2000-05-04 Michael Snyder <msnyder@seadog.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / solib.c
CommitLineData
c906108c
SS
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22
23#include "defs.h"
24
25/* This file is only compilable if link.h is available. */
26
27#ifdef HAVE_LINK_H
28
29#include <sys/types.h>
30#include <signal.h>
31#include "gdb_string.h"
32#include <sys/param.h>
33#include <fcntl.h>
c906108c
SS
34
35#ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
c5aa993b 37#include <a.out.h>
c906108c
SS
38#else
39#include "elf/external.h"
40#endif
41
42#include <link.h>
43
44#include "symtab.h"
45#include "bfd.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "gdbcore.h"
49#include "command.h"
50#include "target.h"
51#include "frame.h"
88987551 52#include "gdb_regex.h"
c906108c
SS
53#include "inferior.h"
54#include "environ.h"
55#include "language.h"
56#include "gdbcmd.h"
57
c5aa993b 58#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
c906108c
SS
59
60/* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68#ifdef SVR4_SHARED_LIBS
c5aa993b
JM
69static char *solib_break_names[] =
70{
c906108c
SS
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76};
77#endif
78
79#define BKPT_AT_SYMBOL 1
80
81#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
c5aa993b
JM
82static char *bkpt_names[] =
83{
c906108c
SS
84#ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86#endif
87 "_start",
88 "main",
89 NULL
90};
91#endif
92
93/* Symbols which are used to locate the base of the link map structures. */
94
95#ifndef SVR4_SHARED_LIBS
c5aa993b
JM
96static char *debug_base_symbols[] =
97{
c906108c
SS
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101};
102#endif
103
c5aa993b
JM
104static char *main_name_list[] =
105{
c906108c
SS
106 "main_$main",
107 NULL
108};
109
110/* local data declarations */
111
07cd4b97
JB
112/* Macro to extract an address from a solib structure.
113 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115 64 bits. We have to extract only the significant bits of addresses
116 to get the right address when accessing the core file BFD. */
117
118#define SOLIB_EXTRACT_ADDRESS(member) \
119 extract_address (&member, sizeof (member))
120
c906108c
SS
121#ifndef SVR4_SHARED_LIBS
122
07cd4b97
JB
123#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
c906108c 126/* Test for first link map entry; first entry is a shared library. */
07cd4b97 127#define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
c906108c
SS
128static struct link_dynamic dynamic_copy;
129static struct link_dynamic_2 ld_2_copy;
130static struct ld_debug debug_copy;
131static CORE_ADDR debug_addr;
132static CORE_ADDR flag_addr;
133
c5aa993b 134#else /* SVR4_SHARED_LIBS */
c906108c 135
07cd4b97
JB
136#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
c906108c 139/* Test for first link map entry; first entry is the exec-file. */
07cd4b97
JB
140#define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141 (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
c906108c
SS
142static struct r_debug debug_copy;
143char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
144
c5aa993b
JM
145#endif /* !SVR4_SHARED_LIBS */
146
147struct so_list
148 {
07cd4b97
JB
149 /* The following fields of the structure come directly from the
150 dynamic linker's tables in the inferior, and are initialized by
151 current_sos. */
152
c5aa993b
JM
153 struct so_list *next; /* next structure in linked list */
154 struct link_map lm; /* copy of link map from inferior */
07cd4b97
JB
155 CORE_ADDR lmaddr; /* addr in inferior lm was read from */
156
157 /* Shared object file name, exactly as it appears in the
158 inferior's link map. This may be a relative path, or something
159 which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
160 to tell which entries in the inferior's dynamic linker's link
161 map we've already loaded. */
162 char so_original_name[MAX_PATH_SIZE];
163
164 /* shared object file name, expanded to something GDB can open */
165 char so_name[MAX_PATH_SIZE];
166
167 /* The following fields of the structure are built from
168 information gathered from the shared object file itself, and
169 are initialized when we actually add it to our symbol tables. */
170
171 bfd *abfd;
c5aa993b 172 CORE_ADDR lmend; /* upper addr bound of mapped object */
c5aa993b
JM
173 char symbols_loaded; /* flag: symbols read in yet? */
174 char from_tty; /* flag: print msgs? */
175 struct objfile *objfile; /* objfile for loaded lib */
176 struct section_table *sections;
177 struct section_table *sections_end;
178 struct section_table *textsection;
c5aa993b 179 };
c906108c
SS
180
181static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 182static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
183static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
184
c5aa993b 185static int solib_cleanup_queued = 0; /* make_run_cleanup called */
c906108c
SS
186
187extern int
c5aa993b 188fdmatch PARAMS ((int, int)); /* In libiberty */
c906108c
SS
189
190/* Local function prototypes */
191
192static void
193do_clear_solib PARAMS ((PTR));
194
195static int
196match_main PARAMS ((char *));
197
198static void
07cd4b97 199special_symbol_handling PARAMS ((void));
c906108c
SS
200
201static void
202sharedlibrary_command PARAMS ((char *, int));
203
204static int
205enable_break PARAMS ((void));
206
207static void
208info_sharedlibrary_command PARAMS ((char *, int));
209
210static int symbol_add_stub PARAMS ((PTR));
211
07cd4b97 212static CORE_ADDR
c5aa993b 213 first_link_map_member PARAMS ((void));
c906108c
SS
214
215static CORE_ADDR
c5aa993b 216 locate_base PARAMS ((void));
c906108c
SS
217
218static int solib_map_sections PARAMS ((PTR));
219
220#ifdef SVR4_SHARED_LIBS
221
222static CORE_ADDR
c5aa993b 223 elf_locate_base PARAMS ((void));
c906108c
SS
224
225#else
226
07cd4b97
JB
227static struct so_list *current_sos (void);
228static void free_so (struct so_list *node);
229
c906108c
SS
230static int
231disable_break PARAMS ((void));
232
233static void
234allocate_rt_common_objfile PARAMS ((void));
235
236static void
07cd4b97 237solib_add_common_symbols (CORE_ADDR);
c906108c
SS
238
239#endif
240
241void _initialize_solib PARAMS ((void));
242
243/* If non-zero, this is a prefix that will be added to the front of the name
244 shared libraries with an absolute filename for loading. */
245static char *solib_absolute_prefix = NULL;
246
247/* If non-empty, this is a search path for loading non-absolute shared library
248 symbol files. This takes precedence over the environment variables PATH
249 and LD_LIBRARY_PATH. */
250static char *solib_search_path = NULL;
251
252/*
253
c5aa993b 254 LOCAL FUNCTION
c906108c 255
c5aa993b 256 solib_map_sections -- open bfd and build sections for shared lib
c906108c 257
c5aa993b 258 SYNOPSIS
c906108c 259
c5aa993b 260 static int solib_map_sections (struct so_list *so)
c906108c 261
c5aa993b 262 DESCRIPTION
c906108c 263
c5aa993b
JM
264 Given a pointer to one of the shared objects in our list
265 of mapped objects, use the recorded name to open a bfd
266 descriptor for the object, build a section table, and then
267 relocate all the section addresses by the base address at
268 which the shared object was mapped.
c906108c 269
c5aa993b 270 FIXMES
c906108c 271
c5aa993b
JM
272 In most (all?) cases the shared object file name recorded in the
273 dynamic linkage tables will be a fully qualified pathname. For
274 cases where it isn't, do we really mimic the systems search
275 mechanism correctly in the below code (particularly the tilde
276 expansion stuff?).
