* config/tc-i386.c (i386_immediate): Disallow O_big immediates.
[deliverable/binutils-gdb.git] / gdb / solib.c
CommitLineData
c906108c
SS
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22
23#include "defs.h"
24
25/* This file is only compilable if link.h is available. */
26
27#ifdef HAVE_LINK_H
28
29#include <sys/types.h>
30#include <signal.h>
31#include "gdb_string.h"
32#include <sys/param.h>
33#include <fcntl.h>
c906108c
SS
34
35#ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
c5aa993b 37#include <a.out.h>
c906108c
SS
38#else
39#include "elf/external.h"
40#endif
41
42#include <link.h>
43
44#include "symtab.h"
45#include "bfd.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "gdbcore.h"
49#include "command.h"
50#include "target.h"
51#include "frame.h"
52#include "gnu-regex.h"
53#include "inferior.h"
54#include "environ.h"
55#include "language.h"
56#include "gdbcmd.h"
57
c5aa993b 58#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
c906108c
SS
59
60/* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68#ifdef SVR4_SHARED_LIBS
c5aa993b
JM
69static char *solib_break_names[] =
70{
c906108c
SS
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76};
77#endif
78
79#define BKPT_AT_SYMBOL 1
80
81#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
c5aa993b
JM
82static char *bkpt_names[] =
83{
c906108c
SS
84#ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86#endif
87 "_start",
88 "main",
89 NULL
90};
91#endif
92
93/* Symbols which are used to locate the base of the link map structures. */
94
95#ifndef SVR4_SHARED_LIBS
c5aa993b
JM
96static char *debug_base_symbols[] =
97{
c906108c
SS
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101};
102#endif
103
c5aa993b
JM
104static char *main_name_list[] =
105{
c906108c
SS
106 "main_$main",
107 NULL
108};
109
110/* local data declarations */
111
112#ifndef SVR4_SHARED_LIBS
113
114#define LM_ADDR(so) ((so) -> lm.lm_addr)
115#define LM_NEXT(so) ((so) -> lm.lm_next)
116#define LM_NAME(so) ((so) -> lm.lm_name)
117/* Test for first link map entry; first entry is a shared library. */
118#define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
119static struct link_dynamic dynamic_copy;
120static struct link_dynamic_2 ld_2_copy;
121static struct ld_debug debug_copy;
122static CORE_ADDR debug_addr;
123static CORE_ADDR flag_addr;
124
c5aa993b 125#else /* SVR4_SHARED_LIBS */
c906108c
SS
126
127#define LM_ADDR(so) ((so) -> lm.l_addr)
128#define LM_NEXT(so) ((so) -> lm.l_next)
129#define LM_NAME(so) ((so) -> lm.l_name)
130/* Test for first link map entry; first entry is the exec-file. */
131#define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
132static struct r_debug debug_copy;
133char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
134
c5aa993b
JM
135#endif /* !SVR4_SHARED_LIBS */
136
137struct so_list
138 {
139 struct so_list *next; /* next structure in linked list */
140 struct link_map lm; /* copy of link map from inferior */
141 struct link_map *lmaddr; /* addr in inferior lm was read from */
142 CORE_ADDR lmend; /* upper addr bound of mapped object */
143 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
144 char symbols_loaded; /* flag: symbols read in yet? */
145 char from_tty; /* flag: print msgs? */
146 struct objfile *objfile; /* objfile for loaded lib */
147 struct section_table *sections;
148 struct section_table *sections_end;
149 struct section_table *textsection;
150 bfd *abfd;
151 };
c906108c
SS
152
153static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 154static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
155static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
156
c5aa993b 157static int solib_cleanup_queued = 0; /* make_run_cleanup called */
c906108c
SS
158
159extern int
c5aa993b 160fdmatch PARAMS ((int, int)); /* In libiberty */
c906108c
SS
161
162/* Local function prototypes */
163
164static void
165do_clear_solib PARAMS ((PTR));
166
167static int
168match_main PARAMS ((char *));
169
170static void
171special_symbol_handling PARAMS ((struct so_list *));
172
173static void
174sharedlibrary_command PARAMS ((char *, int));
175
176static int
177enable_break PARAMS ((void));
178
179static void
180info_sharedlibrary_command PARAMS ((char *, int));
181
182static int symbol_add_stub PARAMS ((PTR));
183
184static struct so_list *
c5aa993b 185 find_solib PARAMS ((struct so_list *));
c906108c
SS
186
187static struct link_map *
c5aa993b 188 first_link_map_member PARAMS ((void));
c906108c
SS
189
190static CORE_ADDR
c5aa993b 191 locate_base PARAMS ((void));
c906108c
SS
192
193static int solib_map_sections PARAMS ((PTR));
194
195#ifdef SVR4_SHARED_LIBS
196
197static CORE_ADDR
c5aa993b 198 elf_locate_base PARAMS ((void));
c906108c
SS
199
200#else
201
202static int
203disable_break PARAMS ((void));
204
205static void
206allocate_rt_common_objfile PARAMS ((void));
207
208static void
209solib_add_common_symbols PARAMS ((struct rtc_symb *));
210
211#endif
212
213void _initialize_solib PARAMS ((void));
214
215/* If non-zero, this is a prefix that will be added to the front of the name
216 shared libraries with an absolute filename for loading. */
217static char *solib_absolute_prefix = NULL;
218
219/* If non-empty, this is a search path for loading non-absolute shared library
220 symbol files. This takes precedence over the environment variables PATH
221 and LD_LIBRARY_PATH. */
222static char *solib_search_path = NULL;
223
224/*
225
c5aa993b 226 LOCAL FUNCTION
c906108c 227
c5aa993b 228 solib_map_sections -- open bfd and build sections for shared lib
c906108c 229
c5aa993b 230 SYNOPSIS
c906108c 231
c5aa993b 232 static int solib_map_sections (struct so_list *so)
c906108c 233
c5aa993b 234 DESCRIPTION
c906108c 235
c5aa993b
JM
236 Given a pointer to one of the shared objects in our list
237 of mapped objects, use the recorded name to open a bfd
238 descriptor for the object, build a section table, and then
239 relocate all the section addresses by the base address at
240 which the shared object was mapped.
c906108c 241
c5aa993b 242 FIXMES
c906108c 243
c5aa993b
JM
244 In most (all?) cases the shared object file name recorded in the
245 dynamic linkage tables will be a fully qualified pathname. For
246 cases where it isn't, do we really mimic the systems search
247 mechanism correctly in the below code (particularly the tilde
248 expansion stuff?).
