2000-03-24 J.T. Conklin <jtc@redback.com>
[deliverable/binutils-gdb.git] / gdb / solib.c
CommitLineData
c906108c
SS
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22
23#include "defs.h"
24
25/* This file is only compilable if link.h is available. */
26
27#ifdef HAVE_LINK_H
28
29#include <sys/types.h>
30#include <signal.h>
31#include "gdb_string.h"
32#include <sys/param.h>
33#include <fcntl.h>
c906108c
SS
34
35#ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
c5aa993b 37#include <a.out.h>
c906108c
SS
38#else
39#include "elf/external.h"
40#endif
41
42#include <link.h>
43
44#include "symtab.h"
45#include "bfd.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "gdbcore.h"
49#include "command.h"
50#include "target.h"
51#include "frame.h"
52#include "gnu-regex.h"
53#include "inferior.h"
54#include "environ.h"
55#include "language.h"
56#include "gdbcmd.h"
57
c5aa993b 58#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
c906108c
SS
59
60/* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68#ifdef SVR4_SHARED_LIBS
c5aa993b
JM
69static char *solib_break_names[] =
70{
c906108c
SS
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76};
77#endif
78
79#define BKPT_AT_SYMBOL 1
80
81#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
c5aa993b
JM
82static char *bkpt_names[] =
83{
c906108c
SS
84#ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86#endif
87 "_start",
88 "main",
89 NULL
90};
91#endif
92
93/* Symbols which are used to locate the base of the link map structures. */
94
95#ifndef SVR4_SHARED_LIBS
c5aa993b
JM
96static char *debug_base_symbols[] =
97{
c906108c
SS
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101};
102#endif
103
c5aa993b
JM
104static char *main_name_list[] =
105{
c906108c
SS
106 "main_$main",
107 NULL
108};
109
110/* local data declarations */
111
07cd4b97
JB
112/* Macro to extract an address from a solib structure.
113 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115 64 bits. We have to extract only the significant bits of addresses
116 to get the right address when accessing the core file BFD. */
117
118#define SOLIB_EXTRACT_ADDRESS(member) \
119 extract_address (&member, sizeof (member))
120
c906108c
SS
121#ifndef SVR4_SHARED_LIBS
122
07cd4b97
JB
123#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
c906108c 126/* Test for first link map entry; first entry is a shared library. */
07cd4b97 127#define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
c906108c
SS
128static struct link_dynamic dynamic_copy;
129static struct link_dynamic_2 ld_2_copy;
130static struct ld_debug debug_copy;
131static CORE_ADDR debug_addr;
132static CORE_ADDR flag_addr;
133
c5aa993b 134#else /* SVR4_SHARED_LIBS */
c906108c 135
07cd4b97
JB
136#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
c906108c 139/* Test for first link map entry; first entry is the exec-file. */
07cd4b97
JB
140#define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141 (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
c906108c
SS
142static struct r_debug debug_copy;
143char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
144
c5aa993b
JM
145#endif /* !SVR4_SHARED_LIBS */
146
147struct so_list
148 {
07cd4b97
JB
149 /* The following fields of the structure come directly from the
150 dynamic linker's tables in the inferior, and are initialized by
151 current_sos. */
152
c5aa993b
JM
153 struct so_list *next; /* next structure in linked list */
154 struct link_map lm; /* copy of link map from inferior */
07cd4b97
JB
155 CORE_ADDR lmaddr; /* addr in inferior lm was read from */
156
157 /* Shared object file name, exactly as it appears in the
158 inferior's link map. This may be a relative path, or something
159 which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
160 to tell which entries in the inferior's dynamic linker's link
161 map we've already loaded. */
162 char so_original_name[MAX_PATH_SIZE];
163
164 /* shared object file name, expanded to something GDB can open */
165 char so_name[MAX_PATH_SIZE];
166
167 /* The following fields of the structure are built from
168 information gathered from the shared object file itself, and
169 are initialized when we actually add it to our symbol tables. */
170
171 bfd *abfd;
c5aa993b 172 CORE_ADDR lmend; /* upper addr bound of mapped object */
c5aa993b
JM
173 char symbols_loaded; /* flag: symbols read in yet? */
174 char from_tty; /* flag: print msgs? */
175 struct objfile *objfile; /* objfile for loaded lib */
176 struct section_table *sections;
177 struct section_table *sections_end;
178 struct section_table *textsection;
c5aa993b 179 };
c906108c
SS
180
181static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 182static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
183static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
184
c5aa993b 185static int solib_cleanup_queued = 0; /* make_run_cleanup called */
c906108c
SS
186
187extern int
c5aa993b 188fdmatch PARAMS ((int, int)); /* In libiberty */
c906108c
SS
189
190/* Local function prototypes */
191
192static void
193do_clear_solib PARAMS ((PTR));
194
195static int
196match_main PARAMS ((char *));
197
198static void
07cd4b97 199special_symbol_handling PARAMS ((void));
c906108c
SS
200
201static void
202sharedlibrary_command PARAMS ((char *, int));
203
204static int
205enable_break PARAMS ((void));
206
207static void
208info_sharedlibrary_command PARAMS ((char *, int));
209
210static int symbol_add_stub PARAMS ((PTR));
211
07cd4b97 212static CORE_ADDR
c5aa993b 213 first_link_map_member PARAMS ((void));
c906108c
SS
214
215static CORE_ADDR
c5aa993b 216 locate_base PARAMS ((void));
c906108c
SS
217
218static int solib_map_sections PARAMS ((PTR));
219
220#ifdef SVR4_SHARED_LIBS
221
222static CORE_ADDR
c5aa993b 223 elf_locate_base PARAMS ((void));
c906108c
SS
224
225#else
226
07cd4b97
JB
227static struct so_list *current_sos (void);
228static void free_so (struct so_list *node);
229
c906108c
SS
230static int
231disable_break PARAMS ((void));
232
233static void
234allocate_rt_common_objfile PARAMS ((void));
235
236static void
07cd4b97 237solib_add_common_symbols (CORE_ADDR);
c906108c
SS
238
239#endif
240
241void _initialize_solib PARAMS ((void));
242
243/* If non-zero, this is a prefix that will be added to the front of the name
244 shared libraries with an absolute filename for loading. */
245static char *solib_absolute_prefix = NULL;
246
247/* If non-empty, this is a search path for loading non-absolute shared library
248 symbol files. This takes precedence over the environment variables PATH
249 and LD_LIBRARY_PATH. */
250static char *solib_search_path = NULL;
251
252/*
253
c5aa993b 254 LOCAL FUNCTION
c906108c 255
c5aa993b 256 solib_map_sections -- open bfd and build sections for shared lib
c906108c 257
c5aa993b 258 SYNOPSIS
c906108c 259
c5aa993b 260 static int solib_map_sections (struct so_list *so)
c906108c 261
c5aa993b 262 DESCRIPTION
c906108c 263
c5aa993b
JM
264 Given a pointer to one of the shared objects in our list
265 of mapped objects, use the recorded name to open a bfd
266 descriptor for the object, build a section table, and then
267 relocate all the section addresses by the base address at
268 which the shared object was mapped.
c906108c 269
c5aa993b 270 FIXMES
c906108c 271
c5aa993b
JM
272 In most (all?) cases the shared object file name recorded in the
273 dynamic linkage tables will be a fully qualified pathname. For
274 cases where it isn't, do we really mimic the systems search
275 mechanism correctly in the below code (particularly the tilde
276 expansion stuff?).