c906108c
SS
277 */
278
279static int
280solib_map_sections (arg)
281 PTR arg;
282{
283 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
284 char *filename;
285 char *scratch_pathname;
286 int scratch_chan;
287 struct section_table *p;
288 struct cleanup *old_chain;
289 bfd *abfd;
c5aa993b
JM
290
291 filename = tilde_expand (so->so_name);
292
c906108c
SS
293 if (solib_absolute_prefix && ROOTED_P (filename))
294 /* Prefix shared libraries with absolute filenames with
295 SOLIB_ABSOLUTE_PREFIX. */
296 {
297 char *pfxed_fn;
298 int pfx_len;
299
300 pfx_len = strlen (solib_absolute_prefix);
301
302 /* Remove trailing slashes. */
303 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304 pfx_len--;
305
306 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307 strcpy (pfxed_fn, solib_absolute_prefix);
308 strcat (pfxed_fn, filename);
309 free (filename);
310
311 filename = pfxed_fn;
312 }
313
314 old_chain = make_cleanup (free, filename);
315
316 scratch_chan = -1;
317
318 if (solib_search_path)
319 scratch_chan = openp (solib_search_path,
320 1, filename, O_RDONLY, 0, &scratch_pathname);
321 if (scratch_chan < 0)
c5aa993b 322 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
c906108c
SS
323 1, filename, O_RDONLY, 0, &scratch_pathname);
324 if (scratch_chan < 0)
325 {
c5aa993b
JM
326 scratch_chan = openp (get_in_environ
327 (inferior_environ, "LD_LIBRARY_PATH"),
c906108c
SS
328 1, filename, O_RDONLY, 0, &scratch_pathname);
329 }
330 if (scratch_chan < 0)
331 {
332 perror_with_name (filename);
333 }
334 /* Leave scratch_pathname allocated. abfd->name will point to it. */
335
336 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337 if (!abfd)
338 {
339 close (scratch_chan);
340 error ("Could not open `%s' as an executable file: %s",
341 scratch_pathname, bfd_errmsg (bfd_get_error ()));
342 }
343 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
344 so->abfd = abfd;
345 abfd->cacheable = true;
c906108c
SS
346
347 /* copy full path name into so_name, so that later symbol_file_add can find
348 it */
349 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351 strcpy (so->so_name, scratch_pathname);
352
353 if (!bfd_check_format (abfd, bfd_object))
354 {
355 error ("\"%s\": not in executable format: %s.",
356 scratch_pathname, bfd_errmsg (bfd_get_error ()));
357 }
c5aa993b 358 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 359 {
c5aa993b 360 error ("Can't find the file sections in `%s': %s",
c906108c
SS
361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362 }
363
c5aa993b 364 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
365 {
366 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
367 object's file by the base address to which the object was actually
368 mapped. */
07cd4b97
JB
369 p->addr += LM_ADDR (so);
370 p->endaddr += LM_ADDR (so);
371 so->lmend = max (p->endaddr, so->lmend);
c5aa993b 372 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 373 {
c5aa993b 374 so->textsection = p;
c906108c
SS
375 }
376 }
377
378 /* Free the file names, close the file now. */
379 do_cleanups (old_chain);
380
381 return (1);
382}
383
384#ifndef SVR4_SHARED_LIBS
385
386/* Allocate the runtime common object file. */
387
388static void
389allocate_rt_common_objfile ()
390{
391 struct objfile *objfile;
392 struct objfile *last_one;
393
394 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
396 objfile->md = NULL;
397 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 398 xmalloc, free);
c5aa993b 399 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 400 free);
c5aa993b 401 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 402 free);
c5aa993b 403 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 404 free);
c5aa993b 405 objfile->name = mstrsave (objfile->md, "rt_common");
c906108c
SS
406
407 /* Add this file onto the tail of the linked list of other such files. */
408
c5aa993b 409 objfile->next = NULL;
c906108c
SS
410 if (object_files == NULL)
411 object_files = objfile;
412 else
413 {
414 for (last_one = object_files;
c5aa993b
JM
415 last_one->next;
416 last_one = last_one->next);
417 last_one->next = objfile;
c906108c
SS
418 }
419
420 rt_common_objfile = objfile;
421}
422
423/* Read all dynamically loaded common symbol definitions from the inferior
424 and put them into the minimal symbol table for the runtime common
425 objfile. */
426
427static void
428solib_add_common_symbols (rtc_symp)
07cd4b97 429 CORE_ADDR rtc_symp;
c906108c
SS
430{
431 struct rtc_symb inferior_rtc_symb;
432 struct nlist inferior_rtc_nlist;
433 int len;
434 char *name;
435
436 /* Remove any runtime common symbols from previous runs. */
437
c5aa993b 438 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
c906108c 439 {
c5aa993b
JM
440 obstack_free (&rt_common_objfile->symbol_obstack, 0);
441 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
c906108c 442 xmalloc, free);
c5aa993b
JM
443 rt_common_objfile->minimal_symbol_count = 0;
444 rt_common_objfile->msymbols = NULL;
c906108c
SS
445 }
446
447 init_minimal_symbol_collection ();
448 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
449
450 while (rtc_symp)
451 {
07cd4b97 452 read_memory (rtc_symp,
c906108c
SS
453 (char *) &inferior_rtc_symb,
454 sizeof (inferior_rtc_symb));
07cd4b97 455 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
c906108c 456 (char *) &inferior_rtc_nlist,
c5aa993b 457 sizeof (inferior_rtc_nlist));
c906108c
SS
458 if (inferior_rtc_nlist.n_type == N_COMM)
459 {
460 /* FIXME: The length of the symbol name is not available, but in the
461 current implementation the common symbol is allocated immediately
462 behind the name of the symbol. */
463 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
465 name = xmalloc (len);
07cd4b97
JB
466 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467 name, len);
c906108c
SS
468
469 /* Allocate the runtime common objfile if necessary. */
470 if (rt_common_objfile == NULL)
471 allocate_rt_common_objfile ();
472
473 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474 mst_bss, rt_common_objfile);
475 free (name);
476 }
07cd4b97 477 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
c906108c
SS
478 }
479
480 /* Install any minimal symbols that have been collected as the current
481 minimal symbols for the runtime common objfile. */
482
483 install_minimal_symbols (rt_common_objfile);
484}
485
c5aa993b 486#endif /* SVR4_SHARED_LIBS */
c906108c
SS
487
488
489#ifdef SVR4_SHARED_LIBS
490
491static CORE_ADDR
c5aa993b 492 bfd_lookup_symbol PARAMS ((bfd *, char *));
c906108c
SS
493
494/*
495
c5aa993b 496 LOCAL FUNCTION
c906108c 497
c5aa993b 498 bfd_lookup_symbol -- lookup the value for a specific symbol
c906108c 499
c5aa993b 500 SYNOPSIS
c906108c 501
c5aa993b 502 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
c906108c 503
c5aa993b 504 DESCRIPTION
c906108c 505
c5aa993b
JM
506 An expensive way to lookup the value of a single symbol for
507 bfd's that are only temporary anyway. This is used by the
508 shared library support to find the address of the debugger
509 interface structures in the shared library.
c906108c 510
c5aa993b
JM
511 Note that 0 is specifically allowed as an error return (no
512 such symbol).
513 */
c906108c
SS
514
515static CORE_ADDR
516bfd_lookup_symbol (abfd, symname)
517 bfd *abfd;
518 char *symname;
519{
520 unsigned int storage_needed;
521 asymbol *sym;
522 asymbol **symbol_table;
523 unsigned int number_of_symbols;
524 unsigned int i;
525 struct cleanup *back_to;
526 CORE_ADDR symaddr = 0;
c5aa993b 527
c906108c
SS
528 storage_needed = bfd_get_symtab_upper_bound (abfd);
529
530 if (storage_needed > 0)
531 {
532 symbol_table = (asymbol **) xmalloc (storage_needed);
c5aa993b
JM
533 back_to = make_cleanup (free, (PTR) symbol_table);
534 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
c906108c
SS
536 for (i = 0; i < number_of_symbols; i++)
537 {
538 sym = *symbol_table++;
c5aa993b 539 if (STREQ (sym->name, symname))
c906108c
SS
540 {
541 /* Bfd symbols are section relative. */
c5aa993b 542 symaddr = sym->value + sym->section->vma;
c906108c
SS
543 break;
544 }
545 }
546 do_cleanups (back_to);
547 }
548 return (symaddr);
549}
550
551#ifdef HANDLE_SVR4_EXEC_EMULATORS
552
553/*
c5aa993b
JM
554 Solaris BCP (the part of Solaris which allows it to run SunOS4
555 a.out files) throws in another wrinkle. Solaris does not fill
556 in the usual a.out link map structures when running BCP programs,
557 the only way to get at them is via groping around in the dynamic
558 linker.
559 The dynamic linker and it's structures are located in the shared
560 C library, which gets run as the executable's "interpreter" by
561 the kernel.
562
563 Note that we can assume nothing about the process state at the time
564 we need to find these structures. We may be stopped on the first
565 instruction of the interpreter (C shared library), the first
566 instruction of the executable itself, or somewhere else entirely
567 (if we attached to the process for example).