c906108c
SS
249 */
250
251static int
252solib_map_sections (arg)
253 PTR arg;
254{
255 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
256 char *filename;
257 char *scratch_pathname;
258 int scratch_chan;
259 struct section_table *p;
260 struct cleanup *old_chain;
261 bfd *abfd;
c5aa993b
JM
262
263 filename = tilde_expand (so->so_name);
264
c906108c
SS
265 if (solib_absolute_prefix && ROOTED_P (filename))
266 /* Prefix shared libraries with absolute filenames with
267 SOLIB_ABSOLUTE_PREFIX. */
268 {
269 char *pfxed_fn;
270 int pfx_len;
271
272 pfx_len = strlen (solib_absolute_prefix);
273
274 /* Remove trailing slashes. */
275 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
276 pfx_len--;
277
278 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
279 strcpy (pfxed_fn, solib_absolute_prefix);
280 strcat (pfxed_fn, filename);
281 free (filename);
282
283 filename = pfxed_fn;
284 }
285
286 old_chain = make_cleanup (free, filename);
287
288 scratch_chan = -1;
289
290 if (solib_search_path)
291 scratch_chan = openp (solib_search_path,
292 1, filename, O_RDONLY, 0, &scratch_pathname);
293 if (scratch_chan < 0)
c5aa993b 294 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
c906108c
SS
295 1, filename, O_RDONLY, 0, &scratch_pathname);
296 if (scratch_chan < 0)
297 {
c5aa993b
JM
298 scratch_chan = openp (get_in_environ
299 (inferior_environ, "LD_LIBRARY_PATH"),
c906108c
SS
300 1, filename, O_RDONLY, 0, &scratch_pathname);
301 }
302 if (scratch_chan < 0)
303 {
304 perror_with_name (filename);
305 }
306 /* Leave scratch_pathname allocated. abfd->name will point to it. */
307
308 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
309 if (!abfd)
310 {
311 close (scratch_chan);
312 error ("Could not open `%s' as an executable file: %s",
313 scratch_pathname, bfd_errmsg (bfd_get_error ()));
314 }
315 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
316 so->abfd = abfd;
317 abfd->cacheable = true;
c906108c
SS
318
319 /* copy full path name into so_name, so that later symbol_file_add can find
320 it */
321 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
322 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
323 strcpy (so->so_name, scratch_pathname);
324
325 if (!bfd_check_format (abfd, bfd_object))
326 {
327 error ("\"%s\": not in executable format: %s.",
328 scratch_pathname, bfd_errmsg (bfd_get_error ()));
329 }
c5aa993b 330 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 331 {
c5aa993b 332 error ("Can't find the file sections in `%s': %s",
c906108c
SS
333 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
334 }
335
c5aa993b 336 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
337 {
338 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
339 object's file by the base address to which the object was actually
340 mapped. */
341 p->addr += (CORE_ADDR) LM_ADDR (so);
342 p->endaddr += (CORE_ADDR) LM_ADDR (so);
343 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
344 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 345 {
c5aa993b 346 so->textsection = p;
c906108c
SS
347 }
348 }
349
350 /* Free the file names, close the file now. */
351 do_cleanups (old_chain);
352
353 return (1);
354}
355
356#ifndef SVR4_SHARED_LIBS
357
358/* Allocate the runtime common object file. */
359
360static void
361allocate_rt_common_objfile ()
362{
363 struct objfile *objfile;
364 struct objfile *last_one;
365
366 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
367 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
368 objfile->md = NULL;
369 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 370 xmalloc, free);
c5aa993b 371 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 372 free);
c5aa993b 373 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 374 free);
c5aa993b 375 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 376 free);
c5aa993b 377 objfile->name = mstrsave (objfile->md, "rt_common");
c906108c
SS
378
379 /* Add this file onto the tail of the linked list of other such files. */
380
c5aa993b 381 objfile->next = NULL;
c906108c
SS
382 if (object_files == NULL)
383 object_files = objfile;
384 else
385 {
386 for (last_one = object_files;
c5aa993b
JM
387 last_one->next;
388 last_one = last_one->next);
389 last_one->next = objfile;
c906108c
SS
390 }
391
392 rt_common_objfile = objfile;
393}
394
395/* Read all dynamically loaded common symbol definitions from the inferior
396 and put them into the minimal symbol table for the runtime common
397 objfile. */
398
399static void
400solib_add_common_symbols (rtc_symp)
c5aa993b 401 struct rtc_symb *rtc_symp;
c906108c
SS
402{
403 struct rtc_symb inferior_rtc_symb;
404 struct nlist inferior_rtc_nlist;
405 int len;
406 char *name;
407
408 /* Remove any runtime common symbols from previous runs. */
409
c5aa993b 410 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
c906108c 411 {
c5aa993b
JM
412 obstack_free (&rt_common_objfile->symbol_obstack, 0);
413 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
c906108c 414 xmalloc, free);
c5aa993b
JM
415 rt_common_objfile->minimal_symbol_count = 0;
416 rt_common_objfile->msymbols = NULL;
c906108c
SS
417 }
418
419 init_minimal_symbol_collection ();
420 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
421
422 while (rtc_symp)
423 {
424 read_memory ((CORE_ADDR) rtc_symp,
425 (char *) &inferior_rtc_symb,
426 sizeof (inferior_rtc_symb));
427 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
428 (char *) &inferior_rtc_nlist,
c5aa993b 429 sizeof (inferior_rtc_nlist));
c906108c
SS
430 if (inferior_rtc_nlist.n_type == N_COMM)
431 {
432 /* FIXME: The length of the symbol name is not available, but in the
433 current implementation the common symbol is allocated immediately
434 behind the name of the symbol. */
435 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
436
437 name = xmalloc (len);
438 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
439
440 /* Allocate the runtime common objfile if necessary. */
441 if (rt_common_objfile == NULL)
442 allocate_rt_common_objfile ();
443
444 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
445 mst_bss, rt_common_objfile);
446 free (name);
447 }
448 rtc_symp = inferior_rtc_symb.rtc_next;
449 }
450
451 /* Install any minimal symbols that have been collected as the current
452 minimal symbols for the runtime common objfile. */
453
454 install_minimal_symbols (rt_common_objfile);
455}
456
c5aa993b 457#endif /* SVR4_SHARED_LIBS */
c906108c
SS
458
459
460#ifdef SVR4_SHARED_LIBS
461
462static CORE_ADDR
c5aa993b 463 bfd_lookup_symbol PARAMS ((bfd *, char *));
c906108c
SS
464
465/*
466
c5aa993b 467 LOCAL FUNCTION
c906108c 468
c5aa993b 469 bfd_lookup_symbol -- lookup the value for a specific symbol
c906108c 470
c5aa993b 471 SYNOPSIS
c906108c 472
c5aa993b 473 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
c906108c 474
c5aa993b 475 DESCRIPTION
c906108c 476
c5aa993b
JM
477 An expensive way to lookup the value of a single symbol for
478 bfd's that are only temporary anyway. This is used by the
479 shared library support to find the address of the debugger
480 interface structures in the shared library.
c906108c 481
c5aa993b
JM
482 Note that 0 is specifically allowed as an error return (no
483 such symbol).
484 */
c906108c
SS
485
486static CORE_ADDR
487bfd_lookup_symbol (abfd, symname)
488 bfd *abfd;
489 char *symname;
490{
491 unsigned int storage_needed;
492 asymbol *sym;
493 asymbol **symbol_table;
494 unsigned int number_of_symbols;
495 unsigned int i;
496 struct cleanup *back_to;
497 CORE_ADDR symaddr = 0;
c5aa993b 498
c906108c
SS
499 storage_needed = bfd_get_symtab_upper_bound (abfd);
500
501 if (storage_needed > 0)
502 {
503 symbol_table = (asymbol **) xmalloc (storage_needed);
c5aa993b
JM
504 back_to = make_cleanup (free, (PTR) symbol_table);
505 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
506
c906108c
SS
507 for (i = 0; i < number_of_symbols; i++)
508 {
509 sym = *symbol_table++;
c5aa993b 510 if (STREQ (sym->name, symname))
c906108c
SS
511 {
512 /* Bfd symbols are section relative. */
c5aa993b 513 symaddr = sym->value + sym->section->vma;
c906108c
SS
514 break;
515 }
516 }
517 do_cleanups (back_to);
518 }
519 return (symaddr);
520}
521
522#ifdef HANDLE_SVR4_EXEC_EMULATORS
523
524/*
c5aa993b
JM
525 Solaris BCP (the part of Solaris which allows it to run SunOS4
526 a.out files) throws in another wrinkle. Solaris does not fill
527 in the usual a.out link map structures when running BCP programs,
528 the only way to get at them is via groping around in the dynamic
529 linker.
530 The dynamic linker and it's structures are located in the shared
531 C library, which gets run as the executable's "interpreter" by
532 the kernel.
533
534 Note that we can assume nothing about the process state at the time
535 we need to find these structures. We may be stopped on the first
536 instruction of the interpreter (C shared library), the first
537 instruction of the executable itself, or somewhere else entirely
538 (if we attached to the process for example).
