Doc fix.
[deliverable/binutils-gdb.git] / gdb / solib.c
CommitLineData
c906108c
SS
1/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22
23#include "defs.h"
24
25/* This file is only compilable if link.h is available. */
26
27#ifdef HAVE_LINK_H
28
29#include <sys/types.h>
30#include <signal.h>
31#include "gdb_string.h"
32#include <sys/param.h>
33#include <fcntl.h>
c906108c
SS
34
35#ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
c5aa993b 37#include <a.out.h>
c906108c
SS
38#else
39#include "elf/external.h"
40#endif
41
42#include <link.h>
43
44#include "symtab.h"
45#include "bfd.h"
46#include "symfile.h"
47#include "objfiles.h"
48#include "gdbcore.h"
49#include "command.h"
50#include "target.h"
51#include "frame.h"
52#include "gnu-regex.h"
53#include "inferior.h"
54#include "environ.h"
55#include "language.h"
56#include "gdbcmd.h"
57
c5aa993b 58#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
c906108c
SS
59
60/* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68#ifdef SVR4_SHARED_LIBS
c5aa993b
JM
69static char *solib_break_names[] =
70{
c906108c
SS
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76};
77#endif
78
79#define BKPT_AT_SYMBOL 1
80
81#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
c5aa993b
JM
82static char *bkpt_names[] =
83{
c906108c
SS
84#ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86#endif
87 "_start",
88 "main",
89 NULL
90};
91#endif
92
93/* Symbols which are used to locate the base of the link map structures. */
94
95#ifndef SVR4_SHARED_LIBS
c5aa993b
JM
96static char *debug_base_symbols[] =
97{
c906108c
SS
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101};
102#endif
103
c5aa993b
JM
104static char *main_name_list[] =
105{
c906108c
SS
106 "main_$main",
107 NULL
108};
109
110/* local data declarations */
111
07cd4b97
JB
112/* Macro to extract an address from a solib structure.
113 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115 64 bits. We have to extract only the significant bits of addresses
116 to get the right address when accessing the core file BFD. */
117
118#define SOLIB_EXTRACT_ADDRESS(member) \
119 extract_address (&member, sizeof (member))
120
c906108c
SS
121#ifndef SVR4_SHARED_LIBS
122
07cd4b97
JB
123#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
c906108c 126/* Test for first link map entry; first entry is a shared library. */
07cd4b97 127#define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
c906108c
SS
128static struct link_dynamic dynamic_copy;
129static struct link_dynamic_2 ld_2_copy;
130static struct ld_debug debug_copy;
131static CORE_ADDR debug_addr;
132static CORE_ADDR flag_addr;
133
c5aa993b 134#else /* SVR4_SHARED_LIBS */
c906108c 135
07cd4b97
JB
136#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
c906108c 139/* Test for first link map entry; first entry is the exec-file. */
07cd4b97
JB
140#define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141 (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
c906108c
SS
142static struct r_debug debug_copy;
143char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
144
c5aa993b
JM
145#endif /* !SVR4_SHARED_LIBS */
146
147struct so_list
148 {
07cd4b97
JB
149 /* The following fields of the structure come directly from the
150 dynamic linker's tables in the inferior, and are initialized by
151 current_sos. */
152
c5aa993b
JM
153 struct so_list *next; /* next structure in linked list */
154 struct link_map lm; /* copy of link map from inferior */
07cd4b97
JB
155 CORE_ADDR lmaddr; /* addr in inferior lm was read from */
156
157 /* Shared object file name, exactly as it appears in the
158 inferior's link map. This may be a relative path, or something
159 which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
160 to tell which entries in the inferior's dynamic linker's link