568 */
569
570static char *debug_base_symbols[] =
571{
572 "r_debug", /* Solaris 2.3 */
573 "_r_debug", /* Solaris 2.1, 2.2 */
c906108c
SS
574 NULL
575};
576
577static int
578look_for_base PARAMS ((int, CORE_ADDR));
579
580/*
581
c5aa993b 582 LOCAL FUNCTION
c906108c 583
c5aa993b 584 look_for_base -- examine file for each mapped address segment
c906108c 585
c5aa993b 586 SYNOPSYS
c906108c 587
c5aa993b 588 static int look_for_base (int fd, CORE_ADDR baseaddr)
c906108c 589
c5aa993b 590 DESCRIPTION
c906108c 591
c5aa993b
JM
592 This function is passed to proc_iterate_over_mappings, which
593 causes it to get called once for each mapped address space, with
594 an open file descriptor for the file mapped to that space, and the
595 base address of that mapped space.
c906108c 596
c5aa993b
JM
597 Our job is to find the debug base symbol in the file that this
598 fd is open on, if it exists, and if so, initialize the dynamic
599 linker structure base address debug_base.
c906108c 600
c5aa993b
JM
601 Note that this is a computationally expensive proposition, since
602 we basically have to open a bfd on every call, so we specifically
603 avoid opening the exec file.
c906108c
SS
604 */
605
606static int
607look_for_base (fd, baseaddr)
608 int fd;
609 CORE_ADDR baseaddr;
610{
611 bfd *interp_bfd;
612 CORE_ADDR address = 0;
613 char **symbolp;
614
615 /* If the fd is -1, then there is no file that corresponds to this
616 mapped memory segment, so skip it. Also, if the fd corresponds
617 to the exec file, skip it as well. */
618
619 if (fd == -1
620 || (exec_bfd != NULL
c5aa993b 621 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
c906108c
SS
622 {
623 return (0);
624 }
625
626 /* Try to open whatever random file this fd corresponds to. Note that
627 we have no way currently to find the filename. Don't gripe about
628 any problems we might have, just fail. */
629
630 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631 {
632 return (0);
633 }
634 if (!bfd_check_format (interp_bfd, bfd_object))
635 {
636 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 637 interp_bfd. */
c906108c
SS
638 bfd_close (interp_bfd);
639 return (0);
640 }
641
642 /* Now try to find our debug base symbol in this file, which we at
643 least know to be a valid ELF executable or shared library. */
644
645 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646 {
647 address = bfd_lookup_symbol (interp_bfd, *symbolp);
648 if (address != 0)
649 {
650 break;
651 }
652 }
653 if (address == 0)
654 {
655 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 656 interp_bfd. */
c906108c
SS
657 bfd_close (interp_bfd);
658 return (0);
659 }
660
661 /* Eureka! We found the symbol. But now we may need to relocate it
662 by the base address. If the symbol's value is less than the base
663 address of the shared library, then it hasn't yet been relocated
664 by the dynamic linker, and we have to do it ourself. FIXME: Note
665 that we make the assumption that the first segment that corresponds
666 to the shared library has the base address to which the library
667 was relocated. */
668
669 if (address < baseaddr)
670 {
671 address += baseaddr;
672 }
673 debug_base = address;
674 /* FIXME-leak: on failure, might not free all memory associated with
675 interp_bfd. */
676 bfd_close (interp_bfd);
677 return (1);
678}
679#endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
681/*
682
c5aa993b 683 LOCAL FUNCTION
c906108c 684
c5aa993b
JM
685 elf_locate_base -- locate the base address of dynamic linker structs
686 for SVR4 elf targets.
c906108c 687
c5aa993b 688 SYNOPSIS
c906108c 689
c5aa993b 690 CORE_ADDR elf_locate_base (void)
c906108c 691
c5aa993b 692 DESCRIPTION
c906108c 693
c5aa993b
JM
694 For SVR4 elf targets the address of the dynamic linker's runtime
695 structure is contained within the dynamic info section in the
696 executable file. The dynamic section is also mapped into the
697 inferior address space. Because the runtime loader fills in the
698 real address before starting the inferior, we have to read in the
699 dynamic info section from the inferior address space.
700 If there are any errors while trying to find the address, we
701 silently return 0, otherwise the found address is returned.
c906108c
SS
702
703 */
704
705static CORE_ADDR
706elf_locate_base ()
707{
708 sec_ptr dyninfo_sect;
709 int dyninfo_sect_size;
710 CORE_ADDR dyninfo_addr;
711 char *buf;
712 char *bufend;
713
714 /* Find the start address of the .dynamic section. */
715 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
716 if (dyninfo_sect == NULL)
717 return 0;
718 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
719
720 /* Read in .dynamic section, silently ignore errors. */
721 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
722 buf = alloca (dyninfo_sect_size);
723 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
724 return 0;
725
726 /* Find the DT_DEBUG entry in the the .dynamic section.
727 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
728 no DT_DEBUG entries. */
729#ifndef TARGET_ELF64
730 for (bufend = buf + dyninfo_sect_size;
731 buf < bufend;
732 buf += sizeof (Elf32_External_Dyn))
733 {
c5aa993b 734 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
c906108c
SS
735 long dyn_tag;
736 CORE_ADDR dyn_ptr;
737
738 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
739 if (dyn_tag == DT_NULL)
740 break;
741 else if (dyn_tag == DT_DEBUG)
742 {
743 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
744 return dyn_ptr;
745 }
746#ifdef DT_MIPS_RLD_MAP
747 else if (dyn_tag == DT_MIPS_RLD_MAP)
748 {
749 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
750
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
754 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
755 return 0;
756 return extract_unsigned_integer (pbuf, sizeof (pbuf));
757 }
758#endif
759 }
760#else /* ELF64 */
761 for (bufend = buf + dyninfo_sect_size;
762 buf < bufend;
763 buf += sizeof (Elf64_External_Dyn))
764 {
c5aa993b 765 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
c906108c
SS
766 long dyn_tag;
767 CORE_ADDR dyn_ptr;
768
769 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
770 if (dyn_tag == DT_NULL)
771 break;
772 else if (dyn_tag == DT_DEBUG)
773 {
774 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
775 return dyn_ptr;
776 }
777 }
778#endif
779
780 /* DT_DEBUG entry not found. */
781 return 0;
782}
783
c5aa993b 784#endif /* SVR4_SHARED_LIBS */
c906108c
SS
785
786/*
787
c5aa993b 788 LOCAL FUNCTION
c906108c 789
c5aa993b 790 locate_base -- locate the base address of dynamic linker structs
c906108c 791
c5aa993b 792 SYNOPSIS
c906108c 793
c5aa993b 794 CORE_ADDR locate_base (void)
c906108c 795
c5aa993b 796 DESCRIPTION
c906108c 797
c5aa993b
JM
798 For both the SunOS and SVR4 shared library implementations, if the
799 inferior executable has been linked dynamically, there is a single
800 address somewhere in the inferior's data space which is the key to
801 locating all of the dynamic linker's runtime structures. This
802 address is the value of the debug base symbol. The job of this
803 function is to find and return that address, or to return 0 if there
804 is no such address (the executable is statically linked for example).
c906108c 805
c5aa993b
JM
806 For SunOS, the job is almost trivial, since the dynamic linker and
807 all of it's structures are statically linked to the executable at
808 link time. Thus the symbol for the address we are looking for has
809 already been added to the minimal symbol table for the executable's
810 objfile at the time the symbol file's symbols were read, and all we
811 have to do is look it up there. Note that we explicitly do NOT want
812 to find the copies in the shared library.
c906108c 813
c5aa993b
JM
814 The SVR4 version is a bit more complicated because the address
815 is contained somewhere in the dynamic info section. We have to go
816 to a lot more work to discover the address of the debug base symbol.
817 Because of this complexity, we cache the value we find and return that
818 value on subsequent invocations. Note there is no copy in the
819 executable symbol tables.