539 */
540
541static char *debug_base_symbols[] =
542{
543 "r_debug", /* Solaris 2.3 */
544 "_r_debug", /* Solaris 2.1, 2.2 */
c906108c
SS
545 NULL
546};
547
548static int
549look_for_base PARAMS ((int, CORE_ADDR));
550
551/*
552
c5aa993b 553 LOCAL FUNCTION
c906108c 554
c5aa993b 555 look_for_base -- examine file for each mapped address segment
c906108c 556
c5aa993b 557 SYNOPSYS
c906108c 558
c5aa993b 559 static int look_for_base (int fd, CORE_ADDR baseaddr)
c906108c 560
c5aa993b 561 DESCRIPTION
c906108c 562
c5aa993b
JM
563 This function is passed to proc_iterate_over_mappings, which
564 causes it to get called once for each mapped address space, with
565 an open file descriptor for the file mapped to that space, and the
566 base address of that mapped space.
c906108c 567
c5aa993b
JM
568 Our job is to find the debug base symbol in the file that this
569 fd is open on, if it exists, and if so, initialize the dynamic
570 linker structure base address debug_base.
c906108c 571
c5aa993b
JM
572 Note that this is a computationally expensive proposition, since
573 we basically have to open a bfd on every call, so we specifically
574 avoid opening the exec file.
c906108c
SS
575 */
576
577static int
578look_for_base (fd, baseaddr)
579 int fd;
580 CORE_ADDR baseaddr;
581{
582 bfd *interp_bfd;
583 CORE_ADDR address = 0;
584 char **symbolp;
585
586 /* If the fd is -1, then there is no file that corresponds to this
587 mapped memory segment, so skip it. Also, if the fd corresponds
588 to the exec file, skip it as well. */
589
590 if (fd == -1
591 || (exec_bfd != NULL
c5aa993b 592 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
c906108c
SS
593 {
594 return (0);
595 }
596
597 /* Try to open whatever random file this fd corresponds to. Note that
598 we have no way currently to find the filename. Don't gripe about
599 any problems we might have, just fail. */
600
601 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
602 {
603 return (0);
604 }
605 if (!bfd_check_format (interp_bfd, bfd_object))
606 {
607 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 608 interp_bfd. */
c906108c
SS
609 bfd_close (interp_bfd);
610 return (0);
611 }
612
613 /* Now try to find our debug base symbol in this file, which we at
614 least know to be a valid ELF executable or shared library. */
615
616 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
617 {
618 address = bfd_lookup_symbol (interp_bfd, *symbolp);
619 if (address != 0)
620 {
621 break;
622 }
623 }
624 if (address == 0)
625 {
626 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 627 interp_bfd. */
c906108c
SS
628 bfd_close (interp_bfd);
629 return (0);
630 }
631
632 /* Eureka! We found the symbol. But now we may need to relocate it
633 by the base address. If the symbol's value is less than the base
634 address of the shared library, then it hasn't yet been relocated
635 by the dynamic linker, and we have to do it ourself. FIXME: Note
636 that we make the assumption that the first segment that corresponds
637 to the shared library has the base address to which the library
638 was relocated. */
639
640 if (address < baseaddr)
641 {
642 address += baseaddr;
643 }
644 debug_base = address;
645 /* FIXME-leak: on failure, might not free all memory associated with
646 interp_bfd. */
647 bfd_close (interp_bfd);
648 return (1);
649}
650#endif /* HANDLE_SVR4_EXEC_EMULATORS */
651
652/*
653
c5aa993b 654 LOCAL FUNCTION
c906108c 655
c5aa993b
JM
656 elf_locate_base -- locate the base address of dynamic linker structs
657 for SVR4 elf targets.
c906108c 658
c5aa993b 659 SYNOPSIS
c906108c 660
c5aa993b 661 CORE_ADDR elf_locate_base (void)
c906108c 662
c5aa993b 663 DESCRIPTION
c906108c 664
c5aa993b
JM
665 For SVR4 elf targets the address of the dynamic linker's runtime
666 structure is contained within the dynamic info section in the
667 executable file. The dynamic section is also mapped into the
668 inferior address space. Because the runtime loader fills in the
669 real address before starting the inferior, we have to read in the
670 dynamic info section from the inferior address space.
671 If there are any errors while trying to find the address, we
672 silently return 0, otherwise the found address is returned.
c906108c
SS
673
674 */
675
676static CORE_ADDR
677elf_locate_base ()
678{
679 sec_ptr dyninfo_sect;
680 int dyninfo_sect_size;
681 CORE_ADDR dyninfo_addr;
682 char *buf;
683 char *bufend;
684
685 /* Find the start address of the .dynamic section. */
686 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
687 if (dyninfo_sect == NULL)
688 return 0;
689 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
690
691 /* Read in .dynamic section, silently ignore errors. */
692 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
693 buf = alloca (dyninfo_sect_size);
694 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
695 return 0;
696
697 /* Find the DT_DEBUG entry in the the .dynamic section.
698 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
699 no DT_DEBUG entries. */
700#ifndef TARGET_ELF64
701 for (bufend = buf + dyninfo_sect_size;
702 buf < bufend;
703 buf += sizeof (Elf32_External_Dyn))
704 {
c5aa993b 705 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
c906108c
SS
706 long dyn_tag;
707 CORE_ADDR dyn_ptr;
708
709 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
710 if (dyn_tag == DT_NULL)
711 break;
712 else if (dyn_tag == DT_DEBUG)
713 {
714 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
715 return dyn_ptr;
716 }
717#ifdef DT_MIPS_RLD_MAP
718 else if (dyn_tag == DT_MIPS_RLD_MAP)
719 {
720 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
721
722 /* DT_MIPS_RLD_MAP contains a pointer to the address
723 of the dynamic link structure. */
724 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
725 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
726 return 0;
727 return extract_unsigned_integer (pbuf, sizeof (pbuf));
728 }
729#endif
730 }
731#else /* ELF64 */
732 for (bufend = buf + dyninfo_sect_size;
733 buf < bufend;
734 buf += sizeof (Elf64_External_Dyn))
735 {
c5aa993b 736 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
c906108c
SS
737 long dyn_tag;
738 CORE_ADDR dyn_ptr;
739
740 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
741 if (dyn_tag == DT_NULL)
742 break;
743 else if (dyn_tag == DT_DEBUG)
744 {
745 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
746 return dyn_ptr;
747 }
748 }
749#endif
750
751 /* DT_DEBUG entry not found. */
752 return 0;
753}
754
c5aa993b 755#endif /* SVR4_SHARED_LIBS */
c906108c
SS
756
757/*
758
c5aa993b 759 LOCAL FUNCTION
c906108c 760
c5aa993b 761 locate_base -- locate the base address of dynamic linker structs
c906108c 762
c5aa993b 763 SYNOPSIS
c906108c 764
c5aa993b 765 CORE_ADDR locate_base (void)
c906108c 766
c5aa993b 767 DESCRIPTION
c906108c 768
c5aa993b
JM
769 For both the SunOS and SVR4 shared library implementations, if the
770 inferior executable has been linked dynamically, there is a single
771 address somewhere in the inferior's data space which is the key to
772 locating all of the dynamic linker's runtime structures. This
773 address is the value of the debug base symbol. The job of this
774 function is to find and return that address, or to return 0 if there
775 is no such address (the executable is statically linked for example).
c906108c 776
c5aa993b
JM
777 For SunOS, the job is almost trivial, since the dynamic linker and
778 all of it's structures are statically linked to the executable at
779 link time. Thus the symbol for the address we are looking for has
780 already been added to the minimal symbol table for the executable's
781 objfile at the time the symbol file's symbols were read, and all we
782 have to do is look it up there. Note that we explicitly do NOT want
783 to find the copies in the shared library.
c906108c 784
c5aa993b
JM
785 The SVR4 version is a bit more complicated because the address
786 is contained somewhere in the dynamic info section. We have to go
787 to a lot more work to discover the address of the debug base symbol.