161 map we've already loaded. */
162 char so_original_name[MAX_PATH_SIZE];
163
164 /* shared object file name, expanded to something GDB can open */
165 char so_name[MAX_PATH_SIZE];
166
167 /* The following fields of the structure are built from
168 information gathered from the shared object file itself, and
169 are initialized when we actually add it to our symbol tables. */
170
171 bfd *abfd;
c5aa993b 172 CORE_ADDR lmend; /* upper addr bound of mapped object */
c5aa993b
JM
173 char symbols_loaded; /* flag: symbols read in yet? */
174 char from_tty; /* flag: print msgs? */
175 struct objfile *objfile; /* objfile for loaded lib */
176 struct section_table *sections;
177 struct section_table *sections_end;
178 struct section_table *textsection;
c5aa993b 179 };
c906108c
SS
180
181static struct so_list *so_list_head; /* List of known shared objects */
c5aa993b 182static CORE_ADDR debug_base; /* Base of dynamic linker structures */
c906108c
SS
183static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
184
c5aa993b 185static int solib_cleanup_queued = 0; /* make_run_cleanup called */
c906108c
SS
186
187extern int
c5aa993b 188fdmatch PARAMS ((int, int)); /* In libiberty */
c906108c
SS
189
190/* Local function prototypes */
191
192static void
193do_clear_solib PARAMS ((PTR));
194
195static int
196match_main PARAMS ((char *));
197
198static void
07cd4b97 199special_symbol_handling PARAMS ((void));
c906108c
SS
200
201static void
202sharedlibrary_command PARAMS ((char *, int));
203
204static int
205enable_break PARAMS ((void));
206
207static void
208info_sharedlibrary_command PARAMS ((char *, int));
209
210static int symbol_add_stub PARAMS ((PTR));
211
07cd4b97 212static CORE_ADDR
c5aa993b 213 first_link_map_member PARAMS ((void));
c906108c
SS
214
215static CORE_ADDR
c5aa993b 216 locate_base PARAMS ((void));
c906108c
SS
217
218static int solib_map_sections PARAMS ((PTR));
219
220#ifdef SVR4_SHARED_LIBS
221
222static CORE_ADDR
c5aa993b 223 elf_locate_base PARAMS ((void));
c906108c
SS
224
225#else
226
07cd4b97
JB
227static struct so_list *current_sos (void);
228static void free_so (struct so_list *node);
229
c906108c
SS
230static int
231disable_break PARAMS ((void));
232
233static void
234allocate_rt_common_objfile PARAMS ((void));
235
236static void
07cd4b97 237solib_add_common_symbols (CORE_ADDR);
c906108c
SS
238
239#endif
240
241void _initialize_solib PARAMS ((void));
242
243/* If non-zero, this is a prefix that will be added to the front of the name
244 shared libraries with an absolute filename for loading. */
245static char *solib_absolute_prefix = NULL;
246
247/* If non-empty, this is a search path for loading non-absolute shared library
248 symbol files. This takes precedence over the environment variables PATH
249 and LD_LIBRARY_PATH. */
250static char *solib_search_path = NULL;
251
252/*
253
c5aa993b 254 LOCAL FUNCTION
c906108c 255
c5aa993b 256 solib_map_sections -- open bfd and build sections for shared lib
c906108c 257
c5aa993b 258 SYNOPSIS
c906108c 259
c5aa993b 260 static int solib_map_sections (struct so_list *so)
c906108c 261
c5aa993b 262 DESCRIPTION
c906108c 263
c5aa993b
JM
264 Given a pointer to one of the shared objects in our list
265 of mapped objects, use the recorded name to open a bfd
266 descriptor for the object, build a section table, and then
267 relocate all the section addresses by the base address at
268 which the shared object was mapped.
c906108c 269
c5aa993b 270 FIXMES
c906108c 271
c5aa993b
JM
272 In most (all?) cases the shared object file name recorded in the
273 dynamic linkage tables will be a fully qualified pathname. For
274 cases where it isn't, do we really mimic the systems search
275 mechanism correctly in the below code (particularly the tilde
276 expansion stuff?).