c906108c
SS
277 */
278
279static int
280solib_map_sections (arg)
281 PTR arg;
282{
283 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
284 char *filename;
285 char *scratch_pathname;
286 int scratch_chan;
287 struct section_table *p;
288 struct cleanup *old_chain;
289 bfd *abfd;
c5aa993b
JM
290
291 filename = tilde_expand (so->so_name);
292
c906108c
SS
293 if (solib_absolute_prefix && ROOTED_P (filename))
294 /* Prefix shared libraries with absolute filenames with
295 SOLIB_ABSOLUTE_PREFIX. */
296 {
297 char *pfxed_fn;
298 int pfx_len;
299
300 pfx_len = strlen (solib_absolute_prefix);
301
302 /* Remove trailing slashes. */
303 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304 pfx_len--;
305
306 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307 strcpy (pfxed_fn, solib_absolute_prefix);
308 strcat (pfxed_fn, filename);
309 free (filename);
310
311 filename = pfxed_fn;
312 }
313
314 old_chain = make_cleanup (free, filename);
315
316 scratch_chan = -1;
317
318 if (solib_search_path)
319 scratch_chan = openp (solib_search_path,
320 1, filename, O_RDONLY, 0, &scratch_pathname);
321 if (scratch_chan < 0)
c5aa993b 322 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
c906108c
SS
323 1, filename, O_RDONLY, 0, &scratch_pathname);
324 if (scratch_chan < 0)
325 {
c5aa993b
JM
326 scratch_chan = openp (get_in_environ
327 (inferior_environ, "LD_LIBRARY_PATH"),
c906108c
SS
328 1, filename, O_RDONLY, 0, &scratch_pathname);
329 }
330 if (scratch_chan < 0)
331 {
332 perror_with_name (filename);
333 }
334 /* Leave scratch_pathname allocated. abfd->name will point to it. */
335
336 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337 if (!abfd)
338 {
339 close (scratch_chan);
340 error ("Could not open `%s' as an executable file: %s",
341 scratch_pathname, bfd_errmsg (bfd_get_error ()));
342 }
343 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
344 so->abfd = abfd;
345 abfd->cacheable = true;
c906108c
SS
346
347 /* copy full path name into so_name, so that later symbol_file_add can find
348 it */
349 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351 strcpy (so->so_name, scratch_pathname);
352
353 if (!bfd_check_format (abfd, bfd_object))
354 {
355 error ("\"%s\": not in executable format: %s.",
356 scratch_pathname, bfd_errmsg (bfd_get_error ()));
357 }
c5aa993b 358 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 359 {
c5aa993b 360 error ("Can't find the file sections in `%s': %s",
c906108c
SS
361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362 }
363
c5aa993b 364 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
365 {
366 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
367 object's file by the base address to which the object was actually
368 mapped. */
07cd4b97
JB
369 p->addr += LM_ADDR (so);
370 p->endaddr += LM_ADDR (so);
371 so->lmend = max (p->endaddr, so->lmend);
c5aa993b 372 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 373 {
c5aa993b 374 so->textsection = p;
c906108c
SS
375 }
376 }
377
378 /* Free the file names, close the file now. */
379 do_cleanups (old_chain);
380
381 return (1);
382}
383
384#ifndef SVR4_SHARED_LIBS
385
386/* Allocate the runtime common object file. */
387
388static void
389allocate_rt_common_objfile ()
390{
391 struct objfile *objfile;
392 struct objfile *last_one;
393
394 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
396 objfile->md = NULL;
397 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 398 xmalloc, free);
c5aa993b 399 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 400 free);
c5aa993b 401 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 402 free);
c5aa993b 403 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 404 free);
c5aa993b 405 objfile->name = mstrsave (objfile->md, "rt_common");
c906108c
SS
406
407 /* Add this file onto the tail of the linked list of other such files. */
408
c5aa993b 409 objfile->next = NULL;
c906108c
SS
410 if (object_files == NULL)
411 object_files = objfile;
412 else
413 {
414 for (last_one = object_files;
c5aa993b
JM
415 last_one->next;
416 last_one = last_one->next);
417 last_one->next = objfile;
c906108c
SS
418 }
419
420 rt_common_objfile = objfile;
421}
422
423/* Read all dynamically loaded common symbol definitions from the inferior
424 and put them into the minimal symbol table for the runtime common
425 objfile. */
426
427static void
428solib_add_common_symbols (rtc_symp)
07cd4b97 429 CORE_ADDR rtc_symp;
c906108c
SS
430{
431 struct rtc_symb inferior_rtc_symb;
432 struct nlist inferior_rtc_nlist;
433 int len;
434 char *name;
435
436 /* Remove any runtime common symbols from previous runs. */
437
c5aa993b 438 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
c906108c 439 {
c5aa993b
JM
440 obstack_free (&rt_common_objfile->symbol_obstack, 0);
441 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
c906108c 442 xmalloc, free);
c5aa993b
JM
443 rt_common_objfile->minimal_symbol_count = 0;
444 rt_common_objfile->msymbols = NULL;
c906108c
SS
445 }
446
447 init_minimal_symbol_collection ();
448 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
449
450 while (rtc_symp)
451 {
07cd4b97 452 read_memory (rtc_symp,
c906108c
SS
453 (char *) &inferior_rtc_symb,
454 sizeof (inferior_rtc_symb));
07cd4b97 455 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
c906108c 456 (char *) &inferior_rtc_nlist,
c5aa993b 457 sizeof (inferior_rtc_nlist));
c906108c
SS
458 if (inferior_rtc_nlist.n_type == N_COMM)
459 {
460 /* FIXME: The length of the symbol name is not available, but in the
461 current implementation the common symbol is allocated immediately
462 behind the name of the symbol. */
463 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
465 name = xmalloc (len);
07cd4b97
JB
466 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467 name, len);
c906108c
SS
468
469 /* Allocate the runtime common objfile if necessary. */
470 if (rt_common_objfile == NULL)
471 allocate_rt_common_objfile ();
472
473 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474 mst_bss, rt_common_objfile);
475 free (name);
476 }
07cd4b97 477 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
c906108c
SS
478 }
479
480 /* Install any minimal symbols that have been collected as the current
481 minimal symbols for the runtime common objfile. */
482
483 install_minimal_symbols (rt_common_objfile);
484}
485
c5aa993b 486#endif /* SVR4_SHARED_LIBS */
c906108c
SS
487
488
489#ifdef SVR4_SHARED_LIBS
490
491static CORE_ADDR
c5aa993b 492 bfd_lookup_symbol PARAMS ((bfd *, char *));
c906108c
SS
493
494/*
495
c5aa993b 496 LOCAL FUNCTION
c906108c 497
c5aa993b 498 bfd_lookup_symbol -- lookup the value for a specific symbol
c906108c 499
c5aa993b 500 SYNOPSIS
c906108c 501
c5aa993b 502 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
c906108c 503
c5aa993b 504 DESCRIPTION
c906108c 505
c5aa993b
JM
506 An expensive way to lookup the value of a single symbol for
507 bfd's that are only temporary anyway. This is used by the
508 shared library support to find the address of the debugger
509 interface structures in the shared library.
c906108c 510
c5aa993b
JM
511 Note that 0 is specifically allowed as an error return (no
512 such symbol).
513 */
c906108c
SS
514
515static CORE_ADDR
516bfd_lookup_symbol (abfd, symname)
517 bfd *abfd;
518 char *symname;
519{
520 unsigned int storage_needed;
521 asymbol *sym;
522 asymbol **symbol_table;
523 unsigned int number_of_symbols;
524 unsigned int i;
525 struct cleanup *back_to;
526 CORE_ADDR symaddr = 0;
c5aa993b 527
c906108c
SS
528 storage_needed = bfd_get_symtab_upper_bound (abfd);
529
530 if (storage_needed > 0)
531 {
532 symbol_table = (asymbol **) xmalloc (storage_needed);
c5aa993b
JM
533 back_to = make_cleanup (free, (PTR) symbol_table);
534 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
c906108c
SS
536 for (i = 0; i < number_of_symbols; i++)
537 {
538 sym = *symbol_table++;
c5aa993b 539 if (STREQ (sym->name, symname))
c906108c
SS
540 {
541 /* Bfd symbols are section relative. */
c5aa993b 542 symaddr = sym->value + sym->section->vma;
c906108c
SS
543 break;
544 }
545 }
546 do_cleanups (back_to);
547 }
548 return (symaddr);
549}
550
551#ifdef HANDLE_SVR4_EXEC_EMULATORS
552
553/*
c5aa993b
JM
554 Solaris BCP (the part of Solaris which allows it to run SunOS4
555 a.out files) throws in another wrinkle. Solaris does not fill
556 in the usual a.out link map structures when running BCP programs,
557 the only way to get at them is via groping around in the dynamic
558 linker.
559 The dynamic linker and it's structures are located in the shared
560 C library, which gets run as the executable's "interpreter" by
561 the kernel.
562
563 Note that we can assume nothing about the process state at the time
564 we need to find these structures. We may be stopped on the first
565 instruction of the interpreter (C shared library), the first
566 instruction of the executable itself, or somewhere else entirely
567 (if we attached to the process for example).