788 Because of this complexity, we cache the value we find and return that
789 value on subsequent invocations. Note there is no copy in the
790 executable symbol tables.
c906108c
SS
791
792 */
793
794static CORE_ADDR
795locate_base ()
796{
797
798#ifndef SVR4_SHARED_LIBS
799
800 struct minimal_symbol *msymbol;
801 CORE_ADDR address = 0;
802 char **symbolp;
803
804 /* For SunOS, we want to limit the search for the debug base symbol to the
805 executable being debugged, since there is a duplicate named symbol in the
806 shared library. We don't want the shared library versions. */
807
808 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
809 {
810 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
811 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
812 {
813 address = SYMBOL_VALUE_ADDRESS (msymbol);
814 return (address);
815 }
816 }
817 return (0);
818
c5aa993b 819#else /* SVR4_SHARED_LIBS */
c906108c
SS
820
821 /* Check to see if we have a currently valid address, and if so, avoid
822 doing all this work again and just return the cached address. If
823 we have no cached address, try to locate it in the dynamic info
824 section for ELF executables. */
825
826 if (debug_base == 0)
827 {
828 if (exec_bfd != NULL
829 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
830 debug_base = elf_locate_base ();
831#ifdef HANDLE_SVR4_EXEC_EMULATORS
832 /* Try it the hard way for emulated executables. */
833 else if (inferior_pid != 0 && target_has_execution)
834 proc_iterate_over_mappings (look_for_base);
835#endif
836 }
837 return (debug_base);
838
c5aa993b 839#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
840
841}
842
843/*
844
c5aa993b 845 LOCAL FUNCTION
c906108c 846
c5aa993b 847 first_link_map_member -- locate first member in dynamic linker's map
c906108c 848
c5aa993b 849 SYNOPSIS
c906108c 850
c5aa993b 851 static struct link_map *first_link_map_member (void)
c906108c 852
c5aa993b 853 DESCRIPTION
c906108c 854
c5aa993b
JM
855 Read in a copy of the first member in the inferior's dynamic
856 link map from the inferior's dynamic linker structures, and return
857 a pointer to the copy in our address space.
858 */
c906108c
SS
859
860static struct link_map *
861first_link_map_member ()
862{
863 struct link_map *lm = NULL;
864
865#ifndef SVR4_SHARED_LIBS
866
867 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
868 if (dynamic_copy.ld_version >= 2)
869 {
870 /* It is a version that we can deal with, so read in the secondary
c5aa993b 871 structure and find the address of the link map list from it. */
c906108c
SS
872 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
873 sizeof (struct link_dynamic_2));
874 lm = ld_2_copy.ld_loaded;
875 }
876
c5aa993b 877#else /* SVR4_SHARED_LIBS */
c906108c
SS
878
879 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
880 /* FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883 lm = debug_copy.r_map;
884
c5aa993b 885#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
886
887 return (lm);
888}
889
104c1213
JM
890#ifdef SVR4_SHARED_LIBS
891/*
892
893 LOCAL FUNCTION
894
895 open_exec_file_object
896
897 SYNOPSIS
898
899 void open_symbol_file_object (int from_tty)
900
901 DESCRIPTION
902
903 If no open symbol file, attempt to locate and open the main symbol
904 file. On SVR4 systems, this is the first link map entry. If its
905 name is here, we can open it. Useful when attaching to a process
906 without first loading its symbol file.
907
908 */
909
910int
911open_symbol_file_object (arg)
912 PTR arg;
913{
914 int from_tty = (int) arg; /* sneak past catch_errors */
915 struct link_map *lm, lmcopy;
916 char *filename;
917 int errcode;
918
919 if (symfile_objfile)
920 if (!query ("Attempt to reload symbols from process? "))
921 return 0;
922
923 if ((debug_base = locate_base ()) == 0)
924 return 0; /* failed somehow... */
925
926 /* First link map member should be the executable. */
927 if ((lm = first_link_map_member ()) == NULL)
928 return 0; /* failed somehow... */
929
930 /* Read from target memory to GDB. */
931 read_memory ((CORE_ADDR) lm, (void *) &lmcopy, sizeof (lmcopy));
932
933 if (lmcopy.l_name == 0)
934 return 0; /* no filename. */
935
936 /* Now fetch the filename from target memory. */
937 target_read_string ((CORE_ADDR) lmcopy.l_name, &filename,
938 MAX_PATH_SIZE - 1, &errcode);
939 if (errcode)
940 {
941 warning ("failed to read exec filename from attached file: %s",
942 safe_strerror (errcode));
943 return 0;
944 }
945
946 make_cleanup ((make_cleanup_func) free, (void *) filename);
947 /* Have a pathname: read the symbol file. */
948 symbol_file_command (filename, from_tty);
949
950 return 1;
951}
952#endif /* SVR4_SHARED_LIBS */
953
c906108c
SS
954/*
955
c5aa993b 956 LOCAL FUNCTION
c906108c 957
c5aa993b 958 find_solib -- step through list of shared objects
c906108c 959
c5aa993b 960 SYNOPSIS
c906108c 961
c5aa993b 962 struct so_list *find_solib (struct so_list *so_list_ptr)
c906108c 963
c5aa993b 964 DESCRIPTION
c906108c 965
c5aa993b
JM
966 This module contains the routine which finds the names of any
967 loaded "images" in the current process. The argument in must be
968 NULL on the first call, and then the returned value must be passed
969 in on subsequent calls. This provides the capability to "step" down
970 the list of loaded objects. On the last object, a NULL value is
971 returned.
c906108c 972
c5aa993b
JM
973 The arg and return value are "struct link_map" pointers, as defined
974 in <link.h>.