c906108c
SS
277 */
278
279static int
280solib_map_sections (arg)
281 PTR arg;
282{
283 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
284 char *filename;
285 char *scratch_pathname;
286 int scratch_chan;
287 struct section_table *p;
288 struct cleanup *old_chain;
289 bfd *abfd;
c5aa993b
JM
290
291 filename = tilde_expand (so->so_name);
292
c906108c
SS
293 if (solib_absolute_prefix && ROOTED_P (filename))
294 /* Prefix shared libraries with absolute filenames with
295 SOLIB_ABSOLUTE_PREFIX. */
296 {
297 char *pfxed_fn;
298 int pfx_len;
299
300 pfx_len = strlen (solib_absolute_prefix);
301
302 /* Remove trailing slashes. */
303 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304 pfx_len--;
305
306 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307 strcpy (pfxed_fn, solib_absolute_prefix);
308 strcat (pfxed_fn, filename);
309 free (filename);
310
311 filename = pfxed_fn;
312 }
313
314 old_chain = make_cleanup (free, filename);
315
316 scratch_chan = -1;
317
318 if (solib_search_path)
319 scratch_chan = openp (solib_search_path,
320 1, filename, O_RDONLY, 0, &scratch_pathname);
321 if (scratch_chan < 0)
c5aa993b 322 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
c906108c
SS
323 1, filename, O_RDONLY, 0, &scratch_pathname);
324 if (scratch_chan < 0)
325 {
c5aa993b
JM
326 scratch_chan = openp (get_in_environ
327 (inferior_environ, "LD_LIBRARY_PATH"),
c906108c
SS
328 1, filename, O_RDONLY, 0, &scratch_pathname);
329 }
330 if (scratch_chan < 0)
331 {
332 perror_with_name (filename);
333 }
334 /* Leave scratch_pathname allocated. abfd->name will point to it. */
335
336 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337 if (!abfd)
338 {
339 close (scratch_chan);
340 error ("Could not open `%s' as an executable file: %s",
341 scratch_pathname, bfd_errmsg (bfd_get_error ()));
342 }
343 /* Leave bfd open, core_xfer_memory and "info files" need it. */
c5aa993b
JM
344 so->abfd = abfd;
345 abfd->cacheable = true;
c906108c
SS
346
347 /* copy full path name into so_name, so that later symbol_file_add can find
348 it */
349 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351 strcpy (so->so_name, scratch_pathname);
352
353 if (!bfd_check_format (abfd, bfd_object))
354 {
355 error ("\"%s\": not in executable format: %s.",
356 scratch_pathname, bfd_errmsg (bfd_get_error ()));
357 }
c5aa993b 358 if (build_section_table (abfd, &so->sections, &so->sections_end))
c906108c 359 {
c5aa993b 360 error ("Can't find the file sections in `%s': %s",
c906108c
SS
361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362 }
363
c5aa993b 364 for (p = so->sections; p < so->sections_end; p++)
c906108c
SS
365 {
366 /* Relocate the section binding addresses as recorded in the shared
c5aa993b
JM
367 object's file by the base address to which the object was actually
368 mapped. */
07cd4b97
JB
369 p->addr += LM_ADDR (so);
370 p->endaddr += LM_ADDR (so);
371 so->lmend = max (p->endaddr, so->lmend);
c5aa993b 372 if (STREQ (p->the_bfd_section->name, ".text"))
c906108c 373 {
c5aa993b 374 so->textsection = p;
c906108c
SS
375 }
376 }
377
378 /* Free the file names, close the file now. */
379 do_cleanups (old_chain);
380
381 return (1);
382}
383
384#ifndef SVR4_SHARED_LIBS
385
386/* Allocate the runtime common object file. */
387
388static void
389allocate_rt_common_objfile ()
390{
391 struct objfile *objfile;
392 struct objfile *last_one;
393
394 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
396 objfile->md = NULL;
397 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 398 xmalloc, free);
c5aa993b 399 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 400 free);
