import gdb-1999-10-04 snapshot
[deliverable/binutils-gdb.git] / gdb / solib.c
CommitLineData
c906108c
SS
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22
23#include "defs.h"
24
25/* This file is only compilable if link.h is available. */
26
27#ifdef HAVE_LINK_H
28
29#include <sys/types.h>
30#include <signal.h>
31#include "gdb_string.h"
32#include <sys/param.h>
33#include <fcntl.h>
c906108c
SS
34
35#ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
c5aa993b 37#include <a.out.h>
c906108c
SS
38#else
39#include "elf/external.h"
40#endif
41
42#include <link.h>
43
44#include "symtab.h"
45#include "bfd.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "gdbcore.h"
49#include "command.h"
50#include "target.h"
51#include "frame.h"
52#include "gnu-regex.h"
53#include "inferior.h"
54#include "environ.h"
55#include "language.h"
56#include "gdbcmd.h"
57
c5aa993b 58#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
c906108c
SS
59
60/* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68#ifdef SVR4_SHARED_LIBS
c5aa993b
JM
69static char *solib_break_names[] =
70{
c906108c
SS
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76};
77#endif
78
79#define BKPT_AT_SYMBOL 1
80
81#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
c5aa993b
JM
82static char *bkpt_names[] =
83{
c906108c
SS
84#ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86#endif
87 "_start",
88 "main",
89 NULL
90};
91#endif
92
93/* Symbols which are used to locate the base of the link map structures. */
94
95#ifndef SVR4_SHARED_LIBS
c5aa993b
JM
96static char *debug_base_symbols[] =
97{
c906108c
SS
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101};
102#endif
103
c5aa993b
JM
104static char *main_name_list[] =
105{
c906108c
SS
106 "main_$main",
107 NULL
108};
109
110/* local data declarations */
111
112#ifndef SVR4_SHARED_LIBS
113
114#define LM_ADDR(so) ((so) -> lm.lm_addr)
115#define LM_NEXT(so) ((so) -> lm.lm_next)
116#define LM_NAME(so) ((so) -> lm.lm_name)
117/* Test for first link map entry; first entry is a shared library. */
118#define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
119static struct link_dynamic dynamic_copy;
120static struct link_dynamic_2 ld_2_copy;
121static struct ld_debug debug_copy;
122static CORE_ADDR debug_addr;
123static CORE_ADDR flag_addr;
124
c5aa993b 125#else /* SVR4_SHARED_LIBS */
c906108c
SS
126
127#define LM_ADDR(so) ((so) -> lm.l_addr)
128#define LM_NEXT(so) ((so) -> lm.l_next)
129#define LM_NAME(so) ((so) -> lm.l_name)
130/* Test for first link map entry; first entry is the exec-file. */
131#define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
132static struct r_debug debug_copy;
133char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
134
c5aa993b
JM
135#endif /* !SVR4_SHARED_LIBS */
136
137struct so_list
138 {
139 struct so_list *next; /* next structure in linked list */
140 struct link_map lm; /* copy of link map from inferior */
141 struct link_map *lmaddr; /* addr in inferior lm was read from */
142 CORE_ADDR lmend; /* upper addr bound of mapped object */
143 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
144 char symbols_loaded; /* flag: symbols read in yet? */
145 char from_tty; /* flag: print msgs? */
146 struct objfile *objfile; /* objfile for loaded lib */
147 struct section_table *sections;
148 struct section_table *sections_end;
149 struct section_table *textsection;
150 bfd *abfd;
151 };
c906108c
SS
152
153static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 154static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
155static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
156
c5aa993b 157static int solib_cleanup_queued = 0; /* make_run_cleanup called */
c906108c
SS
158
159extern int
c5aa993b 160fdmatch PARAMS ((int, int)); /* In libiberty */
c906108c
SS
161
162/* Local function prototypes */
163
164static void
165do_clear_solib PARAMS ((PTR));
166
167static int
168match_main PARAMS ((char *));
169
170static void
171special_symbol_handling PARAMS ((struct so_list *));
172
173static void
174sharedlibrary_command PARAMS ((char *, int));
175
176static int
177enable_break PARAMS ((void));
178
179static void
180info_sharedlibrary_command PARAMS ((char *, int));
181
182static int symbol_add_stub PARAMS ((PTR));
183
184static struct so_list *
c5aa993b 185 find_solib PARAMS ((struct so_list *));
c906108c
SS
186
187static struct link_map *
c5aa993b 188 first_link_map_member PARAMS ((void));
c906108c
SS
189
190static CORE_ADDR
c5aa993b 191 locate_base PARAMS ((void));
c906108c
SS
192
193static int solib_map_sections PARAMS ((PTR));
194
195#ifdef SVR4_SHARED_LIBS
196
197static CORE_ADDR
c5aa993b 198 elf_locate_base PARAMS ((void));
c906108c
SS
199
200#else
201
202static int
203disable_break PARAMS ((void));
204
205static void
206allocate_rt_common_objfile PARAMS ((void));
207
208static void
209solib_add_common_symbols PARAMS ((struct rtc_symb *));
210
211#endif
212
213void _initialize_solib PARAMS ((void));
214
215/* If non-zero, this is a prefix that will be added to the front of the name
216 shared libraries with an absolute filename for loading. */
217static char *solib_absolute_prefix = NULL;
218
219/* If non-empty, this is a search path for loading non-absolute shared library
220 symbol files. This takes precedence over the environment variables PATH
221 and LD_LIBRARY_PATH. */
222static char *solib_search_path = NULL;
223
224/*
225
c5aa993b 226 LOCAL FUNCTION
c906108c 227
c5aa993b 228 solib_map_sections -- open bfd and build sections for shared lib
c906108c 229
c5aa993b 230 SYNOPSIS
c906108c 231
c5aa993b 232 static int solib_map_sections (struct so_list *so)
c906108c 233
c5aa993b 234 DESCRIPTION
c906108c 235
c5aa993b
JM
236 Given a pointer to one of the shared objects in our list
237 of mapped objects, use the recorded name to open a bfd
238 descriptor for the object, build a section table, and then
239 relocate all the section addresses by the base address at
240 which the shared object was mapped.
c906108c 241
c5aa993b 242 FIXMES
c906108c 243
c5aa993b
JM
244 In most (all?) cases the shared object file name recorded in the
245 dynamic linkage tables will be a fully qualified pathname. For
246 cases where it isn't, do we really mimic the systems search
247 mechanism correctly in the below code (particularly the tilde
248 expansion stuff?).
