* dwarf2read.c (struct pubnames_header): Remove.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4c38e0a4 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
13437d4b
KB
55/* Link map info to include in an allocated so_list entry */
56
57struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
4066fc10 62 gdb_byte *lm;
cc10cae3
AO
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
93a57060
DJ
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
13437d4b
KB
83static char *solib_break_names[] =
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
13437d4b
KB
95static char *bkpt_names[] =
96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
13437d4b
KB
103static char *main_name_list[] =
104{
105 "main_$main",
106 NULL
107};
108
4d7b2d5b
JB
109/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112static int
113svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114{
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135}
136
137static int
138svr4_same (struct so_list *gdb, struct so_list *inferior)
139{
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141}
142
13437d4b
KB
143/* link map access functions */
144
145static CORE_ADDR
cc10cae3 146LM_ADDR_FROM_LINK_MAP (struct so_list *so)
13437d4b 147{
4b188b9f 148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 150
cfaefc65 151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
b6da22b0 152 ptr_type);
13437d4b
KB
153}
154
cc10cae3 155static int
2c0b251b 156HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
cc10cae3
AO
157{
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
cfaefc65 160 return lmo->l_ld_offset >= 0;
cc10cae3
AO
161}
162
163static CORE_ADDR
164LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165{
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
cc10cae3 168
cfaefc65 169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
b6da22b0 170 ptr_type);
cc10cae3
AO
171}
172
173static CORE_ADDR
174LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175{
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
28f34a8f 179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3
AO
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
28f34a8f 196 CORE_ADDR align = 0x1000;
4e1fc9c9 197 CORE_ADDR minpagesize = align;
28f34a8f 198
cc10cae3
AO
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
4e1fc9c9
JK
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
5c0d192f
JK
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 239
4e1fc9c9
JK
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3
AO
242 {
243 l_addr = l_dynaddr - dynaddr;
79d4c408 244
701ed6dc
JK
245 if (info_verbose)
246 {
247 warning (_(".dynamic section for \"%s\" "
248 "is not at the expected address"), so->so_name);
249 warning (_("difference appears to be caused by prelink, "
250 "adjusting expectations"));
251 }
cc10cae3 252 }
79d4c408
DJ
253 else
254 warning (_(".dynamic section for \"%s\" "
255 "is not at the expected address "
256 "(wrong library or version mismatch?)"), so->so_name);
cc10cae3
AO
257 }
258
259 set_addr:
260 so->lm_info->l_addr = l_addr;
261 }
262
263 return so->lm_info->l_addr;
264}
265
13437d4b
KB
266static CORE_ADDR
267LM_NEXT (struct so_list *so)
268{
4b188b9f 269 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 270 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 271
cfaefc65 272 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
b6da22b0 273 ptr_type);
13437d4b
KB
274}
275
276static CORE_ADDR
277LM_NAME (struct so_list *so)
278{
4b188b9f 279 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 280 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 281
cfaefc65 282 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
b6da22b0 283 ptr_type);
13437d4b
KB
284}
285
13437d4b
KB
286static int
287IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
288{
4b188b9f 289 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 290 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 291
e499d0f1
DJ
292 /* Assume that everything is a library if the dynamic loader was loaded
293 late by a static executable. */
0763ab81 294 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
e499d0f1
DJ
295 return 0;
296
cfaefc65 297 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
b6da22b0 298 ptr_type) == 0;
13437d4b
KB
299}
300
6c95b8df 301/* Per pspace SVR4 specific data. */
13437d4b 302
1a816a87
PA
303struct svr4_info
304{
1a816a87
PA
305 CORE_ADDR debug_base; /* Base of dynamic linker structures */
306
307 /* Validity flag for debug_loader_offset. */
308 int debug_loader_offset_p;
309
310 /* Load address for the dynamic linker, inferred. */
311 CORE_ADDR debug_loader_offset;
312
313 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
314 char *debug_loader_name;
315
316 /* Load map address for the main executable. */
317 CORE_ADDR main_lm_addr;
1a816a87 318
6c95b8df
PA
319 CORE_ADDR interp_text_sect_low;
320 CORE_ADDR interp_text_sect_high;
321 CORE_ADDR interp_plt_sect_low;
322 CORE_ADDR interp_plt_sect_high;
323};
1a816a87 324
6c95b8df
PA
325/* Per-program-space data key. */
326static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 327
6c95b8df
PA
328static void
329svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 330{
6c95b8df 331 struct svr4_info *info;
1a816a87 332
6c95b8df
PA
333 info = program_space_data (pspace, solib_svr4_pspace_data);
334 xfree (info);
1a816a87
PA
335}
336
6c95b8df
PA
337/* Get the current svr4 data. If none is found yet, add it now. This
338 function always returns a valid object. */
34439770 339
6c95b8df
PA
340static struct svr4_info *
341get_svr4_info (void)
1a816a87 342{
6c95b8df 343 struct svr4_info *info;
1a816a87 344
6c95b8df
PA
345 info = program_space_data (current_program_space, solib_svr4_pspace_data);
346 if (info != NULL)
347 return info;
34439770 348
6c95b8df
PA
349 info = XZALLOC (struct svr4_info);
350 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
351 return info;
1a816a87 352}
93a57060 353
13437d4b
KB
354/* Local function prototypes */
355
356static int match_main (char *);
357
2bbe3cc1 358static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
13437d4b
KB
359
360/*
361
362 LOCAL FUNCTION
363
364 bfd_lookup_symbol -- lookup the value for a specific symbol
365
366 SYNOPSIS
367
2bbe3cc1 368 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b
KB
369
370 DESCRIPTION
371
372 An expensive way to lookup the value of a single symbol for
373 bfd's that are only temporary anyway. This is used by the
374 shared library support to find the address of the debugger
2bbe3cc1 375 notification routine in the shared library.
13437d4b 376
2bbe3cc1
DJ
377 The returned symbol may be in a code or data section; functions
378 will normally be in a code section, but may be in a data section
379 if this architecture uses function descriptors.
87f84c9d 380
13437d4b
KB
381 Note that 0 is specifically allowed as an error return (no
382 such symbol).
383 */
384
385static CORE_ADDR
2bbe3cc1 386bfd_lookup_symbol (bfd *abfd, char *symname)
13437d4b 387{
435b259c 388 long storage_needed;
13437d4b
KB
389 asymbol *sym;
390 asymbol **symbol_table;
391 unsigned int number_of_symbols;
392 unsigned int i;
393 struct cleanup *back_to;
394 CORE_ADDR symaddr = 0;
395
396 storage_needed = bfd_get_symtab_upper_bound (abfd);
397
398 if (storage_needed > 0)
399 {
400 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 401 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
402 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
403
404 for (i = 0; i < number_of_symbols; i++)
405 {
406 sym = *symbol_table++;
6314a349 407 if (strcmp (sym->name, symname) == 0
2bbe3cc1 408 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 409 {
2bbe3cc1 410 /* BFD symbols are section relative. */
13437d4b
KB
411 symaddr = sym->value + sym->section->vma;
412 break;
413 }
414 }
415 do_cleanups (back_to);
416 }
417
418 if (symaddr)
419 return symaddr;
420
421 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
422 have to check the dynamic string table too. */
423
424 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
425
426 if (storage_needed > 0)
427 {
428 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 429 back_to = make_cleanup (xfree, symbol_table);
13437d4b
KB
430 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
431
432 for (i = 0; i < number_of_symbols; i++)
433 {
434 sym = *symbol_table++;
87f84c9d 435
6314a349 436 if (strcmp (sym->name, symname) == 0
2bbe3cc1 437 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
13437d4b 438 {
2bbe3cc1 439 /* BFD symbols are section relative. */
13437d4b
KB
440 symaddr = sym->value + sym->section->vma;
441 break;
442 }
443 }
444 do_cleanups (back_to);
445 }
446
447 return symaddr;
448}
449
97ec2c2f
UW
450
451/* Read program header TYPE from inferior memory. The header is found
452 by scanning the OS auxillary vector.