c5aa993b 401 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 402 free);
c5aa993b 403 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 404 free);
c5aa993b 405 objfile->name = mstrsave (objfile->md, "rt_common");
c906108c
SS
406
407 /* Add this file onto the tail of the linked list of other such files. */
408
c5aa993b 409 objfile->next = NULL;
c906108c
SS
410 if (object_files == NULL)
411 object_files = objfile;
412 else
413 {
414 for (last_one = object_files;
c5aa993b
JM
415 last_one->next;
416 last_one = last_one->next);
417 last_one->next = objfile;
c906108c
SS
418 }
419
420 rt_common_objfile = objfile;
421}
422
423/* Read all dynamically loaded common symbol definitions from the inferior
424 and put them into the minimal symbol table for the runtime common
425 objfile. */
426
427static void
428solib_add_common_symbols (rtc_symp)
07cd4b97 429 CORE_ADDR rtc_symp;
c906108c
SS
430{
431 struct rtc_symb inferior_rtc_symb;
432 struct nlist inferior_rtc_nlist;
433 int len;
434 char *name;
435
436 /* Remove any runtime common symbols from previous runs. */
437
c5aa993b 438 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
c906108c 439 {
c5aa993b
JM
440 obstack_free (&rt_common_objfile->symbol_obstack, 0);
441 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
c906108c 442 xmalloc, free);
c5aa993b
JM
443 rt_common_objfile->minimal_symbol_count = 0;
444 rt_common_objfile->msymbols = NULL;
c906108c
SS
445 }
446
447 init_minimal_symbol_collection ();
448 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
449
450 while (rtc_symp)
451 {
07cd4b97 452 read_memory (rtc_symp,
c906108c
SS
453 (char *) &inferior_rtc_symb,
454 sizeof (inferior_rtc_symb));
07cd4b97 455 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
c906108c 456 (char *) &inferior_rtc_nlist,
c5aa993b 457 sizeof (inferior_rtc_nlist));
c906108c
SS
458 if (inferior_rtc_nlist.n_type == N_COMM)
459 {
460 /* FIXME: The length of the symbol name is not available, but in the
461 current implementation the common symbol is allocated immediately
462 behind the name of the symbol. */
463 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
465 name = xmalloc (len);
07cd4b97
JB
466 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467 name, len);
c906108c
SS
468
469 /* Allocate the runtime common objfile if necessary. */
470 if (rt_common_objfile == NULL)
471 allocate_rt_common_objfile ();
472
473 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474 mst_bss, rt_common_objfile);
475 free (name);
476 }
07cd4b97 477 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
c906108c
SS
478 }
479
480 /* Install any minimal symbols that have been collected as the current
481 minimal symbols for the runtime common objfile. */
482
483 install_minimal_symbols (rt_common_objfile);
484}
485
c5aa993b 486#endif /* SVR4_SHARED_LIBS */
c906108c
SS
487
488
489#ifdef SVR4_SHARED_LIBS
490
491static CORE_ADDR
c5aa993b 492 bfd_lookup_symbol PARAMS ((bfd *, char *));
c906108c
SS
493
494/*
495
c5aa993b 496 LOCAL FUNCTION
c906108c 497
c5aa993b 498 bfd_lookup_symbol -- lookup the value for a specific symbol
c906108c 499
c5aa993b 500 SYNOPSIS
c906108c 501
c5aa993b 502 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
c906108c 503
c5aa993b 504 DESCRIPTION
c906108c 505
c5aa993b
JM
506 An expensive way to lookup the value of a single symbol for
507 bfd's that are only temporary anyway. This is used by the
508 shared library support to find the address of the debugger
509 interface structures in the shared library.
c906108c 510
c5aa993b
JM
511 Note that 0 is specifically allowed as an error return (no
512 such symbol).