c906108c
SS
975 */
976
977static struct so_list *
978find_solib (so_list_ptr)
979 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
980{
981 struct so_list *so_list_next = NULL;
982 struct link_map *lm = NULL;
983 struct so_list *new;
c5aa993b 984
c906108c
SS
985 if (so_list_ptr == NULL)
986 {
987 /* We are setting up for a new scan through the loaded images. */
988 if ((so_list_next = so_list_head) == NULL)
989 {
990 /* We have not already read in the dynamic linking structures
991 from the inferior, lookup the address of the base structure. */
992 debug_base = locate_base ();
993 if (debug_base != 0)
994 {
995 /* Read the base structure in and find the address of the first
c5aa993b 996 link map list member. */
c906108c
SS
997 lm = first_link_map_member ();
998 }
999 }
1000 }
1001 else
1002 {
1003 /* We have been called before, and are in the process of walking
c5aa993b 1004 the shared library list. Advance to the next shared object. */
c906108c
SS
1005 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
1006 {
1007 /* We have hit the end of the list, so check to see if any were
1008 added, but be quiet if we can't read from the target any more. */
c5aa993b
JM
1009 int status = target_read_memory ((CORE_ADDR) so_list_ptr->lmaddr,
1010 (char *) &(so_list_ptr->lm),
c906108c
SS
1011 sizeof (struct link_map));
1012 if (status == 0)
1013 {
1014 lm = LM_NEXT (so_list_ptr);
1015 }
1016 else
1017 {
1018 lm = NULL;
1019 }
1020 }
c5aa993b 1021 so_list_next = so_list_ptr->next;
c906108c
SS
1022 }
1023 if ((so_list_next == NULL) && (lm != NULL))
1024 {
1025 /* Get next link map structure from inferior image and build a local
c5aa993b 1026 abbreviated load_map structure */
c906108c
SS
1027 new = (struct so_list *) xmalloc (sizeof (struct so_list));
1028 memset ((char *) new, 0, sizeof (struct so_list));
c5aa993b 1029 new->lmaddr = lm;
c906108c 1030 /* Add the new node as the next node in the list, or as the root
c5aa993b 1031 node if this is the first one. */
c906108c
SS
1032 if (so_list_ptr != NULL)
1033 {
c5aa993b 1034 so_list_ptr->next = new;
c906108c
SS
1035 }
1036 else
1037 {
1038 so_list_head = new;
1039
c5aa993b 1040 if (!solib_cleanup_queued)
c906108c
SS
1041 {
1042 make_run_cleanup (do_clear_solib, NULL);
1043 solib_cleanup_queued = 1;
1044 }
c5aa993b
JM
1045
1046 }
c906108c 1047 so_list_next = new;
c5aa993b 1048 read_memory ((CORE_ADDR) lm, (char *) &(new->lm),
c906108c
SS
1049 sizeof (struct link_map));
1050 /* For SVR4 versions, the first entry in the link map is for the
c5aa993b
JM
1051 inferior executable, so we must ignore it. For some versions of
1052 SVR4, it has no name. For others (Solaris 2.3 for example), it
1053 does have a name, so we can no longer use a missing name to
1054 decide when to ignore it. */
1055 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new->lm))
c906108c
SS
1056 {
1057 int errcode;
1058 char *buffer;
1059 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
1060 MAX_PATH_SIZE - 1, &errcode);
1061 if (errcode != 0)
1062 {
1063 warning ("find_solib: Can't read pathname for load map: %s\n",
1064 safe_strerror (errcode));
1065 return (so_list_next);
1066 }
c5aa993b
JM
1067 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1068 new->so_name[MAX_PATH_SIZE - 1] = '\0';
c906108c
SS
1069 free (buffer);
1070 catch_errors (solib_map_sections, new,
1071 "Error while mapping shared library sections:\n",
1072 RETURN_MASK_ALL);
c5aa993b 1073 }
c906108c
SS
1074 }
1075 return (so_list_next);
1076}
1077
1078/* A small stub to get us past the arg-passing pinhole of catch_errors. */
1079
1080static int
1081symbol_add_stub (arg)
1082 PTR arg;
1083{
c5aa993b 1084 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c 1085 CORE_ADDR text_addr = 0;
2acceee2 1086 struct section_addr_info section_addrs;
c906108c 1087
2acceee2 1088 memset (&section_addrs, 0, sizeof (section_addrs));
c5aa993b
JM
1089 if (so->textsection)
1090 text_addr = so->textsection->addr;
1091 else if (so->abfd != NULL)
c906108c
SS
1092 {
1093 asection *lowest_sect;
1094
1095 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 1096 text_addr so that the relocation in symbol_file_add does no harm. */
c906108c 1097
c5aa993b 1098 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 1099 if (lowest_sect == NULL)
c5aa993b 1100 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 1101 (PTR) &lowest_sect);
c906108c 1102 if (lowest_sect)
c5aa993b
JM
1103 text_addr = bfd_section_vma (so->abfd, lowest_sect)
1104 + (CORE_ADDR) LM_ADDR (so);
c906108c 1105 }
c5aa993b
JM
1106
1107 ALL_OBJFILES (so->objfile)
1108 {
1109 if (strcmp (so->objfile->name, so->so_name) == 0)
1110 return 1;
1111 }
2acceee2 1112 section_addrs.text_addr = text_addr;
c5aa993b
JM
1113 so->objfile =
1114 symbol_file_add (so->so_name, so->from_tty,
2df3850c 1115 &section_addrs, 0, OBJF_SHARED);
c906108c
SS
1116 return (1);
1117}
1118
1119/* This function will check the so name to see if matches the main list.
1120 In some system the main object is in the list, which we want to exclude */
1121
c5aa993b
JM
1122static int
1123match_main (soname)
1124 char *soname;
c906108c
SS
1125{
1126 char **mainp;
1127
1128 for (mainp = main_name_list; *mainp != NULL; mainp++)
1129 {
1130 if (strcmp (soname, *mainp) == 0)
1131 return (1);
1132 }
1133
1134 return (0);
1135}
1136
1137/*
1138
c5aa993b 1139 GLOBAL FUNCTION
c906108c 1140
c5aa993b 1141 solib_add -- add a shared library file to the symtab and section list
c906108c 1142
c5aa993b 1143 SYNOPSIS
c906108c 1144
c5aa993b
JM
1145 void solib_add (char *arg_string, int from_tty,
1146 struct target_ops *target)
c906108c 1147
c5aa993b 1148 DESCRIPTION
c906108c 1149
c5aa993b 1150 */
c906108c
SS
1151
1152void
1153solib_add (arg_string, from_tty, target)
1154 char *arg_string;
1155 int from_tty;
1156 struct target_ops *target;
c5aa993b
JM
1157{
1158 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1159
1160 /* Last shared library that we read. */
1161 struct so_list *so_last = NULL;
1162
1163 char *re_err;
1164 int count;
1165 int old;
c5aa993b 1166
104c1213
JM
1167#ifdef SVR4_SHARED_LIBS
1168 /* If we are attaching to a running process for which we
1169 have not opened a symbol file, we may be able to get its
1170 symbols now! */
1171 if (attach_flag &&
1172 symfile_objfile == NULL)
1173 catch_errors (open_symbol_file_object, (PTR) from_tty,
1174 "Error reading attached process's symbol file.\n",
1175 RETURN_MASK_ALL);
1176
1177#endif SVR4_SHARED_LIBS
1178
6426a772 1179 if ((re_err = re_comp (arg_string? arg_string : ".")) != NULL)
c906108c
SS
1180 {
1181 error ("Invalid regexp: %s", re_err);
1182 }
c5aa993b 1183
c906108c
SS
1184 /* Add the shared library sections to the section table of the
1185 specified target, if any. */
1186 if (target)
1187 {
1188 /* Count how many new section_table entries there are. */
1189 so = NULL;
1190 count = 0;
1191 while ((so = find_solib (so)) != NULL)
1192 {
c5aa993b 1193 if (so->so_name[0] && !match_main (so->so_name))
c906108c 1194 {
c5aa993b 1195 count += so->sections_end - so->sections;
c906108c
SS
1196 }
1197 }
c5aa993b 1198
c906108c
SS
1199 if (count)
1200 {
6426a772 1201
c906108c 1202 /* Add these section table entries to the target's table. */
6426a772 1203 old = target_resize_to_sections (target, count);
c906108c
SS
1204 while ((so = find_solib (so)) != NULL)
1205 {
c5aa993b 1206 if (so->so_name[0])
c906108c 1207 {
c5aa993b
JM
1208 count = so->sections_end - so->sections;
1209 memcpy ((char *) (target->to_sections + old),
1210 so->sections,
c906108c
SS
1211 (sizeof (struct section_table)) * count);
1212 old += count;
1213 }
1214 }
1215 }
1216 }
c5aa993b 1217
c906108c
SS
1218 /* Now add the symbol files. */
1219 while ((so = find_solib (so)) != NULL)
1220 {
c5aa993b
JM
1221 if (so->so_name[0] && re_exec (so->so_name) &&
1222 !match_main (so->so_name))
c906108c 1223 {
c5aa993b
JM
1224 so->from_tty = from_tty;
1225 if (so->symbols_loaded)
c906108c
SS
1226 {
1227 if (from_tty)
1228 {
c5aa993b 1229 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
c906108c
SS
1230 }
1231 }
1232 else if (catch_errors
1233 (symbol_add_stub, so,
1234 "Error while reading shared library symbols:\n",
1235 RETURN_MASK_ALL))
1236 {
1237 so_last = so;
c5aa993b 1238 so->symbols_loaded = 1;
c906108c
SS
1239 }
1240 }
1241 }
1242
1243 /* Getting new symbols may change our opinion about what is
1244 frameless. */
1245 if (so_last)
1246 reinit_frame_cache ();
1247
1248 if (so_last)
1249 special_symbol_handling (so_last);
1250}
1251
1252/*
1253
c5aa993b 1254 LOCAL FUNCTION
c906108c 1255
c5aa993b 1256 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 1257
c5aa993b 1258 SYNOPSIS
c906108c 1259
c5aa993b 1260 static void info_sharedlibrary_command ()
c906108c 1261
c5aa993b 1262 DESCRIPTION
c906108c 1263
c5aa993b
JM
1264 Walk through the shared library list and print information
1265 about each attached library.