453
454 Return a pointer to allocated memory holding the program header contents,
455 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
456 size of those contents is returned to P_SECT_SIZE. Likewise, the target
457 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
458
459static gdb_byte *
460read_program_header (int type, int *p_sect_size, int *p_arch_size)
461{
e17a4113 462 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
463 CORE_ADDR at_phdr, at_phent, at_phnum;
464 int arch_size, sect_size;
465 CORE_ADDR sect_addr;
466 gdb_byte *buf;
467
468 /* Get required auxv elements from target. */
469 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
470 return 0;
471 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
472 return 0;
473 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
474 return 0;
475 if (!at_phdr || !at_phnum)
476 return 0;
477
478 /* Determine ELF architecture type. */
479 if (at_phent == sizeof (Elf32_External_Phdr))
480 arch_size = 32;
481 else if (at_phent == sizeof (Elf64_External_Phdr))
482 arch_size = 64;
483 else
484 return 0;
485
486 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
487 if (arch_size == 32)
488 {
489 Elf32_External_Phdr phdr;
490 int i;
491
492 /* Search for requested PHDR. */
493 for (i = 0; i < at_phnum; i++)
494 {
495 if (target_read_memory (at_phdr + i * sizeof (phdr),
496 (gdb_byte *)&phdr, sizeof (phdr)))
497 return 0;
498
e17a4113
UW
499 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
500 4, byte_order) == type)
97ec2c2f
UW
501 break;
502 }
503
504 if (i == at_phnum)
505 return 0;
506
507 /* Retrieve address and size. */
e17a4113
UW
508 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
509 4, byte_order);
510 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
511 4, byte_order);
97ec2c2f
UW
512 }
513 else
514 {
515 Elf64_External_Phdr phdr;
516 int i;
517
518 /* Search for requested PHDR. */
519 for (i = 0; i < at_phnum; i++)
520 {
521 if (target_read_memory (at_phdr + i * sizeof (phdr),
522 (gdb_byte *)&phdr, sizeof (phdr)))
523 return 0;
524
e17a4113
UW
525 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
526 4, byte_order) == type)
97ec2c2f
UW
527 break;
528 }
529
530 if (i == at_phnum)
531 return 0;
532
533 /* Retrieve address and size. */
e17a4113
UW
534 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
535 8, byte_order);
536 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
537 8, byte_order);
97ec2c2f
UW
538 }
539
540 /* Read in requested program header. */
541 buf = xmalloc (sect_size);
542 if (target_read_memory (sect_addr, buf, sect_size))
543 {
544 xfree (buf);
545 return NULL;
546 }
547
548 if (p_arch_size)
549 *p_arch_size = arch_size;
550 if (p_sect_size)
551 *p_sect_size = sect_size;
552
553 return buf;
554}
555
556
557/* Return program interpreter string. */
558static gdb_byte *
559find_program_interpreter (void)
560{
561 gdb_byte *buf = NULL;
562
563 /* If we have an exec_bfd, use its section table. */
564 if (exec_bfd
565 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
566 {
567 struct bfd_section *interp_sect;
568
569 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
570 if (interp_sect != NULL)
571 {
572 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
573 int sect_size = bfd_section_size (exec_bfd, interp_sect);
574
575 buf = xmalloc (sect_size);
576 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
577 }
578 }
579
580 /* If we didn't find it, use the target auxillary vector. */
581 if (!buf)
582 buf = read_program_header (PT_INTERP, NULL, NULL);
583
584 return buf;
585}
586
587
3a40aaa0
UW
588/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
589 returned and the corresponding PTR is set. */
590
591static int
592scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
593{
594 int arch_size, step, sect_size;
595 long dyn_tag;
b381ea14 596 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 597 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
598 Elf32_External_Dyn *x_dynp_32;
599 Elf64_External_Dyn *x_dynp_64;
600 struct bfd_section *sect;
61f0d762 601 struct target_section *target_section;
3a40aaa0
UW
602
603 if (abfd == NULL)
604 return 0;
0763ab81
PA
605
606 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
607 return 0;
608
3a40aaa0
UW
609 arch_size = bfd_get_arch_size (abfd);
610 if (arch_size == -1)
0763ab81 611 return 0;
3a40aaa0
UW
612
613 /* Find the start address of the .dynamic section. */
614 sect = bfd_get_section_by_name (abfd, ".dynamic");
615 if (sect == NULL)
616 return 0;
61f0d762
JK
617
618 for (target_section = current_target_sections->sections;
619 target_section < current_target_sections->sections_end;
620 target_section++)
621 if (sect == target_section->the_bfd_section)
622 break;
b381ea14
JK
623 if (target_section < current_target_sections->sections_end)
624 dyn_addr = target_section->addr;
625 else
626 {
627 /* ABFD may come from OBJFILE acting only as a symbol file without being
628 loaded into the target (see add_symbol_file_command). This case is
629 such fallback to the file VMA address without the possibility of
630 having the section relocated to its actual in-memory address. */
631
632 dyn_addr = bfd_section_vma (abfd, sect);
633 }
3a40aaa0 634
65728c26
DJ
635 /* Read in .dynamic from the BFD. We will get the actual value
636 from memory later. */
3a40aaa0 637 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
638 buf = bufstart = alloca (sect_size);
639 if (!bfd_get_section_contents (abfd, sect,
640 buf, 0, sect_size))
641 return 0;
3a40aaa0
UW
642
643 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
644 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
645 : sizeof (Elf64_External_Dyn);
646 for (bufend = buf + sect_size;
647 buf < bufend;
648 buf += step)
649 {
650 if (arch_size == 32)
651 {
652 x_dynp_32 = (Elf32_External_Dyn *) buf;
653 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
654 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
655 }
65728c26 656 else
3a40aaa0
UW
657 {
658 x_dynp_64 = (Elf64_External_Dyn *) buf;
659 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
660 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
661 }
662 if (dyn_tag == DT_NULL)
663 return 0;
664 if (dyn_tag == dyntag)
665 {
65728c26
DJ
666 /* If requested, try to read the runtime value of this .dynamic
667 entry. */
3a40aaa0 668 if (ptr)
65728c26 669 {
b6da22b0 670 struct type *ptr_type;
65728c26
DJ
671 gdb_byte ptr_buf[8];
672 CORE_ADDR ptr_addr;
673
b6da22b0 674 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 675 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 676 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 677 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
678 *ptr = dyn_ptr;
679 }
680 return 1;
3a40aaa0
UW
681 }
682 }
683
684 return 0;
685}
686
97ec2c2f
UW
687/* Scan for DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
689 returned and the corresponding PTR is set. */
690
691static int
692scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
693{
e17a4113 694 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
695 int sect_size, arch_size, step;
696 long dyn_tag;
697 CORE_ADDR dyn_ptr;
698 gdb_byte *bufend, *bufstart, *buf;
699
700 /* Read in .dynamic section. */
701 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
702 if (!buf)
703 return 0;
704
705 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
706 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
707 : sizeof (Elf64_External_Dyn);
708 for (bufend = buf + sect_size;
709 buf < bufend;
710 buf += step)
711 {
712 if (arch_size == 32)
713 {
714 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
e17a4113
UW
715 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
716 4, byte_order);
717 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
718 4, byte_order);
97ec2c2f
UW
719 }
720 else
721 {
722 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
e17a4113
UW
723 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
724 8, byte_order);
725 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
726 8, byte_order);
97ec2c2f
UW
727 }
728 if (dyn_tag == DT_NULL)
729 break;
730
731 if (dyn_tag == dyntag)
732 {
733 if (ptr)
734 *ptr = dyn_ptr;
735
736 xfree (bufstart);
737 return 1;
738 }
739 }
740
741 xfree (bufstart);
742 return 0;
743}
744
3a40aaa0 745
13437d4b
KB
746/*
747
748 LOCAL FUNCTION
749
750 elf_locate_base -- locate the base address of dynamic linker structs
751 for SVR4 elf targets.