513 */
c906108c
SS
514
515static CORE_ADDR
516bfd_lookup_symbol (abfd, symname)
517 bfd *abfd;
518 char *symname;
519{
520 unsigned int storage_needed;
521 asymbol *sym;
522 asymbol **symbol_table;
523 unsigned int number_of_symbols;
524 unsigned int i;
525 struct cleanup *back_to;
526 CORE_ADDR symaddr = 0;
c5aa993b 527
c906108c
SS
528 storage_needed = bfd_get_symtab_upper_bound (abfd);
529
530 if (storage_needed > 0)
531 {
532 symbol_table = (asymbol **) xmalloc (storage_needed);
c5aa993b
JM
533 back_to = make_cleanup (free, (PTR) symbol_table);
534 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
c906108c
SS
536 for (i = 0; i < number_of_symbols; i++)
537 {
538 sym = *symbol_table++;
c5aa993b 539 if (STREQ (sym->name, symname))
c906108c
SS
540 {
541 /* Bfd symbols are section relative. */
c5aa993b 542 symaddr = sym->value + sym->section->vma;
c906108c
SS
543 break;
544 }
545 }
546 do_cleanups (back_to);
547 }
548 return (symaddr);
549}
550
551#ifdef HANDLE_SVR4_EXEC_EMULATORS
552
553/*
c5aa993b
JM
554 Solaris BCP (the part of Solaris which allows it to run SunOS4
555 a.out files) throws in another wrinkle. Solaris does not fill
556 in the usual a.out link map structures when running BCP programs,
557 the only way to get at them is via groping around in the dynamic
558 linker.
559 The dynamic linker and it's structures are located in the shared
560 C library, which gets run as the executable's "interpreter" by
561 the kernel.
562
563 Note that we can assume nothing about the process state at the time
564 we need to find these structures. We may be stopped on the first
565 instruction of the interpreter (C shared library), the first
566 instruction of the executable itself, or somewhere else entirely
567 (if we attached to the process for example).
568 */
569
570static char *debug_base_symbols[] =
571{
572 "r_debug", /* Solaris 2.3 */
573 "_r_debug", /* Solaris 2.1, 2.2 */
c906108c
SS
574 NULL
575};
576
577static int
578look_for_base PARAMS ((int, CORE_ADDR));
579
580/*
581
c5aa993b 582 LOCAL FUNCTION
c906108c 583
c5aa993b 584 look_for_base -- examine file for each mapped address segment
c906108c 585
c5aa993b 586 SYNOPSYS
c906108c 587
c5aa993b 588 static int look_for_base (int fd, CORE_ADDR baseaddr)
c906108c 589
c5aa993b 590 DESCRIPTION
c906108c 591
c5aa993b
JM
592 This function is passed to proc_iterate_over_mappings, which
593 causes it to get called once for each mapped address space, with
594 an open file descriptor for the file mapped to that space, and the
595 base address of that mapped space.
c906108c 596
c5aa993b
JM
597 Our job is to find the debug base symbol in the file that this
598 fd is open on, if it exists, and if so, initialize the dynamic
599 linker structure base address debug_base.
c906108c 600
c5aa993b
JM
601 Note that this is a computationally expensive proposition, since
602 we basically have to open a bfd on every call, so we specifically
603 avoid opening the exec file.