c906108c
SS
249 */
250
251static int
252solib_map_sections (arg)
253 PTR arg;
254{
255 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
256 char *filename;
257 char *scratch_pathname;
258 int scratch_chan;
259 struct section_table *p;
260 struct cleanup *old_chain;
261 bfd *abfd;
c5aa993b
JM
262
263 filename = tilde_expand (so->so_name);
264
c906108c
SS
265 if (solib_absolute_prefix && ROOTED_P (filename))
266 /* Prefix shared libraries with absolute filenames with
267 SOLIB_ABSOLUTE_PREFIX. */
268 {
269 char *pfxed_fn;
270 int pfx_len;
271
272 pfx_len = strlen (solib_absolute_prefix);
273
274 /* Remove trailing slashes. */
275 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
276 pfx_len--;
277
278 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
279 strcpy (pfxed_fn, solib_absolute_prefix);
280 strcat (pfxed_fn, filename);
281 free (filename);
282
283 filename = pfxed_fn;
284 }
285
286 old_chain = make_cleanup (free, filename);
287
288 scratch_chan = -1;
289
290 if (solib_search_path)
291 scratch_chan = openp (solib_search_path,
292 1, filename, O_RDONLY, 0, &scratch_pathname);
293 if (scratch_chan < 0)
c5aa993b 294 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
c906108c
SS
295 1, filename, O_RDONLY, 0, &scratch_pathname);
296 if (scratch_chan < 0)
297 {
c5aa993b
JM
298 scratch_chan = openp (get_in_environ
299 (inferior_environ, "LD_LIBRARY_PATH"),
c906108c
SS
300 1, filename, O_RDONLY, 0, &scratch_pathname);
301 }
302 if (scratch_chan < 0)
303 {
304 perror_with_name (filename);
305 }
306 /* Leave scratch_pathname allocated. abfd->name will point to it. */
307
308 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
309 if (!abfd)
310 {
311 close (scratch_chan);
312 error ("Could not open `%s' as an executable file: %s",
313 scratch_pathname, bfd_errmsg (bfd_get_error ()));
314 }
315 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
316 so->abfd = abfd;
317 abfd->cacheable = true;
c906108c
SS
318
319 /* copy full path name into so_name, so that later symbol_file_add can find
320 it */
321 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
322 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
323 strcpy (so->so_name, scratch_pathname);
324
325 if (!bfd_check_format (abfd, bfd_object))
326 {
327 error ("\"%s\": not in executable format: %s.",
328 scratch_pathname, bfd_errmsg (bfd_get_error ()));
329 }
c5aa993b 330 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 331 {
c5aa993b 332 error ("Can't find the file sections in `%s': %s",
c906108c
SS
333 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
334 }
335
c5aa993b 336 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
337 {
338 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
339 object's file by the base address to which the object was actually
340 mapped. */
341 p->addr += (CORE_ADDR) LM_ADDR (so);
342 p->endaddr += (CORE_ADDR) LM_ADDR (so);
343 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
344 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 345 {
c5aa993b 346 so->textsection = p;
c906108c
SS
347 }
348 }
349
350 /* Free the file names, close the file now. */
351 do_cleanups (old_chain);
352
353 return (1);
354}
355
356#ifndef SVR4_SHARED_LIBS
357
358/* Allocate the runtime common object file. */
359
360static void
361allocate_rt_common_objfile ()
362{
363 struct objfile *objfile;
364 struct objfile *last_one;
365
366 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
367 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
368 objfile->md = NULL;
369 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 370 xmalloc, free);
c5aa993b 371 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 372 free);
c5aa993b 373 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 374 free);
c5aa993b 375 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 376 free);
c5aa993b 377 objfile->name = mstrsave (objfile->md, "rt_common");
c906108c
SS
378
379 /* Add this file onto the tail of the linked list of other such files. */
380
c5aa993b 381 objfile->next = NULL;
c906108c
SS
382 if (object_files == NULL)
383 object_files = objfile;
384 else
385 {
386 for (last_one = object_files;
c5aa993b
JM
387 last_one->next;
388 last_one = last_one->next);
389 last_one->next = objfile;
c906108c
SS
390 }
391
392 rt_common_objfile = objfile;
393}
394
395/* Read all dynamically loaded common symbol definitions from the inferior
396 and put them into the minimal symbol table for the runtime common
397 objfile. */
398
399static void
400solib_add_common_symbols (rtc_symp)
c5aa993b 401 struct rtc_symb *rtc_symp;
c906108c
SS
402{
403 struct rtc_symb inferior_rtc_symb;
404 struct nlist inferior_rtc_nlist;
405 int len;
406 char *name;
407
408 /* Remove any runtime common symbols from previous runs. */
409
c5aa993b 410 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
c906108c 411 {
c5aa993b
JM
412 obstack_free (&rt_common_objfile->symbol_obstack, 0);
413 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
c906108c 414 xmalloc, free);
c5aa993b
JM
415 rt_common_objfile->minimal_symbol_count = 0;
416 rt_common_objfile->msymbols = NULL;
c906108c
SS
417 }
418
419 init_minimal_symbol_collection ();
420 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
421
422 while (rtc_symp)
423 {
424 read_memory ((CORE_ADDR) rtc_symp,
425 (char *) &inferior_rtc_symb,
426 sizeof (inferior_rtc_symb));
427 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
428 (char *) &inferior_rtc_nlist,
c5aa993b 429 sizeof (inferior_rtc_nlist));
c906108c
SS
430 if (inferior_rtc_nlist.n_type == N_COMM)
431 {
432 /* FIXME: The length of the symbol name is not available, but in the
433 current implementation the common symbol is allocated immediately
434 behind the name of the symbol. */
435 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
436
437 name = xmalloc (len);
438 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
439
440 /* Allocate the runtime common objfile if necessary. */
441 if (rt_common_objfile == NULL)
442 allocate_rt_common_objfile ();
443
444 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
445 mst_bss, rt_common_objfile);
446 free (name);
447 }
448 rtc_symp = inferior_rtc_symb.rtc_next;
449 }
450
451 /* Install any minimal symbols that have been collected as the current
452 minimal symbols for the runtime common objfile. */
453
454 install_minimal_symbols (rt_common_objfile);
455}
456
c5aa993b 457#endif /* SVR4_SHARED_LIBS */
c906108c
SS
458
459
460#ifdef SVR4_SHARED_LIBS
461
462static CORE_ADDR
c5aa993b 463 bfd_lookup_symbol PARAMS ((bfd *, char *));
c906108c
SS
464
465/*
466
c5aa993b 467 LOCAL FUNCTION
c906108c 468
c5aa993b 469 bfd_lookup_symbol -- lookup the value for a specific symbol
c906108c 470
c5aa993b 471 SYNOPSIS
c906108c 472
c5aa993b 473 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
c906108c 474
c5aa993b 475 DESCRIPTION
c906108c 476
c5aa993b
JM
477 An expensive way to lookup the value of a single symbol for
478 bfd's that are only temporary anyway. This is used by the
479 shared library support to find the address of the debugger
480 interface structures in the shared library.
c906108c 481
c5aa993b
JM
482 Note that 0 is specifically allowed as an error return (no
483 such symbol).
484 */
c906108c
SS
485
486static CORE_ADDR
487bfd_lookup_symbol (abfd, symname)
488 bfd *abfd;
489 char *symname;
490{
491 unsigned int storage_needed;
492 asymbol *sym;
493 asymbol **symbol_table;
494 unsigned int number_of_symbols;
495 unsigned int i;
496 struct cleanup *back_to;
497 CORE_ADDR symaddr = 0;
c5aa993b 498
c906108c
SS
499 storage_needed = bfd_get_symtab_upper_bound (abfd);
500
501 if (storage_needed > 0)
502 {
503 symbol_table = (asymbol **) xmalloc (storage_needed);
c5aa993b
JM
504 back_to = make_cleanup (free, (PTR) symbol_table);
505 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
506
c906108c
SS
507 for (i = 0; i < number_of_symbols; i++)
508 {
509 sym = *symbol_table++;
c5aa993b 510 if (STREQ (sym->name, symname))
c906108c
SS
511 {
512 /* Bfd symbols are section relative. */
c5aa993b 513 symaddr = sym->value + sym->section->vma;
c906108c
SS
514 break;
515 }
516 }
517 do_cleanups (back_to);
518 }
519 return (symaddr);
520}
521
522#ifdef HANDLE_SVR4_EXEC_EMULATORS
523
524/*
c5aa993b
JM
525 Solaris BCP (the part of Solaris which allows it to run SunOS4
526 a.out files) throws in another wrinkle. Solaris does not fill
527 in the usual a.out link map structures when running BCP programs,
528 the only way to get at them is via groping around in the dynamic
529 linker.
530 The dynamic linker and it's structures are located in the shared
531 C library, which gets run as the executable's "interpreter" by
532 the kernel.
533
534 Note that we can assume nothing about the process state at the time
535 we need to find these structures. We may be stopped on the first
536 instruction of the interpreter (C shared library), the first
537 instruction of the executable itself, or somewhere else entirely
538 (if we attached to the process for example).
