sim: generate build dependencies on the fly
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
13437d4b
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 21
13437d4b
KB
22#include "defs.h"
23
13437d4b 24#include "elf/external.h"
21479ded 25#include "elf/common.h"
f7856c8f 26#include "elf/mips.h"
13437d4b
KB
27
28#include "symtab.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcore.h"
13437d4b 33#include "target.h"
13437d4b 34#include "inferior.h"
fb14de7b 35#include "regcache.h"
2020b7ab 36#include "gdbthread.h"
1a816a87 37#include "observer.h"
13437d4b 38
4b188b9f
MK
39#include "gdb_assert.h"
40
13437d4b 41#include "solist.h"
bba93f6c 42#include "solib.h"
13437d4b
KB
43#include "solib-svr4.h"
44
2f4950cd 45#include "bfd-target.h"
cc10cae3 46#include "elf-bfd.h"
2f4950cd 47#include "exec.h"
8d4e36ba 48#include "auxv.h"
f1838a98 49#include "exceptions.h"
2f4950cd 50
e5e2b9ff 51static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 52static int svr4_have_link_map_offsets (void);
9f2982ff 53static void svr4_relocate_main_executable (void);
1c4dcb57 54
c378eb4e 55/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
56
57struct lm_info
58 {
cc10cae3 59 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
60 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
61 When prelinking is involved and the prelink base address changes,
62 we may need a different offset - the recomputed offset is in L_ADDR.
63 It is commonly the same value. It is cached as we want to warn about
64 the difference and compute it only once. L_ADDR is valid
65 iff L_ADDR_P. */
66 CORE_ADDR l_addr, l_addr_inferior;
67 unsigned int l_addr_p : 1;
93a57060
DJ
68
69 /* The target location of lm. */
70 CORE_ADDR lm_addr;
3957565a
JK
71
72 /* Values read in from inferior's fields of the same name. */
73 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
74 };
75
76/* On SVR4 systems, a list of symbols in the dynamic linker where
77 GDB can try to place a breakpoint to monitor shared library
78 events.
79
80 If none of these symbols are found, or other errors occur, then
81 SVR4 systems will fall back to using a symbol as the "startup
82 mapping complete" breakpoint address. */
83
bc043ef3 84static const char * const solib_break_names[] =
13437d4b
KB
85{
86 "r_debug_state",
87 "_r_debug_state",
88 "_dl_debug_state",
89 "rtld_db_dlactivity",
4c7dcb84 90 "__dl_rtld_db_dlactivity",
1f72e589 91 "_rtld_debug_state",
4c0122c8 92
13437d4b
KB
93 NULL
94};
13437d4b 95
bc043ef3 96static const char * const bkpt_names[] =
13437d4b 97{
13437d4b 98 "_start",
ad3dcc5c 99 "__start",
13437d4b
KB
100 "main",
101 NULL
102};
13437d4b 103
bc043ef3 104static const char * const main_name_list[] =
13437d4b
KB
105{
106 "main_$main",
107 NULL
108};
109
4d7b2d5b
JB
110/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
111 the same shared library. */
112
113static int
114svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
115{
116 if (strcmp (gdb_so_name, inferior_so_name) == 0)
117 return 1;
118
119 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
120 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
121 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
122 sometimes they have identical content, but are not linked to each
123 other. We don't restrict this check for Solaris, but the chances
124 of running into this situation elsewhere are very low. */
125 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
126 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
127 return 1;
128
129 /* Similarly, we observed the same issue with sparc64, but with
130 different locations. */
131 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
132 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
133 return 1;
134
135 return 0;
136}
137
138static int
139svr4_same (struct so_list *gdb, struct so_list *inferior)
140{
141 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
142}
143
3957565a
JK
144static struct lm_info *
145lm_info_read (CORE_ADDR lm_addr)
13437d4b 146{
4b188b9f 147 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
148 gdb_byte *lm;
149 struct lm_info *lm_info;
150 struct cleanup *back_to;
151
152 lm = xmalloc (lmo->link_map_size);
153 back_to = make_cleanup (xfree, lm);
154
155 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
156 {
157 warning (_("Error reading shared library list entry at %s"),
158 paddress (target_gdbarch, lm_addr)),
159 lm_info = NULL;
160 }
161 else
162 {
163 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
13437d4b 164
3957565a
JK
165 lm_info = xzalloc (sizeof (*lm_info));
166 lm_info->lm_addr = lm_addr;
167
168 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
169 ptr_type);
170 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
171 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
172 ptr_type);
173 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
174 ptr_type);
175 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
176 ptr_type);
177 }
178
179 do_cleanups (back_to);
180
181 return lm_info;
13437d4b
KB
182}
183
cc10cae3 184static int
b23518f0 185has_lm_dynamic_from_link_map (void)
cc10cae3
AO
186{
187 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
188
cfaefc65 189 return lmo->l_ld_offset >= 0;
cc10cae3
AO
190}
191
cc10cae3 192static CORE_ADDR
b23518f0 193lm_addr_check (struct so_list *so, bfd *abfd)
cc10cae3 194{
3957565a 195 if (!so->lm_info->l_addr_p)
cc10cae3
AO
196 {
197 struct bfd_section *dyninfo_sect;
28f34a8f 198 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 199
3957565a 200 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 201
b23518f0 202 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
203 goto set_addr;
204
3957565a 205 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
206
207 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
208 if (dyninfo_sect == NULL)
209 goto set_addr;
210
211 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
212
213 if (dynaddr + l_addr != l_dynaddr)
214 {
28f34a8f 215 CORE_ADDR align = 0x1000;
4e1fc9c9 216 CORE_ADDR minpagesize = align;
28f34a8f 217
cc10cae3
AO
218 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
219 {
220 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
221 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
222 int i;
223
224 align = 1;
225
226 for (i = 0; i < ehdr->e_phnum; i++)
227 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
228 align = phdr[i].p_align;
4e1fc9c9
JK
229
230 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
231 }
232
233 /* Turn it into a mask. */
234 align--;
235
236 /* If the changes match the alignment requirements, we
237 assume we're using a core file that was generated by the
238 same binary, just prelinked with a different base offset.
239 If it doesn't match, we may have a different binary, the
240 same binary with the dynamic table loaded at an unrelated
241 location, or anything, really. To avoid regressions,
242 don't adjust the base offset in the latter case, although
243 odds are that, if things really changed, debugging won't
5c0d192f
JK
244 quite work.
245
246 One could expect more the condition
247 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
248 but the one below is relaxed for PPC. The PPC kernel supports
249 either 4k or 64k page sizes. To be prepared for 64k pages,
250 PPC ELF files are built using an alignment requirement of 64k.
251 However, when running on a kernel supporting 4k pages, the memory
252 mapping of the library may not actually happen on a 64k boundary!
253
254 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
255 equivalent to the possibly expected check above.)
256
257 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 258
02835898
JK
259 l_addr = l_dynaddr - dynaddr;
260
4e1fc9c9
JK
261 if ((l_addr & (minpagesize - 1)) == 0
262 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 263 {
701ed6dc 264 if (info_verbose)
ccf26247
JK
265 printf_unfiltered (_("Using PIC (Position Independent Code) "
266 "prelink displacement %s for \"%s\".\n"),
267 paddress (target_gdbarch, l_addr),
268 so->so_name);
cc10cae3 269 }
79d4c408 270 else
02835898
JK
271 {
272 /* There is no way to verify the library file matches. prelink
273 can during prelinking of an unprelinked file (or unprelinking
274 of a prelinked file) shift the DYNAMIC segment by arbitrary
275 offset without any page size alignment. There is no way to
276 find out the ELF header and/or Program Headers for a limited
277 verification if it they match. One could do a verification
278 of the DYNAMIC segment. Still the found address is the best
279 one GDB could find. */
280
281 warning (_(".dynamic section for \"%s\" "
282 "is not at the expected address "
283 "(wrong library or version mismatch?)"), so->so_name);
284 }
cc10cae3
AO
285 }
286
287 set_addr:
288 so->lm_info->l_addr = l_addr;
3957565a 289 so->lm_info->l_addr_p = 1;
cc10cae3
AO
290 }
291
292 return so->lm_info->l_addr;
293}
294
6c95b8df 295/* Per pspace SVR4 specific data. */
13437d4b 296
1a816a87
PA
297struct svr4_info
298{
c378eb4e 299 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
300
301 /* Validity flag for debug_loader_offset. */
302 int debug_loader_offset_p;
303
304 /* Load address for the dynamic linker, inferred. */
305 CORE_ADDR debug_loader_offset;
306
307 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
308 char *debug_loader_name;
309
310 /* Load map address for the main executable. */
311 CORE_ADDR main_lm_addr;
1a816a87 312
6c95b8df
PA
313 CORE_ADDR interp_text_sect_low;
314 CORE_ADDR interp_text_sect_high;
315 CORE_ADDR interp_plt_sect_low;
316 CORE_ADDR interp_plt_sect_high;
317};
1a816a87 318
6c95b8df
PA
319/* Per-program-space data key. */
320static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 321
6c95b8df
PA
322static void
323svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 324{
6c95b8df 325 struct svr4_info *info;
1a816a87 326
6c95b8df
PA
327 info = program_space_data (pspace, solib_svr4_pspace_data);
328 xfree (info);
1a816a87
PA
329}
330
6c95b8df
PA
331/* Get the current svr4 data. If none is found yet, add it now. This
332 function always returns a valid object. */
34439770 333
6c95b8df
PA
334static struct svr4_info *
335get_svr4_info (void)
1a816a87 336{
6c95b8df 337 struct svr4_info *info;
1a816a87 338
6c95b8df
PA
339 info = program_space_data (current_program_space, solib_svr4_pspace_data);
340 if (info != NULL)
341 return info;
34439770 342
6c95b8df
PA
343 info = XZALLOC (struct svr4_info);
344 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
345 return info;
1a816a87 346}
93a57060 347
13437d4b
KB
348/* Local function prototypes */
349
bc043ef3 350static int match_main (const char *);
13437d4b 351
97ec2c2f
UW
352/* Read program header TYPE from inferior memory. The header is found
353 by scanning the OS auxillary vector.