c906108c
SS
820
821 */
822
823static CORE_ADDR
824locate_base ()
825{
826
827#ifndef SVR4_SHARED_LIBS
828
829 struct minimal_symbol *msymbol;
830 CORE_ADDR address = 0;
831 char **symbolp;
832
833 /* For SunOS, we want to limit the search for the debug base symbol to the
834 executable being debugged, since there is a duplicate named symbol in the
835 shared library. We don't want the shared library versions. */
836
837 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
838 {
839 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
840 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
841 {
842 address = SYMBOL_VALUE_ADDRESS (msymbol);
843 return (address);
844 }
845 }
846 return (0);
847
c5aa993b 848#else /* SVR4_SHARED_LIBS */
c906108c
SS
849
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
853 section for ELF executables. */
854
855 if (debug_base == 0)
856 {
857 if (exec_bfd != NULL
858 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
859 debug_base = elf_locate_base ();
860#ifdef HANDLE_SVR4_EXEC_EMULATORS
861 /* Try it the hard way for emulated executables. */
862 else if (inferior_pid != 0 && target_has_execution)
863 proc_iterate_over_mappings (look_for_base);
864#endif
865 }
866 return (debug_base);
867
c5aa993b 868#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
869
870}
871
872/*
873
c5aa993b 874 LOCAL FUNCTION
c906108c 875
c5aa993b 876 first_link_map_member -- locate first member in dynamic linker's map
c906108c 877
c5aa993b 878 SYNOPSIS
c906108c 879
07cd4b97 880 static CORE_ADDR first_link_map_member (void)
c906108c 881
c5aa993b 882 DESCRIPTION
c906108c 883
9ddea9f1
JB
884 Find the first element in the inferior's dynamic link map, and
885 return its address in the inferior. This function doesn't copy the
07cd4b97 886 link map entry itself into our address space; current_sos actually
9ddea9f1 887 does the reading. */
c906108c 888
07cd4b97 889static CORE_ADDR
c906108c
SS
890first_link_map_member ()
891{
07cd4b97 892 CORE_ADDR lm = 0;
c906108c
SS
893
894#ifndef SVR4_SHARED_LIBS
895
896 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
897 if (dynamic_copy.ld_version >= 2)
898 {
899 /* It is a version that we can deal with, so read in the secondary
c5aa993b 900 structure and find the address of the link map list from it. */
07cd4b97
JB
901 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
902 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
903 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
c906108c
SS
904 }
905
c5aa993b 906#else /* SVR4_SHARED_LIBS */
c906108c
SS
907
908 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
909 /* FIXME: Perhaps we should validate the info somehow, perhaps by
910 checking r_version for a known version number, or r_state for
911 RT_CONSISTENT. */
07cd4b97 912 lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
c906108c 913
c5aa993b 914#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
915
916 return (lm);
917}
918
104c1213
JM
919#ifdef SVR4_SHARED_LIBS
920/*
921
922 LOCAL FUNCTION
923
9452d09b 924 open_symbol_file_object
104c1213
JM
925
926 SYNOPSIS
927
928 void open_symbol_file_object (int from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 */
938
9452d09b
MS
939static int
940open_symbol_file_object (from_ttyp)
941 int *from_ttyp; /* sneak past catch_errors */
104c1213 942{
07cd4b97
JB
943 CORE_ADDR lm;
944 struct link_map lmcopy;
104c1213
JM
945 char *filename;
946 int errcode;
947
948 if (symfile_objfile)
949 if (!query ("Attempt to reload symbols from process? "))
950 return 0;
951
952 if ((debug_base = locate_base ()) == 0)
953 return 0; /* failed somehow... */
954
955 /* First link map member should be the executable. */
07cd4b97 956 if ((lm = first_link_map_member ()) == 0)
104c1213
JM
957 return 0; /* failed somehow... */
958
959 /* Read from target memory to GDB. */
07cd4b97 960 read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
104c1213
JM
961
962 if (lmcopy.l_name == 0)
963 return 0; /* no filename. */
964
965 /* Now fetch the filename from target memory. */
07cd4b97 966 target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
104c1213
JM
967 MAX_PATH_SIZE - 1, &errcode);
968 if (errcode)
969 {
970 warning ("failed to read exec filename from attached file: %s",
971 safe_strerror (errcode));
972 return 0;
973 }
974
975 make_cleanup ((make_cleanup_func) free, (void *) filename);
976 /* Have a pathname: read the symbol file. */
9452d09b 977 symbol_file_command (filename, *from_ttyp);
104c1213
JM
978
979 return 1;
980}
981#endif /* SVR4_SHARED_LIBS */
982
c906108c 983
07cd4b97 984/* LOCAL FUNCTION
c906108c 985
07cd4b97 986 free_so --- free a `struct so_list' object
c906108c 987
c5aa993b 988 SYNOPSIS
c906108c 989
07cd4b97 990 void free_so (struct so_list *so)
c906108c 991
c5aa993b 992 DESCRIPTION
c906108c 993
07cd4b97
JB
994 Free the storage associated with the `struct so_list' object SO.
995 If we have opened a BFD for SO, close it.
c906108c 996
07cd4b97
JB
997 The caller is responsible for removing SO from whatever list it is
998 a member of. If we have placed SO's sections in some target's
999 section table, the caller is responsible for removing them.
c906108c 1000
07cd4b97
JB
1001 This function doesn't mess with objfiles at all. If there is an
1002 objfile associated with SO that needs to be removed, the caller is
1003 responsible for taking care of that. */
1004
1005static void
1006free_so (struct so_list *so)
c906108c 1007{
07cd4b97 1008 char *bfd_filename = 0;
c5aa993b 1009
07cd4b97
JB
1010 if (so->sections)
1011 free (so->sections);
1012
1013 if (so->abfd)
c906108c 1014 {
07cd4b97
JB
1015 bfd_filename = bfd_get_filename (so->abfd);
1016 if (! bfd_close (so->abfd))
1017 warning ("cannot close \"%s\": %s",
1018 bfd_filename, bfd_errmsg (bfd_get_error ()));
c906108c 1019 }
07cd4b97
JB
1020
1021 if (bfd_filename)
1022 free (bfd_filename);
1023
1024 free (so);
1025}
1026
1027
1028/* On some systems, the only way to recognize the link map entry for
1029 the main executable file is by looking at its name. Return
1030 non-zero iff SONAME matches one of the known main executable names. */
1031
1032static int
1033match_main (soname)
1034 char *soname;
1035{
1036 char **mainp;
1037
1038 for (mainp = main_name_list; *mainp != NULL; mainp++)
c906108c 1039 {
07cd4b97
JB
1040 if (strcmp (soname, *mainp) == 0)
1041 return (1);
c906108c 1042 }
07cd4b97
JB
1043
1044 return (0);
1045}
1046
1047
1048/* LOCAL FUNCTION
1049
1050 current_sos -- build a list of currently loaded shared objects
1051
1052 SYNOPSIS
1053
1054 struct so_list *current_sos ()
1055
1056 DESCRIPTION
1057
1058 Build a list of `struct so_list' objects describing the shared
1059 objects currently loaded in the inferior. This list does not
1060 include an entry for the main executable file.
1061
1062 Note that we only gather information directly available from the
1063 inferior --- we don't examine any of the shared library files
1064 themselves. The declaration of `struct so_list' says which fields
1065 we provide values for. */
1066
1067static struct so_list *
1068current_sos ()
1069{
1070 CORE_ADDR lm;
1071 struct so_list *head = 0;
1072 struct so_list **link_ptr = &head;
1073
1074 /* Make sure we've looked up the inferior's dynamic linker's base
1075 structure. */
1076 if (! debug_base)
c906108c 1077 {
07cd4b97
JB
1078 debug_base = locate_base ();
1079
1080 /* If we can't find the dynamic linker's base structure, this
1081 must not be a dynamically linked executable. Hmm. */
1082 if (! debug_base)
1083 return 0;
1084 }
1085
1086 /* Walk the inferior's link map list, and build our list of
1087 `struct so_list' nodes. */
1088 lm = first_link_map_member ();
1089 while (lm)
1090 {
1091 struct so_list *new
1092 = (struct so_list *) xmalloc (sizeof (struct so_list));
15588ebb 1093 struct cleanup *old_chain = make_cleanup (free, new);
07cd4b97
JB
1094 memset (new, 0, sizeof (*new));
1095
c5aa993b 1096 new->lmaddr = lm;
07cd4b97 1097 read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
c906108c 1098
07cd4b97 1099 lm = LM_NEXT (new);
c5aa993b 1100
c906108c 1101 /* For SVR4 versions, the first entry in the link map is for the
c5aa993b
JM
1102 inferior executable, so we must ignore it. For some versions of
1103 SVR4, it has no name. For others (Solaris 2.3 for example), it
1104 does have a name, so we can no longer use a missing name to
1105 decide when to ignore it. */
07cd4b97 1106 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
15588ebb 1107 free_so (new);
07cd4b97 1108 else
c906108c
SS
1109 {
1110 int errcode;
1111 char *buffer;
07cd4b97
JB
1112
1113 /* Extract this shared object's name. */
1114 target_read_string (LM_NAME (new), &buffer,
c906108c
SS
1115 MAX_PATH_SIZE - 1, &errcode);
1116 if (errcode != 0)
1117 {
07cd4b97 1118 warning ("current_sos: Can't read pathname for load map: %s\n",
c906108c 1119 safe_strerror (errcode));
c906108c 1120 }
07cd4b97
JB
1121 else
1122 {
1123 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1124 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1125 free (buffer);
1126 strcpy (new->so_original_name, new->so_name);
1127 }
1128
1129 /* If this entry has no name, or its name matches the name
1130 for the main executable, don't include it in the list. */
1131 if (! new->so_name[0]
1132 || match_main (new->so_name))
1133 free_so (new);
1134 else
1135 {
1136 new->next = 0;
1137 *link_ptr = new;
1138 link_ptr = &new->next;
1139 }
c5aa993b 1140 }
15588ebb
JB
1141
1142 discard_cleanups (old_chain);
c906108c 1143 }
07cd4b97
JB
1144
1145 return head;
c906108c
SS
1146}
1147
07cd4b97 1148
c906108c
SS
1149/* A small stub to get us past the arg-passing pinhole of catch_errors. */
1150
1151static int
1152symbol_add_stub (arg)
1153 PTR arg;
1154{
07cd4b97 1155 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c 1156 CORE_ADDR text_addr = 0;
62557bbc 1157 struct section_addr_info *sap;
e7cf9df1
EZ
1158 int i;
1159 asection *text_section;
c906108c 1160
07cd4b97
JB
1161 /* Have we already loaded this shared object? */
1162 ALL_OBJFILES (so->objfile)
1163 {
1164 if (strcmp (so->objfile->name, so->so_name) == 0)
1165 return 1;
1166 }
1167
1168 /* Find the shared object's text segment. */
c5aa993b
JM
1169 if (so->textsection)
1170 text_addr = so->textsection->addr;
1171 else if (so->abfd != NULL)
c906108c
SS
1172 {
1173 asection *lowest_sect;
1174
1175 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 1176 text_addr so that the relocation in symbol_file_add does no harm. */
c5aa993b 1177 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 1178 if (lowest_sect == NULL)
c5aa993b 1179 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 1180 (PTR) &lowest_sect);
c906108c 1181 if (lowest_sect)
c5aa993b 1182 text_addr = bfd_section_vma (so->abfd, lowest_sect)
07cd4b97 1183 + LM_ADDR (so);
c906108c 1184 }
c5aa993b 1185
62557bbc
KB
1186 sap = build_section_addr_info_from_section_table (so->sections,
1187 so->sections_end);
e7cf9df1
EZ
1188
1189 /* Look for the index for the .text section in the sap structure. */
1190 text_section = bfd_get_section_by_name (so->abfd, ".text");
1191 for (i = 0; i < MAX_SECTIONS && sap->other[i].name; i++)
1192 if (sap->other[i].sectindex == text_section->index)
1193 break;
1194
1195 sap->other[i].addr = text_addr;
62557bbc
KB
1196 so->objfile = symbol_file_add (so->so_name, so->from_tty,
1197 sap, 0, OBJF_SHARED);
1198 free_section_addr_info (sap);
c906108c 1199
07cd4b97 1200 return (1);
c906108c
SS
1201}
1202
c906108c 1203
07cd4b97 1204/* LOCAL FUNCTION
c906108c 1205
105b175f 1206 update_solib_list --- synchronize GDB's shared object list with inferior's
c906108c 1207
c5aa993b 1208 SYNOPSIS
c906108c 1209
105b175f 1210 void update_solib_list (int from_tty, struct target_ops *TARGET)
c906108c 1211
07cd4b97 1212 Extract the list of currently loaded shared objects from the
105b175f
JB
1213 inferior, and compare it with the list of shared objects currently
1214 in GDB's so_list_head list. Edit so_list_head to bring it in sync
1215 with the inferior's new list.
