free to load the executable with lower alignment. */
1640
1641 if ((displacement & (elf->minpagesize - 1)) != 0)
1642 return 0;
1643 }
1644
1645 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1646 comparing their program headers. If the program headers in the auxilliary
1647 vector do not match the program headers in the executable, then we are
1648 looking at a different file than the one used by the kernel - for
1649 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1650
1651 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1652 {
1653 /* Be optimistic and clear OK only if GDB was able to verify the headers
1654 really do not match. */
1655 int phdrs_size, phdrs2_size, ok = 1;
1656 gdb_byte *buf, *buf2;
0a1e94c7 1657 int arch_size;
09919ac2 1658
0a1e94c7 1659 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1660 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1661 if (buf != NULL && buf2 != NULL)
1662 {
1663 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1664
1665 /* We are dealing with three different addresses. EXEC_BFD
1666 represents current address in on-disk file. target memory content
1667 may be different from EXEC_BFD as the file may have been prelinked
1668 to a different address after the executable has been loaded.
1669 Moreover the address of placement in target memory can be
3e43a32a
MS
1670 different from what the program headers in target memory say -
1671 this is the goal of PIE.
0a1e94c7
JK
1672
1673 Detected DISPLACEMENT covers both the offsets of PIE placement and
1674 possible new prelink performed after start of the program. Here
1675 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1676 content offset for the verification purpose. */
1677
1678 if (phdrs_size != phdrs2_size
1679 || bfd_get_arch_size (exec_bfd) != arch_size)
1680 ok = 0;
3e43a32a
MS
1681 else if (arch_size == 32
1682 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1683 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1684 {
1685 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1686 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1687 CORE_ADDR displacement = 0;
1688 int i;
1689
1690 /* DISPLACEMENT could be found more easily by the difference of
1691 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1692 already have enough information to compute that displacement
1693 with what we've read. */
1694
1695 for (i = 0; i < ehdr2->e_phnum; i++)
1696 if (phdr2[i].p_type == PT_LOAD)
1697 {
1698 Elf32_External_Phdr *phdrp;
1699 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1700 CORE_ADDR vaddr, paddr;
1701 CORE_ADDR displacement_vaddr = 0;
1702 CORE_ADDR displacement_paddr = 0;
1703
1704 phdrp = &((Elf32_External_Phdr *) buf)[i];
1705 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1706 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1707
1708 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1709 byte_order);
1710 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1711
1712 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1713 byte_order);
1714 displacement_paddr = paddr - phdr2[i].p_paddr;
1715
1716 if (displacement_vaddr == displacement_paddr)
1717 displacement = displacement_vaddr;
1718
1719 break;
1720 }
1721
1722 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1723
1724 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1725 {
1726 Elf32_External_Phdr *phdrp;
1727 Elf32_External_Phdr *phdr2p;
1728 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1729 CORE_ADDR vaddr, paddr;
43b8e241 1730 asection *plt2_asect;
0a1e94c7
JK
1731
1732 phdrp = &((Elf32_External_Phdr *) buf)[i];
1733 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1734 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1735 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1736
1737 /* PT_GNU_STACK is an exception by being never relocated by
1738 prelink as its addresses are always zero. */
1739
1740 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1741 continue;
1742
1743 /* Check also other adjustment combinations - PR 11786. */
1744
3e43a32a
MS
1745 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1746 byte_order);
0a1e94c7
JK
1747 vaddr -= displacement;
1748 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1749
3e43a32a
MS
1750 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1751 byte_order);
0a1e94c7
JK
1752 paddr -= displacement;
1753 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1754
1755 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1756 continue;
1757
43b8e241
JK
1758 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1759 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1760 if (plt2_asect)
1761 {
1762 int content2;
1763 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1764 CORE_ADDR filesz;
1765
1766 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1767 & SEC_HAS_CONTENTS) != 0;
1768
1769 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1770 byte_order);
1771
1772 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1773 FILESZ is from the in-memory image. */
1774 if (content2)
1775 filesz += bfd_get_section_size (plt2_asect);