354
09919ac2
JK
355 If TYPE == -1, return the program headers instead of the contents of
356 one program header.
357
97ec2c2f
UW
358 Return a pointer to allocated memory holding the program header contents,
359 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
360 size of those contents is returned to P_SECT_SIZE. Likewise, the target
361 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
362
363static gdb_byte *
364read_program_header (int type, int *p_sect_size, int *p_arch_size)
365{
e17a4113 366 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
43136979 367 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
368 int arch_size, sect_size;
369 CORE_ADDR sect_addr;
370 gdb_byte *buf;
43136979 371 int pt_phdr_p = 0;
97ec2c2f
UW
372
373 /* Get required auxv elements from target. */
374 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
375 return 0;
376 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
377 return 0;
378 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
379 return 0;
380 if (!at_phdr || !at_phnum)
381 return 0;
382
383 /* Determine ELF architecture type. */
384 if (at_phent == sizeof (Elf32_External_Phdr))
385 arch_size = 32;
386 else if (at_phent == sizeof (Elf64_External_Phdr))
387 arch_size = 64;
388 else
389 return 0;
390
09919ac2
JK
391 /* Find the requested segment. */
392 if (type == -1)
393 {
394 sect_addr = at_phdr;
395 sect_size = at_phent * at_phnum;
396 }
397 else if (arch_size == 32)
97ec2c2f
UW
398 {
399 Elf32_External_Phdr phdr;
400 int i;
401
402 /* Search for requested PHDR. */
403 for (i = 0; i < at_phnum; i++)
404 {
43136979
AR
405 int p_type;
406
97ec2c2f
UW
407 if (target_read_memory (at_phdr + i * sizeof (phdr),
408 (gdb_byte *)&phdr, sizeof (phdr)))
409 return 0;
410
43136979
AR
411 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
412 4, byte_order);
413
414 if (p_type == PT_PHDR)
415 {
416 pt_phdr_p = 1;
417 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
418 4, byte_order);
419 }
420
421 if (p_type == type)
97ec2c2f
UW
422 break;
423 }
424
425 if (i == at_phnum)
426 return 0;
427
428 /* Retrieve address and size. */
e17a4113
UW
429 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
430 4, byte_order);
431 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
432 4, byte_order);
97ec2c2f
UW
433 }
434 else
435 {
436 Elf64_External_Phdr phdr;
437 int i;
438
439 /* Search for requested PHDR. */
440 for (i = 0; i < at_phnum; i++)
441 {
43136979
AR
442 int p_type;
443
97ec2c2f
UW
444 if (target_read_memory (at_phdr + i * sizeof (phdr),
445 (gdb_byte *)&phdr, sizeof (phdr)))
446 return 0;
447
43136979
AR
448 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
449 4, byte_order);
450
451 if (p_type == PT_PHDR)
452 {
453 pt_phdr_p = 1;
454 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
455 8, byte_order);
456 }
457
458 if (p_type == type)
97ec2c2f
UW
459 break;
460 }
461
462 if (i == at_phnum)
463 return 0;
464
465 /* Retrieve address and size. */
e17a4113
UW
466 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
467 8, byte_order);
468 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
469 8, byte_order);
97ec2c2f
UW
470 }
471
43136979
AR
472 /* PT_PHDR is optional, but we really need it
473 for PIE to make this work in general. */
474
475 if (pt_phdr_p)
476 {
477 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
478 Relocation offset is the difference between the two. */
479 sect_addr = sect_addr + (at_phdr - pt_phdr);
480 }
481
97ec2c2f
UW
482 /* Read in requested program header. */
483 buf = xmalloc (sect_size);
484 if (target_read_memory (sect_addr, buf, sect_size))
485 {
486 xfree (buf);
487 return NULL;
488 }
489
490 if (p_arch_size)
491 *p_arch_size = arch_size;
492 if (p_sect_size)
493 *p_sect_size = sect_size;
494
495 return buf;
496}
497
498
499/* Return program interpreter string. */
500static gdb_byte *
501find_program_interpreter (void)
502{
503 gdb_byte *buf = NULL;
504
505 /* If we have an exec_bfd, use its section table. */
506 if (exec_bfd
507 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
508 {
509 struct bfd_section *interp_sect;
510
511 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
512 if (interp_sect != NULL)
513 {
97ec2c2f
UW
514 int sect_size = bfd_section_size (exec_bfd, interp_sect);
515
516 buf = xmalloc (sect_size);
517 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
518 }
519 }
520
521 /* If we didn't find it, use the target auxillary vector. */
522 if (!buf)
523 buf = read_program_header (PT_INTERP, NULL, NULL);
524
525 return buf;
526}
527
528
c378eb4e 529/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
3a40aaa0
UW
530 returned and the corresponding PTR is set. */
531
532static int
533scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
534{
535 int arch_size, step, sect_size;
536 long dyn_tag;
b381ea14 537 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 538 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
539 Elf32_External_Dyn *x_dynp_32;
540 Elf64_External_Dyn *x_dynp_64;
541 struct bfd_section *sect;
61f0d762 542 struct target_section *target_section;
3a40aaa0
UW
543
544 if (abfd == NULL)
545 return 0;
0763ab81
PA
546
547 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
548 return 0;
549
3a40aaa0
UW
550 arch_size = bfd_get_arch_size (abfd);
551 if (arch_size == -1)
0763ab81 552 return 0;
3a40aaa0
UW
553
554 /* Find the start address of the .dynamic section. */
555 sect = bfd_get_section_by_name (abfd, ".dynamic");
556 if (sect == NULL)
557 return 0;
61f0d762
JK
558
559 for (target_section = current_target_sections->sections;
560 target_section < current_target_sections->sections_end;
561 target_section++)
562 if (sect == target_section->the_bfd_section)
563 break;
b381ea14
JK
564 if (target_section < current_target_sections->sections_end)
565 dyn_addr = target_section->addr;
566 else
567 {
568 /* ABFD may come from OBJFILE acting only as a symbol file without being
569 loaded into the target (see add_symbol_file_command). This case is
570 such fallback to the file VMA address without the possibility of
571 having the section relocated to its actual in-memory address. */
572
573 dyn_addr = bfd_section_vma (abfd, sect);
574 }
3a40aaa0 575
65728c26
DJ
576 /* Read in .dynamic from the BFD. We will get the actual value
577 from memory later. */
3a40aaa0 578 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
579 buf = bufstart = alloca (sect_size);
580 if (!bfd_get_section_contents (abfd, sect,
581 buf, 0, sect_size))
582 return 0;
3a40aaa0
UW
583
584 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
585 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
586 : sizeof (Elf64_External_Dyn);
587 for (bufend = buf + sect_size;
588 buf < bufend;
589 buf += step)
590 {
591 if (arch_size == 32)
592 {
593 x_dynp_32 = (Elf32_External_Dyn *) buf;
594 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
595 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
596 }
65728c26 597 else
3a40aaa0
UW
598 {
599 x_dynp_64 = (Elf64_External_Dyn *) buf;
600 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
601 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
602 }
603 if (dyn_tag == DT_NULL)
604 return 0;
605 if (dyn_tag == dyntag)
606 {
65728c26
DJ
607 /* If requested, try to read the runtime value of this .dynamic
608 entry. */
3a40aaa0 609 if (ptr)
65728c26 610 {
b6da22b0 611 struct type *ptr_type;
65728c26
DJ
612 gdb_byte ptr_buf[8];
613 CORE_ADDR ptr_addr;
614
b6da22b0 615 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
b381ea14 616 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 617 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 618 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
619 *ptr = dyn_ptr;
620 }
621 return 1;
3a40aaa0
UW
622 }
623 }
624
625 return 0;
626}
627
97ec2c2f
UW
628/* Scan for DYNTAG in .dynamic section of the target's main executable,
629 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
630 returned and the corresponding PTR is set. */
631
632static int
633scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
634{
e17a4113 635 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
97ec2c2f
UW
636 int sect_size, arch_size, step;
637 long dyn_tag;
638 CORE_ADDR dyn_ptr;
639 gdb_byte *bufend, *bufstart, *buf;
640
641 /* Read in .dynamic section. */
642 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
643 if (!buf)
644 return 0;
645
646 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
647 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
648 : sizeof (Elf64_External_Dyn);
649 for (bufend = buf + sect_size;
650 buf < bufend;
651 buf += step)
652 {
653 if (arch_size == 32)
654 {
655 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 656
e17a4113
UW
657 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
658 4, byte_order);
659 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
660 4, byte_order);
97ec2c2f
UW
661 }
662 else
663 {
664 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 665
e17a4113
UW
666 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
667 8, byte_order);
668 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
669 8, byte_order);
97ec2c2f
UW
670 }
671 if (dyn_tag == DT_NULL)
672 break;
673
674 if (dyn_tag == dyntag)
675 {
676 if (ptr)
677 *ptr = dyn_ptr;
678
679 xfree (bufstart);
680 return 1;
681 }
682 }
683
684 xfree (bufstart);
685 return 0;
686}
687
7f86f058
PA
688/* Locate the base address of dynamic linker structs for SVR4 elf
689 targets.
13437d4b
KB
690
691 For SVR4 elf targets the address of the dynamic linker's runtime
692 structure is contained within the dynamic info section in the
693 executable file. The dynamic section is also mapped into the
694 inferior address space. Because the runtime loader fills in the
695 real address before starting the inferior, we have to read in the
696 dynamic info section from the inferior address space.