568 */
569
570static char *debug_base_symbols[] =
571{
572 "r_debug", /* Solaris 2.3 */
573 "_r_debug", /* Solaris 2.1, 2.2 */
c906108c
SS
574 NULL
575};
576
577static int
578look_for_base PARAMS ((int, CORE_ADDR));
579
580/*
581
c5aa993b 582 LOCAL FUNCTION
c906108c 583
c5aa993b 584 look_for_base -- examine file for each mapped address segment
c906108c 585
c5aa993b 586 SYNOPSYS
c906108c 587
c5aa993b 588 static int look_for_base (int fd, CORE_ADDR baseaddr)
c906108c 589
c5aa993b 590 DESCRIPTION
c906108c 591
c5aa993b
JM
592 This function is passed to proc_iterate_over_mappings, which
593 causes it to get called once for each mapped address space, with
594 an open file descriptor for the file mapped to that space, and the
595 base address of that mapped space.
c906108c 596
c5aa993b
JM
597 Our job is to find the debug base symbol in the file that this
598 fd is open on, if it exists, and if so, initialize the dynamic
599 linker structure base address debug_base.
c906108c 600
c5aa993b
JM
601 Note that this is a computationally expensive proposition, since
602 we basically have to open a bfd on every call, so we specifically
603 avoid opening the exec file.
c906108c
SS
604 */
605
606static int
607look_for_base (fd, baseaddr)
608 int fd;
609 CORE_ADDR baseaddr;
610{
611 bfd *interp_bfd;
612 CORE_ADDR address = 0;
613 char **symbolp;
614
615 /* If the fd is -1, then there is no file that corresponds to this
616 mapped memory segment, so skip it. Also, if the fd corresponds
617 to the exec file, skip it as well. */
618
619 if (fd == -1
620 || (exec_bfd != NULL
c5aa993b 621 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
c906108c
SS
622 {
623 return (0);
624 }
625
626 /* Try to open whatever random file this fd corresponds to. Note that
627 we have no way currently to find the filename. Don't gripe about
628 any problems we might have, just fail. */
629
630 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631 {
632 return (0);
633 }
634 if (!bfd_check_format (interp_bfd, bfd_object))
635 {
636 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 637 interp_bfd. */
c906108c
SS
638 bfd_close (interp_bfd);
639 return (0);
640 }
641
642 /* Now try to find our debug base symbol in this file, which we at
643 least know to be a valid ELF executable or shared library. */
644
645 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646 {
647 address = bfd_lookup_symbol (interp_bfd, *symbolp);
648 if (address != 0)
649 {
650 break;
651 }
652 }
653 if (address == 0)
654 {
655 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 656 interp_bfd. */
c906108c
SS
657 bfd_close (interp_bfd);
658 return (0);
659 }
660
661 /* Eureka! We found the symbol. But now we may need to relocate it
662 by the base address. If the symbol's value is less than the base
663 address of the shared library, then it hasn't yet been relocated
664 by the dynamic linker, and we have to do it ourself. FIXME: Note
665 that we make the assumption that the first segment that corresponds
666 to the shared library has the base address to which the library
667 was relocated. */
668
669 if (address < baseaddr)
670 {
671 address += baseaddr;
672 }
673 debug_base = address;
674 /* FIXME-leak: on failure, might not free all memory associated with
675 interp_bfd. */
676 bfd_close (interp_bfd);
677 return (1);
678}
679#endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
681/*
682
c5aa993b 683 LOCAL FUNCTION
c906108c 684
c5aa993b
JM
685 elf_locate_base -- locate the base address of dynamic linker structs
686 for SVR4 elf targets.
c906108c 687
c5aa993b 688 SYNOPSIS
c906108c 689
c5aa993b 690 CORE_ADDR elf_locate_base (void)
c906108c 691
c5aa993b 692 DESCRIPTION
c906108c 693
c5aa993b
JM
694 For SVR4 elf targets the address of the dynamic linker's runtime
695 structure is contained within the dynamic info section in the
696 executable file. The dynamic section is also mapped into the
697 inferior address space. Because the runtime loader fills in the
698 real address before starting the inferior, we have to read in the
699 dynamic info section from the inferior address space.
700 If there are any errors while trying to find the address, we
701 silently return 0, otherwise the found address is returned.
c906108c
SS
702
703 */
704
705static CORE_ADDR
706elf_locate_base ()
707{
708 sec_ptr dyninfo_sect;
709 int dyninfo_sect_size;
710 CORE_ADDR dyninfo_addr;
711 char *buf;
712 char *bufend;
713
714 /* Find the start address of the .dynamic section. */
715 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
716 if (dyninfo_sect == NULL)
717 return 0;
718 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
719
720 /* Read in .dynamic section, silently ignore errors. */
721 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
722 buf = alloca (dyninfo_sect_size);
723 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
724 return 0;
725
726 /* Find the DT_DEBUG entry in the the .dynamic section.
727 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
728 no DT_DEBUG entries. */
729#ifndef TARGET_ELF64
730 for (bufend = buf + dyninfo_sect_size;
731 buf < bufend;
732 buf += sizeof (Elf32_External_Dyn))
733 {
c5aa993b 734 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
c906108c
SS
735 long dyn_tag;
736 CORE_ADDR dyn_ptr;
737
738 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
739 if (dyn_tag == DT_NULL)
740 break;
741 else if (dyn_tag == DT_DEBUG)
742 {
743 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
744 return dyn_ptr;
745 }
746#ifdef DT_MIPS_RLD_MAP
747 else if (dyn_tag == DT_MIPS_RLD_MAP)
748 {
749 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
750
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
754 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
755 return 0;
756 return extract_unsigned_integer (pbuf, sizeof (pbuf));
757 }
758#endif
759 }
760#else /* ELF64 */
761 for (bufend = buf + dyninfo_sect_size;
762 buf < bufend;
763 buf += sizeof (Elf64_External_Dyn))
764 {
c5aa993b 765 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
c906108c
SS
766 long dyn_tag;
767 CORE_ADDR dyn_ptr;
768
769 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
770 if (dyn_tag == DT_NULL)
771 break;
772 else if (dyn_tag == DT_DEBUG)
773 {
774 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
775 return dyn_ptr;
776 }
777 }
778#endif
779
780 /* DT_DEBUG entry not found. */
781 return 0;
782}
783
c5aa993b 784#endif /* SVR4_SHARED_LIBS */
c906108c
SS
785
786/*
787
c5aa993b 788 LOCAL FUNCTION
c906108c 789
c5aa993b 790 locate_base -- locate the base address of dynamic linker structs
c906108c 791
c5aa993b 792 SYNOPSIS
c906108c 793
c5aa993b 794 CORE_ADDR locate_base (void)
c906108c 795
c5aa993b 796 DESCRIPTION
c906108c 797
c5aa993b
JM
798 For both the SunOS and SVR4 shared library implementations, if the
799 inferior executable has been linked dynamically, there is a single
800 address somewhere in the inferior's data space which is the key to
801 locating all of the dynamic linker's runtime structures. This
802 address is the value of the debug base symbol. The job of this
803 function is to find and return that address, or to return 0 if there
804 is no such address (the executable is statically linked for example).
c906108c 805
c5aa993b
JM
806 For SunOS, the job is almost trivial, since the dynamic linker and
807 all of it's structures are statically linked to the executable at
808 link time. Thus the symbol for the address we are looking for has
809 already been added to the minimal symbol table for the executable's
810 objfile at the time the symbol file's symbols were read, and all we
811 have to do is look it up there. Note that we explicitly do NOT want
812 to find the copies in the shared library.
c906108c 813
c5aa993b
JM
814 The SVR4 version is a bit more complicated because the address
815 is contained somewhere in the dynamic info section. We have to go
816 to a lot more work to discover the address of the debug base symbol.