c906108c 1216
105b175f
JB
1217 If we notice that the inferior has unloaded some shared objects,
1218 free any symbolic info GDB had read about those shared objects.
1219
1220 Don't load symbolic info for any new shared objects; just add them
1221 to the list, and leave their symbols_loaded flag clear.
07cd4b97
JB
1222
1223 If FROM_TTY is non-null, feel free to print messages about what
1224 we're doing.
c906108c 1225
07cd4b97
JB
1226 If TARGET is non-null, add the sections of all new shared objects
1227 to TARGET's section table. Note that this doesn't remove any
1228 sections for shared objects that have been unloaded, and it
1229 doesn't check to see if the new shared objects are already present in
1230 the section table. But we only use this for core files and
1231 processes we've just attached to, so that's okay. */
c906108c 1232
07cd4b97 1233void
105b175f 1234update_solib_list (int from_tty, struct target_ops *target)
07cd4b97
JB
1235{
1236 struct so_list *inferior = current_sos ();
1237 struct so_list *gdb, **gdb_link;
1238
104c1213
JM
1239#ifdef SVR4_SHARED_LIBS
1240 /* If we are attaching to a running process for which we
1241 have not opened a symbol file, we may be able to get its
1242 symbols now! */
1243 if (attach_flag &&
1244 symfile_objfile == NULL)
9452d09b 1245 catch_errors (open_symbol_file_object, (PTR) &from_tty,
104c1213
JM
1246 "Error reading attached process's symbol file.\n",
1247 RETURN_MASK_ALL);
1248
1249#endif SVR4_SHARED_LIBS
1250
07cd4b97
JB
1251 /* Since this function might actually add some elements to the
1252 so_list_head list, arrange for it to be cleaned up when
1253 appropriate. */
1254 if (!solib_cleanup_queued)
1255 {
1256 make_run_cleanup (do_clear_solib, NULL);
1257 solib_cleanup_queued = 1;
c906108c 1258 }
c5aa993b 1259
07cd4b97
JB
1260 /* GDB and the inferior's dynamic linker each maintain their own
1261 list of currently loaded shared objects; we want to bring the
1262 former in sync with the latter. Scan both lists, seeing which
1263 shared objects appear where. There are three cases:
1264
1265 - A shared object appears on both lists. This means that GDB
105b175f
JB
1266 knows about it already, and it's still loaded in the inferior.
1267 Nothing needs to happen.
07cd4b97
JB
1268
1269 - A shared object appears only on GDB's list. This means that
105b175f
JB
1270 the inferior has unloaded it. We should remove the shared
1271 object from GDB's tables.
07cd4b97
JB
1272
1273 - A shared object appears only on the inferior's list. This
105b175f
JB
1274 means that it's just been loaded. We should add it to GDB's
1275 tables.
07cd4b97
JB
1276
1277 So we walk GDB's list, checking each entry to see if it appears
1278 in the inferior's list too. If it does, no action is needed, and
1279 we remove it from the inferior's list. If it doesn't, the
1280 inferior has unloaded it, and we remove it from GDB's list. By
1281 the time we're done walking GDB's list, the inferior's list
1282 contains only the new shared objects, which we then add. */
1283
1284 gdb = so_list_head;
1285 gdb_link = &so_list_head;
1286 while (gdb)
c906108c 1287 {
07cd4b97
JB
1288 struct so_list *i = inferior;
1289 struct so_list **i_link = &inferior;
1290
1291 /* Check to see whether the shared object *gdb also appears in
1292 the inferior's current list. */
1293 while (i)
c906108c 1294 {
07cd4b97
JB
1295 if (! strcmp (gdb->so_original_name, i->so_original_name))
1296 break;
1297
1298 i_link = &i->next;
1299 i = *i_link;
c906108c 1300 }
c5aa993b 1301
07cd4b97
JB
1302 /* If the shared object appears on the inferior's list too, then
1303 it's still loaded, so we don't need to do anything. Delete
1304 it from the inferior's list, and leave it on GDB's list. */
1305 if (i)
c906108c 1306 {
07cd4b97 1307 *i_link = i->next;
07cd4b97
JB
1308 free_so (i);
1309 gdb_link = &gdb->next;
1310 gdb = *gdb_link;
1311 }
1312
1313 /* If it's not on the inferior's list, remove it from GDB's tables. */
1314 else
1315 {
1316 *gdb_link = gdb->next;
07cd4b97
JB
1317
1318 /* Unless the user loaded it explicitly, free SO's objfile. */
e8930304 1319 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED))
07cd4b97
JB
1320 free_objfile (gdb->objfile);
1321
1322 /* Some targets' section tables might be referring to
1323 sections from so->abfd; remove them. */
1324 remove_target_sections (gdb->abfd);
1325
1326 free_so (gdb);
1327 gdb = *gdb_link;
c906108c
SS
1328 }
1329 }
c5aa993b 1330
07cd4b97
JB
1331 /* Now the inferior's list contains only shared objects that don't
1332 appear in GDB's list --- those that are newly loaded. Add them
e8930304 1333 to GDB's shared object list. */
07cd4b97 1334 if (inferior)
c906108c 1335 {
07cd4b97
JB
1336 struct so_list *i;
1337
1338 /* Add the new shared objects to GDB's list. */
1339 *gdb_link = inferior;
1340
e8930304 1341 /* Fill in the rest of each of the `struct so_list' nodes. */
07cd4b97 1342 for (i = inferior; i; i = i->next)
c906108c 1343 {
07cd4b97
JB
1344 i->from_tty = from_tty;
1345
1346 /* Fill in the rest of the `struct so_list' node. */
1347 catch_errors (solib_map_sections, i,
1348 "Error while mapping shared library sections:\n",
1349 RETURN_MASK_ALL);
07cd4b97
JB
1350 }
1351
1352 /* If requested, add the shared objects' sections to the the
1353 TARGET's section table. */
1354 if (target)
1355 {
1356 int new_sections;
1357
1358 /* Figure out how many sections we'll need to add in total. */
1359 new_sections = 0;
1360 for (i = inferior; i; i = i->next)
1361 new_sections += (i->sections_end - i->sections);
1362
1363 if (new_sections > 0)
c906108c 1364 {
07cd4b97
JB
1365 int space = target_resize_to_sections (target, new_sections);
1366
1367 for (i = inferior; i; i = i->next)
1368 {
1369 int count = (i->sections_end - i->sections);
1370 memcpy (target->to_sections + space,
1371 i->sections,
1372 count * sizeof (i->sections[0]));
1373 space += count;
1374 }
c906108c
SS
1375 }
1376 }
e8930304 1377 }
105b175f
JB
1378}
1379
1380
1381/* GLOBAL FUNCTION
1382
1383 solib_add -- read in symbol info for newly added shared libraries
1384
1385 SYNOPSIS
1386
1387 void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
1388
1389 DESCRIPTION
1390
1391 Read in symbolic information for any shared objects whose names
1392 match PATTERN. (If we've already read a shared object's symbol
1393 info, leave it alone.) If PATTERN is zero, read them all.