697 If there are any errors while trying to find the address, we
7f86f058 698 silently return 0, otherwise the found address is returned. */
13437d4b
KB
699
700static CORE_ADDR
701elf_locate_base (void)
702{
3a40aaa0
UW
703 struct minimal_symbol *msymbol;
704 CORE_ADDR dyn_ptr;
13437d4b 705
65728c26
DJ
706 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
707 instead of DT_DEBUG, although they sometimes contain an unused
708 DT_DEBUG. */
97ec2c2f
UW
709 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
710 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 711 {
b6da22b0 712 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
3a40aaa0 713 gdb_byte *pbuf;
b6da22b0 714 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 715
3a40aaa0
UW
716 pbuf = alloca (pbuf_size);
717 /* DT_MIPS_RLD_MAP contains a pointer to the address
718 of the dynamic link structure. */
719 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 720 return 0;
b6da22b0 721 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
722 }
723
65728c26 724 /* Find DT_DEBUG. */
97ec2c2f
UW
725 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
726 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
727 return dyn_ptr;
728
3a40aaa0
UW
729 /* This may be a static executable. Look for the symbol
730 conventionally named _r_debug, as a last resort. */
731 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
732 if (msymbol != NULL)
733 return SYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
734
735 /* DT_DEBUG entry not found. */
736 return 0;
737}
738
7f86f058 739/* Locate the base address of dynamic linker structs.
13437d4b
KB
740
741 For both the SunOS and SVR4 shared library implementations, if the
742 inferior executable has been linked dynamically, there is a single
743 address somewhere in the inferior's data space which is the key to
744 locating all of the dynamic linker's runtime structures. This
745 address is the value of the debug base symbol. The job of this
746 function is to find and return that address, or to return 0 if there
747 is no such address (the executable is statically linked for example).
748
749 For SunOS, the job is almost trivial, since the dynamic linker and
750 all of it's structures are statically linked to the executable at
751 link time. Thus the symbol for the address we are looking for has
752 already been added to the minimal symbol table for the executable's
753 objfile at the time the symbol file's symbols were read, and all we
754 have to do is look it up there. Note that we explicitly do NOT want
755 to find the copies in the shared library.
756
757 The SVR4 version is a bit more complicated because the address
758 is contained somewhere in the dynamic info section. We have to go
759 to a lot more work to discover the address of the debug base symbol.
760 Because of this complexity, we cache the value we find and return that
761 value on subsequent invocations. Note there is no copy in the
7f86f058 762 executable symbol tables. */
13437d4b
KB
763
764static CORE_ADDR
1a816a87 765locate_base (struct svr4_info *info)
13437d4b 766{
13437d4b
KB
767 /* Check to see if we have a currently valid address, and if so, avoid
768 doing all this work again and just return the cached address. If
769 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
770 section for ELF executables. There's no point in doing any of this
771 though if we don't have some link map offsets to work with. */
13437d4b 772
1a816a87 773 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 774 info->debug_base = elf_locate_base ();
1a816a87 775 return info->debug_base;
13437d4b
KB
776}
777
e4cd0d6a 778/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
779 return its address in the inferior. Return zero if the address
780 could not be determined.
13437d4b 781
e4cd0d6a
MK
782 FIXME: Perhaps we should validate the info somehow, perhaps by
783 checking r_version for a known version number, or r_state for
784 RT_CONSISTENT. */
13437d4b
KB
785
786static CORE_ADDR
1a816a87 787solib_svr4_r_map (struct svr4_info *info)
13437d4b 788{
4b188b9f 789 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 790 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
08597104
JB
791 CORE_ADDR addr = 0;
792 volatile struct gdb_exception ex;
13437d4b 793
08597104
JB
794 TRY_CATCH (ex, RETURN_MASK_ERROR)
795 {
796 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
797 ptr_type);
798 }
799 exception_print (gdb_stderr, ex);
800 return addr;
e4cd0d6a 801}
13437d4b 802
7cd25cfc
DJ
803/* Find r_brk from the inferior's debug base. */
804
805static CORE_ADDR
1a816a87 806solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
807{
808 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 809 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
7cd25cfc 810
1a816a87
PA
811 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
812 ptr_type);
7cd25cfc
DJ
813}
814
e4cd0d6a
MK
815/* Find the link map for the dynamic linker (if it is not in the
816 normal list of loaded shared objects). */
13437d4b 817
e4cd0d6a 818static CORE_ADDR
1a816a87 819solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
820{
821 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0 822 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
e17a4113 823 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
e4cd0d6a 824 ULONGEST version;
13437d4b 825
e4cd0d6a
MK
826 /* Check version, and return zero if `struct r_debug' doesn't have
827 the r_ldsomap member. */
1a816a87
PA
828 version
829 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
e17a4113 830 lmo->r_version_size, byte_order);
e4cd0d6a
MK
831 if (version < 2 || lmo->r_ldsomap_offset == -1)
832 return 0;
13437d4b 833
1a816a87 834 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 835 ptr_type);
13437d4b
KB
836}
837
de18c1d8
JM
838/* On Solaris systems with some versions of the dynamic linker,
839 ld.so's l_name pointer points to the SONAME in the string table
840 rather than into writable memory. So that GDB can find shared
841 libraries when loading a core file generated by gcore, ensure that
842 memory areas containing the l_name string are saved in the core
843 file. */
844
845static int
846svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
847{
848 struct svr4_info *info;
849 CORE_ADDR ldsomap;
850 struct so_list *new;
851 struct cleanup *old_chain;
852 struct link_map_offsets *lmo;
74de0234 853 CORE_ADDR name_lm;
de18c1d8
JM
854
855 info = get_svr4_info ();
856
857 info->debug_base = 0;
858 locate_base (info);
859 if (!info->debug_base)
860 return 0;
861
862 ldsomap = solib_svr4_r_ldsomap (info);
863 if (!ldsomap)
864 return 0;
865
866 lmo = svr4_fetch_link_map_offsets ();
867 new = XZALLOC (struct so_list);
868 old_chain = make_cleanup (xfree, new);
3957565a 869 new->lm_info = lm_info_read (ldsomap);
de18c1d8 870 make_cleanup (xfree, new->lm_info);
3957565a 871 name_lm = new->lm_info ? new->lm_info->l_name : 0;
de18c1d8
JM
872 do_cleanups (old_chain);
873
74de0234 874 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
875}
876
7f86f058 877/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 878
7f86f058
PA
879 If no open symbol file, attempt to locate and open the main symbol
880 file. On SVR4 systems, this is the first link map entry. If its
881 name is here, we can open it. Useful when attaching to a process
882 without first loading its symbol file. */
13437d4b
KB
883
884static int
885open_symbol_file_object (void *from_ttyp)
886{
887 CORE_ADDR lm, l_name;
888 char *filename;
889 int errcode;
890 int from_tty = *(int *)from_ttyp;
4b188b9f 891 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
b6da22b0
UW
892 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
893 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 894 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 895 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 896 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
897
898 if (symfile_objfile)
9e2f0ad4 899 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
900 {
901 do_cleanups (cleanups);
902 return 0;
903 }
13437d4b 904
7cd25cfc 905 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
906 info->debug_base = 0;
907 if (locate_base (info) == 0)
3bb47e8b
TT
908 {
909 do_cleanups (cleanups);
910 return 0; /* failed somehow... */
911 }
13437d4b
KB
912
913 /* First link map member should be the executable. */
1a816a87 914 lm = solib_svr4_r_map (info);
e4cd0d6a 915 if (lm == 0)
3bb47e8b
TT
916 {
917 do_cleanups (cleanups);
918 return 0; /* failed somehow... */
919 }
13437d4b
KB
920
921 /* Read address of name from target memory to GDB. */
cfaefc65 922 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 923
cfaefc65 924 /* Convert the address to host format. */
b6da22b0 925 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 926
13437d4b 927 if (l_name == 0)
3bb47e8b
TT
928 {
929 do_cleanups (cleanups);
930 return 0; /* No filename. */
931 }
13437d4b
KB
932
933 /* Now fetch the filename from target memory. */
934 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 935 make_cleanup (xfree, filename);
13437d4b
KB
936
937 if (errcode)
938 {
8a3fe4f8 939 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 940 safe_strerror (errcode));
3bb47e8b 941 do_cleanups (cleanups);
13437d4b
KB
942 return 0;
943 }
944
13437d4b 945 /* Have a pathname: read the symbol file. */
1adeb98a 946 symbol_file_add_main (filename, from_tty);
13437d4b 947
3bb47e8b 948 do_cleanups (cleanups);
13437d4b
KB
949 return 1;
950}
13437d4b 951
2268b414
JK
952/* Data exchange structure for the XML parser as returned by
953 svr4_current_sos_via_xfer_libraries. */
954
955struct svr4_library_list
956{
957 struct so_list *head, **tailp;
958
959 /* Inferior address of struct link_map used for the main executable. It is
960 NULL if not known. */
961 CORE_ADDR main_lm;
962};
963
964#ifdef HAVE_LIBEXPAT
965
966#include "xml-support.h"
967
968/* Handle the start of a <library> element. Note: new elements are added
969 at the tail of the list, keeping the list in order. */
970
971static void
972library_list_start_library (struct gdb_xml_parser *parser,
973 const struct gdb_xml_element *element,
974 void *user_data, VEC(gdb_xml_value_s) *attributes)
975{
976 struct svr4_library_list *list = user_data;
977 const char *name = xml_find_attribute (attributes, "name")->value;
978 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
979 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
980 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
981 struct so_list *new_elem;
982
983 new_elem = XZALLOC (struct so_list);
984 new_elem->lm_info = XZALLOC (struct lm_info);
985 new_elem->lm_info->lm_addr = *lmp;
986 new_elem->lm_info->l_addr_inferior = *l_addrp;
987 new_elem->lm_info->l_ld = *l_ldp;
988
989 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
990 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
991 strcpy (new_elem->so_original_name, new_elem->so_name);
992
993 *list->tailp = new_elem;
994 list->tailp = &new_elem->next;
995}
996
997/* Handle the start of a <library-list-svr4> element. */
998
999static void
1000svr4_library_list_start_list (struct gdb_xml_parser *parser,
1001 const struct gdb_xml_element *element,
1002 void *user_data, VEC(gdb_xml_value_s) *attributes)
1003{
1004 struct svr4_library_list *list = user_data;
1005 const char *version = xml_find_attribute (attributes, "version")->value;
1006 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1007
1008 if (strcmp (version, "1.0") != 0)
1009 gdb_xml_error (parser,
1010 _("SVR4 Library list has unsupported version \"%s\""),
1011 version);
1012
1013 if (main_lm)
1014 list->main_lm = *(ULONGEST *) main_lm->value;
1015}
1016
1017/* The allowed elements and attributes for an XML library list.