539 */
540
541static char *debug_base_symbols[] =
542{
543 "r_debug", /* Solaris 2.3 */
544 "_r_debug", /* Solaris 2.1, 2.2 */
c906108c
SS
545 NULL
546};
547
548static int
549look_for_base PARAMS ((int, CORE_ADDR));
550
551/*
552
c5aa993b 553 LOCAL FUNCTION
c906108c 554
c5aa993b 555 look_for_base -- examine file for each mapped address segment
c906108c 556
c5aa993b 557 SYNOPSYS
c906108c 558
c5aa993b 559 static int look_for_base (int fd, CORE_ADDR baseaddr)
c906108c 560
c5aa993b 561 DESCRIPTION
c906108c 562
c5aa993b
JM
563 This function is passed to proc_iterate_over_mappings, which
564 causes it to get called once for each mapped address space, with
565 an open file descriptor for the file mapped to that space, and the
566 base address of that mapped space.
c906108c 567
c5aa993b
JM
568 Our job is to find the debug base symbol in the file that this
569 fd is open on, if it exists, and if so, initialize the dynamic
570 linker structure base address debug_base.
c906108c 571
c5aa993b
JM
572 Note that this is a computationally expensive proposition, since
573 we basically have to open a bfd on every call, so we specifically
574 avoid opening the exec file.
c906108c
SS
575 */
576
577static int
578look_for_base (fd, baseaddr)
579 int fd;
580 CORE_ADDR baseaddr;
581{
582 bfd *interp_bfd;
583 CORE_ADDR address = 0;
584 char **symbolp;
585
586 /* If the fd is -1, then there is no file that corresponds to this
587 mapped memory segment, so skip it. Also, if the fd corresponds
588 to the exec file, skip it as well. */
589
590 if (fd == -1
591 || (exec_bfd != NULL
c5aa993b 592 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
c906108c
SS
593 {
594 return (0);
595 }
596
597 /* Try to open whatever random file this fd corresponds to. Note that
598 we have no way currently to find the filename. Don't gripe about
599 any problems we might have, just fail. */
600
601 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
602 {
603 return (0);
604 }
605 if (!bfd_check_format (interp_bfd, bfd_object))
606 {
607 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 608 interp_bfd. */
c906108c
SS
609 bfd_close (interp_bfd);
610 return (0);
611 }
612
613 /* Now try to find our debug base symbol in this file, which we at
614 least know to be a valid ELF executable or shared library. */
615
616 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
617 {
618 address = bfd_lookup_symbol (interp_bfd, *symbolp);
619 if (address != 0)
620 {
621 break;
622 }
623 }
624 if (address == 0)
625 {
626 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 627 interp_bfd. */
c906108c
SS
628 bfd_close (interp_bfd);
629 return (0);
630 }
631
632 /* Eureka! We found the symbol. But now we may need to relocate it
633 by the base address. If the symbol's value is less than the base
634 address of the shared library, then it hasn't yet been relocated
635 by the dynamic linker, and we have to do it ourself. FIXME: Note
636 that we make the assumption that the first segment that corresponds
637 to the shared library has the base address to which the library
638 was relocated. */
639
640 if (address < baseaddr)
641 {
642 address += baseaddr;
643 }
644 debug_base = address;
645 /* FIXME-leak: on failure, might not free all memory associated with
646 interp_bfd. */
647 bfd_close (interp_bfd);
648 return (1);
649}
650#endif /* HANDLE_SVR4_EXEC_EMULATORS */
651
652/*
653
c5aa993b 654 LOCAL FUNCTION
c906108c 655
c5aa993b
JM
656 elf_locate_base -- locate the base address of dynamic linker structs
657 for SVR4 elf targets.
c906108c 658
c5aa993b 659 SYNOPSIS
c906108c 660
c5aa993b 661 CORE_ADDR elf_locate_base (void)
c906108c 662
c5aa993b 663 DESCRIPTION
c906108c 664
c5aa993b
JM
665 For SVR4 elf targets the address of the dynamic linker's runtime
666 structure is contained within the dynamic info section in the
667 executable file. The dynamic section is also mapped into the
668 inferior address space. Because the runtime loader fills in the
669 real address before starting the inferior, we have to read in the
670 dynamic info section from the inferior address space.
671 If there are any errors while trying to find the address, we
672 silently return 0, otherwise the found address is returned.
c906108c
SS
673
674 */
675
676static CORE_ADDR
677elf_locate_base ()
678{
679 sec_ptr dyninfo_sect;
680 int dyninfo_sect_size;
681 CORE_ADDR dyninfo_addr;
682 char *buf;
683 char *bufend;
684
685 /* Find the start address of the .dynamic section. */
686 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
687 if (dyninfo_sect == NULL)
688 return 0;
689 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
690
691 /* Read in .dynamic section, silently ignore errors. */
692 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
693 buf = alloca (dyninfo_sect_size);
694 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
695 return 0;
696
697 /* Find the DT_DEBUG entry in the the .dynamic section.
698 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
699 no DT_DEBUG entries. */
700#ifndef TARGET_ELF64
701 for (bufend = buf + dyninfo_sect_size;
702 buf < bufend;
703 buf += sizeof (Elf32_External_Dyn))
704 {
c5aa993b 705 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
c906108c
SS
706 long dyn_tag;
707 CORE_ADDR dyn_ptr;
708
709 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
710 if (dyn_tag == DT_NULL)
711 break;
712 else if (dyn_tag == DT_DEBUG)
713 {
714 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
715 return dyn_ptr;
716 }
717#ifdef DT_MIPS_RLD_MAP
718 else if (dyn_tag == DT_MIPS_RLD_MAP)
719 {
720 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
721
722 /* DT_MIPS_RLD_MAP contains a pointer to the address
723 of the dynamic link structure. */
724 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
725 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
726 return 0;
727 return extract_unsigned_integer (pbuf, sizeof (pbuf));
728 }
729#endif
730 }
731#else /* ELF64 */
732 for (bufend = buf + dyninfo_sect_size;
733 buf < bufend;
734 buf += sizeof (Elf64_External_Dyn))
735 {
c5aa993b 736 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
c906108c
SS
737 long dyn_tag;
738 CORE_ADDR dyn_ptr;
739
740 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
741 if (dyn_tag == DT_NULL)
742 break;
743 else if (dyn_tag == DT_DEBUG)
744 {
745 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
746 return dyn_ptr;
747 }
748 }
749#endif
750
751 /* DT_DEBUG entry not found. */
752 return 0;
753}
754
c5aa993b 755#endif /* SVR4_SHARED_LIBS */
c906108c
SS
756
757/*
758
c5aa993b 759 LOCAL FUNCTION
c906108c 760
c5aa993b 761 locate_base -- locate the base address of dynamic linker structs
c906108c 762
c5aa993b 763 SYNOPSIS
c906108c 764
c5aa993b 765 CORE_ADDR locate_base (void)
c906108c 766
c5aa993b 767 DESCRIPTION
c906108c 768
c5aa993b
JM
769 For both the SunOS and SVR4 shared library implementations, if the
770 inferior executable has been linked dynamically, there is a single
771 address somewhere in the inferior's data space which is the key to
772 locating all of the dynamic linker's runtime structures. This
773 address is the value of the debug base symbol. The job of this
774 function is to find and return that address, or to return 0 if there
775 is no such address (the executable is statically linked for example).
c906108c 776
c5aa993b
JM
777 For SunOS, the job is almost trivial, since the dynamic linker and
778 all of it's structures are statically linked to the executable at
779 link time. Thus the symbol for the address we are looking for has
780 already been added to the minimal symbol table for the executable's
781 objfile at the time the symbol file's symbols were read, and all we
782 have to do is look it up there. Note that we explicitly do NOT want
783 to find the copies in the shared library.
c906108c 784
c5aa993b
JM
785 The SVR4 version is a bit more complicated because the address
786 is contained somewhere in the dynamic info section. We have to go
787 to a lot more work to discover the address of the debug base symbol.