752
753 SYNOPSIS
754
755 CORE_ADDR elf_locate_base (void)
756
757 DESCRIPTION
758
759 For SVR4 elf targets the address of the dynamic linker's runtime
760 structure is contained within the dynamic info section in the
761 executable file. The dynamic section is also mapped into the
762 inferior address space. Because the runtime loader fills in the
763 real address before starting the inferior, we have to read in the
764 dynamic info section from the inferior address space.
765 If there are any errors while trying to find the address, we
766 silently return 0, otherwise the found address is returned.
767
768 */
769
770static CORE_ADDR
771elf_locate_base (void)
772{
3a40aaa0
UW
773 struct minimal_symbol *msymbol;
774 CORE_ADDR dyn_ptr;
13437d4b 775
65728c26
DJ
776 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
777 instead of DT_DEBUG, although they sometimes contain an unused
778 DT_DEBUG. */
97ec2c2f
UW
779 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
780 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 781 {
b6da22b0 782 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 783 gdb_byte *pbuf;
b6da22b0 784 int pbuf_size = TYPE_LENGTH (ptr_type);
3a40aaa0
UW
785 pbuf = alloca (pbuf_size);
786 /* DT_MIPS_RLD_MAP contains a pointer to the address
787 of the dynamic link structure. */
788 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 789 return 0;
b6da22b0 790 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
791 }
792
65728c26 793 /* Find DT_DEBUG. */
97ec2c2f
UW
794 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
795 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
796 return dyn_ptr;
797
3a40aaa0
UW
798 /* This may be a static executable. Look for the symbol
799 conventionally named _r_debug, as a last resort. */
800 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
801 if (msymbol != NULL)
802 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
803
804 /* DT_DEBUG entry not found. */
805 return 0;
806}
807
13437d4b
KB
808/*
809
810 LOCAL FUNCTION
811
812 locate_base -- locate the base address of dynamic linker structs
813
814 SYNOPSIS
815
1a816a87 816 CORE_ADDR locate_base (struct svr4_info *)
13437d4b
KB
817
818 DESCRIPTION
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables.
842
843 */
844
845static CORE_ADDR
1a816a87 846locate_base (struct svr4_info *info)
13437d4b 847{
13437d4b
KB
848 /* Check to see if we have a currently valid address, and if so, avoid
849 doing all this work again and just return the cached address. If
850 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
851 section for ELF executables. There's no point in doing any of this
852 though if we don't have some link map offsets to work with. */
13437d4b 853
1a816a87 854 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 855 info->debug_base = elf_locate_base ();
1a816a87 856 return info->debug_base;
13437d4b
KB
857}
858
e4cd0d6a
MK
859/* Find the first element in the inferior's dynamic link map, and
860 return its address in the inferior.
13437d4b 861
e4cd0d6a
MK
862 FIXME: Perhaps we should validate the info somehow, perhaps by
863 checking r_version for a known version number, or r_state for
864 RT_CONSISTENT. */
13437d4b
KB
865
866static CORE_ADDR
1a816a87 867solib_svr4_r_map (struct svr4_info *info)
13437d4b 868{
4b188b9f 869 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 870 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
871 CORE_ADDR addr = 0;
872 volatile struct gdb_exception ex;
13437d4b 873
08597104
JB
874 TRY_CATCH (ex, RETURN_MASK_ERROR)
875 {
876 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
877 ptr_type);
878 }
879 exception_print (gdb_stderr, ex);
880 return addr;
e4cd0d6a 881}
13437d4b 882
7cd25cfc
DJ
883/* Find r_brk from the inferior's debug base. */
884
885static CORE_ADDR
1a816a87 886solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
887{
888 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 889 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 890
1a816a87
PA
891 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
892 ptr_type);
7cd25cfc
DJ
893}
894
e4cd0d6a
MK
895/* Find the link map for the dynamic linker (if it is not in the
896 normal list of loaded shared objects). */
13437d4b 897
e4cd0d6a 898static CORE_ADDR
1a816a87 899solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
900{
901 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 902 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 903 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 904 ULONGEST version;
13437d4b 905
e4cd0d6a
MK
906 /* Check version, and return zero if `struct r_debug' doesn't have
907 the r_ldsomap member. */
1a816a87
PA
908 version
909 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 910 lmo->r_version_size, byte_order);
e4cd0d6a
MK
911 if (version < 2 || lmo->r_ldsomap_offset == -1)
912 return 0;
13437d4b 913
1a816a87 914 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 915 ptr_type);
13437d4b
KB
916}
917
de18c1d8
JM
918/* On Solaris systems with some versions of the dynamic linker,
919 ld.so's l_name pointer points to the SONAME in the string table
920 rather than into writable memory. So that GDB can find shared
921 libraries when loading a core file generated by gcore, ensure that
922 memory areas containing the l_name string are saved in the core
923 file. */
924
925static int
926svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
927{
928 struct svr4_info *info;
929 CORE_ADDR ldsomap;
930 struct so_list *new;
931 struct cleanup *old_chain;
932 struct link_map_offsets *lmo;
933 CORE_ADDR lm_name;
934
935 info = get_svr4_info ();
936
937 info->debug_base = 0;
938 locate_base (info);
939 if (!info->debug_base)
940 return 0;
941
942 ldsomap = solib_svr4_r_ldsomap (info);
943 if (!ldsomap)
944 return 0;
945
946 lmo = svr4_fetch_link_map_offsets ();
947 new = XZALLOC (struct so_list);
948 old_chain = make_cleanup (xfree, new);
949 new->lm_info = xmalloc (sizeof (struct lm_info));
950 make_cleanup (xfree, new->lm_info);
951 new->lm_info->l_addr = (CORE_ADDR)-1;
952 new->lm_info->lm_addr = ldsomap;
953 new->lm_info->lm = xzalloc (lmo->link_map_size);
954 make_cleanup (xfree, new->lm_info->lm);
955 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
956 lm_name = LM_NAME (new);
957 do_cleanups (old_chain);
958
959 return (lm_name >= vaddr && lm_name < vaddr + size);
960}
961
13437d4b
KB
962/*
963
964 LOCAL FUNCTION
965
966 open_symbol_file_object
967
968 SYNOPSIS
969
970 void open_symbol_file_object (void *from_tty)
971
972 DESCRIPTION
973
974 If no open symbol file, attempt to locate and open the main symbol
975 file. On SVR4 systems, this is the first link map entry. If its
976 name is here, we can open it. Useful when attaching to a process
977 without first loading its symbol file.