1018 The root element is a <library-list>. */
1019
1020static const struct gdb_xml_attribute svr4_library_attributes[] =
1021{
1022 { "name", GDB_XML_AF_NONE, NULL, NULL },
1023 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1024 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1025 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1026 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1027};
1028
1029static const struct gdb_xml_element svr4_library_list_children[] =
1030{
1031 {
1032 "library", svr4_library_attributes, NULL,
1033 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1034 library_list_start_library, NULL
1035 },
1036 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1037};
1038
1039static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1040{
1041 { "version", GDB_XML_AF_NONE, NULL, NULL },
1042 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1043 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1044};
1045
1046static const struct gdb_xml_element svr4_library_list_elements[] =
1047{
1048 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1049 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1050 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1051};
1052
cb08cc53
JK
1053/* Implementation for target_so_ops.free_so. */
1054
1055static void
1056svr4_free_so (struct so_list *so)
1057{
cb08cc53
JK
1058 xfree (so->lm_info);
1059}
1060
1061/* Free so_list built so far (called via cleanup). */
1062
1063static void
1064svr4_free_library_list (void *p_list)
1065{
1066 struct so_list *list = *(struct so_list **) p_list;
1067
1068 while (list != NULL)
1069 {
1070 struct so_list *next = list->next;
1071
1072 svr4_free_so (list);
1073 list = next;
1074 }
1075}
1076
2268b414
JK
1077/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1078
1079 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1080 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1081 empty, caller is responsible for freeing all its entries. */
1082
1083static int
1084svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1085{
1086 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1087 &list->head);
1088
1089 memset (list, 0, sizeof (*list));
1090 list->tailp = &list->head;
1091 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1092 svr4_library_list_elements, document, list) == 0)
1093 {
1094 /* Parsed successfully, keep the result. */
1095 discard_cleanups (back_to);
1096 return 1;
1097 }
1098
1099 do_cleanups (back_to);
1100 return 0;
1101}
1102
1103/* Attempt to get so_list from target via qXfer:libraries:read packet.
1104
1105 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1106 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1107 empty, caller is responsible for freeing all its entries. */
1108
1109static int
1110svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1111{
1112 char *svr4_library_document;
1113 int result;
1114 struct cleanup *back_to;
1115
1116 /* Fetch the list of shared libraries. */
1117 svr4_library_document = target_read_stralloc (&current_target,
1118 TARGET_OBJECT_LIBRARIES_SVR4,
1119 NULL);
1120 if (svr4_library_document == NULL)
1121 return 0;
1122
1123 back_to = make_cleanup (xfree, svr4_library_document);
1124 result = svr4_parse_libraries (svr4_library_document, list);
1125 do_cleanups (back_to);
1126
1127 return result;
1128}
1129
1130#else
1131
1132static int
1133svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1134{
1135 return 0;
1136}
1137
1138#endif
1139
34439770
DJ
1140/* If no shared library information is available from the dynamic
1141 linker, build a fallback list from other sources. */
1142
1143static struct so_list *
1144svr4_default_sos (void)
1145{
6c95b8df 1146 struct svr4_info *info = get_svr4_info ();
8e5c319d 1147 struct so_list *new;
1a816a87 1148
8e5c319d
JK
1149 if (!info->debug_loader_offset_p)
1150 return NULL;
34439770 1151
8e5c319d 1152 new = XZALLOC (struct so_list);
34439770 1153
3957565a 1154 new->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1155
3957565a 1156 /* Nothing will ever check the other fields if we set l_addr_p. */
8e5c319d 1157 new->lm_info->l_addr = info->debug_loader_offset;
3957565a 1158 new->lm_info->l_addr_p = 1;
34439770 1159
8e5c319d
JK
1160 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1161 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1162 strcpy (new->so_original_name, new->so_name);
34439770 1163
8e5c319d 1164 return new;
34439770
DJ
1165}
1166
cb08cc53
JK
1167/* Read the whole inferior libraries chain starting at address LM. Add the
1168 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1169 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
13437d4b 1170
cb08cc53
JK
1171static void
1172svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1173 int ignore_first)
13437d4b 1174{
cb08cc53 1175 CORE_ADDR prev_lm = 0, next_lm;
13437d4b 1176
cb08cc53 1177 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1178 {
4b188b9f 1179 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
cb08cc53
JK
1180 struct so_list *new;
1181 struct cleanup *old_chain;
1182 int errcode;
1183 char *buffer;
13437d4b 1184
cb08cc53
JK
1185 new = XZALLOC (struct so_list);
1186 old_chain = make_cleanup_free_so (new);
13437d4b 1187
3957565a
JK
1188 new->lm_info = lm_info_read (lm);
1189 if (new->lm_info == NULL)
1190 {
1191 do_cleanups (old_chain);
1192 break;
1193 }
13437d4b 1194
3957565a 1195 next_lm = new->lm_info->l_next;
492928e4 1196
3957565a 1197 if (new->lm_info->l_prev != prev_lm)
492928e4 1198 {
2268b414
JK
1199 warning (_("Corrupted shared library list: %s != %s"),
1200 paddress (target_gdbarch, prev_lm),
1201 paddress (target_gdbarch, new->lm_info->l_prev));
cb08cc53
JK
1202 do_cleanups (old_chain);
1203 break;
492928e4 1204 }
13437d4b
KB
1205
1206 /* For SVR4 versions, the first entry in the link map is for the
1207 inferior executable, so we must ignore it. For some versions of
1208 SVR4, it has no name. For others (Solaris 2.3 for example), it
1209 does have a name, so we can no longer use a missing name to
c378eb4e 1210 decide when to ignore it. */
3957565a 1211 if (ignore_first && new->lm_info->l_prev == 0)
93a57060 1212 {
cb08cc53
JK
1213 struct svr4_info *info = get_svr4_info ();
1214
1a816a87 1215 info->main_lm_addr = new->lm_info->lm_addr;
cb08cc53
JK
1216 do_cleanups (old_chain);
1217 continue;
93a57060 1218 }
13437d4b 1219
cb08cc53 1220 /* Extract this shared object's name. */
3957565a 1221 target_read_string (new->lm_info->l_name, &buffer,
cb08cc53
JK
1222 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1223 if (errcode != 0)
1224 {
1225 warning (_("Can't read pathname for load map: %s."),
1226 safe_strerror (errcode));
1227 do_cleanups (old_chain);
1228 continue;
13437d4b
KB
1229 }
1230
cb08cc53
JK
1231 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1232 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1233 strcpy (new->so_original_name, new->so_name);
1234 xfree (buffer);
492928e4 1235
cb08cc53
JK
1236 /* If this entry has no name, or its name matches the name
1237 for the main executable, don't include it in the list. */
1238 if (! new->so_name[0] || match_main (new->so_name))
492928e4 1239 {
cb08cc53
JK
1240 do_cleanups (old_chain);
1241 continue;
492928e4 1242 }
e4cd0d6a 1243
13437d4b 1244 discard_cleanups (old_chain);
cb08cc53
JK
1245 new->next = 0;
1246 **link_ptr_ptr = new;
1247 *link_ptr_ptr = &new->next;
13437d4b 1248 }
cb08cc53
JK
1249}
1250
1251/* Implement the "current_sos" target_so_ops method. */
1252
1253static struct so_list *
1254svr4_current_sos (void)
1255{
1256 CORE_ADDR lm;
1257 struct so_list *head = NULL;
1258 struct so_list **link_ptr = &head;
1259 struct svr4_info *info;
1260 struct cleanup *back_to;
1261 int ignore_first;
2268b414
JK
1262 struct svr4_library_list library_list;
1263
1264 if (svr4_current_sos_via_xfer_libraries (&library_list))
1265 {
1266 if (library_list.main_lm)
1267 {
1268 info = get_svr4_info ();
1269 info->main_lm_addr = library_list.main_lm;
1270 }
1271
1272 return library_list.head ? library_list.head : svr4_default_sos ();
1273 }
cb08cc53
JK
1274
1275 info = get_svr4_info ();
1276
1277 /* Always locate the debug struct, in case it has moved. */
1278 info->debug_base = 0;
1279 locate_base (info);
1280
1281 /* If we can't find the dynamic linker's base structure, this
1282 must not be a dynamically linked executable. Hmm. */
1283 if (! info->debug_base)
1284 return svr4_default_sos ();
1285
1286 /* Assume that everything is a library if the dynamic loader was loaded
1287 late by a static executable. */
1288 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1289 ignore_first = 0;
1290 else
1291 ignore_first = 1;
1292
1293 back_to = make_cleanup (svr4_free_library_list, &head);
1294
1295 /* Walk the inferior's link map list, and build our list of
1296 `struct so_list' nodes. */
1297 lm = solib_svr4_r_map (info);
1298 if (lm)
1299 svr4_read_so_list (lm, &link_ptr, ignore_first);
1300
1301 /* On Solaris, the dynamic linker is not in the normal list of
1302 shared objects, so make sure we pick it up too. Having
1303 symbol information for the dynamic linker is quite crucial
1304 for skipping dynamic linker resolver code. */
1305 lm = solib_svr4_r_ldsomap (info);
1306 if (lm)
1307 svr4_read_so_list (lm, &link_ptr, 0);
1308
1309 discard_cleanups (back_to);
13437d4b 1310
34439770
DJ
1311 if (head == NULL)
1312 return svr4_default_sos ();
1313
13437d4b
KB
1314 return head;
1315}
1316
93a57060 1317/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1318
1319CORE_ADDR
1320svr4_fetch_objfile_link_map (struct objfile *objfile)
1321{
93a57060 1322 struct so_list *so;
6c95b8df 1323 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1324
93a57060 1325 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1326 if (info->main_lm_addr == 0)
93a57060 1327 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1328
93a57060
DJ
1329 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1330 if (objfile == symfile_objfile)
1a816a87 1331 return info->main_lm_addr;
93a57060
DJ
1332
1333 /* The other link map addresses may be found by examining the list
1334 of shared libraries. */
1335 for (so = master_so_list (); so; so = so->next)
1336 if (so->objfile == objfile)
1337 return so->lm_info->lm_addr;
1338
1339 /* Not found! */
bc4a16ae
EZ
1340 return 0;
1341}
13437d4b
KB
1342
1343/* On some systems, the only way to recognize the link map entry for
1344 the main executable file is by looking at its name. Return
1345 non-zero iff SONAME matches one of the known main executable names. */