788 Because of this complexity, we cache the value we find and return that
789 value on subsequent invocations. Note there is no copy in the
790 executable symbol tables.
c906108c
SS
791
792 */
793
794static CORE_ADDR
795locate_base ()
796{
797
798#ifndef SVR4_SHARED_LIBS
799
800 struct minimal_symbol *msymbol;
801 CORE_ADDR address = 0;
802 char **symbolp;
803
804 /* For SunOS, we want to limit the search for the debug base symbol to the
805 executable being debugged, since there is a duplicate named symbol in the
806 shared library. We don't want the shared library versions. */
807
808 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
809 {
810 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
811 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
812 {
813 address = SYMBOL_VALUE_ADDRESS (msymbol);
814 return (address);
815 }
816 }
817 return (0);
818
c5aa993b 819#else /* SVR4_SHARED_LIBS */
c906108c
SS
820
821 /* Check to see if we have a currently valid address, and if so, avoid
822 doing all this work again and just return the cached address. If
823 we have no cached address, try to locate it in the dynamic info
824 section for ELF executables. */
825
826 if (debug_base == 0)
827 {
828 if (exec_bfd != NULL
829 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
830 debug_base = elf_locate_base ();
831#ifdef HANDLE_SVR4_EXEC_EMULATORS
832 /* Try it the hard way for emulated executables. */
833 else if (inferior_pid != 0 && target_has_execution)
834 proc_iterate_over_mappings (look_for_base);
835#endif
836 }
837 return (debug_base);
838
c5aa993b 839#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
840
841}
842
843/*
844
c5aa993b 845 LOCAL FUNCTION
c906108c 846
c5aa993b 847 first_link_map_member -- locate first member in dynamic linker's map
c906108c 848
c5aa993b 849 SYNOPSIS
c906108c 850
c5aa993b 851 static struct link_map *first_link_map_member (void)
c906108c 852
c5aa993b 853 DESCRIPTION
c906108c 854
c5aa993b
JM
855 Read in a copy of the first member in the inferior's dynamic
856 link map from the inferior's dynamic linker structures, and return
857 a pointer to the copy in our address space.
858 */
c906108c
SS
859
860static struct link_map *
861first_link_map_member ()
862{
863 struct link_map *lm = NULL;
864
865#ifndef SVR4_SHARED_LIBS
866
867 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
868 if (dynamic_copy.ld_version >= 2)
869 {
870 /* It is a version that we can deal with, so read in the secondary
c5aa993b 871 structure and find the address of the link map list from it. */
c906108c
SS
872 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
873 sizeof (struct link_dynamic_2));
874 lm = ld_2_copy.ld_loaded;
875 }
876
c5aa993b 877#else /* SVR4_SHARED_LIBS */
c906108c
SS
878
879 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
880 /* FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883 lm = debug_copy.r_map;
884
c5aa993b 885#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
886
887 return (lm);
888}
889
104c1213
JM
890#ifdef SVR4_SHARED_LIBS
891/*
892
893 LOCAL FUNCTION
894
895 open_exec_file_object
896
897 SYNOPSIS
898
899 void open_symbol_file_object (int from_tty)
900
901 DESCRIPTION
902
903 If no open symbol file, attempt to locate and open the main symbol
904 file. On SVR4 systems, this is the first link map entry. If its
905 name is here, we can open it. Useful when attaching to a process
906 without first loading its symbol file.
907
908 */
909
910int
911open_symbol_file_object (arg)
912 PTR arg;
913{
914 int from_tty = (int) arg; /* sneak past catch_errors */
915 struct link_map *lm, lmcopy;
916 char *filename;
917 int errcode;
918
919 if (symfile_objfile)
920 if (!query ("Attempt to reload symbols from process? "))
921 return 0;
922
923 if ((debug_base = locate_base ()) == 0)
924 return 0; /* failed somehow... */
925
926 /* First link map member should be the executable. */
927 if ((lm = first_link_map_member ()) == NULL)
928 return 0; /* failed somehow... */
929
930 /* Read from target memory to GDB. */
931 read_memory ((CORE_ADDR) lm, (void *) &lmcopy, sizeof (lmcopy));
932
933 if (lmcopy.l_name == 0)
934 return 0; /* no filename. */
935
936 /* Now fetch the filename from target memory. */
937 target_read_string ((CORE_ADDR) lmcopy.l_name, &filename,
938 MAX_PATH_SIZE - 1, &errcode);
939 if (errcode)
940 {
941 warning ("failed to read exec filename from attached file: %s",
942 safe_strerror (errcode));
943 return 0;
944 }
945
946 make_cleanup ((make_cleanup_func) free, (void *) filename);
947 /* Have a pathname: read the symbol file. */
948 symbol_file_command (filename, from_tty);
949
950 return 1;
951}
952#endif /* SVR4_SHARED_LIBS */
953
c906108c
SS
954/*
955
c5aa993b 956 LOCAL FUNCTION
c906108c 957
c5aa993b 958 find_solib -- step through list of shared objects
c906108c 959
c5aa993b 960 SYNOPSIS
c906108c 961
c5aa993b 962 struct so_list *find_solib (struct so_list *so_list_ptr)
c906108c 963
c5aa993b 964 DESCRIPTION
c906108c 965
c5aa993b
JM
966 This module contains the routine which finds the names of any
967 loaded "images" in the current process. The argument in must be
968 NULL on the first call, and then the returned value must be passed
969 in on subsequent calls. This provides the capability to "step" down
970 the list of loaded objects. On the last object, a NULL value is
971 returned.
c906108c 972
c5aa993b
JM
973 The arg and return value are "struct link_map" pointers, as defined
974 in <link.h>.