1776 else
1777 filesz -= bfd_get_section_size (plt2_asect);
1778
1779 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1780 filesz);
1781
1782 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1783 continue;
1784 }
1785
0a1e94c7
JK
1786 ok = 0;
1787 break;
1788 }
1789 }
3e43a32a
MS
1790 else if (arch_size == 64
1791 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1792 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1793 {
1794 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1795 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1796 CORE_ADDR displacement = 0;
1797 int i;
1798
1799 /* DISPLACEMENT could be found more easily by the difference of
1800 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1801 already have enough information to compute that displacement
1802 with what we've read. */
1803
1804 for (i = 0; i < ehdr2->e_phnum; i++)
1805 if (phdr2[i].p_type == PT_LOAD)
1806 {
1807 Elf64_External_Phdr *phdrp;
1808 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1809 CORE_ADDR vaddr, paddr;
1810 CORE_ADDR displacement_vaddr = 0;
1811 CORE_ADDR displacement_paddr = 0;
1812
1813 phdrp = &((Elf64_External_Phdr *) buf)[i];
1814 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1815 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1816
1817 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1818 byte_order);
1819 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1820
1821 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1822 byte_order);
1823 displacement_paddr = paddr - phdr2[i].p_paddr;
1824
1825 if (displacement_vaddr == displacement_paddr)
1826 displacement = displacement_vaddr;
1827
1828 break;
1829 }
1830
1831 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1832
1833 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1834 {
1835 Elf64_External_Phdr *phdrp;
1836 Elf64_External_Phdr *phdr2p;
1837 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1838 CORE_ADDR vaddr, paddr;
43b8e241 1839 asection *plt2_asect;
0a1e94c7
JK
1840
1841 phdrp = &((Elf64_External_Phdr *) buf)[i];
1842 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1843 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1844 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1845
1846 /* PT_GNU_STACK is an exception by being never relocated by
1847 prelink as its addresses are always zero. */
1848
1849 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1850 continue;
1851
1852 /* Check also other adjustment combinations - PR 11786. */
1853
3e43a32a
MS
1854 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1855 byte_order);
0a1e94c7
JK
1856 vaddr -= displacement;
1857 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1858
3e43a32a
MS
1859 paddr = extract_unsigned_integer (buf_paddr_p, 8,
1860 byte_order);
0a1e94c7
JK
1861 paddr -= displacement;
1862 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1863
1864 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1865 continue;
1866
43b8e241
JK
1867 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1868 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1869 if (plt2_asect)
1870 {
1871 int content2;
1872 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1873 CORE_ADDR filesz;
1874
1875 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1876 & SEC_HAS_CONTENTS) != 0;
1877
1878 filesz = extract_unsigned_integer (buf_filesz_p, 8,
1879 byte_order);
1880
1881 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1882 FILESZ is from the in-memory image. */
1883 if (content2)
1884 filesz += bfd_get_section_size (plt2_asect);
1885 else
1886 filesz -= bfd_get_section_size (plt2_asect);
1887
1888 store_unsigned_integer (buf_filesz_p, 8, byte_order,
1889 filesz);
1890
1891 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1892 continue;
1893 }
1894
0a1e94c7
JK
1895 ok = 0;
1896 break;
1897 }
1898 }
1899 else
1900 ok = 0;
1901 }
09919ac2
JK
1902
1903 xfree (buf);
1904 xfree (buf2);
1905
1906 if (!ok)
1907 return 0;
1908 }
b8040f19 1909
ccf26247
JK
1910 if (info_verbose)
1911 {
1912 /* It can be printed repeatedly as there is no easy way to check
1913 the executable symbols/file has been already relocated to
1914 displacement. */
1915
1916 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1917 "displacement %s for \"%s\".\n"),
1918 paddress (target_gdbarch, displacement),
1919 bfd_get_filename (exec_bfd));
1920 }
1921
01c30d6e
JK
1922 *displacementp = displacement;
1923 return 1;
b8040f19
JK
1924}
1925
1926/* Relocate the main executable. This function should be called upon
c378eb4e 1927 stopping the inferior process at the entry point to the program.
b8040f19
JK
1928 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1929 different, the main executable is relocated by the proper amount. */
1930
1931static void
1932svr4_relocate_main_executable (void)
1933{
01c30d6e
JK
1934 CORE_ADDR displacement;
1935
4e5799b6
JK
1936 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
1937 probably contains the offsets computed using the PIE displacement
1938 from the previous run, which of course are irrelevant for this run.