1346
1347static int
bc043ef3 1348match_main (const char *soname)
13437d4b 1349{
bc043ef3 1350 const char * const *mainp;
13437d4b
KB
1351
1352 for (mainp = main_name_list; *mainp != NULL; mainp++)
1353 {
1354 if (strcmp (soname, *mainp) == 0)
1355 return (1);
1356 }
1357
1358 return (0);
1359}
1360
13437d4b
KB
1361/* Return 1 if PC lies in the dynamic symbol resolution code of the
1362 SVR4 run time loader. */
13437d4b 1363
7d522c90 1364int
d7fa2ae2 1365svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1366{
6c95b8df
PA
1367 struct svr4_info *info = get_svr4_info ();
1368
1369 return ((pc >= info->interp_text_sect_low
1370 && pc < info->interp_text_sect_high)
1371 || (pc >= info->interp_plt_sect_low
1372 && pc < info->interp_plt_sect_high)
0875794a
JK
1373 || in_plt_section (pc, NULL)
1374 || in_gnu_ifunc_stub (pc));
13437d4b 1375}
13437d4b 1376
2f4950cd
AC
1377/* Given an executable's ABFD and target, compute the entry-point
1378 address. */
1379
1380static CORE_ADDR
1381exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1382{
1383 /* KevinB wrote ... for most targets, the address returned by
1384 bfd_get_start_address() is the entry point for the start
1385 function. But, for some targets, bfd_get_start_address() returns
1386 the address of a function descriptor from which the entry point
1387 address may be extracted. This address is extracted by
1388 gdbarch_convert_from_func_ptr_addr(). The method
1389 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1390 function for targets which don't use function descriptors. */
1cf3db46 1391 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2f4950cd
AC
1392 bfd_get_start_address (abfd),
1393 targ);
1394}
13437d4b 1395
cb457ae2
YQ
1396/* Helper function for gdb_bfd_lookup_symbol. */
1397
1398static int
1399cmp_name_and_sec_flags (asymbol *sym, void *data)
1400{
1401 return (strcmp (sym->name, (const char *) data) == 0
1402 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1403}
7f86f058 1404/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
1405
1406 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1407 debugger interface, support for arranging for the inferior to hit
1408 a breakpoint after mapping in the shared libraries. This function
1409 enables that breakpoint.
1410
1411 For SunOS, there is a special flag location (in_debugger) which we
1412 set to 1. When the dynamic linker sees this flag set, it will set
1413 a breakpoint at a location known only to itself, after saving the
1414 original contents of that place and the breakpoint address itself,
1415 in it's own internal structures. When we resume the inferior, it
1416 will eventually take a SIGTRAP when it runs into the breakpoint.
1417 We handle this (in a different place) by restoring the contents of
1418 the breakpointed location (which is only known after it stops),
1419 chasing around to locate the shared libraries that have been
1420 loaded, then resuming.
1421
1422 For SVR4, the debugger interface structure contains a member (r_brk)
1423 which is statically initialized at the time the shared library is
1424 built, to the offset of a function (_r_debug_state) which is guaran-
1425 teed to be called once before mapping in a library, and again when
1426 the mapping is complete. At the time we are examining this member,
1427 it contains only the unrelocated offset of the function, so we have
1428 to do our own relocation. Later, when the dynamic linker actually
1429 runs, it relocates r_brk to be the actual address of _r_debug_state().
1430
1431 The debugger interface structure also contains an enumeration which
1432 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1433 depending upon whether or not the library is being mapped or unmapped,
7f86f058 1434 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
1435
1436static int
268a4a75 1437enable_break (struct svr4_info *info, int from_tty)
13437d4b 1438{
13437d4b 1439 struct minimal_symbol *msymbol;
bc043ef3 1440 const char * const *bkpt_namep;
13437d4b 1441 asection *interp_sect;
97ec2c2f 1442 gdb_byte *interp_name;
7cd25cfc 1443 CORE_ADDR sym_addr;
13437d4b 1444
6c95b8df
PA
1445 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1446 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 1447
7cd25cfc
DJ
1448 /* If we already have a shared library list in the target, and
1449 r_debug contains r_brk, set the breakpoint there - this should
1450 mean r_brk has already been relocated. Assume the dynamic linker
1451 is the object containing r_brk. */
1452
268a4a75 1453 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 1454 sym_addr = 0;
1a816a87
PA
1455 if (info->debug_base && solib_svr4_r_map (info) != 0)
1456 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
1457
1458 if (sym_addr != 0)
1459 {
1460 struct obj_section *os;
1461
b36ec657 1462 sym_addr = gdbarch_addr_bits_remove
1cf3db46 1463 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3e43a32a
MS
1464 sym_addr,
1465 &current_target));
b36ec657 1466
48379de6
DE
1467 /* On at least some versions of Solaris there's a dynamic relocation
1468 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1469 we get control before the dynamic linker has self-relocated.
1470 Check if SYM_ADDR is in a known section, if it is assume we can
1471 trust its value. This is just a heuristic though, it could go away
1472 or be replaced if it's getting in the way.
1473
1474 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1475 however it's spelled in your particular system) is ARM or Thumb.
1476 That knowledge is encoded in the address, if it's Thumb the low bit
1477 is 1. However, we've stripped that info above and it's not clear
1478 what all the consequences are of passing a non-addr_bits_remove'd
1479 address to create_solib_event_breakpoint. The call to
1480 find_pc_section verifies we know about the address and have some
1481 hope of computing the right kind of breakpoint to use (via
1482 symbol info). It does mean that GDB needs to be pointed at a
1483 non-stripped version of the dynamic linker in order to obtain
1484 information it already knows about. Sigh. */
1485
7cd25cfc
DJ
1486 os = find_pc_section (sym_addr);
1487 if (os != NULL)
1488 {
1489 /* Record the relocated start and end address of the dynamic linker
1490 text and plt section for svr4_in_dynsym_resolve_code. */
1491 bfd *tmp_bfd;
1492 CORE_ADDR load_addr;
1493
1494 tmp_bfd = os->objfile->obfd;
1495 load_addr = ANOFFSET (os->objfile->section_offsets,
1496 os->objfile->sect_index_text);
1497
1498 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1499 if (interp_sect)
1500 {
6c95b8df 1501 info->interp_text_sect_low =
7cd25cfc 1502 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1503 info->interp_text_sect_high =
1504 info->interp_text_sect_low
1505 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1506 }
1507 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1508 if (interp_sect)
1509 {
6c95b8df 1510 info->interp_plt_sect_low =
7cd25cfc 1511 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1512 info->interp_plt_sect_high =
1513 info->interp_plt_sect_low
1514 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
1515 }
1516
a6d9a66e 1517 create_solib_event_breakpoint (target_gdbarch, sym_addr);
7cd25cfc
DJ
1518 return 1;
1519 }
1520 }
1521
97ec2c2f 1522 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 1523 into the old breakpoint at symbol code. */
97ec2c2f
UW
1524 interp_name = find_program_interpreter ();
1525 if (interp_name)
13437d4b 1526 {
8ad2fcde
KB
1527 CORE_ADDR load_addr = 0;
1528 int load_addr_found = 0;
2ec9a4f8 1529 int loader_found_in_list = 0;
f8766ec1 1530 struct so_list *so;
e4f7b8c8 1531 bfd *tmp_bfd = NULL;
2f4950cd 1532 struct target_ops *tmp_bfd_target;
f1838a98 1533 volatile struct gdb_exception ex;
13437d4b 1534
7cd25cfc 1535 sym_addr = 0;
13437d4b
KB
1536
1537 /* Now we need to figure out where the dynamic linker was
1538 loaded so that we can load its symbols and place a breakpoint
1539 in the dynamic linker itself.
1540
1541 This address is stored on the stack. However, I've been unable
1542 to find any magic formula to find it for Solaris (appears to
1543 be trivial on GNU/Linux). Therefore, we have to try an alternate
1544 mechanism to find the dynamic linker's base address. */
e4f7b8c8 1545
f1838a98
UW
1546 TRY_CATCH (ex, RETURN_MASK_ALL)
1547 {
97ec2c2f 1548 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 1549 }
13437d4b
KB
1550 if (tmp_bfd == NULL)
1551 goto bkpt_at_symbol;
1552
2f4950cd
AC
1553 /* Now convert the TMP_BFD into a target. That way target, as
1554 well as BFD operations can be used. Note that closing the
1555 target will also close the underlying bfd. */
1556 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1557
f8766ec1
KB
1558 /* On a running target, we can get the dynamic linker's base
1559 address from the shared library table. */
f8766ec1
KB
1560 so = master_so_list ();
1561 while (so)
8ad2fcde 1562 {
97ec2c2f 1563 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
1564 {
1565 load_addr_found = 1;
2ec9a4f8 1566 loader_found_in_list = 1;
b23518f0 1567 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
1568 break;
1569 }
f8766ec1 1570 so = so->next;
8ad2fcde
KB
1571 }
1572
8d4e36ba
JB
1573 /* If we were not able to find the base address of the loader
1574 from our so_list, then try using the AT_BASE auxilliary entry. */
1575 if (!load_addr_found)
1576 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b
JK
1577 {
1578 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1579
1580 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1581 that `+ load_addr' will overflow CORE_ADDR width not creating
1582 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1583 GDB. */
1584
d182d057 1585 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 1586 {
d182d057 1587 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
1588 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1589 tmp_bfd_target);
1590
1591 gdb_assert (load_addr < space_size);
1592
1593 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1594 64bit ld.so with 32bit executable, it should not happen. */
1595
1596 if (tmp_entry_point < space_size
1597 && tmp_entry_point + load_addr >= space_size)
1598 load_addr -= space_size;
1599 }
1600
1601 load_addr_found = 1;
1602 }
8d4e36ba 1603
8ad2fcde
KB
1604 /* Otherwise we find the dynamic linker's base address by examining
1605 the current pc (which should point at the entry point for the
8d4e36ba
JB
1606 dynamic linker) and subtracting the offset of the entry point.