c906108c
SS
604 */
605
606static int
607look_for_base (fd, baseaddr)
608 int fd;
609 CORE_ADDR baseaddr;
610{
611 bfd *interp_bfd;
612 CORE_ADDR address = 0;
613 char **symbolp;
614
615 /* If the fd is -1, then there is no file that corresponds to this
616 mapped memory segment, so skip it. Also, if the fd corresponds
617 to the exec file, skip it as well. */
618
619 if (fd == -1
620 || (exec_bfd != NULL
c5aa993b 621 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
c906108c
SS
622 {
623 return (0);
624 }
625
626 /* Try to open whatever random file this fd corresponds to. Note that
627 we have no way currently to find the filename. Don't gripe about
628 any problems we might have, just fail. */
629
630 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631 {
632 return (0);
633 }
634 if (!bfd_check_format (interp_bfd, bfd_object))
635 {
636 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 637 interp_bfd. */
c906108c
SS
638 bfd_close (interp_bfd);
639 return (0);
640 }
641
642 /* Now try to find our debug base symbol in this file, which we at
643 least know to be a valid ELF executable or shared library. */
644
645 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646 {
647 address = bfd_lookup_symbol (interp_bfd, *symbolp);
648 if (address != 0)
649 {
650 break;
651 }
652 }
653 if (address == 0)
654 {
655 /* FIXME-leak: on failure, might not free all memory associated with
c5aa993b 656 interp_bfd. */
c906108c
SS
657 bfd_close (interp_bfd);
658 return (0);
659 }
660
661 /* Eureka! We found the symbol. But now we may need to relocate it
662 by the base address. If the symbol's value is less than the base
663 address of the shared library, then it hasn't yet been relocated
664 by the dynamic linker, and we have to do it ourself. FIXME: Note
665 that we make the assumption that the first segment that corresponds
666 to the shared library has the base address to which the library
667 was relocated. */
668
669 if (address < baseaddr)
670 {
671 address += baseaddr;
672 }
673 debug_base = address;
674 /* FIXME-leak: on failure, might not free all memory associated with
675 interp_bfd. */
676 bfd_close (interp_bfd);
677 return (1);
678}
679#endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
681/*
682
c5aa993b 683 LOCAL FUNCTION
c906108c 684
c5aa993b
JM
685 elf_locate_base -- locate the base address of dynamic linker structs
686 for SVR4 elf targets.
c906108c 687
c5aa993b 688 SYNOPSIS
c906108c 689
c5aa993b 690 CORE_ADDR elf_locate_base (void)
c906108c 691
c5aa993b 692 DESCRIPTION
c906108c 693
c5aa993b
JM
694 For SVR4 elf targets the address of the dynamic linker's runtime
695 structure is contained within the dynamic info section in the
696 executable file. The dynamic section is also mapped into the
697 inferior address space. Because the runtime loader fills in the
698 real address before starting the inferior, we have to read in the
699 dynamic info section from the inferior address space.
700 If there are any errors while trying to find the address, we
701 silently return 0, otherwise the found address is returned.
c906108c
SS
702
703 */
704
705static CORE_ADDR
706elf_locate_base ()
707{
708 sec_ptr dyninfo_sect;
709 int dyninfo_sect_size;
710 CORE_ADDR dyninfo_addr;
711 char *buf;
712 char *bufend;
713
714 /* Find the start address of the .dynamic section. */
715 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
716 if (dyninfo_sect == NULL)
717 return 0;
718 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
719
720 /* Read in .dynamic section, silently ignore errors. */
721 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
722 buf = alloca (dyninfo_sect_size);
723 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
724 return 0;
725
726 /* Find the DT_DEBUG entry in the the .dynamic section.