c906108c
SS
975 */
976
977static struct so_list *
978find_solib (so_list_ptr)
979 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
980{
981 struct so_list *so_list_next = NULL;
982 struct link_map *lm = NULL;
983 struct so_list *new;
c5aa993b 984
c906108c
SS
985 if (so_list_ptr == NULL)
986 {
987 /* We are setting up for a new scan through the loaded images. */
988 if ((so_list_next = so_list_head) == NULL)
989 {
990 /* We have not already read in the dynamic linking structures
991 from the inferior, lookup the address of the base structure. */
992 debug_base = locate_base ();
993 if (debug_base != 0)
994 {
995 /* Read the base structure in and find the address of the first
c5aa993b 996 link map list member. */
c906108c
SS
997 lm = first_link_map_member ();
998 }
999 }
1000 }
1001 else
1002 {
1003 /* We have been called before, and are in the process of walking
c5aa993b 1004 the shared library list. Advance to the next shared object. */
c906108c
SS
1005 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
1006 {
1007 /* We have hit the end of the list, so check to see if any were
1008 added, but be quiet if we can't read from the target any more. */
c5aa993b
JM
1009 int status = target_read_memory ((CORE_ADDR) so_list_ptr->lmaddr,
1010 (char *) &(so_list_ptr->lm),
c906108c
SS
1011 sizeof (struct link_map));
1012 if (status == 0)
1013 {
1014 lm = LM_NEXT (so_list_ptr);
1015 }
1016 else
1017 {
1018 lm = NULL;
1019 }
1020 }
c5aa993b 1021 so_list_next = so_list_ptr->next;
c906108c
SS
1022 }
1023 if ((so_list_next == NULL) && (lm != NULL))
1024 {
1025 /* Get next link map structure from inferior image and build a local
c5aa993b 1026 abbreviated load_map structure */
c906108c
SS
1027 new = (struct so_list *) xmalloc (sizeof (struct so_list));
1028 memset ((char *) new, 0, sizeof (struct so_list));
c5aa993b 1029 new->lmaddr = lm;
c906108c 1030 /* Add the new node as the next node in the list, or as the root
c5aa993b 1031 node if this is the first one. */
c906108c
SS
1032 if (so_list_ptr != NULL)
1033 {
c5aa993b 1034 so_list_ptr->next = new;
c906108c
SS
1035 }
1036 else
1037 {
1038 so_list_head = new;
1039
c5aa993b 1040 if (!solib_cleanup_queued)
c906108c
SS
1041 {
1042 make_run_cleanup (do_clear_solib, NULL);
1043 solib_cleanup_queued = 1;
1044 }
c5aa993b
JM
1045
1046 }
c906108c 1047 so_list_next = new;
c5aa993b 1048 read_memory ((CORE_ADDR) lm, (char *) &(new->lm),
c906108c
SS
1049 sizeof (struct link_map));
1050 /* For SVR4 versions, the first entry in the link map is for the
c5aa993b
JM
1051 inferior executable, so we must ignore it. For some versions of
1052 SVR4, it has no name. For others (Solaris 2.3 for example), it
1053 does have a name, so we can no longer use a missing name to
1054 decide when to ignore it. */
1055 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new->lm))
c906108c
SS
1056 {
1057 int errcode;
1058 char *buffer;
1059 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
1060 MAX_PATH_SIZE - 1, &errcode);
1061 if (errcode != 0)
1062 {
1063 warning ("find_solib: Can't read pathname for load map: %s\n",
1064 safe_strerror (errcode));
1065 return (so_list_next);
1066 }
c5aa993b
JM
1067 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1068 new->so_name[MAX_PATH_SIZE - 1] = '\0';
c906108c
SS
1069 free (buffer);
1070 catch_errors (solib_map_sections, new,
1071 "Error while mapping shared library sections:\n",
1072 RETURN_MASK_ALL);
c5aa993b 1073 }
c906108c
SS
1074 }
1075 return (so_list_next);
1076}
1077
1078/* A small stub to get us past the arg-passing pinhole of catch_errors. */
1079
1080static int
1081symbol_add_stub (arg)
1082 PTR arg;
1083{
c5aa993b 1084 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c 1085 CORE_ADDR text_addr = 0;
2acceee2 1086 struct section_addr_info section_addrs;
c906108c 1087
2acceee2 1088 memset (&section_addrs, 0, sizeof (section_addrs));
c5aa993b
JM
1089 if (so->textsection)
1090 text_addr = so->textsection->addr;
1091 else if (so->abfd != NULL)
c906108c
SS
1092 {
1093 asection *lowest_sect;
1094
1095 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 1096 text_addr so that the relocation in symbol_file_add does no harm. */
c906108c 1097
c5aa993b 1098 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 1099 if (lowest_sect == NULL)
c5aa993b 1100 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 1101 (PTR) &lowest_sect);
c906108c 1102 if (lowest_sect)
c5aa993b
JM
1103 text_addr = bfd_section_vma (so->abfd, lowest_sect)
1104 + (CORE_ADDR) LM_ADDR (so);
c906108c 1105 }
c5aa993b
JM
1106
1107 ALL_OBJFILES (so->objfile)
1108 {
1109 if (strcmp (so->objfile->name, so->so_name) == 0)
1110 return 1;
1111 }
2acceee2 1112 section_addrs.text_addr = text_addr;
c5aa993b
JM
1113 so->objfile =
1114 symbol_file_add (so->so_name, so->from_tty,
2acceee2
JM
1115 &section_addrs,
1116 0, 0, 0, 1);
c906108c
SS
1117 return (1);
1118}
1119
1120/* This function will check the so name to see if matches the main list.
1121 In some system the main object is in the list, which we want to exclude */
1122
c5aa993b
JM
1123static int
1124match_main (soname)
1125 char *soname;
c906108c
SS
1126{
1127 char **mainp;
1128
1129 for (mainp = main_name_list; *mainp != NULL; mainp++)
1130 {
1131 if (strcmp (soname, *mainp) == 0)
1132 return (1);
1133 }
1134
1135 return (0);
1136}
1137
1138/*
1139
c5aa993b 1140 GLOBAL FUNCTION
c906108c 1141
c5aa993b 1142 solib_add -- add a shared library file to the symtab and section list
c906108c 1143
c5aa993b 1144 SYNOPSIS
c906108c 1145
c5aa993b
JM
1146 void solib_add (char *arg_string, int from_tty,
1147 struct target_ops *target)
c906108c 1148
c5aa993b 1149 DESCRIPTION
c906108c 1150
c5aa993b 1151 */
c906108c
SS
1152
1153void
1154solib_add (arg_string, from_tty, target)
1155 char *arg_string;
1156 int from_tty;
1157 struct target_ops *target;
c5aa993b
JM
1158{
1159 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1160
1161 /* Last shared library that we read. */
1162 struct so_list *so_last = NULL;
1163
1164 char *re_err;
1165 int count;
1166 int old;
c5aa993b 1167
104c1213
JM
1168#ifdef SVR4_SHARED_LIBS
1169 /* If we are attaching to a running process for which we
1170 have not opened a symbol file, we may be able to get its
1171 symbols now! */
1172 if (attach_flag &&
1173 symfile_objfile == NULL)
1174 catch_errors (open_symbol_file_object, (PTR) from_tty,
1175 "Error reading attached process's symbol file.\n",
1176 RETURN_MASK_ALL);
1177
1178#endif SVR4_SHARED_LIBS
1179
6426a772 1180 if ((re_err = re_comp (arg_string? arg_string : ".")) != NULL)
c906108c
SS
1181 {
1182 error ("Invalid regexp: %s", re_err);
1183 }
c5aa993b 1184
c906108c
SS
1185 /* Add the shared library sections to the section table of the
1186 specified target, if any. */
1187 if (target)
1188 {
1189 /* Count how many new section_table entries there are. */
1190 so = NULL;
1191 count = 0;
1192 while ((so = find_solib (so)) != NULL)
1193 {
c5aa993b 1194 if (so->so_name[0] && !match_main (so->so_name))
c906108c 1195 {
c5aa993b 1196 count += so->sections_end - so->sections;
c906108c
SS
1197 }
1198 }
c5aa993b 1199
c906108c
SS
1200 if (count)
1201 {
6426a772 1202
c906108c 1203 /* Add these section table entries to the target's table. */
6426a772 1204 old = target_resize_to_sections (target, count);
c906108c
SS
1205 while ((so = find_solib (so)) != NULL)
1206 {
c5aa993b 1207 if (so->so_name[0])
c906108c 1208 {
c5aa993b
JM
1209 count = so->sections_end - so->sections;
1210 memcpy ((char *) (target->to_sections + old),
1211 so->sections,
c906108c
SS
1212 (sizeof (struct section_table)) * count);
1213 old += count;
1214 }
1215 }
1216 }
1217 }
c5aa993b 1218
c906108c
SS
1219 /* Now add the symbol files. */
1220 while ((so = find_solib (so)) != NULL)
1221 {
c5aa993b
JM
1222 if (so->so_name[0] && re_exec (so->so_name) &&
1223 !match_main (so->so_name))
c906108c 1224 {
c5aa993b
JM
1225 so->from_tty = from_tty;
1226 if (so->symbols_loaded)
c906108c
SS
1227 {
1228 if (from_tty)
1229 {
c5aa993b 1230 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
c906108c
SS
1231 }
1232 }
1233 else if (catch_errors
1234 (symbol_add_stub, so,
1235 "Error while reading shared library symbols:\n",
1236 RETURN_MASK_ALL))
1237 {
1238 so_last = so;
c5aa993b 1239 so->symbols_loaded = 1;
c906108c
SS
1240 }
1241 }
1242 }
1243
1244 /* Getting new symbols may change our opinion about what is
1245 frameless. */
1246 if (so_last)
1247 reinit_frame_cache ();
1248
1249 if (so_last)
1250 special_symbol_handling (so_last);
1251}
1252
1253/*
1254
c5aa993b 1255 LOCAL FUNCTION
c906108c 1256
c5aa993b 1257 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 1258
c5aa993b 1259 SYNOPSIS
c906108c 1260
c5aa993b 1261 static void info_sharedlibrary_command ()
c906108c 1262
c5aa993b 1263 DESCRIPTION
c906108c 1264
c5aa993b
JM
1265 Walk through the shared library list and print information
1266 about each attached library.