1394
1395 FROM_TTY and TARGET are as described for update_solib_list, above. */
1396
1397void
1398solib_add (char *pattern, int from_tty, struct target_ops *target)
1399{
1400 struct so_list *gdb;
1401
1402 if (pattern)
1403 {
1404 char *re_err = re_comp (pattern);
1405
1406 if (re_err)
1407 error ("Invalid regexp: %s", re_err);
1408 }
1409
1410 update_solib_list (from_tty, target);
c906108c 1411
105b175f
JB
1412 /* Walk the list of currently loaded shared libraries, and read
1413 symbols for any that match the pattern --- or any whose symbols
1414 aren't already loaded, if no pattern was given. */
e8930304
JB
1415 {
1416 int any_matches = 0;
1417 int loaded_any_symbols = 0;
c906108c 1418
e8930304
JB
1419 for (gdb = so_list_head; gdb; gdb = gdb->next)
1420 if (! pattern || re_exec (gdb->so_name))
1421 {
1422 any_matches = 1;
1423
1424 if (gdb->symbols_loaded)
1425 {
1426 if (from_tty)
1427 printf_unfiltered ("Symbols already loaded for %s\n",
1428 gdb->so_name);
1429 }
1430 else
1431 {
1432 if (catch_errors
1433 (symbol_add_stub, gdb,
1434 "Error while reading shared library symbols:\n",
1435 RETURN_MASK_ALL))
1436 {
1437 if (from_tty)
1438 printf_unfiltered ("Loaded symbols for %s\n",
1439 gdb->so_name);
1440 gdb->symbols_loaded = 1;
1441 loaded_any_symbols = 1;
1442 }
1443 }
1444 }
1445
1446 if (from_tty && pattern && ! any_matches)
1447 printf_unfiltered
1448 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1449
1450 if (loaded_any_symbols)
1451 {
1452 /* Getting new symbols may change our opinion about what is
1453 frameless. */
1454 reinit_frame_cache ();
1455
1456 special_symbol_handling ();
1457 }
1458 }
c906108c
SS
1459}
1460
07cd4b97 1461
c906108c
SS
1462/*
1463
c5aa993b 1464 LOCAL FUNCTION
c906108c 1465
c5aa993b 1466 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 1467
c5aa993b 1468 SYNOPSIS
c906108c 1469
c5aa993b 1470 static void info_sharedlibrary_command ()
c906108c 1471
c5aa993b 1472 DESCRIPTION
c906108c 1473
c5aa993b
JM
1474 Walk through the shared library list and print information
1475 about each attached library.
1476 */
c906108c
SS
1477
1478static void
1479info_sharedlibrary_command (ignore, from_tty)
1480 char *ignore;
1481 int from_tty;
1482{
c5aa993b 1483 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1484 int header_done = 0;
1485 int addr_width;
1486 char *addr_fmt;
1487
1488 if (exec_bfd == NULL)
1489 {
4ce44c66 1490 printf_unfiltered ("No executable file.\n");
c906108c
SS
1491 return;
1492 }
1493
1494#ifndef TARGET_ELF64
c5aa993b 1495 addr_width = 8 + 4;
c906108c
SS
1496 addr_fmt = "08l";
1497#else
c5aa993b 1498 addr_width = 16 + 4;
c906108c
SS
1499 addr_fmt = "016l";
1500#endif
1501
105b175f 1502 update_solib_list (from_tty, 0);
07cd4b97
JB
1503
1504 for (so = so_list_head; so; so = so->next)
c906108c 1505 {
c5aa993b 1506 if (so->so_name[0])
c906108c
SS
1507 {
1508 if (!header_done)
1509 {
c5aa993b
JM
1510 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1511 addr_width, "To", "Syms Read",
1512 "Shared Object Library");
c906108c
SS
1513 header_done++;
1514 }
1515
1516 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1517 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1518 addr_fmt));
c906108c 1519 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1520 local_hex_string_custom ((unsigned long) so->lmend,
1521 addr_fmt));
1522 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1523 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
1524 }
1525 }
1526 if (so_list_head == NULL)
1527 {
c5aa993b 1528 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1529 }
1530}
1531
1532/*
1533
c5aa993b 1534 GLOBAL FUNCTION
c906108c 1535
c5aa993b 1536 solib_address -- check to see if an address is in a shared lib
c906108c 1537
c5aa993b 1538 SYNOPSIS
c906108c 1539
c5aa993b 1540 char * solib_address (CORE_ADDR address)
c906108c 1541
c5aa993b 1542 DESCRIPTION
c906108c 1543
c5aa993b
JM
1544 Provides a hook for other gdb routines to discover whether or
1545 not a particular address is within the mapped address space of
1546 a shared library. Any address between the base mapping address
1547 and the first address beyond the end of the last mapping, is
1548 considered to be within the shared library address space, for
1549 our purposes.
c906108c 1550
c5aa993b
JM
1551 For example, this routine is called at one point to disable
1552 breakpoints which are in shared libraries that are not currently
1553 mapped in.
c906108c
SS
1554 */
1555
1556char *
1557solib_address (address)
1558 CORE_ADDR address;
1559{
c5aa993b
JM
1560 register struct so_list *so = 0; /* link map state variable */
1561
07cd4b97 1562 for (so = so_list_head; so; so = so->next)
c906108c 1563 {
07cd4b97
JB
1564 if (LM_ADDR (so) <= address && address < so->lmend)
1565 return (so->so_name);
c906108c 1566 }
07cd4b97 1567
c906108c
SS
1568 return (0);
1569}
1570
1571/* Called by free_all_symtabs */
1572
c5aa993b 1573void
085dd6e6 1574clear_solib ()
c906108c 1575{
085dd6e6
JM
1576 /* This function is expected to handle ELF shared libraries. It is
1577 also used on Solaris, which can run either ELF or a.out binaries
1578 (for compatibility with SunOS 4), both of which can use shared
1579 libraries. So we don't know whether we have an ELF executable or
1580 an a.out executable until the user chooses an executable file.
1581
1582 ELF shared libraries don't get mapped into the address space
1583 until after the program starts, so we'd better not try to insert
1584 breakpoints in them immediately. We have to wait until the
1585 dynamic linker has loaded them; we'll hit a bp_shlib_event
1586 breakpoint (look for calls to create_solib_event_breakpoint) when
1587 it's ready.
1588
1589 SunOS shared libraries seem to be different --- they're present
1590 as soon as the process begins execution, so there's no need to
1591 put off inserting breakpoints. There's also nowhere to put a
1592 bp_shlib_event breakpoint, so if we put it off, we'll never get
1593 around to it.