1266 */
c906108c
SS
1267
1268static void
1269info_sharedlibrary_command (ignore, from_tty)
1270 char *ignore;
1271 int from_tty;
1272{
c5aa993b 1273 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1274 int header_done = 0;
1275 int addr_width;
1276 char *addr_fmt;
1277
1278 if (exec_bfd == NULL)
1279 {
1280 printf_unfiltered ("No exec file.\n");
1281 return;
1282 }
1283
1284#ifndef TARGET_ELF64
c5aa993b 1285 addr_width = 8 + 4;
c906108c
SS
1286 addr_fmt = "08l";
1287#else
c5aa993b 1288 addr_width = 16 + 4;
c906108c
SS
1289 addr_fmt = "016l";
1290#endif
1291
1292 while ((so = find_solib (so)) != NULL)
1293 {
c5aa993b 1294 if (so->so_name[0])
c906108c
SS
1295 {
1296 if (!header_done)
1297 {
c5aa993b
JM
1298 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1299 addr_width, "To", "Syms Read",
1300 "Shared Object Library");
c906108c
SS
1301 header_done++;
1302 }
1303
1304 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1305 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1306 addr_fmt));
c906108c 1307 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1308 local_hex_string_custom ((unsigned long) so->lmend,
1309 addr_fmt));
1310 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1311 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
1312 }
1313 }
1314 if (so_list_head == NULL)
1315 {
c5aa993b 1316 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1317 }
1318}
1319
1320/*
1321
c5aa993b 1322 GLOBAL FUNCTION
c906108c 1323
c5aa993b 1324 solib_address -- check to see if an address is in a shared lib
c906108c 1325
c5aa993b 1326 SYNOPSIS
c906108c 1327
c5aa993b 1328 char * solib_address (CORE_ADDR address)
c906108c 1329
c5aa993b 1330 DESCRIPTION
c906108c 1331
c5aa993b
JM
1332 Provides a hook for other gdb routines to discover whether or
1333 not a particular address is within the mapped address space of
1334 a shared library. Any address between the base mapping address
1335 and the first address beyond the end of the last mapping, is
1336 considered to be within the shared library address space, for
1337 our purposes.
c906108c 1338
c5aa993b
JM
1339 For example, this routine is called at one point to disable
1340 breakpoints which are in shared libraries that are not currently
1341 mapped in.
c906108c
SS
1342 */
1343
1344char *
1345solib_address (address)
1346 CORE_ADDR address;
1347{
c5aa993b
JM
1348 register struct so_list *so = 0; /* link map state variable */
1349
c906108c
SS
1350 while ((so = find_solib (so)) != NULL)
1351 {
c5aa993b 1352 if (so->so_name[0])
c906108c
SS
1353 {
1354 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
c5aa993b 1355 (address < (CORE_ADDR) so->lmend))
c906108c
SS
1356 return (so->so_name);
1357 }
1358 }
1359 return (0);
1360}
1361
1362/* Called by free_all_symtabs */
1363
c5aa993b 1364void
085dd6e6 1365clear_solib ()
c906108c
SS
1366{
1367 struct so_list *next;
1368 char *bfd_filename;
7a292a7a 1369
085dd6e6
JM
1370 /* This function is expected to handle ELF shared libraries. It is
1371 also used on Solaris, which can run either ELF or a.out binaries
1372 (for compatibility with SunOS 4), both of which can use shared
1373 libraries. So we don't know whether we have an ELF executable or
1374 an a.out executable until the user chooses an executable file.
1375
1376 ELF shared libraries don't get mapped into the address space
1377 until after the program starts, so we'd better not try to insert
1378 breakpoints in them immediately. We have to wait until the
1379 dynamic linker has loaded them; we'll hit a bp_shlib_event
1380 breakpoint (look for calls to create_solib_event_breakpoint) when
1381 it's ready.
1382
1383 SunOS shared libraries seem to be different --- they're present
1384 as soon as the process begins execution, so there's no need to
1385 put off inserting breakpoints. There's also nowhere to put a
1386 bp_shlib_event breakpoint, so if we put it off, we'll never get
1387 around to it.
1388
1389 So: disable breakpoints only if we're using ELF shared libs. */
1390 if (exec_bfd != NULL
1391 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1392 disable_breakpoints_in_shlibs (1);
1393
c906108c
SS
1394 while (so_list_head)
1395 {
c5aa993b 1396 if (so_list_head->sections)
c906108c 1397 {
c5aa993b 1398 free ((PTR) so_list_head->sections);
c906108c 1399 }
c5aa993b 1400 if (so_list_head->abfd)
c906108c 1401 {
c5aa993b
JM
1402 bfd_filename = bfd_get_filename (so_list_head->abfd);
1403 if (!bfd_close (so_list_head->abfd))
c906108c
SS
1404 warning ("cannot close \"%s\": %s",
1405 bfd_filename, bfd_errmsg (bfd_get_error ()));
1406 }
1407 else
1408 /* This happens for the executable on SVR4. */
1409 bfd_filename = NULL;
1410
c5aa993b 1411 next = so_list_head->next;
c906108c 1412 if (bfd_filename)
c5aa993b
JM
1413 free ((PTR) bfd_filename);
1414 free ((PTR) so_list_head);
c906108c
SS
1415 so_list_head = next;
1416 }
1417 debug_base = 0;
1418}
1419
1420static void
1421do_clear_solib (dummy)
1422 PTR dummy;
1423{
1424 solib_cleanup_queued = 0;
1425 clear_solib ();
1426}
1427
1428#ifdef SVR4_SHARED_LIBS
1429
1430/* Return 1 if PC lies in the dynamic symbol resolution code of the
1431 SVR4 run time loader. */
1432
1433static CORE_ADDR interp_text_sect_low;
1434static CORE_ADDR interp_text_sect_high;
1435static CORE_ADDR interp_plt_sect_low;
1436static CORE_ADDR interp_plt_sect_high;
1437
1438int
1439in_svr4_dynsym_resolve_code (pc)
1440 CORE_ADDR pc;
1441{
1442 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1443 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1444 || in_plt_section (pc, NULL));
1445}
1446#endif
1447
1448/*
1449
c5aa993b 1450 LOCAL FUNCTION
c906108c 1451
c5aa993b 1452 disable_break -- remove the "mapping changed" breakpoint
c906108c 1453
c5aa993b 1454 SYNOPSIS
c906108c 1455
c5aa993b 1456 static int disable_break ()
c906108c 1457
c5aa993b 1458 DESCRIPTION
c906108c 1459
c5aa993b
JM
1460 Removes the breakpoint that gets hit when the dynamic linker
1461 completes a mapping change.
c906108c 1462
c5aa993b 1463 */
c906108c
SS
1464
1465#ifndef SVR4_SHARED_LIBS
1466
1467static int
1468disable_break ()
1469{
1470 int status = 1;
1471
1472#ifndef SVR4_SHARED_LIBS
1473
1474 int in_debugger = 0;
c5aa993b 1475
c906108c
SS
1476 /* Read the debugger structure from the inferior to retrieve the
1477 address of the breakpoint and the original contents of the
1478 breakpoint address. Remove the breakpoint by writing the original
1479 contents back. */
1480
1481 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1482
1483 /* Set `in_debugger' to zero now. */
1484
1485 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1486
1487 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1488 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1489 sizeof (debug_copy.ldd_bp_inst));
1490
c5aa993b 1491#else /* SVR4_SHARED_LIBS */
c906108c
SS
1492
1493 /* Note that breakpoint address and original contents are in our address
1494 space, so we just need to write the original contents back. */
1495
1496 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1497 {
1498 status = 0;
1499 }
1500
c5aa993b 1501#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1502
1503 /* For the SVR4 version, we always know the breakpoint address. For the
1504 SunOS version we don't know it until the above code is executed.
1505 Grumble if we are stopped anywhere besides the breakpoint address. */
1506
1507 if (stop_pc != breakpoint_addr)
1508 {
1509 warning ("stopped at unknown breakpoint while handling shared libraries");
1510 }
1511
1512 return (status);
1513}
1514
c5aa993b 1515#endif /* #ifdef SVR4_SHARED_LIBS */
c906108c
SS
1516
1517/*
1518
c5aa993b
JM
1519 LOCAL FUNCTION
1520
1521 enable_break -- arrange for dynamic linker to hit breakpoint
1522
1523 SYNOPSIS
1524
1525 int enable_break (void)
1526
1527 DESCRIPTION
1528
1529 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1530 debugger interface, support for arranging for the inferior to hit
1531 a breakpoint after mapping in the shared libraries. This function
1532 enables that breakpoint.