1267 */
c906108c
SS
1268
1269static void
1270info_sharedlibrary_command (ignore, from_tty)
1271 char *ignore;
1272 int from_tty;
1273{
c5aa993b 1274 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1275 int header_done = 0;
1276 int addr_width;
1277 char *addr_fmt;
1278
1279 if (exec_bfd == NULL)
1280 {
1281 printf_unfiltered ("No exec file.\n");
1282 return;
1283 }
1284
1285#ifndef TARGET_ELF64
c5aa993b 1286 addr_width = 8 + 4;
c906108c
SS
1287 addr_fmt = "08l";
1288#else
c5aa993b 1289 addr_width = 16 + 4;
c906108c
SS
1290 addr_fmt = "016l";
1291#endif
1292
1293 while ((so = find_solib (so)) != NULL)
1294 {
c5aa993b 1295 if (so->so_name[0])
c906108c
SS
1296 {
1297 if (!header_done)
1298 {
c5aa993b
JM
1299 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1300 addr_width, "To", "Syms Read",
1301 "Shared Object Library");
c906108c
SS
1302 header_done++;
1303 }
1304
1305 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1306 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1307 addr_fmt));
c906108c 1308 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1309 local_hex_string_custom ((unsigned long) so->lmend,
1310 addr_fmt));
1311 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1312 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
1313 }
1314 }
1315 if (so_list_head == NULL)
1316 {
c5aa993b 1317 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1318 }
1319}
1320
1321/*
1322
c5aa993b 1323 GLOBAL FUNCTION
c906108c 1324
c5aa993b 1325 solib_address -- check to see if an address is in a shared lib
c906108c 1326
c5aa993b 1327 SYNOPSIS
c906108c 1328
c5aa993b 1329 char * solib_address (CORE_ADDR address)
c906108c 1330
c5aa993b 1331 DESCRIPTION
c906108c 1332
c5aa993b
JM
1333 Provides a hook for other gdb routines to discover whether or
1334 not a particular address is within the mapped address space of
1335 a shared library. Any address between the base mapping address
1336 and the first address beyond the end of the last mapping, is
1337 considered to be within the shared library address space, for
1338 our purposes.
c906108c 1339
c5aa993b
JM
1340 For example, this routine is called at one point to disable
1341 breakpoints which are in shared libraries that are not currently
1342 mapped in.
c906108c
SS
1343 */
1344
1345char *
1346solib_address (address)
1347 CORE_ADDR address;
1348{
c5aa993b
JM
1349 register struct so_list *so = 0; /* link map state variable */
1350
c906108c
SS
1351 while ((so = find_solib (so)) != NULL)
1352 {
c5aa993b 1353 if (so->so_name[0])
c906108c
SS
1354 {
1355 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
c5aa993b 1356 (address < (CORE_ADDR) so->lmend))
c906108c
SS
1357 return (so->so_name);
1358 }
1359 }
1360 return (0);
1361}
1362
1363/* Called by free_all_symtabs */
1364
c5aa993b 1365void
085dd6e6 1366clear_solib ()
c906108c
SS
1367{
1368 struct so_list *next;
1369 char *bfd_filename;
7a292a7a 1370
085dd6e6
JM
1371 /* This function is expected to handle ELF shared libraries. It is
1372 also used on Solaris, which can run either ELF or a.out binaries
1373 (for compatibility with SunOS 4), both of which can use shared
1374 libraries. So we don't know whether we have an ELF executable or
1375 an a.out executable until the user chooses an executable file.
1376
1377 ELF shared libraries don't get mapped into the address space
1378 until after the program starts, so we'd better not try to insert
1379 breakpoints in them immediately. We have to wait until the
1380 dynamic linker has loaded them; we'll hit a bp_shlib_event
1381 breakpoint (look for calls to create_solib_event_breakpoint) when
1382 it's ready.
1383
1384 SunOS shared libraries seem to be different --- they're present
1385 as soon as the process begins execution, so there's no need to
1386 put off inserting breakpoints. There's also nowhere to put a
1387 bp_shlib_event breakpoint, so if we put it off, we'll never get
1388 around to it.
1389
1390 So: disable breakpoints only if we're using ELF shared libs. */
1391 if (exec_bfd != NULL
1392 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1393 disable_breakpoints_in_shlibs (1);
1394
c906108c
SS
1395 while (so_list_head)
1396 {
c5aa993b 1397 if (so_list_head->sections)
c906108c 1398 {
c5aa993b 1399 free ((PTR) so_list_head->sections);
c906108c 1400 }
c5aa993b 1401 if (so_list_head->abfd)
c906108c 1402 {
c5aa993b
JM
1403 bfd_filename = bfd_get_filename (so_list_head->abfd);
1404 if (!bfd_close (so_list_head->abfd))
c906108c
SS
1405 warning ("cannot close \"%s\": %s",
1406 bfd_filename, bfd_errmsg (bfd_get_error ()));
1407 }
1408 else
1409 /* This happens for the executable on SVR4. */
1410 bfd_filename = NULL;
1411
c5aa993b 1412 next = so_list_head->next;
c906108c 1413 if (bfd_filename)
c5aa993b
JM
1414 free ((PTR) bfd_filename);
1415 free ((PTR) so_list_head);
c906108c
SS
1416 so_list_head = next;
1417 }
1418 debug_base = 0;
1419}
1420
1421static void
1422do_clear_solib (dummy)
1423 PTR dummy;
1424{
1425 solib_cleanup_queued = 0;
1426 clear_solib ();
1427}
1428
1429#ifdef SVR4_SHARED_LIBS
1430
1431/* Return 1 if PC lies in the dynamic symbol resolution code of the
1432 SVR4 run time loader. */
1433
1434static CORE_ADDR interp_text_sect_low;
1435static CORE_ADDR interp_text_sect_high;
1436static CORE_ADDR interp_plt_sect_low;
1437static CORE_ADDR interp_plt_sect_high;
1438
1439int
1440in_svr4_dynsym_resolve_code (pc)
1441 CORE_ADDR pc;
1442{
1443 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1444 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1445 || in_plt_section (pc, NULL));
1446}
1447#endif
1448
1449/*
1450
c5aa993b 1451 LOCAL FUNCTION
c906108c 1452
c5aa993b 1453 disable_break -- remove the "mapping changed" breakpoint
c906108c 1454
c5aa993b 1455 SYNOPSIS
c906108c 1456
c5aa993b 1457 static int disable_break ()
c906108c 1458
c5aa993b 1459 DESCRIPTION
c906108c 1460
c5aa993b
JM
1461 Removes the breakpoint that gets hit when the dynamic linker
1462 completes a mapping change.
c906108c 1463
c5aa993b 1464 */
c906108c
SS
1465
1466#ifndef SVR4_SHARED_LIBS
1467
1468static int
1469disable_break ()
1470{
1471 int status = 1;
1472
1473#ifndef SVR4_SHARED_LIBS
1474
1475 int in_debugger = 0;
c5aa993b 1476
c906108c
SS
1477 /* Read the debugger structure from the inferior to retrieve the
1478 address of the breakpoint and the original contents of the
1479 breakpoint address. Remove the breakpoint by writing the original
1480 contents back. */
1481
1482 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1483
1484 /* Set `in_debugger' to zero now. */
1485
1486 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1487
1488 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1489 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1490 sizeof (debug_copy.ldd_bp_inst));
1491
c5aa993b 1492#else /* SVR4_SHARED_LIBS */
c906108c
SS
1493
1494 /* Note that breakpoint address and original contents are in our address
1495 space, so we just need to write the original contents back. */
1496
1497 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1498 {
1499 status = 0;
1500 }
1501
c5aa993b 1502#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1503
1504 /* For the SVR4 version, we always know the breakpoint address. For the
1505 SunOS version we don't know it until the above code is executed.
1506 Grumble if we are stopped anywhere besides the breakpoint address. */
1507
1508 if (stop_pc != breakpoint_addr)
1509 {
1510 warning ("stopped at unknown breakpoint while handling shared libraries");
1511 }
1512
1513 return (status);
1514}
1515
c5aa993b 1516#endif /* #ifdef SVR4_SHARED_LIBS */
c906108c
SS
1517
1518/*
1519
c5aa993b
JM
1520 LOCAL FUNCTION
1521
1522 enable_break -- arrange for dynamic linker to hit breakpoint
1523
1524 SYNOPSIS
1525
1526 int enable_break (void)
1527
1528 DESCRIPTION
1529
1530 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1531 debugger interface, support for arranging for the inferior to hit
1532 a breakpoint after mapping in the shared libraries. This function
1533 enables that breakpoint.