978
979 If FROM_TTYP dereferences to a non-zero integer, allow messages to
980 be printed. This parameter is a pointer rather than an int because
981 open_symbol_file_object() is called via catch_errors() and
982 catch_errors() requires a pointer argument. */
983
984static int
985open_symbol_file_object (void *from_ttyp)
986{
987 CORE_ADDR lm, l_name;
988 char *filename;
989 int errcode;
990 int from_tty = *(int *)from_ttyp;
4b188b9f 991 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
992 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
993 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 994 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 995 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 996 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
997
998 if (symfile_objfile)
9e2f0ad4 999 if (!query (_("Attempt to reload symbols from process? ")))
13437d4b
KB
1000 return 0;
1001
7cd25cfc 1002 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1003 info->debug_base = 0;
1004 if (locate_base (info) == 0)
13437d4b
KB
1005 return 0; /* failed somehow... */
1006
1007 /* First link map member should be the executable. */
1a816a87 1008 lm = solib_svr4_r_map (info);
e4cd0d6a 1009 if (lm == 0)
13437d4b
KB
1010 return 0; /* failed somehow... */
1011
1012 /* Read address of name from target memory to GDB. */
cfaefc65 1013 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1014
cfaefc65 1015 /* Convert the address to host format. */
b6da22b0 1016 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b
KB
1017
1018 /* Free l_name_buf. */
1019 do_cleanups (cleanups);
1020
1021 if (l_name == 0)
1022 return 0; /* No filename. */
1023
1024 /* Now fetch the filename from target memory. */
1025 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1026 make_cleanup (xfree, filename);
13437d4b
KB
1027
1028 if (errcode)
1029 {
8a3fe4f8 1030 warning (_("failed to read exec filename from attached file: %s"),
13437d4b
KB
1031 safe_strerror (errcode));
1032 return 0;
1033 }
1034
13437d4b 1035 /* Have a pathname: read the symbol file. */
1adeb98a 1036 symbol_file_add_main (filename, from_tty);
13437d4b
KB
1037
1038 return 1;
1039}
13437d4b 1040
34439770
DJ
1041/* If no shared library information is available from the dynamic
1042 linker, build a fallback list from other sources. */
1043
1044static struct so_list *
1045svr4_default_sos (void)
1046{
6c95b8df 1047 struct svr4_info *info = get_svr4_info ();
1a816a87 1048
34439770
DJ
1049 struct so_list *head = NULL;
1050 struct so_list **link_ptr = &head;
1051
1a816a87 1052 if (info->debug_loader_offset_p)
34439770
DJ
1053 {
1054 struct so_list *new = XZALLOC (struct so_list);
1055
1056 new->lm_info = xmalloc (sizeof (struct lm_info));
1057
1058 /* Nothing will ever check the cached copy of the link
1059 map if we set l_addr. */
1a816a87 1060 new->lm_info->l_addr = info->debug_loader_offset;
93a57060 1061 new->lm_info->lm_addr = 0;
34439770
DJ
1062 new->lm_info->lm = NULL;
1063
1a816a87
PA
1064 strncpy (new->so_name, info->debug_loader_name,
1065 SO_NAME_MAX_PATH_SIZE - 1);
34439770
DJ
1066 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1067 strcpy (new->so_original_name, new->so_name);
1068
1069 *link_ptr = new;
1070 link_ptr = &new->next;
1071 }
1072
1073 return head;
1074}
1075
13437d4b
KB
1076/* LOCAL FUNCTION
1077
1078 current_sos -- build a list of currently loaded shared objects
1079
1080 SYNOPSIS
1081
1082 struct so_list *current_sos ()
1083
1084 DESCRIPTION
1085
1086 Build a list of `struct so_list' objects describing the shared
1087 objects currently loaded in the inferior. This list does not
1088 include an entry for the main executable file.
1089
1090 Note that we only gather information directly available from the
1091 inferior --- we don't examine any of the shared library files
1092 themselves. The declaration of `struct so_list' says which fields
1093 we provide values for. */
1094
1095static struct so_list *
1096svr4_current_sos (void)
1097{
1098 CORE_ADDR lm;
1099 struct so_list *head = 0;
1100 struct so_list **link_ptr = &head;
e4cd0d6a 1101 CORE_ADDR ldsomap = 0;
1a816a87
PA
1102 struct svr4_info *info;
1103
6c95b8df 1104 info = get_svr4_info ();
13437d4b 1105
7cd25cfc 1106 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1107 info->debug_base = 0;
1108 locate_base (info);
13437d4b 1109
7cd25cfc
DJ
1110 /* If we can't find the dynamic linker's base structure, this
1111 must not be a dynamically linked executable. Hmm. */
1a816a87 1112 if (! info->debug_base)
7cd25cfc 1113 return svr4_default_sos ();
13437d4b
KB
1114
1115 /* Walk the inferior's link map list, and build our list of
1116 `struct so_list' nodes. */
1a816a87 1117 lm = solib_svr4_r_map (info);
34439770 1118
13437d4b
KB
1119 while (lm)
1120 {
4b188b9f 1121 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f4456994 1122 struct so_list *new = XZALLOC (struct so_list);
b8c9b27d 1123 struct cleanup *old_chain = make_cleanup (xfree, new);
13437d4b 1124
13437d4b 1125 new->lm_info = xmalloc (sizeof (struct lm_info));
b8c9b27d 1126 make_cleanup (xfree, new->lm_info);
13437d4b 1127
831004b7 1128 new->lm_info->l_addr = (CORE_ADDR)-1;
93a57060 1129 new->lm_info->lm_addr = lm;
f4456994 1130 new->lm_info->lm = xzalloc (lmo->link_map_size);
b8c9b27d 1131 make_cleanup (xfree, new->lm_info->lm);
13437d4b
KB
1132
1133 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1134
1135 lm = LM_NEXT (new);
1136
1137 /* For SVR4 versions, the first entry in the link map is for the
1138 inferior executable, so we must ignore it. For some versions of
1139 SVR4, it has no name. For others (Solaris 2.3 for example), it
1140 does have a name, so we can no longer use a missing name to
1141 decide when to ignore it. */
e4cd0d6a 1142 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
93a57060 1143 {
1a816a87 1144 info->main_lm_addr = new->lm_info->lm_addr;
93a57060
DJ
1145 free_so (new);
1146 }
13437d4b
KB
1147 else
1148 {
1149 int errcode;
1150 char *buffer;
1151
1152 /* Extract this shared object's name. */
1153 target_read_string (LM_NAME (new), &buffer,
1154 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1155 if (errcode != 0)
8a3fe4f8
AC
1156 warning (_("Can't read pathname for load map: %s."),
1157 safe_strerror (errcode));
13437d4b
KB
1158 else
1159 {
1160 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1161 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
13437d4b
KB
1162 strcpy (new->so_original_name, new->so_name);
1163 }
ea5bf0a1 1164 xfree (buffer);
13437d4b
KB
1165
1166 /* If this entry has no name, or its name matches the name
1167 for the main executable, don't include it in the list. */
1168 if (! new->so_name[0]
1169 || match_main (new->so_name))
1170 free_so (new);
1171 else
1172 {
1173 new->next = 0;
1174 *link_ptr = new;
1175 link_ptr = &new->next;
1176 }
1177 }
1178
e4cd0d6a
MK
1179 /* On Solaris, the dynamic linker is not in the normal list of
1180 shared objects, so make sure we pick it up too. Having
1181 symbol information for the dynamic linker is quite crucial
1182 for skipping dynamic linker resolver code. */
1183 if (lm == 0 && ldsomap == 0)
1a816a87 1184 lm = ldsomap = solib_svr4_r_ldsomap (info);
e4cd0d6a 1185
13437d4b
KB
1186 discard_cleanups (old_chain);
1187 }
1188
34439770
DJ
1189 if (head == NULL)
1190 return svr4_default_sos ();
1191
13437d4b
KB
1192 return head;
1193}
1194
93a57060 1195/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1196
1197CORE_ADDR
1198svr4_fetch_objfile_link_map (struct objfile *objfile)
1199{
93a57060 1200 struct so_list *so;
6c95b8df 1201 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1202
93a57060 1203 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1204 if (info->main_lm_addr == 0)
93a57060 1205 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1206
93a57060
DJ
1207 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1208 if (objfile == symfile_objfile)
1a816a87 1209 return info->main_lm_addr;
93a57060
DJ
1210
1211 /* The other link map addresses may be found by examining the list
1212 of shared libraries. */