1533
1534 For SunOS, there is a special flag location (in_debugger) which we
1535 set to 1. When the dynamic linker sees this flag set, it will set
1536 a breakpoint at a location known only to itself, after saving the
1537 original contents of that place and the breakpoint address itself,
1538 in it's own internal structures. When we resume the inferior, it
1539 will eventually take a SIGTRAP when it runs into the breakpoint.
1540 We handle this (in a different place) by restoring the contents of
1541 the breakpointed location (which is only known after it stops),
1542 chasing around to locate the shared libraries that have been
1543 loaded, then resuming.
1544
1545 For SVR4, the debugger interface structure contains a member (r_brk)
1546 which is statically initialized at the time the shared library is
1547 built, to the offset of a function (_r_debug_state) which is guaran-
1548 teed to be called once before mapping in a library, and again when
1549 the mapping is complete. At the time we are examining this member,
1550 it contains only the unrelocated offset of the function, so we have
1551 to do our own relocation. Later, when the dynamic linker actually
1552 runs, it relocates r_brk to be the actual address of _r_debug_state().
1553
1554 The debugger interface structure also contains an enumeration which
1555 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1556 depending upon whether or not the library is being mapped or unmapped,
1557 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1558 */
c906108c
SS
1559
1560static int
1561enable_break ()
1562{
1563 int success = 0;
1564
1565#ifndef SVR4_SHARED_LIBS
1566
1567 int j;
1568 int in_debugger;
1569
1570 /* Get link_dynamic structure */
1571
1572 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1573 sizeof (dynamic_copy));
1574 if (j)
1575 {
1576 /* unreadable */
1577 return (0);
1578 }
1579
1580 /* Calc address of debugger interface structure */
1581
1582 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1583
1584 /* Calc address of `in_debugger' member of debugger interface structure */
1585
1586 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1587 (char *) &debug_copy);
1588
1589 /* Write a value of 1 to this member. */
1590
1591 in_debugger = 1;
1592 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1593 success = 1;
1594
c5aa993b 1595#else /* SVR4_SHARED_LIBS */
c906108c
SS
1596
1597#ifdef BKPT_AT_SYMBOL
1598
1599 struct minimal_symbol *msymbol;
1600 char **bkpt_namep;
1601 asection *interp_sect;
1602
1603 /* First, remove all the solib event breakpoints. Their addresses
1604 may have changed since the last time we ran the program. */
1605 remove_solib_event_breakpoints ();
1606
1607#ifdef SVR4_SHARED_LIBS
1608 interp_text_sect_low = interp_text_sect_high = 0;
1609 interp_plt_sect_low = interp_plt_sect_high = 0;
1610
1611 /* Find the .interp section; if not found, warn the user and drop
1612 into the old breakpoint at symbol code. */
1613 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1614 if (interp_sect)
1615 {
1616 unsigned int interp_sect_size;
1617 char *buf;
1618 CORE_ADDR load_addr;
1619 bfd *tmp_bfd;
1620 CORE_ADDR sym_addr = 0;
1621
1622 /* Read the contents of the .interp section into a local buffer;
c5aa993b 1623 the contents specify the dynamic linker this program uses. */
c906108c
SS
1624 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1625 buf = alloca (interp_sect_size);
1626 bfd_get_section_contents (exec_bfd, interp_sect,
1627 buf, 0, interp_sect_size);
1628
1629 /* Now we need to figure out where the dynamic linker was
c5aa993b
JM
1630 loaded so that we can load its symbols and place a breakpoint
1631 in the dynamic linker itself.
c906108c 1632
c5aa993b
JM
1633 This address is stored on the stack. However, I've been unable
1634 to find any magic formula to find it for Solaris (appears to
1635 be trivial on GNU/Linux). Therefore, we have to try an alternate
1636 mechanism to find the dynamic linker's base address. */
c906108c
SS
1637 tmp_bfd = bfd_openr (buf, gnutarget);
1638 if (tmp_bfd == NULL)
1639 goto bkpt_at_symbol;
1640
1641 /* Make sure the dynamic linker's really a useful object. */
1642 if (!bfd_check_format (tmp_bfd, bfd_object))
1643 {
1644 warning ("Unable to grok dynamic linker %s as an object file", buf);
1645 bfd_close (tmp_bfd);
1646 goto bkpt_at_symbol;
1647 }
1648
1649 /* We find the dynamic linker's base address by examining the
c5aa993b
JM
1650 current pc (which point at the entry point for the dynamic
1651 linker) and subtracting the offset of the entry point. */
c906108c
SS
1652 load_addr = read_pc () - tmp_bfd->start_address;
1653
1654 /* Record the relocated start and end address of the dynamic linker
c5aa993b 1655 text and plt section for in_svr4_dynsym_resolve_code. */
c906108c
SS
1656 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1657 if (interp_sect)
1658 {
1659 interp_text_sect_low =
1660 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1661 interp_text_sect_high =
1662 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1663 }
1664 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1665 if (interp_sect)
1666 {
1667 interp_plt_sect_low =
1668 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1669 interp_plt_sect_high =
1670 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1671 }
1672
1673 /* Now try to set a breakpoint in the dynamic linker. */
1674 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1675 {
1676 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1677 if (sym_addr != 0)
1678 break;
1679 }
1680
1681 /* We're done with the temporary bfd. */
1682 bfd_close (tmp_bfd);
1683
1684 if (sym_addr != 0)
1685 {
1686 create_solib_event_breakpoint (load_addr + sym_addr);
1687 return 1;
1688 }
1689
1690 /* For whatever reason we couldn't set a breakpoint in the dynamic
c5aa993b
JM
1691 linker. Warn and drop into the old code. */
1692 bkpt_at_symbol:
c906108c
SS
1693 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1694 }
1695#endif
1696
1697 /* Scan through the list of symbols, trying to look up the symbol and
1698 set a breakpoint there. Terminate loop when we/if we succeed. */
1699
1700 breakpoint_addr = 0;
1701 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1702 {
1703 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1704 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1705 {
1706 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1707 return 1;
1708 }
1709 }
1710
1711 /* Nothing good happened. */
1712 success = 0;
1713
c5aa993b 1714#endif /* BKPT_AT_SYMBOL */
c906108c 1715
c5aa993b 1716#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1717
1718 return (success);
1719}
c5aa993b 1720
c906108c 1721/*
c5aa993b
JM
1722
1723 GLOBAL FUNCTION
1724
1725 solib_create_inferior_hook -- shared library startup support
1726
1727 SYNOPSIS
1728
1729 void solib_create_inferior_hook()
1730
1731 DESCRIPTION
1732
1733 When gdb starts up the inferior, it nurses it along (through the
1734 shell) until it is ready to execute it's first instruction. At this
1735 point, this function gets called via expansion of the macro
1736 SOLIB_CREATE_INFERIOR_HOOK.
1737
1738 For SunOS executables, this first instruction is typically the
1739 one at "_start", or a similar text label, regardless of whether
1740 the executable is statically or dynamically linked. The runtime
1741 startup code takes care of dynamically linking in any shared
1742 libraries, once gdb allows the inferior to continue.