1939 So we need to determine the new PIE displacement and recompute the
1940 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
1941 already contains pre-computed offsets.
01c30d6e 1942
4e5799b6 1943 If we cannot compute the PIE displacement, either:
01c30d6e 1944
4e5799b6
JK
1945 - The executable is not PIE.
1946
1947 - SYMFILE_OBJFILE does not match the executable started in the target.
1948 This can happen for main executable symbols loaded at the host while
1949 `ld.so --ld-args main-executable' is loaded in the target.
1950
1951 Then we leave the section offsets untouched and use them as is for
1952 this run. Either:
1953
1954 - These section offsets were properly reset earlier, and thus
1955 already contain the correct values. This can happen for instance
1956 when reconnecting via the remote protocol to a target that supports
1957 the `qOffsets' packet.
1958
1959 - The section offsets were not reset earlier, and the best we can
c378eb4e 1960 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
1961
1962 if (! svr4_exec_displacement (&displacement))
1963 return;
b8040f19 1964
01c30d6e
JK
1965 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
1966 addresses. */
b8040f19
JK
1967
1968 if (symfile_objfile)
e2a44558 1969 {
e2a44558 1970 struct section_offsets *new_offsets;
b8040f19 1971 int i;
e2a44558 1972
b8040f19
JK
1973 new_offsets = alloca (symfile_objfile->num_sections
1974 * sizeof (*new_offsets));
e2a44558 1975
b8040f19
JK
1976 for (i = 0; i < symfile_objfile->num_sections; i++)
1977 new_offsets->offsets[i] = displacement;
e2a44558 1978
b8040f19 1979 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 1980 }
51bee8e9
JK
1981 else if (exec_bfd)
1982 {
1983 asection *asect;
1984
1985 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1986 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1987 (bfd_section_vma (exec_bfd, asect)
1988 + displacement));
1989 }
e2a44558
KB
1990}
1991
7f86f058 1992/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
1993
1994 For SVR4 executables, this first instruction is either the first
1995 instruction in the dynamic linker (for dynamically linked
1996 executables) or the instruction at "start" for statically linked
1997 executables. For dynamically linked executables, the system
1998 first exec's /lib/libc.so.N, which contains the dynamic linker,
1999 and starts it running. The dynamic linker maps in any needed
2000 shared libraries, maps in the actual user executable, and then
2001 jumps to "start" in the user executable.
2002
7f86f058
PA
2003 We can arrange to cooperate with the dynamic linker to discover the
2004 names of shared libraries that are dynamically linked, and the base
2005 addresses to which they are linked.
13437d4b
KB
2006
2007 This function is responsible for discovering those names and
2008 addresses, and saving sufficient information about them to allow
2009 their symbols to be read at a later time.
2010
2011 FIXME
2012
2013 Between enable_break() and disable_break(), this code does not
2014 properly handle hitting breakpoints which the user might have
2015 set in the startup code or in the dynamic linker itself. Proper
2016 handling will probably have to wait until the implementation is
2017 changed to use the "breakpoint handler function" method.
2018
7f86f058 2019 Also, what if child has exit()ed? Must exit loop somehow. */
13437d4b 2020
e2a44558 2021static void
268a4a75 2022svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2023{
1cd337a5 2024#if defined(_SCO_DS)
d6b48e9c 2025 struct inferior *inf;
2020b7ab 2026 struct thread_info *tp;
1cd337a5 2027#endif /* defined(_SCO_DS) */
1a816a87
PA
2028 struct svr4_info *info;
2029
6c95b8df 2030 info = get_svr4_info ();
2020b7ab 2031
e2a44558 2032 /* Relocate the main executable if necessary. */
86e4bafc 2033 svr4_relocate_main_executable ();
e2a44558 2034
c91c8c16
PA
2035 /* No point setting a breakpoint in the dynamic linker if we can't
2036 hit it (e.g., a core file, or a trace file). */
2037 if (!target_has_execution)
2038 return;
2039
d5a921c9 2040 if (!svr4_have_link_map_offsets ())
513f5903 2041 return;
d5a921c9 2042
268a4a75 2043 if (!enable_break (info, from_tty))
542c95c2 2044 return;
13437d4b 2045
ab31aa69
KB
2046#if defined(_SCO_DS)
2047 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2048 special shared library breakpoints and the shared library breakpoint
2049 service routine.