817 Because of this complexity, we cache the value we find and return that
818 value on subsequent invocations. Note there is no copy in the
819 executable symbol tables.
c906108c
SS
820
821 */
822
823static CORE_ADDR
824locate_base ()
825{
826
827#ifndef SVR4_SHARED_LIBS
828
829 struct minimal_symbol *msymbol;
830 CORE_ADDR address = 0;
831 char **symbolp;
832
833 /* For SunOS, we want to limit the search for the debug base symbol to the
834 executable being debugged, since there is a duplicate named symbol in the
835 shared library. We don't want the shared library versions. */
836
837 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
838 {
839 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
840 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
841 {
842 address = SYMBOL_VALUE_ADDRESS (msymbol);
843 return (address);
844 }
845 }
846 return (0);
847
c5aa993b 848#else /* SVR4_SHARED_LIBS */
c906108c
SS
849
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
853 section for ELF executables. */
854
855 if (debug_base == 0)
856 {
857 if (exec_bfd != NULL
858 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
859 debug_base = elf_locate_base ();
860#ifdef HANDLE_SVR4_EXEC_EMULATORS
861 /* Try it the hard way for emulated executables. */
862 else if (inferior_pid != 0 && target_has_execution)
863 proc_iterate_over_mappings (look_for_base);
864#endif
865 }
866 return (debug_base);
867
c5aa993b 868#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
869
870}
871
872/*
873
c5aa993b 874 LOCAL FUNCTION
c906108c 875
c5aa993b 876 first_link_map_member -- locate first member in dynamic linker's map
c906108c 877
c5aa993b 878 SYNOPSIS
c906108c 879
07cd4b97 880 static CORE_ADDR first_link_map_member (void)
c906108c 881
c5aa993b 882 DESCRIPTION
c906108c 883
9ddea9f1
JB
884 Find the first element in the inferior's dynamic link map, and
885 return its address in the inferior. This function doesn't copy the
07cd4b97 886 link map entry itself into our address space; current_sos actually
9ddea9f1 887 does the reading. */
c906108c 888
07cd4b97 889static CORE_ADDR
c906108c
SS
890first_link_map_member ()
891{
07cd4b97 892 CORE_ADDR lm = 0;
c906108c
SS
893
894#ifndef SVR4_SHARED_LIBS
895
896 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
897 if (dynamic_copy.ld_version >= 2)
898 {
899 /* It is a version that we can deal with, so read in the secondary
c5aa993b 900 structure and find the address of the link map list from it. */
07cd4b97
JB
901 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
902 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
903 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
c906108c
SS
904 }
905
c5aa993b 906#else /* SVR4_SHARED_LIBS */
c906108c
SS
907
908 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
909 /* FIXME: Perhaps we should validate the info somehow, perhaps by
910 checking r_version for a known version number, or r_state for
911 RT_CONSISTENT. */
07cd4b97 912 lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
c906108c 913
c5aa993b 914#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
915
916 return (lm);
917}
918
104c1213
JM
919#ifdef SVR4_SHARED_LIBS
920/*
921
922 LOCAL FUNCTION
923
924 open_exec_file_object
925
926 SYNOPSIS
927
928 void open_symbol_file_object (int from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 */
938
939int
940open_symbol_file_object (arg)
941 PTR arg;
942{
943 int from_tty = (int) arg; /* sneak past catch_errors */
07cd4b97
JB
944 CORE_ADDR lm;
945 struct link_map lmcopy;
104c1213
JM
946 char *filename;
947 int errcode;
948
949 if (symfile_objfile)
950 if (!query ("Attempt to reload symbols from process? "))
951 return 0;
952
953 if ((debug_base = locate_base ()) == 0)
954 return 0; /* failed somehow... */
955
956 /* First link map member should be the executable. */
07cd4b97 957 if ((lm = first_link_map_member ()) == 0)
104c1213
JM
958 return 0; /* failed somehow... */
959
960 /* Read from target memory to GDB. */
07cd4b97 961 read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
104c1213
JM
962
963 if (lmcopy.l_name == 0)
964 return 0; /* no filename. */
965
966 /* Now fetch the filename from target memory. */
07cd4b97 967 target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
104c1213
JM
968 MAX_PATH_SIZE - 1, &errcode);
969 if (errcode)
970 {
971 warning ("failed to read exec filename from attached file: %s",
972 safe_strerror (errcode));
973 return 0;
974 }
975
976 make_cleanup ((make_cleanup_func) free, (void *) filename);
977 /* Have a pathname: read the symbol file. */
978 symbol_file_command (filename, from_tty);
979
980 return 1;
981}
982#endif /* SVR4_SHARED_LIBS */
983
c906108c 984
07cd4b97 985/* LOCAL FUNCTION
c906108c 986
07cd4b97 987 free_so --- free a `struct so_list' object
c906108c 988
c5aa993b 989 SYNOPSIS
c906108c 990
07cd4b97 991 void free_so (struct so_list *so)
c906108c 992
c5aa993b 993 DESCRIPTION
c906108c 994
07cd4b97
JB
995 Free the storage associated with the `struct so_list' object SO.
996 If we have opened a BFD for SO, close it.
c906108c 997
07cd4b97
JB
998 The caller is responsible for removing SO from whatever list it is
999 a member of. If we have placed SO's sections in some target's
1000 section table, the caller is responsible for removing them.
c906108c 1001
07cd4b97
JB
1002 This function doesn't mess with objfiles at all. If there is an
1003 objfile associated with SO that needs to be removed, the caller is
1004 responsible for taking care of that. */
1005
1006static void
1007free_so (struct so_list *so)
c906108c 1008{
07cd4b97 1009 char *bfd_filename = 0;
c5aa993b 1010
07cd4b97
JB
1011 if (so->sections)
1012 free (so->sections);
1013
1014 if (so->abfd)
c906108c 1015 {
07cd4b97
JB
1016 bfd_filename = bfd_get_filename (so->abfd);
1017 if (! bfd_close (so->abfd))
1018 warning ("cannot close \"%s\": %s",
1019 bfd_filename, bfd_errmsg (bfd_get_error ()));
c906108c 1020 }
07cd4b97
JB
1021
1022 if (bfd_filename)
1023 free (bfd_filename);
1024
1025 free (so);
1026}
1027
1028
1029/* On some systems, the only way to recognize the link map entry for
1030 the main executable file is by looking at its name. Return
1031 non-zero iff SONAME matches one of the known main executable names. */
1032
1033static int
1034match_main (soname)
1035 char *soname;
1036{
1037 char **mainp;
1038
1039 for (mainp = main_name_list; *mainp != NULL; mainp++)
c906108c 1040 {
07cd4b97
JB
1041 if (strcmp (soname, *mainp) == 0)
1042 return (1);
c906108c 1043 }
07cd4b97
JB
1044
1045 return (0);
1046}
1047
1048
1049/* LOCAL FUNCTION
1050
1051 current_sos -- build a list of currently loaded shared objects
1052
1053 SYNOPSIS
1054
1055 struct so_list *current_sos ()
1056
1057 DESCRIPTION
1058
1059 Build a list of `struct so_list' objects describing the shared
1060 objects currently loaded in the inferior. This list does not
1061 include an entry for the main executable file.