1213 for (so = master_so_list (); so; so = so->next)
1214 if (so->objfile == objfile)
1215 return so->lm_info->lm_addr;
1216
1217 /* Not found! */
bc4a16ae
EZ
1218 return 0;
1219}
13437d4b
KB
1220
1221/* On some systems, the only way to recognize the link map entry for
1222 the main executable file is by looking at its name. Return
1223 non-zero iff SONAME matches one of the known main executable names. */
1224
1225static int
1226match_main (char *soname)
1227{
1228 char **mainp;
1229
1230 for (mainp = main_name_list; *mainp != NULL; mainp++)
1231 {
1232 if (strcmp (soname, *mainp) == 0)
1233 return (1);
1234 }
1235
1236 return (0);
1237}
1238
13437d4b
KB
1239/* Return 1 if PC lies in the dynamic symbol resolution code of the
1240 SVR4 run time loader. */
13437d4b 1241
7d522c90 1242int
d7fa2ae2 1243svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1244{
6c95b8df
PA
1245 struct svr4_info *info = get_svr4_info ();
1246
1247 return ((pc >= info->interp_text_sect_low
1248 && pc < info->interp_text_sect_high)
1249 || (pc >= info->interp_plt_sect_low
1250 && pc < info->interp_plt_sect_high)
13437d4b
KB
1251 || in_plt_section (pc, NULL));
1252}
13437d4b 1253
2f4950cd
AC
1254/* Given an executable's ABFD and target, compute the entry-point
1255 address. */
1256
1257static CORE_ADDR
1258exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1259{
1260 /* KevinB wrote ... for most targets, the address returned by
1261 bfd_get_start_address() is the entry point for the start
1262 function. But, for some targets, bfd_get_start_address() returns
1263 the address of a function descriptor from which the entry point
1264 address may be extracted. This address is extracted by
1265 gdbarch_convert_from_func_ptr_addr(). The method
1266 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1267 function for targets which don't use function descriptors. */
1cf3db46 1268 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1269 bfd_get_start_address (abfd),
1270 targ);
1271}
13437d4b
KB
1272
1273/*
1274
1275 LOCAL FUNCTION
1276
1277 enable_break -- arrange for dynamic linker to hit breakpoint
1278
1279 SYNOPSIS
1280
1281 int enable_break (void)
1282
1283 DESCRIPTION
1284
1285 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1286 debugger interface, support for arranging for the inferior to hit
1287 a breakpoint after mapping in the shared libraries. This function
1288 enables that breakpoint.
1289
1290 For SunOS, there is a special flag location (in_debugger) which we
1291 set to 1. When the dynamic linker sees this flag set, it will set
1292 a breakpoint at a location known only to itself, after saving the
1293 original contents of that place and the breakpoint address itself,
1294 in it's own internal structures. When we resume the inferior, it
1295 will eventually take a SIGTRAP when it runs into the breakpoint.
1296 We handle this (in a different place) by restoring the contents of
1297 the breakpointed location (which is only known after it stops),
1298 chasing around to locate the shared libraries that have been
1299 loaded, then resuming.
1300
1301 For SVR4, the debugger interface structure contains a member (r_brk)
1302 which is statically initialized at the time the shared library is
1303 built, to the offset of a function (_r_debug_state) which is guaran-
1304 teed to be called once before mapping in a library, and again when
1305 the mapping is complete. At the time we are examining this member,
1306 it contains only the unrelocated offset of the function, so we have
1307 to do our own relocation. Later, when the dynamic linker actually
1308 runs, it relocates r_brk to be the actual address of _r_debug_state().
1309
1310 The debugger interface structure also contains an enumeration which
1311 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1312 depending upon whether or not the library is being mapped or unmapped,
1313 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1314 */
1315
1316static int
268a4a75 1317enable_break (struct svr4_info *info, int from_tty)
13437d4b 1318{
13437d4b
KB
1319 struct minimal_symbol *msymbol;
1320 char **bkpt_namep;
1321 asection *interp_sect;
97ec2c2f 1322 gdb_byte *interp_name;
7cd25cfc 1323 CORE_ADDR sym_addr;
13437d4b 1324
6c95b8df
PA
1325 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1326 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1327
7cd25cfc
DJ
1328 /* If we already have a shared library list in the target, and
1329 r_debug contains r_brk, set the breakpoint there - this should
1330 mean r_brk has already been relocated. Assume the dynamic linker
1331 is the object containing r_brk. */
1332
268a4a75 1333 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1334 sym_addr = 0;
1a816a87
PA
1335 if (info->debug_base && solib_svr4_r_map (info) != 0)
1336 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1337
1338 if (sym_addr != 0)
1339 {
1340 struct obj_section *os;
1341
b36ec657 1342 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1343 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
b36ec657
DJ
1344 sym_addr,
1345 &current_target));
1346
48379de6
DE
1347 /* On at least some versions of Solaris there's a dynamic relocation
1348 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1349 we get control before the dynamic linker has self-relocated.
1350 Check if SYM_ADDR is in a known section, if it is assume we can
1351 trust its value. This is just a heuristic though, it could go away
1352 or be replaced if it's getting in the way.
1353
1354 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1355 however it's spelled in your particular system) is ARM or Thumb.
1356 That knowledge is encoded in the address, if it's Thumb the low bit
1357 is 1. However, we've stripped that info above and it's not clear
1358 what all the consequences are of passing a non-addr_bits_remove'd
1359 address to create_solib_event_breakpoint. The call to
1360 find_pc_section verifies we know about the address and have some
1361 hope of computing the right kind of breakpoint to use (via
1362 symbol info). It does mean that GDB needs to be pointed at a
1363 non-stripped version of the dynamic linker in order to obtain
1364 information it already knows about. Sigh. */
1365
7cd25cfc
DJ
1366 os = find_pc_section (sym_addr);
1367 if (os != NULL)
1368 {
1369 /* Record the relocated start and end address of the dynamic linker
1370 text and plt section for svr4_in_dynsym_resolve_code. */
1371 bfd *tmp_bfd;
1372 CORE_ADDR load_addr;
1373
1374 tmp_bfd = os->objfile->obfd;
1375 load_addr = ANOFFSET (os->objfile->section_offsets,
1376 os->objfile->sect_index_text);
1377
1378 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1379 if (interp_sect)
1380 {
6c95b8df 1381 info->interp_text_sect_low =
7cd25cfc 1382 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1383 info->interp_text_sect_high =
1384 info->interp_text_sect_low
1385 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1386 }
1387 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1388 if (interp_sect)
1389 {
6c95b8df 1390 info->interp_plt_sect_low =
7cd25cfc 1391 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1392 info->interp_plt_sect_high =
1393 info->interp_plt_sect_low
1394 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1395 }
1396
a6d9a66e 1397 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1398 return 1;
1399 }
1400 }
1401
97ec2c2f 1402 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1403 into the old breakpoint at symbol code. */
97ec2c2f
UW
1404 interp_name = find_program_interpreter ();
1405 if (interp_name)
13437d4b 1406 {
8ad2fcde
KB
1407 CORE_ADDR load_addr = 0;
1408 int load_addr_found = 0;
2ec9a4f8 1409 int loader_found_in_list = 0;
f8766ec1 1410 struct so_list *so;
e4f7b8c8 1411 bfd *tmp_bfd = NULL;
2f4950cd 1412 struct target_ops *tmp_bfd_target;
f1838a98 1413 volatile struct gdb_exception ex;
13437d4b 1414
7cd25cfc 1415 sym_addr = 0;
13437d4b
KB
1416
1417 /* Now we need to figure out where the dynamic linker was
1418 loaded so that we can load its symbols and place a breakpoint
1419 in the dynamic linker itself.