2050
2051 Now run the target. It will eventually hit the breakpoint, at
2052 which point all of the libraries will have been mapped in and we
2053 can go groveling around in the dynamic linker structures to find
c378eb4e 2054 out what we need to know about them. */
13437d4b 2055
d6b48e9c 2056 inf = current_inferior ();
2020b7ab
PA
2057 tp = inferior_thread ();
2058
13437d4b 2059 clear_proceed_status ();
16c381f0
JK
2060 inf->control.stop_soon = STOP_QUIETLY;
2061 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2062 do
2063 {
16c381f0 2064 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 2065 wait_for_inferior ();
13437d4b 2066 }
16c381f0
JK
2067 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2068 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2069#endif /* defined(_SCO_DS) */
13437d4b
KB
2070}
2071
2072static void
2073svr4_clear_solib (void)
2074{
6c95b8df
PA
2075 struct svr4_info *info;
2076
2077 info = get_svr4_info ();
2078 info->debug_base = 0;
2079 info->debug_loader_offset_p = 0;
2080 info->debug_loader_offset = 0;
2081 xfree (info->debug_loader_name);
2082 info->debug_loader_name = NULL;
13437d4b
KB
2083}
2084
6bb7be43
JB
2085/* Clear any bits of ADDR that wouldn't fit in a target-format
2086 data pointer. "Data pointer" here refers to whatever sort of
2087 address the dynamic linker uses to manage its sections. At the
2088 moment, we don't support shared libraries on any processors where
2089 code and data pointers are different sizes.
2090
2091 This isn't really the right solution. What we really need here is
2092 a way to do arithmetic on CORE_ADDR values that respects the
2093 natural pointer/address correspondence. (For example, on the MIPS,
2094 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2095 sign-extend the value. There, simply truncating the bits above
819844ad 2096 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2097 be a new gdbarch method or something. */
2098static CORE_ADDR
2099svr4_truncate_ptr (CORE_ADDR addr)
2100{
1cf3db46 2101 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2102 /* We don't need to truncate anything, and the bit twiddling below
2103 will fail due to overflow problems. */
2104 return addr;
2105 else
1cf3db46 2106 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2107}
2108
2109
749499cb
KB
2110static void
2111svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2112 struct target_section *sec)
749499cb 2113{
b23518f0 2114 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2115 sec->bfd));
b23518f0 2116 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2117 sec->bfd));
749499cb 2118}
4b188b9f 2119\f
749499cb 2120
4b188b9f 2121/* Architecture-specific operations. */
6bb7be43 2122
4b188b9f
MK
2123/* Per-architecture data key. */
2124static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2125
4b188b9f 2126struct solib_svr4_ops
e5e2b9ff 2127{
4b188b9f
MK
2128 /* Return a description of the layout of `struct link_map'. */
2129 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2130};
e5e2b9ff 2131
4b188b9f 2132/* Return a default for the architecture-specific operations. */
e5e2b9ff 2133
4b188b9f
MK
2134static void *
2135solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2136{
4b188b9f 2137 struct solib_svr4_ops *ops;
e5e2b9ff 2138
4b188b9f 2139 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2140 ops->fetch_link_map_offsets = NULL;
4b188b9f 2141 return ops;
e5e2b9ff
KB
2142}
2143
4b188b9f 2144/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2145 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2146
21479ded 2147void
e5e2b9ff
KB
2148set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2149 struct link_map_offsets *(*flmo) (void))
21479ded 2150{
4b188b9f
MK
2151 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2152
2153 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2154
2155 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2156}
2157
4b188b9f
MK
2158/* Fetch a link_map_offsets structure using the architecture-specific
2159 `struct link_map_offsets' fetcher. */
1c4dcb57 2160
4b188b9f
MK
2161static struct link_map_offsets *
2162svr4_fetch_link_map_offsets (void)
21479ded 2163{
1cf3db46 2164 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2165