1062
1063 Note that we only gather information directly available from the
1064 inferior --- we don't examine any of the shared library files
1065 themselves. The declaration of `struct so_list' says which fields
1066 we provide values for. */
1067
1068static struct so_list *
1069current_sos ()
1070{
1071 CORE_ADDR lm;
1072 struct so_list *head = 0;
1073 struct so_list **link_ptr = &head;
1074
1075 /* Make sure we've looked up the inferior's dynamic linker's base
1076 structure. */
1077 if (! debug_base)
c906108c 1078 {
07cd4b97
JB
1079 debug_base = locate_base ();
1080
1081 /* If we can't find the dynamic linker's base structure, this
1082 must not be a dynamically linked executable. Hmm. */
1083 if (! debug_base)
1084 return 0;
1085 }
1086
1087 /* Walk the inferior's link map list, and build our list of
1088 `struct so_list' nodes. */
1089 lm = first_link_map_member ();
1090 while (lm)
1091 {
1092 struct so_list *new
1093 = (struct so_list *) xmalloc (sizeof (struct so_list));
15588ebb 1094 struct cleanup *old_chain = make_cleanup (free, new);
07cd4b97
JB
1095 memset (new, 0, sizeof (*new));
1096
c5aa993b 1097 new->lmaddr = lm;
07cd4b97 1098 read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
c906108c 1099
07cd4b97 1100 lm = LM_NEXT (new);
c5aa993b 1101
c906108c 1102 /* For SVR4 versions, the first entry in the link map is for the
c5aa993b
JM
1103 inferior executable, so we must ignore it. For some versions of
1104 SVR4, it has no name. For others (Solaris 2.3 for example), it
1105 does have a name, so we can no longer use a missing name to
1106 decide when to ignore it. */
07cd4b97 1107 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
15588ebb 1108 free_so (new);
07cd4b97 1109 else
c906108c
SS
1110 {
1111 int errcode;
1112 char *buffer;
07cd4b97
JB
1113
1114 /* Extract this shared object's name. */
1115 target_read_string (LM_NAME (new), &buffer,
c906108c
SS
1116 MAX_PATH_SIZE - 1, &errcode);
1117 if (errcode != 0)
1118 {
07cd4b97 1119 warning ("current_sos: Can't read pathname for load map: %s\n",
c906108c 1120 safe_strerror (errcode));
c906108c 1121 }
07cd4b97
JB
1122 else
1123 {
1124 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1125 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1126 free (buffer);
1127 strcpy (new->so_original_name, new->so_name);
1128 }
1129
1130 /* If this entry has no name, or its name matches the name
1131 for the main executable, don't include it in the list. */
1132 if (! new->so_name[0]
1133 || match_main (new->so_name))
1134 free_so (new);
1135 else
1136 {
1137 new->next = 0;
1138 *link_ptr = new;
1139 link_ptr = &new->next;
1140 }
c5aa993b 1141 }
15588ebb
JB
1142
1143 discard_cleanups (old_chain);
c906108c 1144 }
07cd4b97
JB
1145
1146 return head;
c906108c
SS
1147}
1148
07cd4b97 1149
c906108c
SS
1150/* A small stub to get us past the arg-passing pinhole of catch_errors. */
1151
1152static int
1153symbol_add_stub (arg)
1154 PTR arg;
1155{
07cd4b97 1156 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c 1157 CORE_ADDR text_addr = 0;
62557bbc 1158 struct section_addr_info *sap;
c906108c 1159
07cd4b97
JB
1160 /* Have we already loaded this shared object? */
1161 ALL_OBJFILES (so->objfile)
1162 {
1163 if (strcmp (so->objfile->name, so->so_name) == 0)
1164 return 1;
1165 }
1166
1167 /* Find the shared object's text segment. */
c5aa993b
JM
1168 if (so->textsection)
1169 text_addr = so->textsection->addr;
1170 else if (so->abfd != NULL)
c906108c
SS
1171 {
1172 asection *lowest_sect;
1173
1174 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 1175 text_addr so that the relocation in symbol_file_add does no harm. */
c5aa993b 1176 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 1177 if (lowest_sect == NULL)
c5aa993b 1178 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 1179 (PTR) &lowest_sect);
c906108c 1180 if (lowest_sect)
c5aa993b 1181 text_addr = bfd_section_vma (so->abfd, lowest_sect)
07cd4b97 1182 + LM_ADDR (so);
c906108c 1183 }
c5aa993b 1184
62557bbc
KB
1185 sap = build_section_addr_info_from_section_table (so->sections,
1186 so->sections_end);
1187 sap->text_addr = text_addr;
1188 so->objfile = symbol_file_add (so->so_name, so->from_tty,
1189 sap, 0, OBJF_SHARED);
1190 free_section_addr_info (sap);
c906108c 1191
07cd4b97 1192 return (1);
c906108c
SS
1193}
1194
c906108c 1195
07cd4b97 1196/* LOCAL FUNCTION
c906108c 1197
07cd4b97 1198 solib_add -- synchronize GDB's shared object list with the inferior's
c906108c 1199
c5aa993b 1200 SYNOPSIS
c906108c 1201
07cd4b97 1202 void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
c906108c 1203
c5aa993b 1204 DESCRIPTION
c906108c 1205
07cd4b97
JB
1206 Extract the list of currently loaded shared objects from the
1207 inferior, and compare it with the list of shared objects for which
1208 GDB has currently loaded symbolic information. If new shared
1209 objects have been loaded, or old shared objects have disappeared,
1210 make the appropriate changes to GDB's tables.
c906108c 1211
07cd4b97
JB
1212 If PATTERN is non-null, read symbols only for shared objects
1213 whose names match PATTERN.
1214
1215 If FROM_TTY is non-null, feel free to print messages about what
1216 we're doing.
c906108c 1217
07cd4b97
JB
1218 If TARGET is non-null, add the sections of all new shared objects
1219 to TARGET's section table. Note that this doesn't remove any
1220 sections for shared objects that have been unloaded, and it
1221 doesn't check to see if the new shared objects are already present in
1222 the section table. But we only use this for core files and
1223 processes we've just attached to, so that's okay. */
c906108c 1224
07cd4b97
JB
1225void
1226solib_add (char *pattern, int from_tty, struct target_ops *target)
1227{
1228 struct so_list *inferior = current_sos ();
1229 struct so_list *gdb, **gdb_link;
1230
104c1213
JM
1231#ifdef SVR4_SHARED_LIBS
1232 /* If we are attaching to a running process for which we
1233 have not opened a symbol file, we may be able to get its
1234 symbols now! */
1235 if (attach_flag &&
1236 symfile_objfile == NULL)
1237 catch_errors (open_symbol_file_object, (PTR) from_tty,
1238 "Error reading attached process's symbol file.\n",
1239 RETURN_MASK_ALL);
1240
1241#endif SVR4_SHARED_LIBS
1242
07cd4b97 1243 if (pattern)
c906108c 1244 {
07cd4b97
JB
1245 char *re_err = re_comp (pattern);
1246
1247 if (re_err)
1248 error ("Invalid regexp: %s", re_err);
1249 }
1250
1251 /* Since this function might actually add some elements to the
1252 so_list_head list, arrange for it to be cleaned up when
1253 appropriate. */
1254 if (!solib_cleanup_queued)
1255 {
1256 make_run_cleanup (do_clear_solib, NULL);
1257 solib_cleanup_queued = 1;
c906108c 1258 }
c5aa993b 1259
07cd4b97
JB
1260 /* GDB and the inferior's dynamic linker each maintain their own
1261 list of currently loaded shared objects; we want to bring the
1262 former in sync with the latter. Scan both lists, seeing which
1263 shared objects appear where. There are three cases:
1264
1265 - A shared object appears on both lists. This means that GDB
1266 knows about it already, and it's still loaded in the inferior.
1267 Nothing needs to happen.
1268
1269 - A shared object appears only on GDB's list. This means that
1270 the inferior has unloaded it. We should remove the shared
1271 object from GDB's tables.
1272
1273 - A shared object appears only on the inferior's list. This
1274 means that it's just been loaded. We should add it to GDB's
1275 tables.
1276
1277 So we walk GDB's list, checking each entry to see if it appears
1278 in the inferior's list too. If it does, no action is needed, and
1279 we remove it from the inferior's list. If it doesn't, the
1280 inferior has unloaded it, and we remove it from GDB's list. By
1281 the time we're done walking GDB's list, the inferior's list
1282 contains only the new shared objects, which we then add. */
1283
1284 gdb = so_list_head;
1285 gdb_link = &so_list_head;
1286 while (gdb)
c906108c 1287 {
07cd4b97
JB
1288 struct so_list *i = inferior;
1289 struct so_list **i_link = &inferior;
1290
1291 /* Check to see whether the shared object *gdb also appears in
1292 the inferior's current list. */
1293 while (i)
c906108c 1294 {
07cd4b97
JB
1295 if (! strcmp (gdb->so_original_name, i->so_original_name))
1296 break;
1297
1298 i_link = &i->next;
1299 i = *i_link;
c906108c 1300 }
c5aa993b 1301
07cd4b97
JB
1302 /* If the shared object appears on the inferior's list too, then
1303 it's still loaded, so we don't need to do anything. Delete
1304 it from the inferior's list, and leave it on GDB's list. */
1305 if (i)
c906108c 1306 {
07cd4b97 1307 *i_link = i->next;
07cd4b97
JB
1308 free_so (i);
1309 gdb_link = &gdb->next;