727 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
728 no DT_DEBUG entries. */
729#ifndef TARGET_ELF64
730 for (bufend = buf + dyninfo_sect_size;
731 buf < bufend;
732 buf += sizeof (Elf32_External_Dyn))
733 {
c5aa993b 734 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
c906108c
SS
735 long dyn_tag;
736 CORE_ADDR dyn_ptr;
737
738 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
739 if (dyn_tag == DT_NULL)
740 break;
741 else if (dyn_tag == DT_DEBUG)
742 {
743 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
744 return dyn_ptr;
745 }
746#ifdef DT_MIPS_RLD_MAP
747 else if (dyn_tag == DT_MIPS_RLD_MAP)
748 {
749 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
750
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
754 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
755 return 0;
756 return extract_unsigned_integer (pbuf, sizeof (pbuf));
757 }
758#endif
759 }
760#else /* ELF64 */
761 for (bufend = buf + dyninfo_sect_size;
762 buf < bufend;
763 buf += sizeof (Elf64_External_Dyn))
764 {
c5aa993b 765 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
c906108c
SS
766 long dyn_tag;
767 CORE_ADDR dyn_ptr;
768
769 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
770 if (dyn_tag == DT_NULL)
771 break;
772 else if (dyn_tag == DT_DEBUG)
773 {
774 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
775 return dyn_ptr;
776 }
777 }
778#endif
779
780 /* DT_DEBUG entry not found. */
781 return 0;
782}
783
c5aa993b 784#endif /* SVR4_SHARED_LIBS */
c906108c
SS
785
786/*
787
c5aa993b 788 LOCAL FUNCTION
c906108c 789
c5aa993b 790 locate_base -- locate the base address of dynamic linker structs
c906108c 791
c5aa993b 792 SYNOPSIS
c906108c 793
c5aa993b 794 CORE_ADDR locate_base (void)
c906108c 795
c5aa993b 796 DESCRIPTION
c906108c 797
c5aa993b
JM
798 For both the SunOS and SVR4 shared library implementations, if the
799 inferior executable has been linked dynamically, there is a single
800 address somewhere in the inferior's data space which is the key to
801 locating all of the dynamic linker's runtime structures. This
802 address is the value of the debug base symbol. The job of this
803 function is to find and return that address, or to return 0 if there
804 is no such address (the executable is statically linked for example).
c906108c 805
c5aa993b
JM
806 For SunOS, the job is almost trivial, since the dynamic linker and
807 all of it's structures are statically linked to the executable at
808 link time. Thus the symbol for the address we are looking for has
809 already been added to the minimal symbol table for the executable's
810 objfile at the time the symbol file's symbols were read, and all we
811 have to do is look it up there. Note that we explicitly do NOT want
812 to find the copies in the shared library.
c906108c 813
c5aa993b
JM
814 The SVR4 version is a bit more complicated because the address
815 is contained somewhere in the dynamic info section. We have to go
816 to a lot more work to discover the address of the debug base symbol.
817 Because of this complexity, we cache the value we find and return that
818 value on subsequent invocations. Note there is no copy in the
819 executable symbol tables.
c906108c
SS
820
821 */
822
823static CORE_ADDR
824locate_base ()
825{
826
827#ifndef SVR4_SHARED_LIBS
828
829 struct minimal_symbol *msymbol;
830 CORE_ADDR address = 0;
831 char **symbolp;
832
833 /* For SunOS, we want to limit the search for the debug base symbol to the
834 executable being debugged, since there is a duplicate named symbol in the
835 shared library. We don't want the shared library versions. */
836
837 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
838 {
839 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
840 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
841 {
842 address = SYMBOL_VALUE_ADDRESS (msymbol);
843 return (address);
844 }
845 }
846 return (0);
847
c5aa993b 848#else /* SVR4_SHARED_LIBS */
c906108c
SS
849
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
853 section for ELF executables. */
854
855 if (debug_base == 0)
856 {
857 if (exec_bfd != NULL
858 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
859 debug_base = elf_locate_base ();
860#ifdef HANDLE_SVR4_EXEC_EMULATORS
861 /* Try it the hard way for emulated executables. */
862 else if (inferior_pid != 0 && target_has_execution)
863 proc_iterate_over_mappings (look_for_base);
864#endif
865 }