1420
1421 This address is stored on the stack. However, I've been unable
1422 to find any magic formula to find it for Solaris (appears to
1423 be trivial on GNU/Linux). Therefore, we have to try an alternate
1424 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1425
f1838a98
UW
1426 TRY_CATCH (ex, RETURN_MASK_ALL)
1427 {
97ec2c2f 1428 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1429 }
13437d4b
KB
1430 if (tmp_bfd == NULL)
1431 goto bkpt_at_symbol;
1432
2f4950cd
AC
1433 /* Now convert the TMP_BFD into a target. That way target, as
1434 well as BFD operations can be used. Note that closing the
1435 target will also close the underlying bfd. */
1436 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1437
f8766ec1
KB
1438 /* On a running target, we can get the dynamic linker's base
1439 address from the shared library table. */
f8766ec1
KB
1440 so = master_so_list ();
1441 while (so)
8ad2fcde 1442 {
97ec2c2f 1443 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1444 {
1445 load_addr_found = 1;
2ec9a4f8 1446 loader_found_in_list = 1;
cc10cae3 1447 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
8ad2fcde
KB
1448 break;
1449 }
f8766ec1 1450 so = so->next;
8ad2fcde
KB
1451 }
1452
8d4e36ba
JB
1453 /* If we were not able to find the base address of the loader
1454 from our so_list, then try using the AT_BASE auxilliary entry. */
1455 if (!load_addr_found)
1456 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1457 {
1458 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1459
1460 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1461 that `+ load_addr' will overflow CORE_ADDR width not creating
1462 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1463 GDB. */
1464
d182d057 1465 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1466 {
d182d057 1467 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1468 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1469 tmp_bfd_target);
1470
1471 gdb_assert (load_addr < space_size);
1472
1473 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1474 64bit ld.so with 32bit executable, it should not happen. */
1475
1476 if (tmp_entry_point < space_size
1477 && tmp_entry_point + load_addr >= space_size)
1478 load_addr -= space_size;
1479 }
1480
1481 load_addr_found = 1;
1482 }
8d4e36ba 1483
8ad2fcde
KB
1484 /* Otherwise we find the dynamic linker's base address by examining
1485 the current pc (which should point at the entry point for the
8d4e36ba
JB
1486 dynamic linker) and subtracting the offset of the entry point.
1487
1488 This is more fragile than the previous approaches, but is a good
1489 fallback method because it has actually been working well in
1490 most cases. */
8ad2fcde 1491 if (!load_addr_found)
fb14de7b 1492 {
c2250ad1
UW
1493 struct regcache *regcache
1494 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b
UW
1495 load_addr = (regcache_read_pc (regcache)
1496 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1497 }
2ec9a4f8
DJ
1498
1499 if (!loader_found_in_list)
34439770 1500 {
1a816a87
PA
1501 info->debug_loader_name = xstrdup (interp_name);
1502 info->debug_loader_offset_p = 1;
1503 info->debug_loader_offset = load_addr;
268a4a75 1504 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1505 }
13437d4b
KB
1506
1507 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1508 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1509 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1510 if (interp_sect)
1511 {
6c95b8df 1512 info->interp_text_sect_low =
13437d4b 1513 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1514 info->interp_text_sect_high =
1515 info->interp_text_sect_low
1516 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1517 }
1518 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1519 if (interp_sect)
1520 {
6c95b8df 1521 info->interp_plt_sect_low =
13437d4b 1522 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1523 info->interp_plt_sect_high =
1524 info->interp_plt_sect_low
1525 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1526 }
1527
1528 /* Now try to set a breakpoint in the dynamic linker. */
1529 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1530 {
2bbe3cc1 1531 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
13437d4b
KB
1532 if (sym_addr != 0)
1533 break;
1534 }
1535
2bbe3cc1
DJ
1536 if (sym_addr != 0)
1537 /* Convert 'sym_addr' from a function pointer to an address.
1538 Because we pass tmp_bfd_target instead of the current
1539 target, this will always produce an unrelocated value. */
1cf3db46 1540 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1541 sym_addr,
1542 tmp_bfd_target);
1543
2f4950cd
AC
1544 /* We're done with both the temporary bfd and target. Remember,
1545 closing the target closes the underlying bfd. */
1546 target_close (tmp_bfd_target, 0);
13437d4b
KB
1547
1548 if (sym_addr != 0)
1549 {
a6d9a66e 1550 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1551 xfree (interp_name);
13437d4b
KB
1552 return 1;
1553 }
1554
1555 /* For whatever reason we couldn't set a breakpoint in the dynamic
1556 linker. Warn and drop into the old code. */
1557 bkpt_at_symbol:
97ec2c2f 1558 xfree (interp_name);
82d03102
PG
1559 warning (_("Unable to find dynamic linker breakpoint function.\n"
1560 "GDB will be unable to debug shared library initializers\n"
1561 "and track explicitly loaded dynamic code."));
13437d4b 1562 }
13437d4b 1563
e499d0f1
DJ
1564 /* Scan through the lists of symbols, trying to look up the symbol and
1565 set a breakpoint there. Terminate loop when we/if we succeed. */
1566
1567 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1568 {
1569 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1570 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1571 {
de64a9ac
JM
1572 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1573 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1574 sym_addr,
1575 &current_target);
1576 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1577 return 1;
1578 }
1579 }
13437d4b 1580
13437d4b
KB
1581 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1582 {
1583 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1584 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1585 {
de64a9ac
JM
1586 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1587 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1588 sym_addr,
1589 &current_target);
1590 create_solib_event_breakpoint (target_gdbarch, sym_addr);
13437d4b
KB
1591 return 1;
1592 }
1593 }
542c95c2 1594 return 0;
13437d4b
KB
1595}
1596
1597/*
1598
1599 LOCAL FUNCTION
1600
1601 special_symbol_handling -- additional shared library symbol handling
1602
1603 SYNOPSIS
1604
1605 void special_symbol_handling ()
1606
1607 DESCRIPTION
1608
1609 Once the symbols from a shared object have been loaded in the usual
1610 way, we are called to do any system specific symbol handling that
1611 is needed.
1612
ab31aa69 1613 For SunOS4, this consisted of grunging around in the dynamic
13437d4b
KB
1614 linkers structures to find symbol definitions for "common" symbols
1615 and adding them to the minimal symbol table for the runtime common
1616 objfile.
1617
ab31aa69
KB
1618 However, for SVR4, there's nothing to do.
1619
13437d4b
KB
1620 */
1621
1622static void
1623svr4_special_symbol_handling (void)
1624{
9f2982ff 1625 svr4_relocate_main_executable ();
13437d4b
KB
1626}
1627
b8040f19
JK
1628/* Decide if the objfile needs to be relocated. As indicated above,
1629 we will only be here when execution is stopped at the beginning
1630 of the program. Relocation is necessary if the address at which
1631 we are presently stopped differs from the start address stored in
1632 the executable AND there's no interpreter section. The condition
1633 regarding the interpreter section is very important because if
1634 there *is* an interpreter section, execution will begin there
1635 instead. When there is an interpreter section, the start address
1636 is (presumably) used by the interpreter at some point to start
1637 execution of the program.
1638
1639 If there is an interpreter, it is normal for it to be set to an
1640 arbitrary address at the outset. The job of finding it is
1641 handled in enable_break().