1607
1608 This is more fragile than the previous approaches, but is a good
1609 fallback method because it has actually been working well in
1610 most cases. */
8ad2fcde 1611 if (!load_addr_found)
fb14de7b 1612 {
c2250ad1
UW
1613 struct regcache *regcache
1614 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
433759f7 1615
fb14de7b
UW
1616 load_addr = (regcache_read_pc (regcache)
1617 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1618 }
2ec9a4f8
DJ
1619
1620 if (!loader_found_in_list)
34439770 1621 {
1a816a87
PA
1622 info->debug_loader_name = xstrdup (interp_name);
1623 info->debug_loader_offset_p = 1;
1624 info->debug_loader_offset = load_addr;
268a4a75 1625 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 1626 }
13437d4b
KB
1627
1628 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 1629 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
1630 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1631 if (interp_sect)
1632 {
6c95b8df 1633 info->interp_text_sect_low =
13437d4b 1634 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1635 info->interp_text_sect_high =
1636 info->interp_text_sect_low
1637 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1638 }
1639 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1640 if (interp_sect)
1641 {
6c95b8df 1642 info->interp_plt_sect_low =
13437d4b 1643 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
1644 info->interp_plt_sect_high =
1645 info->interp_plt_sect_low
1646 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
1647 }
1648
1649 /* Now try to set a breakpoint in the dynamic linker. */
1650 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1651 {
cb457ae2
YQ
1652 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1653 (void *) *bkpt_namep);
13437d4b
KB
1654 if (sym_addr != 0)
1655 break;
1656 }
1657
2bbe3cc1
DJ
1658 if (sym_addr != 0)
1659 /* Convert 'sym_addr' from a function pointer to an address.
1660 Because we pass tmp_bfd_target instead of the current
1661 target, this will always produce an unrelocated value. */
1cf3db46 1662 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2bbe3cc1
DJ
1663 sym_addr,
1664 tmp_bfd_target);
1665
2f4950cd
AC
1666 /* We're done with both the temporary bfd and target. Remember,
1667 closing the target closes the underlying bfd. */
1668 target_close (tmp_bfd_target, 0);
13437d4b
KB
1669
1670 if (sym_addr != 0)
1671 {
a6d9a66e 1672 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
97ec2c2f 1673 xfree (interp_name);
13437d4b
KB
1674 return 1;
1675 }
1676
1677 /* For whatever reason we couldn't set a breakpoint in the dynamic
1678 linker. Warn and drop into the old code. */
1679 bkpt_at_symbol:
97ec2c2f 1680 xfree (interp_name);
82d03102
PG
1681 warning (_("Unable to find dynamic linker breakpoint function.\n"
1682 "GDB will be unable to debug shared library initializers\n"
1683 "and track explicitly loaded dynamic code."));
13437d4b 1684 }
13437d4b 1685
e499d0f1
DJ
1686 /* Scan through the lists of symbols, trying to look up the symbol and
1687 set a breakpoint there. Terminate loop when we/if we succeed. */
1688
1689 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1690 {
1691 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1692 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1693 {
de64a9ac
JM
1694 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1695 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1696 sym_addr,
1697 &current_target);
1698 create_solib_event_breakpoint (target_gdbarch, sym_addr);
e499d0f1
DJ
1699 return 1;
1700 }
1701 }
13437d4b 1702
c6490bf2 1703 if (!current_inferior ()->attach_flag)
13437d4b 1704 {
c6490bf2 1705 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 1706 {
c6490bf2
KB
1707 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1708 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1709 {
1710 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1711 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1712 sym_addr,
1713 &current_target);
1714 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1715 return 1;
1716 }
13437d4b
KB
1717 }
1718 }
542c95c2 1719 return 0;
13437d4b
KB
1720}
1721
7f86f058 1722/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
1723
1724static void
1725svr4_special_symbol_handling (void)
1726{
7f86f058 1727 /* Nothing to do. */
13437d4b
KB
1728}
1729
09919ac2
JK
1730/* Read the ELF program headers from ABFD. Return the contents and
1731 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 1732
09919ac2
JK
1733static gdb_byte *
1734read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 1735{
09919ac2
JK
1736 Elf_Internal_Ehdr *ehdr;
1737 gdb_byte *buf;
e2a44558 1738
09919ac2 1739 ehdr = elf_elfheader (abfd);
b8040f19 1740
09919ac2
JK
1741 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1742 if (*phdrs_size == 0)
1743 return NULL;
1744
1745 buf = xmalloc (*phdrs_size);
1746 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1747 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1748 {
1749 xfree (buf);
1750 return NULL;
1751 }
1752
1753 return buf;
b8040f19
JK
1754}
1755
01c30d6e
JK
1756/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1757 exec_bfd. Otherwise return 0.
1758
1759 We relocate all of the sections by the same amount. This
c378eb4e 1760 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
1761 According to the System V Application Binary Interface,
1762 Edition 4.1, page 5-5:
1763
1764 ... Though the system chooses virtual addresses for
1765 individual processes, it maintains the segments' relative
1766 positions. Because position-independent code uses relative
1767 addressesing between segments, the difference between
1768 virtual addresses in memory must match the difference
1769 between virtual addresses in the file. The difference
1770 between the virtual address of any segment in memory and
1771 the corresponding virtual address in the file is thus a
1772 single constant value for any one executable or shared
1773 object in a given process. This difference is the base
1774 address. One use of the base address is to relocate the
1775 memory image of the program during dynamic linking.
1776
1777 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
1778 ABI and is left unspecified in some of the earlier editions.
1779
1780 Decide if the objfile needs to be relocated. As indicated above, we will
1781 only be here when execution is stopped. But during attachment PC can be at
1782 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1783 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1784 regcache_read_pc would point to the interpreter and not the main executable.
1785
1786 So, to summarize, relocations are necessary when the start address obtained
1787 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 1788
09919ac2
JK
1789 [ The astute reader will note that we also test to make sure that
1790 the executable in question has the DYNAMIC flag set. It is my
1791 opinion that this test is unnecessary (undesirable even). It
1792 was added to avoid inadvertent relocation of an executable
1793 whose e_type member in the ELF header is not ET_DYN. There may
1794 be a time in the future when it is desirable to do relocations
1795 on other types of files as well in which case this condition
1796 should either be removed or modified to accomodate the new file
1797 type. - Kevin, Nov 2000. ] */
b8040f19 1798
01c30d6e
JK
1799static int
1800svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 1801{
41752192
JK
1802 /* ENTRY_POINT is a possible function descriptor - before
1803 a call to gdbarch_convert_from_func_ptr_addr. */
09919ac2 1804 CORE_ADDR entry_point, displacement;
b8040f19
JK
1805
1806 if (exec_bfd == NULL)
1807 return 0;
1808
09919ac2
JK
1809 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1810 being executed themselves and PIE (Position Independent Executable)
1811 executables are ET_DYN. */
1812
1813 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1814 return 0;
1815
1816 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1817 return 0;
1818
1819 displacement = entry_point - bfd_get_start_address (exec_bfd);
1820
1821 /* Verify the DISPLACEMENT candidate complies with the required page
1822 alignment. It is cheaper than the program headers comparison below. */
1823
1824 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1825 {
1826 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1827
1828 /* p_align of PT_LOAD segments does not specify any alignment but
1829 only congruency of addresses:
1830 p_offset % p_align == p_vaddr % p_align
1831 Kernel is free to load the executable with lower alignment. */
1832
1833 if ((displacement & (elf->minpagesize - 1)) != 0)
1834 return 0;
1835 }
1836
1837 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1838 comparing their program headers. If the program headers in the auxilliary
1839 vector do not match the program headers in the executable, then we are
1840 looking at a different file than the one used by the kernel - for
1841 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1842
1843 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1844 {
1845 /* Be optimistic and clear OK only if GDB was able to verify the headers
1846 really do not match. */
1847 int phdrs_size, phdrs2_size, ok = 1;
1848 gdb_byte *buf, *buf2;
0a1e94c7 1849 int arch_size;
09919ac2 1850
0a1e94c7 1851 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 1852 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
1853 if (buf != NULL && buf2 != NULL)
1854 {
1855 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1856
1857 /* We are dealing with three different addresses. EXEC_BFD
1858 represents current address in on-disk file. target memory content
1859 may be different from EXEC_BFD as the file may have been prelinked
1860 to a different address after the executable has been loaded.
1861 Moreover the address of placement in target memory can be
3e43a32a
MS
1862 different from what the program headers in target memory say -
1863 this is the goal of PIE.