1310 gdb = *gdb_link;
1311 }
1312
1313 /* If it's not on the inferior's list, remove it from GDB's tables. */
1314 else
1315 {
1316 *gdb_link = gdb->next;
07cd4b97
JB
1317
1318 /* Unless the user loaded it explicitly, free SO's objfile. */
1319 if (! (gdb->objfile->flags & OBJF_USERLOADED))
1320 free_objfile (gdb->objfile);
1321
1322 /* Some targets' section tables might be referring to
1323 sections from so->abfd; remove them. */
1324 remove_target_sections (gdb->abfd);
1325
1326 free_so (gdb);
1327 gdb = *gdb_link;
c906108c
SS
1328 }
1329 }
c5aa993b 1330
07cd4b97
JB
1331 /* Now the inferior's list contains only shared objects that don't
1332 appear in GDB's list --- those that are newly loaded. Add them
1333 to GDB's shared object list, and read in their symbols, if
1334 appropriate. */
1335 if (inferior)
c906108c 1336 {
07cd4b97
JB
1337 struct so_list *i;
1338
1339 /* Add the new shared objects to GDB's list. */
1340 *gdb_link = inferior;
1341
1342 /* Fill in the rest of each of the `struct so_list' nodes, and
1343 read symbols for those files whose names match PATTERN. */
1344 for (i = inferior; i; i = i->next)
c906108c 1345 {
07cd4b97
JB
1346 i->from_tty = from_tty;
1347
1348 /* Fill in the rest of the `struct so_list' node. */
1349 catch_errors (solib_map_sections, i,
1350 "Error while mapping shared library sections:\n",
1351 RETURN_MASK_ALL);
1352
1353 if (! pattern || re_exec (i->so_name))
c906108c 1354 {
07cd4b97 1355 if (i->symbols_loaded)
c906108c 1356 {
07cd4b97
JB
1357 if (from_tty)
1358 printf_unfiltered ("Symbols already loaded for %s\n",
1359 i->so_name);
1360 }
1361 else
1362 {
07cd4b97
JB
1363 if (catch_errors
1364 (symbol_add_stub, i,
1365 "Error while reading shared library symbols:\n",
1366 RETURN_MASK_ALL))
1367 {
1368 if (from_tty)
1369 printf_unfiltered ("Loaded symbols for %s\n",
1370 i->so_name);
1371 i->symbols_loaded = 1;
1372 }
c906108c
SS
1373 }
1374 }
07cd4b97
JB
1375 }
1376
1377 /* If requested, add the shared objects' sections to the the
1378 TARGET's section table. */
1379 if (target)
1380 {
1381 int new_sections;
1382
1383 /* Figure out how many sections we'll need to add in total. */
1384 new_sections = 0;
1385 for (i = inferior; i; i = i->next)
1386 new_sections += (i->sections_end - i->sections);
1387
1388 if (new_sections > 0)
c906108c 1389 {
07cd4b97
JB
1390 int space = target_resize_to_sections (target, new_sections);
1391
1392 for (i = inferior; i; i = i->next)
1393 {
1394 int count = (i->sections_end - i->sections);
1395 memcpy (target->to_sections + space,
1396 i->sections,
1397 count * sizeof (i->sections[0]));
1398 space += count;
1399 }
c906108c
SS
1400 }
1401 }
c906108c 1402
07cd4b97
JB
1403 /* Getting new symbols may change our opinion about what is
1404 frameless. */
1405 reinit_frame_cache ();
c906108c 1406
07cd4b97
JB
1407 special_symbol_handling ();
1408 }
c906108c
SS
1409}
1410
07cd4b97 1411
c906108c
SS
1412/*
1413
c5aa993b 1414 LOCAL FUNCTION
c906108c 1415
c5aa993b 1416 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 1417
c5aa993b 1418 SYNOPSIS
c906108c 1419
c5aa993b 1420 static void info_sharedlibrary_command ()
c906108c 1421
c5aa993b 1422 DESCRIPTION
c906108c 1423
c5aa993b
JM
1424 Walk through the shared library list and print information
1425 about each attached library.
1426 */
c906108c
SS
1427
1428static void
1429info_sharedlibrary_command (ignore, from_tty)
1430 char *ignore;
1431 int from_tty;
1432{
c5aa993b 1433 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1434 int header_done = 0;
1435 int addr_width;
1436 char *addr_fmt;
1437
1438 if (exec_bfd == NULL)
1439 {
4ce44c66 1440 printf_unfiltered ("No executable file.\n");
c906108c
SS
1441 return;
1442 }
1443
1444#ifndef TARGET_ELF64
c5aa993b 1445 addr_width = 8 + 4;
c906108c
SS
1446 addr_fmt = "08l";
1447#else
c5aa993b 1448 addr_width = 16 + 4;
c906108c
SS
1449 addr_fmt = "016l";
1450#endif
1451
07cd4b97
JB
1452 solib_add (0, 0, 0);
1453
1454 for (so = so_list_head; so; so = so->next)
c906108c 1455 {
c5aa993b 1456 if (so->so_name[0])
c906108c
SS
1457 {
1458 if (!header_done)
1459 {
c5aa993b
JM
1460 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1461 addr_width, "To", "Syms Read",
1462 "Shared Object Library");
c906108c
SS
1463 header_done++;
1464 }
1465
1466 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1467 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1468 addr_fmt));
c906108c 1469 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1470 local_hex_string_custom ((unsigned long) so->lmend,
1471 addr_fmt));
1472 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1473 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
1474 }
1475 }
1476 if (so_list_head == NULL)
1477 {
c5aa993b 1478 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1479 }
1480}
1481
1482/*
1483
c5aa993b 1484 GLOBAL FUNCTION
c906108c 1485
c5aa993b 1486 solib_address -- check to see if an address is in a shared lib
c906108c 1487
c5aa993b 1488 SYNOPSIS
c906108c 1489
c5aa993b 1490 char * solib_address (CORE_ADDR address)
c906108c 1491
c5aa993b 1492 DESCRIPTION
c906108c 1493
c5aa993b
JM
1494 Provides a hook for other gdb routines to discover whether or
1495 not a particular address is within the mapped address space of
1496 a shared library. Any address between the base mapping address
1497 and the first address beyond the end of the last mapping, is
1498 considered to be within the shared library address space, for
1499 our purposes.
c906108c 1500
c5aa993b
JM
1501 For example, this routine is called at one point to disable
1502 breakpoints which are in shared libraries that are not currently
1503 mapped in.
c906108c
SS
1504 */
1505
1506char *
1507solib_address (address)
1508 CORE_ADDR address;
1509{
c5aa993b
JM
1510 register struct so_list *so = 0; /* link map state variable */
1511
07cd4b97 1512 for (so = so_list_head; so; so = so->next)
c906108c 1513 {
07cd4b97
JB
1514 if (LM_ADDR (so) <= address && address < so->lmend)
1515 return (so->so_name);
c906108c 1516 }
07cd4b97 1517
c906108c
SS
1518 return (0);
1519}
1520
1521/* Called by free_all_symtabs */
1522
c5aa993b 1523void
085dd6e6 1524clear_solib ()
c906108c 1525{
085dd6e6
JM
1526 /* This function is expected to handle ELF shared libraries. It is
1527 also used on Solaris, which can run either ELF or a.out binaries
1528 (for compatibility with SunOS 4), both of which can use shared
1529 libraries. So we don't know whether we have an ELF executable or
1530 an a.out executable until the user chooses an executable file.
1531
1532 ELF shared libraries don't get mapped into the address space
1533 until after the program starts, so we'd better not try to insert
1534 breakpoints in them immediately. We have to wait until the
1535 dynamic linker has loaded them; we'll hit a bp_shlib_event
1536 breakpoint (look for calls to create_solib_event_breakpoint) when
1537 it's ready.
1538
1539 SunOS shared libraries seem to be different --- they're present
1540 as soon as the process begins execution, so there's no need to
1541 put off inserting breakpoints. There's also nowhere to put a
1542 bp_shlib_event breakpoint, so if we put it off, we'll never get
1543 around to it.
1544
1545 So: disable breakpoints only if we're using ELF shared libs. */
1546 if (exec_bfd != NULL
1547 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1548 disable_breakpoints_in_shlibs (1);
1549
c906108c
SS
1550 while (so_list_head)
1551 {
07cd4b97
JB
1552 struct so_list *so = so_list_head;
1553 so_list_head = so->next;
1554 free_so (so);
c906108c 1555 }
07cd4b97 1556
c906108c
SS
1557 debug_base = 0;
1558}
1559
1560static void
1561do_clear_solib (dummy)
1562 PTR dummy;
1563{
1564 solib_cleanup_queued = 0;
1565 clear_solib ();
1566}
1567
1568#ifdef SVR4_SHARED_LIBS
1569
1570/* Return 1 if PC lies in the dynamic symbol resolution code of the
1571 SVR4 run time loader. */
1572
1573static CORE_ADDR interp_text_sect_low;
1574static CORE_ADDR interp_text_sect_high;
1575static CORE_ADDR interp_plt_sect_low;
1576static CORE_ADDR interp_plt_sect_high;
1577
1578int
1579in_svr4_dynsym_resolve_code (pc)
1580 CORE_ADDR pc;
1581{
1582 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1583 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1584 || in_plt_section (pc, NULL));
1585}
1586#endif
1587
1588/*
1589
c5aa993b 1590 LOCAL FUNCTION
c906108c 1591
c5aa993b 1592 disable_break -- remove the "mapping changed" breakpoint
c906108c 1593
c5aa993b 1594 SYNOPSIS
c906108c 1595
c5aa993b 1596 static int disable_break ()
c906108c 1597
c5aa993b 1598 DESCRIPTION
c906108c 1599
c5aa993b
JM
1600 Removes the breakpoint that gets hit when the dynamic linker
1601 completes a mapping change.