1534
1535 For SunOS, there is a special flag location (in_debugger) which we
1536 set to 1. When the dynamic linker sees this flag set, it will set
1537 a breakpoint at a location known only to itself, after saving the
1538 original contents of that place and the breakpoint address itself,
1539 in it's own internal structures. When we resume the inferior, it
1540 will eventually take a SIGTRAP when it runs into the breakpoint.
1541 We handle this (in a different place) by restoring the contents of
1542 the breakpointed location (which is only known after it stops),
1543 chasing around to locate the shared libraries that have been
1544 loaded, then resuming.
1545
1546 For SVR4, the debugger interface structure contains a member (r_brk)
1547 which is statically initialized at the time the shared library is
1548 built, to the offset of a function (_r_debug_state) which is guaran-
1549 teed to be called once before mapping in a library, and again when
1550 the mapping is complete. At the time we are examining this member,
1551 it contains only the unrelocated offset of the function, so we have
1552 to do our own relocation. Later, when the dynamic linker actually
1553 runs, it relocates r_brk to be the actual address of _r_debug_state().
1554
1555 The debugger interface structure also contains an enumeration which
1556 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1557 depending upon whether or not the library is being mapped or unmapped,
1558 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1559 */
c906108c
SS
1560
1561static int
1562enable_break ()
1563{
1564 int success = 0;
1565
1566#ifndef SVR4_SHARED_LIBS
1567
1568 int j;
1569 int in_debugger;
1570
1571 /* Get link_dynamic structure */
1572
1573 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1574 sizeof (dynamic_copy));
1575 if (j)
1576 {
1577 /* unreadable */
1578 return (0);
1579 }
1580
1581 /* Calc address of debugger interface structure */
1582
1583 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1584
1585 /* Calc address of `in_debugger' member of debugger interface structure */
1586
1587 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1588 (char *) &debug_copy);
1589
1590 /* Write a value of 1 to this member. */
1591
1592 in_debugger = 1;
1593 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1594 success = 1;
1595
c5aa993b 1596#else /* SVR4_SHARED_LIBS */
c906108c
SS
1597
1598#ifdef BKPT_AT_SYMBOL
1599
1600 struct minimal_symbol *msymbol;
1601 char **bkpt_namep;
1602 asection *interp_sect;
1603
1604 /* First, remove all the solib event breakpoints. Their addresses
1605 may have changed since the last time we ran the program. */
1606 remove_solib_event_breakpoints ();
1607
1608#ifdef SVR4_SHARED_LIBS
1609 interp_text_sect_low = interp_text_sect_high = 0;
1610 interp_plt_sect_low = interp_plt_sect_high = 0;
1611
1612 /* Find the .interp section; if not found, warn the user and drop
1613 into the old breakpoint at symbol code. */
1614 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1615 if (interp_sect)
1616 {
1617 unsigned int interp_sect_size;
1618 char *buf;
1619 CORE_ADDR load_addr;
1620 bfd *tmp_bfd;
1621 CORE_ADDR sym_addr = 0;
1622
1623 /* Read the contents of the .interp section into a local buffer;
c5aa993b 1624 the contents specify the dynamic linker this program uses. */
c906108c
SS
1625 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1626 buf = alloca (interp_sect_size);
1627 bfd_get_section_contents (exec_bfd, interp_sect,
1628 buf, 0, interp_sect_size);
1629
1630 /* Now we need to figure out where the dynamic linker was
c5aa993b
JM
1631 loaded so that we can load its symbols and place a breakpoint
1632 in the dynamic linker itself.
c906108c 1633
c5aa993b
JM
1634 This address is stored on the stack. However, I've been unable
1635 to find any magic formula to find it for Solaris (appears to
1636 be trivial on GNU/Linux). Therefore, we have to try an alternate
1637 mechanism to find the dynamic linker's base address. */
c906108c
SS
1638 tmp_bfd = bfd_openr (buf, gnutarget);
1639 if (tmp_bfd == NULL)
1640 goto bkpt_at_symbol;
1641
1642 /* Make sure the dynamic linker's really a useful object. */
1643 if (!bfd_check_format (tmp_bfd, bfd_object))
1644 {
1645 warning ("Unable to grok dynamic linker %s as an object file", buf);
1646 bfd_close (tmp_bfd);
1647 goto bkpt_at_symbol;
1648 }
1649
1650 /* We find the dynamic linker's base address by examining the
c5aa993b
JM
1651 current pc (which point at the entry point for the dynamic
1652 linker) and subtracting the offset of the entry point. */
c906108c
SS
1653 load_addr = read_pc () - tmp_bfd->start_address;
1654
1655 /* Record the relocated start and end address of the dynamic linker
c5aa993b 1656 text and plt section for in_svr4_dynsym_resolve_code. */
c906108c
SS
1657 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1658 if (interp_sect)
1659 {
1660 interp_text_sect_low =
1661 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1662 interp_text_sect_high =
1663 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1664 }
1665 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1666 if (interp_sect)
1667 {
1668 interp_plt_sect_low =
1669 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1670 interp_plt_sect_high =
1671 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1672 }
1673
1674 /* Now try to set a breakpoint in the dynamic linker. */
1675 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1676 {
1677 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1678 if (sym_addr != 0)
1679 break;
1680 }
1681
1682 /* We're done with the temporary bfd. */
1683 bfd_close (tmp_bfd);
1684
1685 if (sym_addr != 0)
1686 {
1687 create_solib_event_breakpoint (load_addr + sym_addr);
1688 return 1;
1689 }
1690
1691 /* For whatever reason we couldn't set a breakpoint in the dynamic
c5aa993b
JM
1692 linker. Warn and drop into the old code. */
1693 bkpt_at_symbol:
c906108c
SS
1694 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1695 }
1696#endif
1697
1698 /* Scan through the list of symbols, trying to look up the symbol and
1699 set a breakpoint there. Terminate loop when we/if we succeed. */
1700
1701 breakpoint_addr = 0;
1702 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1703 {
1704 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1705 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1706 {
1707 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1708 return 1;
1709 }
1710 }
1711
1712 /* Nothing good happened. */
1713 success = 0;
1714
c5aa993b 1715#endif /* BKPT_AT_SYMBOL */
c906108c 1716
c5aa993b 1717#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1718
1719 return (success);
1720}
c5aa993b 1721
c906108c 1722/*
c5aa993b
JM
1723
1724 GLOBAL FUNCTION
1725
1726 solib_create_inferior_hook -- shared library startup support
1727
1728 SYNOPSIS
1729
1730 void solib_create_inferior_hook()
1731
1732 DESCRIPTION
1733
1734 When gdb starts up the inferior, it nurses it along (through the
1735 shell) until it is ready to execute it's first instruction. At this
1736 point, this function gets called via expansion of the macro
1737 SOLIB_CREATE_INFERIOR_HOOK.
1738
1739 For SunOS executables, this first instruction is typically the
1740 one at "_start", or a similar text label, regardless of whether
1741 the executable is statically or dynamically linked. The runtime
1742 startup code takes care of dynamically linking in any shared
1743 libraries, once gdb allows the inferior to continue.