1642
1643 So, to summarize, relocations are necessary when there is no
1644 interpreter section and the start address obtained from the
1645 executable is different from the address at which GDB is
1646 currently stopped.
e2a44558 1647
b8040f19
JK
1648 [ The astute reader will note that we also test to make sure that
1649 the executable in question has the DYNAMIC flag set. It is my
1650 opinion that this test is unnecessary (undesirable even). It
1651 was added to avoid inadvertent relocation of an executable
1652 whose e_type member in the ELF header is not ET_DYN. There may
1653 be a time in the future when it is desirable to do relocations
1654 on other types of files as well in which case this condition
1655 should either be removed or modified to accomodate the new file
1656 type. (E.g, an ET_EXEC executable which has been built to be
1657 position-independent could safely be relocated by the OS if
1658 desired. It is true that this violates the ABI, but the ABI
1659 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1660 */
e2a44558 1661
b8040f19
JK
1662static CORE_ADDR
1663svr4_static_exec_displacement (void)
e2a44558
KB
1664{
1665 asection *interp_sect;
c2250ad1
UW
1666 struct regcache *regcache
1667 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
fb14de7b 1668 CORE_ADDR pc = regcache_read_pc (regcache);
e2a44558 1669
e2a44558
KB
1670 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1671 if (interp_sect == NULL
1672 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
2f4950cd 1673 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
b8040f19
JK
1674 return pc - exec_entry_point (exec_bfd, &exec_ops);
1675
1676 return 0;
1677}
1678
1679/* We relocate all of the sections by the same amount. This
1680 behavior is mandated by recent editions of the System V ABI.
1681 According to the System V Application Binary Interface,
1682 Edition 4.1, page 5-5:
1683
1684 ... Though the system chooses virtual addresses for
1685 individual processes, it maintains the segments' relative
1686 positions. Because position-independent code uses relative
1687 addressesing between segments, the difference between
1688 virtual addresses in memory must match the difference
1689 between virtual addresses in the file. The difference
1690 between the virtual address of any segment in memory and
1691 the corresponding virtual address in the file is thus a
1692 single constant value for any one executable or shared
1693 object in a given process. This difference is the base
1694 address. One use of the base address is to relocate the
1695 memory image of the program during dynamic linking.
1696
1697 The same language also appears in Edition 4.0 of the System V
1698 ABI and is left unspecified in some of the earlier editions. */
1699
1700static CORE_ADDR
1701svr4_exec_displacement (void)
1702{
1703 int found;
41752192
JK
1704 /* ENTRY_POINT is a possible function descriptor - before
1705 a call to gdbarch_convert_from_func_ptr_addr. */
b8040f19
JK
1706 CORE_ADDR entry_point;
1707
1708 if (exec_bfd == NULL)
1709 return 0;
1710
1711 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
41752192 1712 return entry_point - bfd_get_start_address (exec_bfd);
b8040f19
JK
1713
1714 return svr4_static_exec_displacement ();
1715}
1716
1717/* Relocate the main executable. This function should be called upon
1718 stopping the inferior process at the entry point to the program.
1719 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1720 different, the main executable is relocated by the proper amount. */
1721
1722static void
1723svr4_relocate_main_executable (void)
1724{
1725 CORE_ADDR displacement = svr4_exec_displacement ();
1726
1727 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1728 difference of in-memory vs. in-file addresses and we could already
1729 relocate the executable at this function to improper address before. */
1730
1731 if (symfile_objfile)
e2a44558 1732 {
e2a44558 1733 struct section_offsets *new_offsets;
b8040f19 1734 int i;
e2a44558 1735
b8040f19
JK
1736 new_offsets = alloca (symfile_objfile->num_sections
1737 * sizeof (*new_offsets));
e2a44558 1738
b8040f19
JK
1739 for (i = 0; i < symfile_objfile->num_sections; i++)
1740 new_offsets->offsets[i] = displacement;
e2a44558 1741
b8040f19 1742 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 1743 }
51bee8e9
JK
1744 else if (exec_bfd)
1745 {
1746 asection *asect;
1747
1748 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1749 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1750 (bfd_section_vma (exec_bfd, asect)
1751 + displacement));
1752 }
e2a44558
KB
1753}
1754
13437d4b
KB
1755/*
1756
1757 GLOBAL FUNCTION
1758
1759 svr4_solib_create_inferior_hook -- shared library startup support
1760
1761 SYNOPSIS
1762
268a4a75 1763 void svr4_solib_create_inferior_hook (int from_tty)
13437d4b
KB
1764
1765 DESCRIPTION
1766
1767 When gdb starts up the inferior, it nurses it along (through the
1768 shell) until it is ready to execute it's first instruction. At this
1769 point, this function gets called via expansion of the macro
1770 SOLIB_CREATE_INFERIOR_HOOK.
1771
1772 For SunOS executables, this first instruction is typically the
1773 one at "_start", or a similar text label, regardless of whether
1774 the executable is statically or dynamically linked. The runtime
1775 startup code takes care of dynamically linking in any shared
1776 libraries, once gdb allows the inferior to continue.
1777
1778 For SVR4 executables, this first instruction is either the first
1779 instruction in the dynamic linker (for dynamically linked
1780 executables) or the instruction at "start" for statically linked
1781 executables. For dynamically linked executables, the system
1782 first exec's /lib/libc.so.N, which contains the dynamic linker,
1783 and starts it running. The dynamic linker maps in any needed
1784 shared libraries, maps in the actual user executable, and then
1785 jumps to "start" in the user executable.
1786
1787 For both SunOS shared libraries, and SVR4 shared libraries, we
1788 can arrange to cooperate with the dynamic linker to discover the
1789 names of shared libraries that are dynamically linked, and the
1790 base addresses to which they are linked.
1791
1792 This function is responsible for discovering those names and
1793 addresses, and saving sufficient information about them to allow
1794 their symbols to be read at a later time.
1795
1796 FIXME
1797
1798 Between enable_break() and disable_break(), this code does not
1799 properly handle hitting breakpoints which the user might have
1800 set in the startup code or in the dynamic linker itself. Proper
1801 handling will probably have to wait until the implementation is
1802 changed to use the "breakpoint handler function" method.
1803
1804 Also, what if child has exit()ed? Must exit loop somehow.
1805 */
1806
e2a44558 1807static void
268a4a75 1808svr4_solib_create_inferior_hook (int from_tty)
13437d4b 1809{
d6b48e9c 1810 struct inferior *inf;
2020b7ab 1811 struct thread_info *tp;
1a816a87
PA
1812 struct svr4_info *info;
1813
6c95b8df 1814 info = get_svr4_info ();
2020b7ab 1815
e2a44558 1816 /* Relocate the main executable if necessary. */
9f2982ff
JK
1817 if (current_inferior ()->attach_flag == 0)
1818 svr4_relocate_main_executable ();
e2a44558 1819
d5a921c9 1820 if (!svr4_have_link_map_offsets ())
513f5903 1821 return;
d5a921c9 1822
268a4a75 1823 if (!enable_break (info, from_tty))
542c95c2 1824 return;
13437d4b 1825
ab31aa69
KB
1826#if defined(_SCO_DS)
1827 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
1828 special shared library breakpoints and the shared library breakpoint
1829 service routine.
1830
1831 Now run the target. It will eventually hit the breakpoint, at
1832 which point all of the libraries will have been mapped in and we
1833 can go groveling around in the dynamic linker structures to find
1834 out what we need to know about them. */
1835
d6b48e9c 1836 inf = current_inferior ();
2020b7ab
PA
1837 tp = inferior_thread ();
1838
13437d4b 1839 clear_proceed_status ();
d6b48e9c 1840 inf->stop_soon = STOP_QUIETLY;
2020b7ab 1841 tp->stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
1842 do
1843 {
2020b7ab 1844 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
ae123ec6 1845 wait_for_inferior (0);
13437d4b 1846 }
2020b7ab 1847 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
d6b48e9c 1848 inf->stop_soon = NO_STOP_QUIETLY;
ab31aa69 1849#endif /* defined(_SCO_DS) */
13437d4b
KB
1850}
1851
1852static void
1853svr4_clear_solib (void)
1854{
6c95b8df
PA
1855 struct svr4_info *info;
1856
1857 info = get_svr4_info ();
1858 info->debug_base = 0;
1859 info->debug_loader_offset_p = 0;
1860 info->debug_loader_offset = 0;
1861 xfree (info->debug_loader_name);
1862 info->debug_loader_name = NULL;
13437d4b
KB
1863}
1864
1865static void
1866svr4_free_so (struct so_list *so)
1867{
b8c9b27d
KB
1868 xfree (so->lm_info->lm);
1869 xfree (so->lm_info);
13437d4b
KB
1870}
1871
6bb7be43
JB
1872
1873/* Clear any bits of ADDR that wouldn't fit in a target-format
1874 data pointer. "Data pointer" here refers to whatever sort of
1875 address the dynamic linker uses to manage its sections. At the
1876 moment, we don't support shared libraries on any processors where
1877 code and data pointers are different sizes.