0a1e94c7
JK
1864
1865 Detected DISPLACEMENT covers both the offsets of PIE placement and
1866 possible new prelink performed after start of the program. Here
1867 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1868 content offset for the verification purpose. */
1869
1870 if (phdrs_size != phdrs2_size
1871 || bfd_get_arch_size (exec_bfd) != arch_size)
1872 ok = 0;
3e43a32a
MS
1873 else if (arch_size == 32
1874 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
1875 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1876 {
1877 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1878 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1879 CORE_ADDR displacement = 0;
1880 int i;
1881
1882 /* DISPLACEMENT could be found more easily by the difference of
1883 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1884 already have enough information to compute that displacement
1885 with what we've read. */
1886
1887 for (i = 0; i < ehdr2->e_phnum; i++)
1888 if (phdr2[i].p_type == PT_LOAD)
1889 {
1890 Elf32_External_Phdr *phdrp;
1891 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1892 CORE_ADDR vaddr, paddr;
1893 CORE_ADDR displacement_vaddr = 0;
1894 CORE_ADDR displacement_paddr = 0;
1895
1896 phdrp = &((Elf32_External_Phdr *) buf)[i];
1897 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1898 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1899
1900 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1901 byte_order);
1902 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1903
1904 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1905 byte_order);
1906 displacement_paddr = paddr - phdr2[i].p_paddr;
1907
1908 if (displacement_vaddr == displacement_paddr)
1909 displacement = displacement_vaddr;
1910
1911 break;
1912 }
1913
1914 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1915
1916 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1917 {
1918 Elf32_External_Phdr *phdrp;
1919 Elf32_External_Phdr *phdr2p;
1920 gdb_byte *buf_vaddr_p, *buf_paddr_p;
1921 CORE_ADDR vaddr, paddr;
43b8e241 1922 asection *plt2_asect;
0a1e94c7
JK
1923
1924 phdrp = &((Elf32_External_Phdr *) buf)[i];
1925 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1926 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1927 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1928
1929 /* PT_GNU_STACK is an exception by being never relocated by
1930 prelink as its addresses are always zero. */
1931
1932 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1933 continue;
1934
1935 /* Check also other adjustment combinations - PR 11786. */
1936
3e43a32a
MS
1937 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1938 byte_order);
0a1e94c7
JK
1939 vaddr -= displacement;
1940 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1941
3e43a32a
MS
1942 paddr = extract_unsigned_integer (buf_paddr_p, 4,
1943 byte_order);
0a1e94c7
JK
1944 paddr -= displacement;
1945 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1946
1947 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1948 continue;
1949
43b8e241
JK
1950 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1951 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1952 if (plt2_asect)
1953 {
1954 int content2;
1955 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1956 CORE_ADDR filesz;
1957
1958 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1959 & SEC_HAS_CONTENTS) != 0;
1960
1961 filesz = extract_unsigned_integer (buf_filesz_p, 4,
1962 byte_order);
1963
1964 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1965 FILESZ is from the in-memory image. */
1966 if (content2)
1967 filesz += bfd_get_section_size (plt2_asect);
1968 else
1969 filesz -= bfd_get_section_size (plt2_asect);
1970
1971 store_unsigned_integer (buf_filesz_p, 4, byte_order,
1972 filesz);
1973
1974 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1975 continue;
1976 }
1977
0a1e94c7
JK
1978 ok = 0;
1979 break;
1980 }
1981 }
3e43a32a
MS
1982 else if (arch_size == 64
1983 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
1984 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1985 {
1986 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1987 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1988 CORE_ADDR displacement = 0;
1989 int i;
1990
1991 /* DISPLACEMENT could be found more easily by the difference of
1992 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1993 already have enough information to compute that displacement
1994 with what we've read. */
1995
1996 for (i = 0; i < ehdr2->e_phnum; i++)
1997 if (phdr2[i].p_type == PT_LOAD)
1998 {
1999 Elf64_External_Phdr *phdrp;
2000 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2001 CORE_ADDR vaddr, paddr;
2002 CORE_ADDR displacement_vaddr = 0;
2003 CORE_ADDR displacement_paddr = 0;
2004
2005 phdrp = &((Elf64_External_Phdr *) buf)[i];
2006 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2007 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2008
2009 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2010 byte_order);
2011 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2012
2013 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2014 byte_order);
2015 displacement_paddr = paddr - phdr2[i].p_paddr;
2016
2017 if (displacement_vaddr == displacement_paddr)
2018 displacement = displacement_vaddr;
2019
2020 break;
2021 }
2022
2023 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2024
2025 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2026 {
2027 Elf64_External_Phdr *phdrp;
2028 Elf64_External_Phdr *phdr2p;
2029 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2030 CORE_ADDR vaddr, paddr;
43b8e241 2031 asection *plt2_asect;
0a1e94c7
JK
2032
2033 phdrp = &((Elf64_External_Phdr *) buf)[i];
2034 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2035 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2036 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2037
2038 /* PT_GNU_STACK is an exception by being never relocated by
2039 prelink as its addresses are always zero. */
2040
2041 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2042 continue;
2043
2044 /* Check also other adjustment combinations - PR 11786. */
2045
3e43a32a
MS
2046 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2047 byte_order);
0a1e94c7
JK
2048 vaddr -= displacement;
2049 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2050
3e43a32a
MS
2051 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2052 byte_order);
0a1e94c7
JK
2053 paddr -= displacement;
2054 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2055
2056 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2057 continue;
2058
43b8e241
JK
2059 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2060 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2061 if (plt2_asect)
2062 {
2063 int content2;
2064 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2065 CORE_ADDR filesz;
2066
2067 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2068 & SEC_HAS_CONTENTS) != 0;
2069
2070 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2071 byte_order);
2072
2073 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2074 FILESZ is from the in-memory image. */
2075 if (content2)
2076 filesz += bfd_get_section_size (plt2_asect);
2077 else
2078 filesz -= bfd_get_section_size (plt2_asect);
2079
2080 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2081 filesz);
2082
2083 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2084 continue;
2085 }
2086
0a1e94c7
JK
2087 ok = 0;
2088 break;
2089 }
2090 }
2091 else
2092 ok = 0;
2093 }
09919ac2
JK
2094
2095 xfree (buf);
2096 xfree (buf2);
2097
2098 if (!ok)
2099 return 0;
2100 }
b8040f19 2101
ccf26247
JK
2102 if (info_verbose)
2103 {
2104 /* It can be printed repeatedly as there is no easy way to check
2105 the executable symbols/file has been already relocated to
2106 displacement. */
2107
2108 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2109 "displacement %s for \"%s\".\n"),
2110 paddress (target_gdbarch, displacement),
2111 bfd_get_filename (exec_bfd));
2112 }
2113
01c30d6e
JK
2114 *displacementp = displacement;
2115 return 1;
b8040f19
JK
2116}
2117
2118/* Relocate the main executable. This function should be called upon
c378eb4e 2119 stopping the inferior process at the entry point to the program.
b8040f19
JK
2120 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2121 different, the main executable is relocated by the proper amount. */
2122
2123static void
2124svr4_relocate_main_executable (void)
2125{
01c30d6e
JK
2126 CORE_ADDR displacement;
2127
4e5799b6
JK
2128 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2129 probably contains the offsets computed using the PIE displacement
2130 from the previous run, which of course are irrelevant for this run.
2131 So we need to determine the new PIE displacement and recompute the
2132 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2133 already contains pre-computed offsets.
01c30d6e 2134
4e5799b6 2135 If we cannot compute the PIE displacement, either:
01c30d6e 2136
4e5799b6
JK
2137 - The executable is not PIE.
2138
2139 - SYMFILE_OBJFILE does not match the executable started in the target.
2140 This can happen for main executable symbols loaded at the host while
2141 `ld.so --ld-args main-executable' is loaded in the target.
2142
2143 Then we leave the section offsets untouched and use them as is for
2144 this run. Either:
2145
2146 - These section offsets were properly reset earlier, and thus
2147 already contain the correct values. This can happen for instance
2148 when reconnecting via the remote protocol to a target that supports
2149 the `qOffsets' packet.
2150
2151 - The section offsets were not reset earlier, and the best we can
c378eb4e 2152 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2153
2154 if (! svr4_exec_displacement (&displacement))
2155 return;
b8040f19 2156
01c30d6e
JK
2157 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2158 addresses. */
b8040f19
JK
2159
2160 if (symfile_objfile)
e2a44558 2161 {
e2a44558 2162 struct section_offsets *new_offsets;
b8040f19 2163 int i;
e2a44558 2164
b8040f19
JK
2165 new_offsets = alloca (symfile_objfile->num_sections
2166 * sizeof (*new_offsets));
e2a44558 2167
b8040f19
JK
2168 for (i = 0; i < symfile_objfile->num_sections; i++)
2169 new_offsets->offsets[i] = displacement;
e2a44558 2170
b8040f19 2171 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2172 }
51bee8e9
JK
2173 else if (exec_bfd)
2174 {
2175 asection *asect;
2176
2177 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2178 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2179 (bfd_section_vma (exec_bfd, asect)
2180 + displacement));
2181 }
e2a44558
KB
2182}
2183
7f86f058 2184/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2185
2186 For SVR4 executables, this first instruction is either the first
2187 instruction in the dynamic linker (for dynamically linked
2188 executables) or the instruction at "start" for statically linked
2189 executables. For dynamically linked executables, the system
2190 first exec's /lib/libc.so.N, which contains the dynamic linker,
2191 and starts it running. The dynamic linker maps in any needed
2192 shared libraries, maps in the actual user executable, and then
2193 jumps to "start" in the user executable.
2194
7f86f058
PA
2195 We can arrange to cooperate with the dynamic linker to discover the
2196 names of shared libraries that are dynamically linked, and the base
2197 addresses to which they are linked.
13437d4b
KB
2198
2199 This function is responsible for discovering those names and
2200 addresses, and saving sufficient information about them to allow
2201 their symbols to be read at a later time.
2202
2203 FIXME
2204
2205 Between enable_break() and disable_break(), this code does not
2206 properly handle hitting breakpoints which the user might have
2207 set in the startup code or in the dynamic linker itself. Proper
2208 handling will probably have to wait until the implementation is
2209 changed to use the "breakpoint handler function" method.