1743
1744 For SVR4 executables, this first instruction is either the first
1745 instruction in the dynamic linker (for dynamically linked
1746 executables) or the instruction at "start" for statically linked
1747 executables. For dynamically linked executables, the system
1748 first exec's /lib/libc.so.N, which contains the dynamic linker,
1749 and starts it running. The dynamic linker maps in any needed
1750 shared libraries, maps in the actual user executable, and then
1751 jumps to "start" in the user executable.
1752
1753 For both SunOS shared libraries, and SVR4 shared libraries, we
1754 can arrange to cooperate with the dynamic linker to discover the
1755 names of shared libraries that are dynamically linked, and the
1756 base addresses to which they are linked.
1757
1758 This function is responsible for discovering those names and
1759 addresses, and saving sufficient information about them to allow
1760 their symbols to be read at a later time.
1761
1762 FIXME
1763
1764 Between enable_break() and disable_break(), this code does not
1765 properly handle hitting breakpoints which the user might have
1766 set in the startup code or in the dynamic linker itself. Proper
1767 handling will probably have to wait until the implementation is
1768 changed to use the "breakpoint handler function" method.
1769
1770 Also, what if child has exit()ed? Must exit loop somehow.
1771 */
1772
1773void
1774solib_create_inferior_hook ()
c906108c
SS
1775{
1776 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1777 yet. In fact, in the case of a SunOS4 executable being run on
1778 Solaris, we can't get it yet. find_solib will get it when it needs
1779 it. */
1780#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1781 if ((debug_base = locate_base ()) == 0)
1782 {
1783 /* Can't find the symbol or the executable is statically linked. */
1784 return;
1785 }
1786#endif
1787
1788 if (!enable_break ())
1789 {
1790 warning ("shared library handler failed to enable breakpoint");
1791 return;
1792 }
1793
1794#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1795 /* SCO and SunOS need the loop below, other systems should be using the
1796 special shared library breakpoints and the shared library breakpoint
1797 service routine.
1798
1799 Now run the target. It will eventually hit the breakpoint, at
1800 which point all of the libraries will have been mapped in and we
1801 can go groveling around in the dynamic linker structures to find
1802 out what we need to know about them. */
1803
1804 clear_proceed_status ();
1805 stop_soon_quietly = 1;
1806 stop_signal = TARGET_SIGNAL_0;
1807 do
1808 {
1809 target_resume (-1, 0, stop_signal);
1810 wait_for_inferior ();
1811 }
1812 while (stop_signal != TARGET_SIGNAL_TRAP);
1813 stop_soon_quietly = 0;
1814
1815#if !defined(_SCO_DS)
1816 /* We are now either at the "mapping complete" breakpoint (or somewhere
1817 else, a condition we aren't prepared to deal with anyway), so adjust
1818 the PC as necessary after a breakpoint, disable the breakpoint, and
1819 add any shared libraries that were mapped in. */
1820
1821 if (DECR_PC_AFTER_BREAK)
1822 {
1823 stop_pc -= DECR_PC_AFTER_BREAK;
1824 write_register (PC_REGNUM, stop_pc);
1825 }
1826
1827 if (!disable_break ())
1828 {
1829 warning ("shared library handler failed to disable breakpoint");
1830 }
1831
1832 if (auto_solib_add)
1833 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1834#endif /* ! _SCO_DS */
1835#endif
1836}
1837
1838/*
1839
c5aa993b 1840 LOCAL FUNCTION
c906108c 1841
c5aa993b 1842 special_symbol_handling -- additional shared library symbol handling
c906108c 1843
c5aa993b 1844 SYNOPSIS
c906108c 1845
c5aa993b 1846 void special_symbol_handling (struct so_list *so)
c906108c 1847
c5aa993b 1848 DESCRIPTION
c906108c 1849
c5aa993b
JM
1850 Once the symbols from a shared object have been loaded in the usual
1851 way, we are called to do any system specific symbol handling that
1852 is needed.
c906108c 1853
c5aa993b
JM
1854 For SunOS4, this consists of grunging around in the dynamic
1855 linkers structures to find symbol definitions for "common" symbols
1856 and adding them to the minimal symbol table for the runtime common
1857 objfile.
c906108c 1858
c5aa993b 1859 */
c906108c
SS
1860
1861static void
1862special_symbol_handling (so)
c5aa993b 1863 struct so_list *so;
c906108c
SS
1864{
1865#ifndef SVR4_SHARED_LIBS
1866 int j;
1867
1868 if (debug_addr == 0)
1869 {
1870 /* Get link_dynamic structure */
1871
1872 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1873 sizeof (dynamic_copy));
1874 if (j)
1875 {
1876 /* unreadable */
1877 return;
1878 }
1879
1880 /* Calc address of debugger interface structure */
1881 /* FIXME, this needs work for cross-debugging of core files
c5aa993b 1882 (byteorder, size, alignment, etc). */
c906108c
SS
1883
1884 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1885 }
1886
1887 /* Read the debugger structure from the inferior, just to make sure
1888 we have a current copy. */
1889
1890 j = target_read_memory (debug_addr, (char *) &debug_copy,
1891 sizeof (debug_copy));
1892 if (j)
c5aa993b 1893 return; /* unreadable */
c906108c
SS
1894
1895 /* Get common symbol definitions for the loaded object. */
1896
1897 if (debug_copy.ldd_cp)
1898 {
1899 solib_add_common_symbols (debug_copy.ldd_cp);
1900 }
1901
c5aa993b 1902#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1903}
1904
1905
1906/*
1907
c5aa993b 1908 LOCAL FUNCTION
c906108c 1909
c5aa993b 1910 sharedlibrary_command -- handle command to explicitly add library
c906108c 1911
c5aa993b 1912 SYNOPSIS
c906108c 1913
c5aa993b 1914 static void sharedlibrary_command (char *args, int from_tty)
c906108c 1915
c5aa993b 1916 DESCRIPTION
c906108c 1917
c5aa993b 1918 */
c906108c
SS
1919
1920static void
1921sharedlibrary_command (args, from_tty)
c5aa993b
JM
1922 char *args;
1923 int from_tty;
c906108c
SS
1924{
1925 dont_repeat ();
1926 solib_add (args, from_tty, (struct target_ops *) 0);
1927}
1928
1929#endif /* HAVE_LINK_H */
1930
1931void
c5aa993b 1932_initialize_solib ()
c906108c
SS
1933{
1934#ifdef HAVE_LINK_H
1935
1936 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1937 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 1938 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
1939 "Status of loaded shared object libraries.");
1940
1941 add_show_from_set
1942 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1943 (char *) &auto_solib_add,
1944 "Set autoloading of shared library symbols.\n\
1945If nonzero, symbols from all shared object libraries will be loaded\n\
1946automatically when the inferior begins execution or when the dynamic linker\n\
1947informs gdb that a new library has been loaded. Otherwise, symbols\n\
1948must be loaded manually, using `sharedlibrary'.",
1949 &setlist),
1950 &showlist);
1951
1952 add_show_from_set
1953 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
1954 (char *) &solib_absolute_prefix,
1955 "Set prefix for loading absolute shared library symbol files.\n\
1956For other (relative) files, you can add values using `set solib-search-path'.",
1957 &setlist),
1958 &showlist);
1959 add_show_from_set
1960 (add_set_cmd ("solib-search-path", class_support, var_string,
1961 (char *) &solib_search_path,
1962 "Set the search path for loading non-absolute shared library symbol files.\n\
1963This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
1964 &setlist),
1965 &showlist);
1966
1967#endif /* HAVE_LINK_H */
1968}
This page took 0.145502 seconds and 4 git commands to generate.