1878
1879 This isn't really the right solution. What we really need here is
1880 a way to do arithmetic on CORE_ADDR values that respects the
1881 natural pointer/address correspondence. (For example, on the MIPS,
1882 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1883 sign-extend the value. There, simply truncating the bits above
819844ad 1884 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
1885 be a new gdbarch method or something. */
1886static CORE_ADDR
1887svr4_truncate_ptr (CORE_ADDR addr)
1888{
1cf3db46 1889 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
1890 /* We don't need to truncate anything, and the bit twiddling below
1891 will fail due to overflow problems. */
1892 return addr;
1893 else
1cf3db46 1894 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
1895}
1896
1897
749499cb
KB
1898static void
1899svr4_relocate_section_addresses (struct so_list *so,
0542c86d 1900 struct target_section *sec)
749499cb 1901{
cc10cae3
AO
1902 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1903 sec->bfd));
1904 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1905 sec->bfd));
749499cb 1906}
4b188b9f 1907\f
749499cb 1908
4b188b9f 1909/* Architecture-specific operations. */
6bb7be43 1910
4b188b9f
MK
1911/* Per-architecture data key. */
1912static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 1913
4b188b9f 1914struct solib_svr4_ops
e5e2b9ff 1915{
4b188b9f
MK
1916 /* Return a description of the layout of `struct link_map'. */
1917 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1918};
e5e2b9ff 1919
4b188b9f 1920/* Return a default for the architecture-specific operations. */
e5e2b9ff 1921
4b188b9f
MK
1922static void *
1923solib_svr4_init (struct obstack *obstack)
e5e2b9ff 1924{
4b188b9f 1925 struct solib_svr4_ops *ops;
e5e2b9ff 1926
4b188b9f 1927 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 1928 ops->fetch_link_map_offsets = NULL;
4b188b9f 1929 return ops;
e5e2b9ff
KB
1930}
1931
4b188b9f 1932/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 1933 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 1934
21479ded 1935void
e5e2b9ff
KB
1936set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1937 struct link_map_offsets *(*flmo) (void))
21479ded 1938{
4b188b9f
MK
1939 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1940
1941 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
1942
1943 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
1944}
1945
4b188b9f
MK
1946/* Fetch a link_map_offsets structure using the architecture-specific
1947 `struct link_map_offsets' fetcher. */
1c4dcb57 1948
4b188b9f
MK
1949static struct link_map_offsets *
1950svr4_fetch_link_map_offsets (void)
21479ded 1951{
1cf3db46 1952 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1953
1954 gdb_assert (ops->fetch_link_map_offsets);
1955 return ops->fetch_link_map_offsets ();
21479ded
KB
1956}
1957
4b188b9f
MK
1958/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1959
1960static int
1961svr4_have_link_map_offsets (void)
1962{
1cf3db46 1963 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
1964 return (ops->fetch_link_map_offsets != NULL);
1965}
1966\f
1967
e4bbbda8
MK
1968/* Most OS'es that have SVR4-style ELF dynamic libraries define a
1969 `struct r_debug' and a `struct link_map' that are binary compatible
1970 with the origional SVR4 implementation. */
1971
1972/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1973 for an ILP32 SVR4 system. */
1974
1975struct link_map_offsets *
1976svr4_ilp32_fetch_link_map_offsets (void)
1977{
1978 static struct link_map_offsets lmo;
1979 static struct link_map_offsets *lmp = NULL;
1980
1981 if (lmp == NULL)
1982 {
1983 lmp = &lmo;
1984
e4cd0d6a
MK
1985 lmo.r_version_offset = 0;
1986 lmo.r_version_size = 4;
e4bbbda8 1987 lmo.r_map_offset = 4;
7cd25cfc 1988 lmo.r_brk_offset = 8;
e4cd0d6a 1989 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
1990
1991 /* Everything we need is in the first 20 bytes. */
1992 lmo.link_map_size = 20;
1993 lmo.l_addr_offset = 0;
e4bbbda8 1994 lmo.l_name_offset = 4;
cc10cae3 1995 lmo.l_ld_offset = 8;
e4bbbda8 1996 lmo.l_next_offset = 12;
e4bbbda8 1997 lmo.l_prev_offset = 16;
e4bbbda8
MK
1998 }
1999
2000 return lmp;
2001}
2002
2003/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2004 for an LP64 SVR4 system. */
2005
2006struct link_map_offsets *
2007svr4_lp64_fetch_link_map_offsets (void)
2008{
2009 static struct link_map_offsets lmo;
2010 static struct link_map_offsets *lmp = NULL;
2011
2012 if (lmp == NULL)
2013 {
2014 lmp = &lmo;
2015
e4cd0d6a
MK
2016 lmo.r_version_offset = 0;
2017 lmo.r_version_size = 4;
e4bbbda8 2018 lmo.r_map_offset = 8;
7cd25cfc 2019 lmo.r_brk_offset = 16;
e4cd0d6a 2020 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2021
2022 /* Everything we need is in the first 40 bytes. */
2023 lmo.link_map_size = 40;
2024 lmo.l_addr_offset = 0;
e4bbbda8 2025 lmo.l_name_offset = 8;
cc10cae3 2026 lmo.l_ld_offset = 16;
e4bbbda8 2027 lmo.l_next_offset = 24;
e4bbbda8 2028 lmo.l_prev_offset = 32;
e4bbbda8
MK
2029 }
2030
2031 return lmp;
2032}
2033\f
2034
7d522c90 2035struct target_so_ops svr4_so_ops;
13437d4b 2036
3a40aaa0
UW
2037/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2038 different rule for symbol lookup. The lookup begins here in the DSO, not in
2039 the main executable. */
2040
2041static struct symbol *
2042elf_lookup_lib_symbol (const struct objfile *objfile,
2043 const char *name,
21b556f4 2044 const domain_enum domain)
3a40aaa0 2045{
61f0d762
JK
2046 bfd *abfd;
2047
2048 if (objfile == symfile_objfile)
2049 abfd = exec_bfd;
2050 else
2051 {
2052 /* OBJFILE should have been passed as the non-debug one. */
2053 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2054
2055 abfd = objfile->obfd;
2056 }
2057
2058 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2059 return NULL;
2060
94af9270 2061 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2062}
2063
a78f21af
AC
2064extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2065
13437d4b
KB
2066void
2067_initialize_svr4_solib (void)
2068{
4b188b9f 2069 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2070 solib_svr4_pspace_data
2071 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2072
749499cb 2073 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2074 svr4_so_ops.free_so = svr4_free_so;
2075 svr4_so_ops.clear_solib = svr4_clear_solib;
2076 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2077 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2078 svr4_so_ops.current_sos = svr4_current_sos;
2079 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2080 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2081 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2082 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2083 svr4_so_ops.same = svr4_same;
de18c1d8 2084 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2085}
This page took 1.02701 seconds and 4 git commands to generate.