1594
1595 So: disable breakpoints only if we're using ELF shared libs. */
1596 if (exec_bfd != NULL
1597 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1598 disable_breakpoints_in_shlibs (1);
1599
c906108c
SS
1600 while (so_list_head)
1601 {
07cd4b97
JB
1602 struct so_list *so = so_list_head;
1603 so_list_head = so->next;
1604 free_so (so);
c906108c 1605 }
07cd4b97 1606
c906108c
SS
1607 debug_base = 0;
1608}
1609
1610static void
1611do_clear_solib (dummy)
1612 PTR dummy;
1613{
1614 solib_cleanup_queued = 0;
1615 clear_solib ();
1616}
1617
1618#ifdef SVR4_SHARED_LIBS
1619
1620/* Return 1 if PC lies in the dynamic symbol resolution code of the
1621 SVR4 run time loader. */
1622
1623static CORE_ADDR interp_text_sect_low;
1624static CORE_ADDR interp_text_sect_high;
1625static CORE_ADDR interp_plt_sect_low;
1626static CORE_ADDR interp_plt_sect_high;
1627
1628int
1629in_svr4_dynsym_resolve_code (pc)
1630 CORE_ADDR pc;
1631{
1632 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1633 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1634 || in_plt_section (pc, NULL));
1635}
1636#endif
1637
1638/*
1639
c5aa993b 1640 LOCAL FUNCTION
c906108c 1641
c5aa993b 1642 disable_break -- remove the "mapping changed" breakpoint
c906108c 1643
c5aa993b 1644 SYNOPSIS
c906108c 1645
c5aa993b 1646 static int disable_break ()
c906108c 1647
c5aa993b 1648 DESCRIPTION
c906108c 1649
c5aa993b
JM
1650 Removes the breakpoint that gets hit when the dynamic linker
1651 completes a mapping change.
c906108c 1652
c5aa993b 1653 */
c906108c
SS
1654
1655#ifndef SVR4_SHARED_LIBS
1656
1657static int
1658disable_break ()
1659{
1660 int status = 1;
1661
1662#ifndef SVR4_SHARED_LIBS
1663
1664 int in_debugger = 0;
c5aa993b 1665
c906108c
SS
1666 /* Read the debugger structure from the inferior to retrieve the
1667 address of the breakpoint and the original contents of the
1668 breakpoint address. Remove the breakpoint by writing the original
1669 contents back. */
1670
1671 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1672
1673 /* Set `in_debugger' to zero now. */
1674
1675 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1676
07cd4b97 1677 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
c906108c
SS
1678 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1679 sizeof (debug_copy.ldd_bp_inst));
1680
c5aa993b 1681#else /* SVR4_SHARED_LIBS */
c906108c
SS
1682
1683 /* Note that breakpoint address and original contents are in our address
1684 space, so we just need to write the original contents back. */
1685
1686 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1687 {
1688 status = 0;
1689 }
1690
c5aa993b 1691#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1692
1693 /* For the SVR4 version, we always know the breakpoint address. For the
1694 SunOS version we don't know it until the above code is executed.
1695 Grumble if we are stopped anywhere besides the breakpoint address. */
1696
1697 if (stop_pc != breakpoint_addr)
1698 {
1699 warning ("stopped at unknown breakpoint while handling shared libraries");
1700 }
1701
1702 return (status);
1703}
1704
c5aa993b 1705#endif /* #ifdef SVR4_SHARED_LIBS */
c906108c
SS
1706
1707/*
1708
c5aa993b
JM
1709 LOCAL FUNCTION
1710
1711 enable_break -- arrange for dynamic linker to hit breakpoint
1712
1713 SYNOPSIS
1714
1715 int enable_break (void)
1716
1717 DESCRIPTION
1718
1719 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1720 debugger interface, support for arranging for the inferior to hit
1721 a breakpoint after mapping in the shared libraries. This function
1722 enables that breakpoint.
1723
1724 For SunOS, there is a special flag location (in_debugger) which we
1725 set to 1. When the dynamic linker sees this flag set, it will set
1726 a breakpoint at a location known only to itself, after saving the
1727 original contents of that place and the breakpoint address itself,
1728 in it's own internal structures. When we resume the inferior, it
1729 will eventually take a SIGTRAP when it runs into the breakpoint.
1730 We handle this (in a different place) by restoring the contents of
1731 the breakpointed location (which is only known after it stops),
1732 chasing around to locate the shared libraries that have been
1733 loaded, then resuming.
1734
1735 For SVR4, the debugger interface structure contains a member (r_brk)
1736 which is statically initialized at the time the shared library is
1737 built, to the offset of a function (_r_debug_state) which is guaran-
1738 teed to be called once before mapping in a library, and again when
1739 the mapping is complete. At the time we are examining this member,
1740 it contains only the unrelocated offset of the function, so we have
1741 to do our own relocation. Later, when the dynamic linker actually
1742 runs, it relocates r_brk to be the actual address of _r_debug_state().
1743
1744 The debugger interface structure also contains an enumeration which
1745 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1746 depending upon whether or not the library is being mapped or unmapped,
1747 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1748 */
c906108c
SS
1749
1750static int
1751enable_break ()
1752{
1753 int success = 0;
1754
1755#ifndef SVR4_SHARED_LIBS
1756
1757 int j;
1758 int in_debugger;
1759
1760 /* Get link_dynamic structure */
1761
1762 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1763 sizeof (dynamic_copy));
1764 if (j)
1765 {
1766 /* unreadable */
1767 return (0);
1768 }
1769
1770 /* Calc address of debugger interface structure */
1771
07cd4b97 1772 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
1773
1774 /* Calc address of `in_debugger' member of debugger interface structure */
1775
1776 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1777 (char *) &debug_copy);
1778
1779 /* Write a value of 1 to this member. */
1780
1781 in_debugger = 1;
1782 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1783 success = 1;
1784
c5aa993b 1785#else /* SVR4_SHARED_LIBS */
c906108c
SS
1786
1787#ifdef BKPT_AT_SYMBOL
1788
1789 struct minimal_symbol *msymbol;
1790 char **bkpt_namep;
1791 asection *interp_sect;
1792
1793 /* First, remove all the solib event breakpoints. Their addresses
1794 may have changed since the last time we ran the program. */
1795 remove_solib_event_breakpoints ();
1796
1797#ifdef SVR4_SHARED_LIBS
1798 interp_text_sect_low = interp_text_sect_high = 0;
1799 interp_plt_sect_low = interp_plt_sect_high = 0;
1800
1801 /* Find the .interp section; if not found, warn the user and drop
1802 into the old breakpoint at symbol code. */
1803 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1804 if (interp_sect)
1805 {
1806 unsigned int interp_sect_size;
1807 char *buf;
1808 CORE_ADDR load_addr;
1809 bfd *tmp_bfd;
1810 CORE_ADDR sym_addr = 0;
1811
1812 /* Read the contents of the .interp section into a local buffer;
c5aa993b 1813 the contents specify the dynamic linker this program uses. */
c906108c
SS
1814 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1815 buf = alloca (interp_sect_size);
1816 bfd_get_section_contents (exec_bfd, interp_sect,
1817 buf, 0, interp_sect_size);
1818
1819 /* Now we need to figure out where the dynamic linker was
c5aa993b
JM
1820 loaded so that we can load its symbols and place a breakpoint
1821 in the dynamic linker itself.
c906108c 1822
c5aa993b
JM
1823 This address is stored on the stack. However, I've been unable
1824 to find any magic formula to find it for Solaris (appears to
1825 be trivial on GNU/Linux). Therefore, we have to try an alternate
1826 mechanism to find the dynamic linker's base address. */
c906108c
SS
1827 tmp_bfd = bfd_openr (buf, gnutarget);
1828 if (tmp_bfd == NULL)
1829 goto bkpt_at_symbol;
1830
1831 /* Make sure the dynamic linker's really a useful object. */
1832 if (!bfd_check_format (tmp_bfd, bfd_object))
1833 {
1834 warning ("Unable to grok dynamic linker %s as an object file", buf);
1835 bfd_close (tmp_bfd);
1836 goto bkpt_at_symbol;
1837 }
1838
1839 /* We find the dynamic linker's base address by examining the
c5aa993b
JM
1840 current pc (which point at the entry point for the dynamic
1841 linker) and subtracting the offset of the entry point. */
c906108c
SS
1842 load_addr = read_pc () - tmp_bfd->start_address;
1843
1844 /* Record the relocated start and end address of the dynamic linker
c5aa993b 1845 text and plt section for in_svr4_dynsym_resolve_code. */
c906108c
SS
1846 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1847 if (interp_sect)
1848 {
1849 interp_text_sect_low =
1850 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1851 interp_text_sect_high =
1852 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1853 }
1854 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1855 if (interp_sect)
1856 {
1857 interp_plt_sect_low =
1858 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1859 interp_plt_sect_high =
1860 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1861 }
1862
1863 /* Now try to set a breakpoint in the dynamic linker. */
1864 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1865 {
1866 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1867 if (sym_addr != 0)
1868 break;
1869 }
1870
1871 /* We're done with the temporary bfd. */
1872 bfd_close (tmp_bfd);
1873
1874 if (sym_addr != 0)
1875 {
1876 create_solib_event_breakpoint (load_addr + sym_addr);
1877 return 1;
1878 }
1879
1880 /* For whatever reason we couldn't set a breakpoint in the dynamic
c5aa993b
JM
1881 linker. Warn and drop into the old code. */
1882 bkpt_at_symbol:
c906108c
SS
1883 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1884 }
1885#endif
1886
1887 /* Scan through the list of symbols, trying to look up the symbol and
1888 set a breakpoint there. Terminate loop when we/if we succeed. */
1889
1890 breakpoint_addr = 0;
1891 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1892 {
1893 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1894 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1895 {
1896 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1897 return 1;
1898 }
1899 }
1900
1901 /* Nothing good happened. */
1902 success = 0;
1903
c5aa993b 1904#endif /* BKPT_AT_SYMBOL */
c906108c 1905
c5aa993b 1906#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1907
1908 return (success);
1909}
c5aa993b 1910
c906108c 1911/*
c5aa993b
JM
1912
1913 GLOBAL FUNCTION
1914
1915 solib_create_inferior_hook -- shared library startup support
1916
1917 SYNOPSIS
1918
1919 void solib_create_inferior_hook()
1920
1921 DESCRIPTION
1922
1923 When gdb starts up the inferior, it nurses it along (through the
1924 shell) until it is ready to execute it's first instruction. At this
1925 point, this function gets called via expansion of the macro
1926 SOLIB_CREATE_INFERIOR_HOOK.
1927
1928 For SunOS executables, this first instruction is typically the
1929 one at "_start", or a similar text label, regardless of whether
1930 the executable is statically or dynamically linked. The runtime
1931 startup code takes care of dynamically linking in any shared
1932 libraries, once gdb allows the inferior to continue.