2210
7f86f058 2211 Also, what if child has exit()ed? Must exit loop somehow. */
13437d4b 2212
e2a44558 2213static void
268a4a75 2214svr4_solib_create_inferior_hook (int from_tty)
13437d4b 2215{
1cd337a5 2216#if defined(_SCO_DS)
d6b48e9c 2217 struct inferior *inf;
2020b7ab 2218 struct thread_info *tp;
1cd337a5 2219#endif /* defined(_SCO_DS) */
1a816a87
PA
2220 struct svr4_info *info;
2221
6c95b8df 2222 info = get_svr4_info ();
2020b7ab 2223
e2a44558 2224 /* Relocate the main executable if necessary. */
86e4bafc 2225 svr4_relocate_main_executable ();
e2a44558 2226
c91c8c16
PA
2227 /* No point setting a breakpoint in the dynamic linker if we can't
2228 hit it (e.g., a core file, or a trace file). */
2229 if (!target_has_execution)
2230 return;
2231
d5a921c9 2232 if (!svr4_have_link_map_offsets ())
513f5903 2233 return;
d5a921c9 2234
268a4a75 2235 if (!enable_break (info, from_tty))
542c95c2 2236 return;
13437d4b 2237
ab31aa69
KB
2238#if defined(_SCO_DS)
2239 /* SCO needs the loop below, other systems should be using the
13437d4b
KB
2240 special shared library breakpoints and the shared library breakpoint
2241 service routine.
2242
2243 Now run the target. It will eventually hit the breakpoint, at
2244 which point all of the libraries will have been mapped in and we
2245 can go groveling around in the dynamic linker structures to find
c378eb4e 2246 out what we need to know about them. */
13437d4b 2247
d6b48e9c 2248 inf = current_inferior ();
2020b7ab
PA
2249 tp = inferior_thread ();
2250
13437d4b 2251 clear_proceed_status ();
16c381f0
JK
2252 inf->control.stop_soon = STOP_QUIETLY;
2253 tp->suspend.stop_signal = TARGET_SIGNAL_0;
13437d4b
KB
2254 do
2255 {
16c381f0 2256 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 2257 wait_for_inferior ();
13437d4b 2258 }
16c381f0
JK
2259 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2260 inf->control.stop_soon = NO_STOP_QUIETLY;
ab31aa69 2261#endif /* defined(_SCO_DS) */
13437d4b
KB
2262}
2263
2264static void
2265svr4_clear_solib (void)
2266{
6c95b8df
PA
2267 struct svr4_info *info;
2268
2269 info = get_svr4_info ();
2270 info->debug_base = 0;
2271 info->debug_loader_offset_p = 0;
2272 info->debug_loader_offset = 0;
2273 xfree (info->debug_loader_name);
2274 info->debug_loader_name = NULL;
13437d4b
KB
2275}
2276
6bb7be43
JB
2277/* Clear any bits of ADDR that wouldn't fit in a target-format
2278 data pointer. "Data pointer" here refers to whatever sort of
2279 address the dynamic linker uses to manage its sections. At the
2280 moment, we don't support shared libraries on any processors where
2281 code and data pointers are different sizes.
2282
2283 This isn't really the right solution. What we really need here is
2284 a way to do arithmetic on CORE_ADDR values that respects the
2285 natural pointer/address correspondence. (For example, on the MIPS,
2286 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2287 sign-extend the value. There, simply truncating the bits above
819844ad 2288 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
2289 be a new gdbarch method or something. */
2290static CORE_ADDR
2291svr4_truncate_ptr (CORE_ADDR addr)
2292{
1cf3db46 2293 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
2294 /* We don't need to truncate anything, and the bit twiddling below
2295 will fail due to overflow problems. */
2296 return addr;
2297 else
1cf3db46 2298 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
6bb7be43
JB
2299}
2300
2301
749499cb
KB
2302static void
2303svr4_relocate_section_addresses (struct so_list *so,
0542c86d 2304 struct target_section *sec)
749499cb 2305{
b23518f0 2306 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so,
cc10cae3 2307 sec->bfd));
b23518f0 2308 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
cc10cae3 2309 sec->bfd));
749499cb 2310}
4b188b9f 2311\f
749499cb 2312
4b188b9f 2313/* Architecture-specific operations. */
6bb7be43 2314
4b188b9f
MK
2315/* Per-architecture data key. */
2316static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 2317
4b188b9f 2318struct solib_svr4_ops
e5e2b9ff 2319{
4b188b9f
MK
2320 /* Return a description of the layout of `struct link_map'. */
2321 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2322};
e5e2b9ff 2323
4b188b9f 2324/* Return a default for the architecture-specific operations. */
e5e2b9ff 2325
4b188b9f
MK
2326static void *
2327solib_svr4_init (struct obstack *obstack)
e5e2b9ff 2328{
4b188b9f 2329 struct solib_svr4_ops *ops;
e5e2b9ff 2330
4b188b9f 2331 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 2332 ops->fetch_link_map_offsets = NULL;
4b188b9f 2333 return ops;
e5e2b9ff
KB
2334}
2335
4b188b9f 2336/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 2337 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 2338
21479ded 2339void
e5e2b9ff
KB
2340set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2341 struct link_map_offsets *(*flmo) (void))
21479ded 2342{
4b188b9f
MK
2343 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2344
2345 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
2346
2347 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
2348}
2349
4b188b9f
MK
2350/* Fetch a link_map_offsets structure using the architecture-specific
2351 `struct link_map_offsets' fetcher. */
1c4dcb57 2352
4b188b9f
MK
2353static struct link_map_offsets *
2354svr4_fetch_link_map_offsets (void)
21479ded 2355{
1cf3db46 2356 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
4b188b9f
MK
2357
2358 gdb_assert (ops->fetch_link_map_offsets);
2359 return ops->fetch_link_map_offsets ();
21479ded
KB
2360}
2361
4b188b9f
MK
2362/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2363
2364static int
2365svr4_have_link_map_offsets (void)
2366{
1cf3db46 2367 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
433759f7 2368
4b188b9f
MK
2369 return (ops->fetch_link_map_offsets != NULL);
2370}
2371\f
2372
e4bbbda8
MK
2373/* Most OS'es that have SVR4-style ELF dynamic libraries define a
2374 `struct r_debug' and a `struct link_map' that are binary compatible
2375 with the origional SVR4 implementation. */
2376
2377/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2378 for an ILP32 SVR4 system. */
d989b283 2379
e4bbbda8
MK
2380struct link_map_offsets *
2381svr4_ilp32_fetch_link_map_offsets (void)
2382{
2383 static struct link_map_offsets lmo;
2384 static struct link_map_offsets *lmp = NULL;
2385
2386 if (lmp == NULL)
2387 {
2388 lmp = &lmo;
2389
e4cd0d6a
MK
2390 lmo.r_version_offset = 0;
2391 lmo.r_version_size = 4;
e4bbbda8 2392 lmo.r_map_offset = 4;
7cd25cfc 2393 lmo.r_brk_offset = 8;
e4cd0d6a 2394 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
2395
2396 /* Everything we need is in the first 20 bytes. */
2397 lmo.link_map_size = 20;
2398 lmo.l_addr_offset = 0;
e4bbbda8 2399 lmo.l_name_offset = 4;
cc10cae3 2400 lmo.l_ld_offset = 8;
e4bbbda8 2401 lmo.l_next_offset = 12;
e4bbbda8 2402 lmo.l_prev_offset = 16;
e4bbbda8
MK
2403 }
2404
2405 return lmp;
2406}
2407
2408/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2409 for an LP64 SVR4 system. */
d989b283 2410
e4bbbda8
MK
2411struct link_map_offsets *
2412svr4_lp64_fetch_link_map_offsets (void)
2413{
2414 static struct link_map_offsets lmo;
2415 static struct link_map_offsets *lmp = NULL;
2416
2417 if (lmp == NULL)
2418 {
2419 lmp = &lmo;
2420
e4cd0d6a
MK
2421 lmo.r_version_offset = 0;
2422 lmo.r_version_size = 4;
e4bbbda8 2423 lmo.r_map_offset = 8;
7cd25cfc 2424 lmo.r_brk_offset = 16;
e4cd0d6a 2425 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
2426
2427 /* Everything we need is in the first 40 bytes. */
2428 lmo.link_map_size = 40;
2429 lmo.l_addr_offset = 0;
e4bbbda8 2430 lmo.l_name_offset = 8;
cc10cae3 2431 lmo.l_ld_offset = 16;
e4bbbda8 2432 lmo.l_next_offset = 24;
e4bbbda8 2433 lmo.l_prev_offset = 32;
e4bbbda8
MK
2434 }
2435
2436 return lmp;
2437}
2438\f
2439
7d522c90 2440struct target_so_ops svr4_so_ops;
13437d4b 2441
c378eb4e 2442/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
2443 different rule for symbol lookup. The lookup begins here in the DSO, not in
2444 the main executable. */
2445
2446static struct symbol *
2447elf_lookup_lib_symbol (const struct objfile *objfile,
2448 const char *name,
21b556f4 2449 const domain_enum domain)
3a40aaa0 2450{
61f0d762
JK
2451 bfd *abfd;
2452
2453 if (objfile == symfile_objfile)
2454 abfd = exec_bfd;
2455 else
2456 {
2457 /* OBJFILE should have been passed as the non-debug one. */
2458 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2459
2460 abfd = objfile->obfd;
2461 }
2462
2463 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3a40aaa0
UW
2464 return NULL;
2465
94af9270 2466 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
2467}
2468
a78f21af
AC
2469extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2470
13437d4b
KB
2471void
2472_initialize_svr4_solib (void)
2473{
4b188b9f 2474 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df
PA
2475 solib_svr4_pspace_data
2476 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
4b188b9f 2477
749499cb 2478 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b
KB
2479 svr4_so_ops.free_so = svr4_free_so;
2480 svr4_so_ops.clear_solib = svr4_clear_solib;
2481 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2482 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2483 svr4_so_ops.current_sos = svr4_current_sos;
2484 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 2485 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 2486 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 2487 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 2488 svr4_so_ops.same = svr4_same;
de18c1d8 2489 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
13437d4b 2490}
This page took 1.591636 seconds and 4 git commands to generate.