c906108c 1602
c5aa993b 1603 */
c906108c
SS
1604
1605#ifndef SVR4_SHARED_LIBS
1606
1607static int
1608disable_break ()
1609{
1610 int status = 1;
1611
1612#ifndef SVR4_SHARED_LIBS
1613
1614 int in_debugger = 0;
c5aa993b 1615
c906108c
SS
1616 /* Read the debugger structure from the inferior to retrieve the
1617 address of the breakpoint and the original contents of the
1618 breakpoint address. Remove the breakpoint by writing the original
1619 contents back. */
1620
1621 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1622
1623 /* Set `in_debugger' to zero now. */
1624
1625 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1626
07cd4b97 1627 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
c906108c
SS
1628 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1629 sizeof (debug_copy.ldd_bp_inst));
1630
c5aa993b 1631#else /* SVR4_SHARED_LIBS */
c906108c
SS
1632
1633 /* Note that breakpoint address and original contents are in our address
1634 space, so we just need to write the original contents back. */
1635
1636 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1637 {
1638 status = 0;
1639 }
1640
c5aa993b 1641#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1642
1643 /* For the SVR4 version, we always know the breakpoint address. For the
1644 SunOS version we don't know it until the above code is executed.
1645 Grumble if we are stopped anywhere besides the breakpoint address. */
1646
1647 if (stop_pc != breakpoint_addr)
1648 {
1649 warning ("stopped at unknown breakpoint while handling shared libraries");
1650 }
1651
1652 return (status);
1653}
1654
c5aa993b 1655#endif /* #ifdef SVR4_SHARED_LIBS */
c906108c
SS
1656
1657/*
1658
c5aa993b
JM
1659 LOCAL FUNCTION
1660
1661 enable_break -- arrange for dynamic linker to hit breakpoint
1662
1663 SYNOPSIS
1664
1665 int enable_break (void)
1666
1667 DESCRIPTION
1668
1669 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1670 debugger interface, support for arranging for the inferior to hit
1671 a breakpoint after mapping in the shared libraries. This function
1672 enables that breakpoint.
1673
1674 For SunOS, there is a special flag location (in_debugger) which we
1675 set to 1. When the dynamic linker sees this flag set, it will set
1676 a breakpoint at a location known only to itself, after saving the
1677 original contents of that place and the breakpoint address itself,
1678 in it's own internal structures. When we resume the inferior, it
1679 will eventually take a SIGTRAP when it runs into the breakpoint.
1680 We handle this (in a different place) by restoring the contents of
1681 the breakpointed location (which is only known after it stops),
1682 chasing around to locate the shared libraries that have been
1683 loaded, then resuming.
1684
1685 For SVR4, the debugger interface structure contains a member (r_brk)
1686 which is statically initialized at the time the shared library is
1687 built, to the offset of a function (_r_debug_state) which is guaran-
1688 teed to be called once before mapping in a library, and again when
1689 the mapping is complete. At the time we are examining this member,
1690 it contains only the unrelocated offset of the function, so we have
1691 to do our own relocation. Later, when the dynamic linker actually
1692 runs, it relocates r_brk to be the actual address of _r_debug_state().
1693
1694 The debugger interface structure also contains an enumeration which
1695 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1696 depending upon whether or not the library is being mapped or unmapped,
1697 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1698 */
c906108c
SS
1699
1700static int
1701enable_break ()
1702{
1703 int success = 0;
1704
1705#ifndef SVR4_SHARED_LIBS
1706
1707 int j;
1708 int in_debugger;
1709
1710 /* Get link_dynamic structure */
1711
1712 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1713 sizeof (dynamic_copy));
1714 if (j)
1715 {
1716 /* unreadable */
1717 return (0);
1718 }
1719
1720 /* Calc address of debugger interface structure */
1721
07cd4b97 1722 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
1723
1724 /* Calc address of `in_debugger' member of debugger interface structure */
1725
1726 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1727 (char *) &debug_copy);
1728
1729 /* Write a value of 1 to this member. */
1730
1731 in_debugger = 1;
1732 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1733 success = 1;
1734
c5aa993b 1735#else /* SVR4_SHARED_LIBS */
c906108c
SS
1736
1737#ifdef BKPT_AT_SYMBOL
1738
1739 struct minimal_symbol *msymbol;
1740 char **bkpt_namep;
1741 asection *interp_sect;
1742
1743 /* First, remove all the solib event breakpoints. Their addresses
1744 may have changed since the last time we ran the program. */
1745 remove_solib_event_breakpoints ();
1746
1747#ifdef SVR4_SHARED_LIBS
1748 interp_text_sect_low = interp_text_sect_high = 0;
1749 interp_plt_sect_low = interp_plt_sect_high = 0;
1750
1751 /* Find the .interp section; if not found, warn the user and drop
1752 into the old breakpoint at symbol code. */
1753 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1754 if (interp_sect)
1755 {
1756 unsigned int interp_sect_size;
1757 char *buf;
1758 CORE_ADDR load_addr;
1759 bfd *tmp_bfd;
1760 CORE_ADDR sym_addr = 0;
1761
1762 /* Read the contents of the .interp section into a local buffer;
c5aa993b 1763 the contents specify the dynamic linker this program uses. */
c906108c
SS
1764 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1765 buf = alloca (interp_sect_size);
1766 bfd_get_section_contents (exec_bfd, interp_sect,
1767 buf, 0, interp_sect_size);
1768
1769 /* Now we need to figure out where the dynamic linker was
c5aa993b
JM
1770 loaded so that we can load its symbols and place a breakpoint
1771 in the dynamic linker itself.
c906108c 1772
c5aa993b
JM
1773 This address is stored on the stack. However, I've been unable
1774 to find any magic formula to find it for Solaris (appears to
1775 be trivial on GNU/Linux). Therefore, we have to try an alternate
1776 mechanism to find the dynamic linker's base address. */
c906108c
SS
1777 tmp_bfd = bfd_openr (buf, gnutarget);
1778 if (tmp_bfd == NULL)
1779 goto bkpt_at_symbol;
1780
1781 /* Make sure the dynamic linker's really a useful object. */
1782 if (!bfd_check_format (tmp_bfd, bfd_object))
1783 {
1784 warning ("Unable to grok dynamic linker %s as an object file", buf);
1785 bfd_close (tmp_bfd);
1786 goto bkpt_at_symbol;
1787 }
1788
1789 /* We find the dynamic linker's base address by examining the
c5aa993b
JM
1790 current pc (which point at the entry point for the dynamic
1791 linker) and subtracting the offset of the entry point. */
c906108c
SS
1792 load_addr = read_pc () - tmp_bfd->start_address;
1793
1794 /* Record the relocated start and end address of the dynamic linker
c5aa993b 1795 text and plt section for in_svr4_dynsym_resolve_code. */
c906108c
SS
1796 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1797 if (interp_sect)
1798 {
1799 interp_text_sect_low =
1800 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1801 interp_text_sect_high =
1802 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1803 }
1804 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1805 if (interp_sect)
1806 {
1807 interp_plt_sect_low =
1808 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1809 interp_plt_sect_high =
1810 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1811 }
1812
1813 /* Now try to set a breakpoint in the dynamic linker. */
1814 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1815 {
1816 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1817 if (sym_addr != 0)
1818 break;
1819 }
1820
1821 /* We're done with the temporary bfd. */
1822 bfd_close (tmp_bfd);
1823
1824 if (sym_addr != 0)
1825 {
1826 create_solib_event_breakpoint (load_addr + sym_addr);
1827 return 1;
1828 }
1829
1830 /* For whatever reason we couldn't set a breakpoint in the dynamic
c5aa993b
JM
1831 linker. Warn and drop into the old code. */
1832 bkpt_at_symbol:
c906108c
SS
1833 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1834 }
1835#endif
1836
1837 /* Scan through the list of symbols, trying to look up the symbol and
1838 set a breakpoint there. Terminate loop when we/if we succeed. */
1839
1840 breakpoint_addr = 0;
1841 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1842 {
1843 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1844 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1845 {
1846 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1847 return 1;
1848 }
1849 }
1850
1851 /* Nothing good happened. */
1852 success = 0;
1853
c5aa993b 1854#endif /* BKPT_AT_SYMBOL */
c906108c 1855
c5aa993b 1856#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1857
1858 return (success);
1859}
c5aa993b 1860
c906108c 1861/*
c5aa993b
JM
1862
1863 GLOBAL FUNCTION
1864
1865 solib_create_inferior_hook -- shared library startup support
1866
1867 SYNOPSIS
1868
1869 void solib_create_inferior_hook()
1870
1871 DESCRIPTION
1872
1873 When gdb starts up the inferior, it nurses it along (through the
1874 shell) until it is ready to execute it's first instruction. At this
1875 point, this function gets called via expansion of the macro
1876 SOLIB_CREATE_INFERIOR_HOOK.
1877
1878 For SunOS executables, this first instruction is typically the
1879 one at "_start", or a similar text label, regardless of whether
1880 the executable is statically or dynamically linked. The runtime
1881 startup code takes care of dynamically linking in any shared
1882 libraries, once gdb allows the inferior to continue.