2166 gdb_assert (ops->fetch_link_map_offsets);
2167 return ops->fetch_link_map_offsets ();
21479ded
KB
2168}
2169
4b188b9f
MK
2170/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2171
2172static int
2173svr4_have_link_map_offsets (void)
2174{
1cf3db46 2175 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2176
4b188b9f
MK
2177 return (ops->fetch_link_map_offsets != NULL);
2178}
2179\f
2180
e4bbbda8
MK
2181/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2182 `struct r_debug' and a `struct link_map' that are binary compatible
2183 with the origional SVR4 implementation. */
2184
2185/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2186 for an ILP32 SVR4 system. */
d989b283 2187
e4bbbda8
MK
2188struct link_map_offsets *
2189svr4_ilp32_fetch_link_map_offsets (void)
2190{
2191 static struct link_map_offsets lmo;
2192 static struct link_map_offsets *lmp = NULL;
2193
2194 if (lmp == NULL)
2195 {
2196 lmp = &lmo;
2197
e4cd0d6a
MK
2198 lmo.r_version_offset = 0;
2199 lmo.r_version_size = 4;
e4bbbda8 2200 lmo.r_map_offset = 4;
7cd25cfc 2201 lmo.r_brk_offset = 8;
e4cd0d6a 2202 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2203
2204 /* Everything we need is in the first 20 bytes. */
2205 lmo.link_map_size = 20;
2206 lmo.l_addr_offset = 0;
e4bbbda8 2207 lmo.l_name_offset = 4;
cc10cae3 2208 lmo.l_ld_offset = 8;
e4bbbda8 2209 lmo.l_next_offset = 12;
e4bbbda8 2210 lmo.l_prev_offset = 16;
e4bbbda8
MK
2211 }
2212
2213 return lmp;
2214}
2215
2216/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2217 for an LP64 SVR4 system. */
d989b283 2218
e4bbbda8
MK
2219struct link_map_offsets *
2220svr4_lp64_fetch_link_map_offsets (void)
2221{
2222 static struct link_map_offsets lmo;
2223 static struct link_map_offsets *lmp = NULL;
2224
2225 if (lmp == NULL)
2226 {
2227 lmp = &lmo;
2228
e4cd0d6a
MK
2229 lmo.r_version_offset = 0;
2230 lmo.r_version_size = 4;
e4bbbda8 2231 lmo.r_map_offset = 8;
7cd25cfc 2232 lmo.r_brk_offset = 16;
e4cd0d6a 2233 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2234
2235 /* Everything we need is in the first 40 bytes. */
2236 lmo.link_map_size = 40;
2237 lmo.l_addr_offset = 0;
e4bbbda8 2238 lmo.l_name_offset = 8;
cc10cae3 2239 lmo.l_ld_offset = 16;
e4bbbda8 2240 lmo.l_next_offset = 24;
e4bbbda8 2241 lmo.l_prev_offset = 32;
e4bbbda8
MK
2242 }
2243
2244 return lmp;
2245}
2246\f
2247
7d522c90 2248struct target_so_ops svr4_so_ops;
13437d4b 2249
c378eb4e 2250/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2251 different rule for symbol lookup. The lookup begins here in the DSO, not in
2252 the main executable. */
2253
2254static struct symbol *
2255elf_lookup_lib_symbol (const struct objfile *objfile,
2256 const char *name,
21b556f4 2257 const domain_enum domain)
3a40aaa0 2258{
61f0d762
JK
2259 bfd *abfd;
2260
2261 if (objfile == symfile_objfile)
2262 abfd = exec_bfd;
2263 else
2264 {
2265 /* OBJFILE should have been passed as the non-debug one. */
2266 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2267
2268 abfd = objfile->obfd;
2269 }
2270
2271 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2272 return NULL;
2273
94af9270 2274 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2275}
2276
a78f21af
AC
2277extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2278
13437d4b
KB
2279void
2280_initialize_svr4_solib (void)
2281{
4b188b9f 2282 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2283 solib_svr4_pspace_data
2284 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2285
749499cb 2286 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2287 svr4_so_ops.free_so = svr4_free_so;
2288 svr4_so_ops.clear_solib = svr4_clear_solib;
2289 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2290 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2291 svr4_so_ops.current_sos = svr4_current_sos;
2292 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2293 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2294 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2295 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2296 svr4_so_ops.same = svr4_same;
de18c1d8 2297 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2298}
This page took 1.234562 seconds and 4 git commands to generate.