1744
1745 For SVR4 executables, this first instruction is either the first
1746 instruction in the dynamic linker (for dynamically linked
1747 executables) or the instruction at "start" for statically linked
1748 executables. For dynamically linked executables, the system
1749 first exec's /lib/libc.so.N, which contains the dynamic linker,
1750 and starts it running. The dynamic linker maps in any needed
1751 shared libraries, maps in the actual user executable, and then
1752 jumps to "start" in the user executable.
1753
1754 For both SunOS shared libraries, and SVR4 shared libraries, we
1755 can arrange to cooperate with the dynamic linker to discover the
1756 names of shared libraries that are dynamically linked, and the
1757 base addresses to which they are linked.
1758
1759 This function is responsible for discovering those names and
1760 addresses, and saving sufficient information about them to allow
1761 their symbols to be read at a later time.
1762
1763 FIXME
1764
1765 Between enable_break() and disable_break(), this code does not
1766 properly handle hitting breakpoints which the user might have
1767 set in the startup code or in the dynamic linker itself. Proper
1768 handling will probably have to wait until the implementation is
1769 changed to use the "breakpoint handler function" method.
1770
1771 Also, what if child has exit()ed? Must exit loop somehow.
1772 */
1773
1774void
1775solib_create_inferior_hook ()
c906108c
SS
1776{
1777 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1778 yet. In fact, in the case of a SunOS4 executable being run on
1779 Solaris, we can't get it yet. find_solib will get it when it needs
1780 it. */
1781#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1782 if ((debug_base = locate_base ()) == 0)
1783 {
1784 /* Can't find the symbol or the executable is statically linked. */
1785 return;
1786 }
1787#endif
1788
1789 if (!enable_break ())
1790 {
1791 warning ("shared library handler failed to enable breakpoint");
1792 return;
1793 }
1794
1795#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1796 /* SCO and SunOS need the loop below, other systems should be using the
1797 special shared library breakpoints and the shared library breakpoint
1798 service routine.
1799
1800 Now run the target. It will eventually hit the breakpoint, at
1801 which point all of the libraries will have been mapped in and we
1802 can go groveling around in the dynamic linker structures to find
1803 out what we need to know about them. */
1804
1805 clear_proceed_status ();
1806 stop_soon_quietly = 1;
1807 stop_signal = TARGET_SIGNAL_0;
1808 do
1809 {
1810 target_resume (-1, 0, stop_signal);
1811 wait_for_inferior ();
1812 }
1813 while (stop_signal != TARGET_SIGNAL_TRAP);
1814 stop_soon_quietly = 0;
1815
1816#if !defined(_SCO_DS)
1817 /* We are now either at the "mapping complete" breakpoint (or somewhere
1818 else, a condition we aren't prepared to deal with anyway), so adjust
1819 the PC as necessary after a breakpoint, disable the breakpoint, and
1820 add any shared libraries that were mapped in. */
1821
1822 if (DECR_PC_AFTER_BREAK)
1823 {
1824 stop_pc -= DECR_PC_AFTER_BREAK;
1825 write_register (PC_REGNUM, stop_pc);
1826 }
1827
1828 if (!disable_break ())
1829 {
1830 warning ("shared library handler failed to disable breakpoint");
1831 }
1832
1833 if (auto_solib_add)
1834 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1835#endif /* ! _SCO_DS */
1836#endif
1837}
1838
1839/*
1840
c5aa993b 1841 LOCAL FUNCTION
c906108c 1842
c5aa993b 1843 special_symbol_handling -- additional shared library symbol handling
c906108c 1844
c5aa993b 1845 SYNOPSIS
c906108c 1846
c5aa993b 1847 void special_symbol_handling (struct so_list *so)
c906108c 1848
c5aa993b 1849 DESCRIPTION
c906108c 1850
c5aa993b
JM
1851 Once the symbols from a shared object have been loaded in the usual
1852 way, we are called to do any system specific symbol handling that
1853 is needed.
c906108c 1854
c5aa993b
JM
1855 For SunOS4, this consists of grunging around in the dynamic
1856 linkers structures to find symbol definitions for "common" symbols
1857 and adding them to the minimal symbol table for the runtime common
1858 objfile.
c906108c 1859
c5aa993b 1860 */
c906108c
SS
1861
1862static void
1863special_symbol_handling (so)
c5aa993b 1864 struct so_list *so;
c906108c
SS
1865{
1866#ifndef SVR4_SHARED_LIBS
1867 int j;
1868
1869 if (debug_addr == 0)
1870 {
1871 /* Get link_dynamic structure */
1872
1873 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1874 sizeof (dynamic_copy));
1875 if (j)
1876 {
1877 /* unreadable */
1878 return;
1879 }
1880
1881 /* Calc address of debugger interface structure */
1882 /* FIXME, this needs work for cross-debugging of core files
c5aa993b 1883 (byteorder, size, alignment, etc). */
c906108c
SS
1884
1885 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1886 }
1887
1888 /* Read the debugger structure from the inferior, just to make sure
1889 we have a current copy. */
1890
1891 j = target_read_memory (debug_addr, (char *) &debug_copy,
1892 sizeof (debug_copy));
1893 if (j)
c5aa993b 1894 return; /* unreadable */
c906108c
SS
1895
1896 /* Get common symbol definitions for the loaded object. */
1897
1898 if (debug_copy.ldd_cp)
1899 {
1900 solib_add_common_symbols (debug_copy.ldd_cp);
1901 }
1902
c5aa993b 1903#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1904}
1905
1906
1907/*
1908
c5aa993b 1909 LOCAL FUNCTION
c906108c 1910
c5aa993b 1911 sharedlibrary_command -- handle command to explicitly add library
c906108c 1912
c5aa993b 1913 SYNOPSIS
c906108c 1914
c5aa993b 1915 static void sharedlibrary_command (char *args, int from_tty)
c906108c 1916
c5aa993b 1917 DESCRIPTION
c906108c 1918
c5aa993b 1919 */
c906108c
SS
1920
1921static void
1922sharedlibrary_command (args, from_tty)
c5aa993b
JM
1923 char *args;
1924 int from_tty;
c906108c
SS
1925{
1926 dont_repeat ();
1927 solib_add (args, from_tty, (struct target_ops *) 0);
1928}
1929
1930#endif /* HAVE_LINK_H */
1931
1932void
c5aa993b 1933_initialize_solib ()
c906108c
SS
1934{
1935#ifdef HAVE_LINK_H
1936
1937 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1938 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 1939 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
1940 "Status of loaded shared object libraries.");
1941
1942 add_show_from_set
1943 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1944 (char *) &auto_solib_add,
1945 "Set autoloading of shared library symbols.\n\
1946If nonzero, symbols from all shared object libraries will be loaded\n\
1947automatically when the inferior begins execution or when the dynamic linker\n\
1948informs gdb that a new library has been loaded. Otherwise, symbols\n\
1949must be loaded manually, using `sharedlibrary'.",
1950 &setlist),
1951 &showlist);
1952
1953 add_show_from_set
1954 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
1955 (char *) &solib_absolute_prefix,
1956 "Set prefix for loading absolute shared library symbol files.\n\
1957For other (relative) files, you can add values using `set solib-search-path'.",
1958 &setlist),
1959 &showlist);
1960 add_show_from_set
1961 (add_set_cmd ("solib-search-path", class_support, var_string,
1962 (char *) &solib_search_path,
1963 "Set the search path for loading non-absolute shared library symbol files.\n\
1964This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
1965 &setlist),
1966 &showlist);
1967
1968#endif /* HAVE_LINK_H */
1969}
This page took 0.115174 seconds and 4 git commands to generate.