1933
1934 For SVR4 executables, this first instruction is either the first
1935 instruction in the dynamic linker (for dynamically linked
1936 executables) or the instruction at "start" for statically linked
1937 executables. For dynamically linked executables, the system
1938 first exec's /lib/libc.so.N, which contains the dynamic linker,
1939 and starts it running. The dynamic linker maps in any needed
1940 shared libraries, maps in the actual user executable, and then
1941 jumps to "start" in the user executable.
1942
1943 For both SunOS shared libraries, and SVR4 shared libraries, we
1944 can arrange to cooperate with the dynamic linker to discover the
1945 names of shared libraries that are dynamically linked, and the
1946 base addresses to which they are linked.
1947
1948 This function is responsible for discovering those names and
1949 addresses, and saving sufficient information about them to allow
1950 their symbols to be read at a later time.
1951
1952 FIXME
1953
1954 Between enable_break() and disable_break(), this code does not
1955 properly handle hitting breakpoints which the user might have
1956 set in the startup code or in the dynamic linker itself. Proper
1957 handling will probably have to wait until the implementation is
1958 changed to use the "breakpoint handler function" method.
1959
1960 Also, what if child has exit()ed? Must exit loop somehow.
1961 */
1962
1963void
1964solib_create_inferior_hook ()
c906108c
SS
1965{
1966 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1967 yet. In fact, in the case of a SunOS4 executable being run on
07cd4b97 1968 Solaris, we can't get it yet. current_sos will get it when it needs
c906108c
SS
1969 it. */
1970#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1971 if ((debug_base = locate_base ()) == 0)
1972 {
1973 /* Can't find the symbol or the executable is statically linked. */
1974 return;
1975 }
1976#endif
1977
1978 if (!enable_break ())
1979 {
1980 warning ("shared library handler failed to enable breakpoint");
1981 return;
1982 }
1983
1984#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1985 /* SCO and SunOS need the loop below, other systems should be using the
1986 special shared library breakpoints and the shared library breakpoint
1987 service routine.
1988
1989 Now run the target. It will eventually hit the breakpoint, at
1990 which point all of the libraries will have been mapped in and we
1991 can go groveling around in the dynamic linker structures to find
1992 out what we need to know about them. */
1993
1994 clear_proceed_status ();
1995 stop_soon_quietly = 1;
1996 stop_signal = TARGET_SIGNAL_0;
1997 do
1998 {
1999 target_resume (-1, 0, stop_signal);
2000 wait_for_inferior ();
2001 }
2002 while (stop_signal != TARGET_SIGNAL_TRAP);
2003 stop_soon_quietly = 0;
2004
2005#if !defined(_SCO_DS)
2006 /* We are now either at the "mapping complete" breakpoint (or somewhere
2007 else, a condition we aren't prepared to deal with anyway), so adjust
2008 the PC as necessary after a breakpoint, disable the breakpoint, and
2009 add any shared libraries that were mapped in. */
2010
2011 if (DECR_PC_AFTER_BREAK)
2012 {
2013 stop_pc -= DECR_PC_AFTER_BREAK;
2014 write_register (PC_REGNUM, stop_pc);
2015 }
2016
2017 if (!disable_break ())
2018 {
2019 warning ("shared library handler failed to disable breakpoint");
2020 }
2021
2022 if (auto_solib_add)
2023 solib_add ((char *) 0, 0, (struct target_ops *) 0);
2024#endif /* ! _SCO_DS */
2025#endif
2026}
2027
2028/*
2029
c5aa993b 2030 LOCAL FUNCTION
c906108c 2031
c5aa993b 2032 special_symbol_handling -- additional shared library symbol handling
c906108c 2033
c5aa993b 2034 SYNOPSIS
c906108c 2035
07cd4b97 2036 void special_symbol_handling ()
c906108c 2037
c5aa993b 2038 DESCRIPTION
c906108c 2039
c5aa993b
JM
2040 Once the symbols from a shared object have been loaded in the usual
2041 way, we are called to do any system specific symbol handling that
2042 is needed.
c906108c 2043
c5aa993b
JM
2044 For SunOS4, this consists of grunging around in the dynamic
2045 linkers structures to find symbol definitions for "common" symbols
2046 and adding them to the minimal symbol table for the runtime common
2047 objfile.
c906108c 2048
c5aa993b 2049 */
c906108c
SS
2050
2051static void
07cd4b97 2052special_symbol_handling ()
c906108c
SS
2053{
2054#ifndef SVR4_SHARED_LIBS
2055 int j;
2056
2057 if (debug_addr == 0)
2058 {
2059 /* Get link_dynamic structure */
2060
2061 j = target_read_memory (debug_base, (char *) &dynamic_copy,
2062 sizeof (dynamic_copy));
2063 if (j)
2064 {
2065 /* unreadable */
2066 return;
2067 }
2068
2069 /* Calc address of debugger interface structure */
2070 /* FIXME, this needs work for cross-debugging of core files
c5aa993b 2071 (byteorder, size, alignment, etc). */
c906108c 2072
07cd4b97 2073 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
2074 }
2075
2076 /* Read the debugger structure from the inferior, just to make sure
2077 we have a current copy. */
2078
2079 j = target_read_memory (debug_addr, (char *) &debug_copy,
2080 sizeof (debug_copy));
2081 if (j)
c5aa993b 2082 return; /* unreadable */
c906108c
SS
2083
2084 /* Get common symbol definitions for the loaded object. */
2085
2086 if (debug_copy.ldd_cp)
2087 {
07cd4b97 2088 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
c906108c
SS
2089 }
2090
c5aa993b 2091#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
2092}
2093
2094
2095/*
2096
c5aa993b 2097 LOCAL FUNCTION
c906108c 2098
c5aa993b 2099 sharedlibrary_command -- handle command to explicitly add library
c906108c 2100
c5aa993b 2101 SYNOPSIS
c906108c 2102
c5aa993b 2103 static void sharedlibrary_command (char *args, int from_tty)
c906108c 2104
c5aa993b 2105 DESCRIPTION
c906108c 2106
c5aa993b 2107 */
c906108c
SS
2108
2109static void
2110sharedlibrary_command (args, from_tty)
c5aa993b
JM
2111 char *args;
2112 int from_tty;
c906108c
SS
2113{
2114 dont_repeat ();
2115 solib_add (args, from_tty, (struct target_ops *) 0);
2116}
2117
2118#endif /* HAVE_LINK_H */
2119
2120void
c5aa993b 2121_initialize_solib ()
c906108c
SS
2122{
2123#ifdef HAVE_LINK_H
2124
2125 add_com ("sharedlibrary", class_files, sharedlibrary_command,
2126 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 2127 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
2128 "Status of loaded shared object libraries.");
2129
2130 add_show_from_set
2131 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2132 (char *) &auto_solib_add,
2133 "Set autoloading of shared library symbols.\n\
2134If nonzero, symbols from all shared object libraries will be loaded\n\
2135automatically when the inferior begins execution or when the dynamic linker\n\
2136informs gdb that a new library has been loaded. Otherwise, symbols\n\
2137must be loaded manually, using `sharedlibrary'.",
2138 &setlist),
2139 &showlist);
2140
2141 add_show_from_set
2142 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2143 (char *) &solib_absolute_prefix,
2144 "Set prefix for loading absolute shared library symbol files.\n\
2145For other (relative) files, you can add values using `set solib-search-path'.",
2146 &setlist),
2147 &showlist);
2148 add_show_from_set
2149 (add_set_cmd ("solib-search-path", class_support, var_string,
2150 (char *) &solib_search_path,
2151 "Set the search path for loading non-absolute shared library symbol files.\n\
2152This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2153 &setlist),
2154 &showlist);
2155
2156#endif /* HAVE_LINK_H */
2157}
This page took 0.149809 seconds and 4 git commands to generate.