1883
1884 For SVR4 executables, this first instruction is either the first
1885 instruction in the dynamic linker (for dynamically linked
1886 executables) or the instruction at "start" for statically linked
1887 executables. For dynamically linked executables, the system
1888 first exec's /lib/libc.so.N, which contains the dynamic linker,
1889 and starts it running. The dynamic linker maps in any needed
1890 shared libraries, maps in the actual user executable, and then
1891 jumps to "start" in the user executable.
1892
1893 For both SunOS shared libraries, and SVR4 shared libraries, we
1894 can arrange to cooperate with the dynamic linker to discover the
1895 names of shared libraries that are dynamically linked, and the
1896 base addresses to which they are linked.
1897
1898 This function is responsible for discovering those names and
1899 addresses, and saving sufficient information about them to allow
1900 their symbols to be read at a later time.
1901
1902 FIXME
1903
1904 Between enable_break() and disable_break(), this code does not
1905 properly handle hitting breakpoints which the user might have
1906 set in the startup code or in the dynamic linker itself. Proper
1907 handling will probably have to wait until the implementation is
1908 changed to use the "breakpoint handler function" method.
1909
1910 Also, what if child has exit()ed? Must exit loop somehow.
1911 */
1912
1913void
1914solib_create_inferior_hook ()
c906108c
SS
1915{
1916 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1917 yet. In fact, in the case of a SunOS4 executable being run on
07cd4b97 1918 Solaris, we can't get it yet. current_sos will get it when it needs
c906108c
SS
1919 it. */
1920#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1921 if ((debug_base = locate_base ()) == 0)
1922 {
1923 /* Can't find the symbol or the executable is statically linked. */
1924 return;
1925 }
1926#endif
1927
1928 if (!enable_break ())
1929 {
1930 warning ("shared library handler failed to enable breakpoint");
1931 return;
1932 }
1933
1934#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1935 /* SCO and SunOS need the loop below, other systems should be using the
1936 special shared library breakpoints and the shared library breakpoint
1937 service routine.
1938
1939 Now run the target. It will eventually hit the breakpoint, at
1940 which point all of the libraries will have been mapped in and we
1941 can go groveling around in the dynamic linker structures to find
1942 out what we need to know about them. */
1943
1944 clear_proceed_status ();
1945 stop_soon_quietly = 1;
1946 stop_signal = TARGET_SIGNAL_0;
1947 do
1948 {
1949 target_resume (-1, 0, stop_signal);
1950 wait_for_inferior ();
1951 }
1952 while (stop_signal != TARGET_SIGNAL_TRAP);
1953 stop_soon_quietly = 0;
1954
1955#if !defined(_SCO_DS)
1956 /* We are now either at the "mapping complete" breakpoint (or somewhere
1957 else, a condition we aren't prepared to deal with anyway), so adjust
1958 the PC as necessary after a breakpoint, disable the breakpoint, and
1959 add any shared libraries that were mapped in. */
1960
1961 if (DECR_PC_AFTER_BREAK)
1962 {
1963 stop_pc -= DECR_PC_AFTER_BREAK;
1964 write_register (PC_REGNUM, stop_pc);
1965 }
1966
1967 if (!disable_break ())
1968 {
1969 warning ("shared library handler failed to disable breakpoint");
1970 }
1971
1972 if (auto_solib_add)
1973 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1974#endif /* ! _SCO_DS */
1975#endif
1976}
1977
1978/*
1979
c5aa993b 1980 LOCAL FUNCTION
c906108c 1981
c5aa993b 1982 special_symbol_handling -- additional shared library symbol handling
c906108c 1983
c5aa993b 1984 SYNOPSIS
c906108c 1985
07cd4b97 1986 void special_symbol_handling ()
c906108c 1987
c5aa993b 1988 DESCRIPTION
c906108c 1989
c5aa993b
JM
1990 Once the symbols from a shared object have been loaded in the usual
1991 way, we are called to do any system specific symbol handling that
1992 is needed.
c906108c 1993
c5aa993b
JM
1994 For SunOS4, this consists of grunging around in the dynamic
1995 linkers structures to find symbol definitions for "common" symbols
1996 and adding them to the minimal symbol table for the runtime common
1997 objfile.
c906108c 1998
c5aa993b 1999 */
c906108c
SS
2000
2001static void
07cd4b97 2002special_symbol_handling ()
c906108c
SS
2003{
2004#ifndef SVR4_SHARED_LIBS
2005 int j;
2006
2007 if (debug_addr == 0)
2008 {
2009 /* Get link_dynamic structure */
2010
2011 j = target_read_memory (debug_base, (char *) &dynamic_copy,
2012 sizeof (dynamic_copy));
2013 if (j)
2014 {
2015 /* unreadable */
2016 return;
2017 }
2018
2019 /* Calc address of debugger interface structure */
2020 /* FIXME, this needs work for cross-debugging of core files
c5aa993b 2021 (byteorder, size, alignment, etc). */
c906108c 2022
07cd4b97 2023 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
2024 }
2025
2026 /* Read the debugger structure from the inferior, just to make sure
2027 we have a current copy. */
2028
2029 j = target_read_memory (debug_addr, (char *) &debug_copy,
2030 sizeof (debug_copy));
2031 if (j)
c5aa993b 2032 return; /* unreadable */
c906108c
SS
2033
2034 /* Get common symbol definitions for the loaded object. */
2035
2036 if (debug_copy.ldd_cp)
2037 {
07cd4b97 2038 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
c906108c
SS
2039 }
2040
c5aa993b 2041#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
2042}
2043
2044
2045/*
2046
c5aa993b 2047 LOCAL FUNCTION
c906108c 2048
c5aa993b 2049 sharedlibrary_command -- handle command to explicitly add library
c906108c 2050
c5aa993b 2051 SYNOPSIS
c906108c 2052
c5aa993b 2053 static void sharedlibrary_command (char *args, int from_tty)
c906108c 2054
c5aa993b 2055 DESCRIPTION
c906108c 2056
c5aa993b 2057 */
c906108c
SS
2058
2059static void
2060sharedlibrary_command (args, from_tty)
c5aa993b
JM
2061 char *args;
2062 int from_tty;
c906108c
SS
2063{
2064 dont_repeat ();
2065 solib_add (args, from_tty, (struct target_ops *) 0);
2066}
2067
2068#endif /* HAVE_LINK_H */
2069
2070void
c5aa993b 2071_initialize_solib ()
c906108c
SS
2072{
2073#ifdef HAVE_LINK_H
2074
2075 add_com ("sharedlibrary", class_files, sharedlibrary_command,
2076 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 2077 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
2078 "Status of loaded shared object libraries.");
2079
2080 add_show_from_set
2081 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2082 (char *) &auto_solib_add,
2083 "Set autoloading of shared library symbols.\n\
2084If nonzero, symbols from all shared object libraries will be loaded\n\
2085automatically when the inferior begins execution or when the dynamic linker\n\
2086informs gdb that a new library has been loaded. Otherwise, symbols\n\
2087must be loaded manually, using `sharedlibrary'.",
2088 &setlist),
2089 &showlist);
2090
2091 add_show_from_set
2092 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2093 (char *) &solib_absolute_prefix,
2094 "Set prefix for loading absolute shared library symbol files.\n\
2095For other (relative) files, you can add values using `set solib-search-path'.",
2096 &setlist),
2097 &showlist);
2098 add_show_from_set
2099 (add_set_cmd ("solib-search-path", class_support, var_string,
2100 (char *) &solib_search_path,
2101 "Set the search path for loading non-absolute shared library symbol files.\n\
2102This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2103 &setlist),
2104 &showlist);
2105
2106#endif /* HAVE_LINK_H */
2107}
This page took 0.13738 seconds and 4 git commands to generate.