866 return (debug_base);
867
c5aa993b 868#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
869
870}
871
872/*
873
c5aa993b 874 LOCAL FUNCTION
c906108c 875
c5aa993b 876 first_link_map_member -- locate first member in dynamic linker's map
c906108c 877
c5aa993b 878 SYNOPSIS
c906108c 879
07cd4b97 880 static CORE_ADDR first_link_map_member (void)
c906108c 881
c5aa993b 882 DESCRIPTION
c906108c 883
9ddea9f1
JB
884 Find the first element in the inferior's dynamic link map, and
885 return its address in the inferior. This function doesn't copy the
07cd4b97 886 link map entry itself into our address space; current_sos actually
9ddea9f1 887 does the reading. */
c906108c 888
07cd4b97 889static CORE_ADDR
c906108c
SS
890first_link_map_member ()
891{
07cd4b97 892 CORE_ADDR lm = 0;
c906108c
SS
893
894#ifndef SVR4_SHARED_LIBS
895
896 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
897 if (dynamic_copy.ld_version >= 2)
898 {
899 /* It is a version that we can deal with, so read in the secondary
c5aa993b 900 structure and find the address of the link map list from it. */
07cd4b97
JB
901 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
902 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
903 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
c906108c
SS
904 }
905
c5aa993b 906#else /* SVR4_SHARED_LIBS */
c906108c
SS
907
908 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
909 /* FIXME: Perhaps we should validate the info somehow, perhaps by
910 checking r_version for a known version number, or r_state for
911 RT_CONSISTENT. */
07cd4b97 912 lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
c906108c 913
c5aa993b 914#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
915
916 return (lm);
917}
918
104c1213
JM
919#ifdef SVR4_SHARED_LIBS
920/*
921
922 LOCAL FUNCTION
923
924 open_exec_file_object
925
926 SYNOPSIS
927
928 void open_symbol_file_object (int from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 */
938
939int
940open_symbol_file_object (arg)
941 PTR arg;
942{
943 int from_tty = (int) arg; /* sneak past catch_errors */
07cd4b97
JB
944 CORE_ADDR lm;
945 struct link_map lmcopy;
104c1213
JM
946 char *filename;
947 int errcode;
948
949 if (symfile_objfile)
950 if (!query ("Attempt to reload symbols from process? "))
951 return 0;
952
953 if ((debug_base = locate_base ()) == 0)
954 return 0; /* failed somehow... */
955
956 /* First link map member should be the executable. */
07cd4b97 957 if ((lm = first_link_map_member ()) == 0)
104c1213
JM
958 return 0; /* failed somehow... */
959
960 /* Read from target memory to GDB. */
07cd4b97 961 read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
104c1213
JM
962
963 if (lmcopy.l_name == 0)
964 return 0; /* no filename. */
965
966 /* Now fetch the filename from target memory. */
07cd4b97 967 target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
104c1213
JM
968 MAX_PATH_SIZE - 1, &errcode);
969 if (errcode)
970 {
971 warning ("failed to read exec filename from attached file: %s",
972 safe_strerror (errcode));
973 return 0;
974 }
975
976 make_cleanup ((make_cleanup_func) free, (void *) filename);
977 /* Have a pathname: read the symbol file. */
978 symbol_file_command (filename, from_tty);
979
980 return 1;
981}
982#endif /* SVR4_SHARED_LIBS */
983
c906108c 984
07cd4b97 985/* LOCAL FUNCTION
c906108c 986
07cd4b97 987 free_so --- free a `struct so_list' object
c906108c 988
c5aa993b 989 SYNOPSIS
c906108c 990
07cd4b97 991 void free_so (struct so_list *so)
c906108c 992
c5aa993b 993 DESCRIPTION
c906108c 994
07cd4b97
JB
995 Free the storage associated with the `struct so_list' object SO.
996 If we have opened a BFD for SO, close it.
c906108c 997
07cd4b97
JB
998 The caller is responsible for removing SO from whatever list it is
999 a member of. If we have placed SO's sections in some target's
1000 section table, the caller is responsible for removing them.
c906108c 1001
07cd4b97
JB
1002 This function doesn't mess with objfiles at all. If there is an
1003 objfile associated with SO that needs to be removed, the caller is
1004 responsible for taking care of that. */
1005
1006static void
1007free_so (struct so_list *so)
c906108c 1008{
07cd4b97 1009 char *bfd_filename = 0;
c5aa993b 1010
07cd4b97
JB
1011 if (so->sections)
1012 free (so->sections);
1013
1014 if (so->abfd)
c906108c 1015 {
07cd4b97
JB
1016 bfd_filename = bfd_get_filename (so->abfd);
1017 if (! bfd_close (so->abfd))
1018 warning ("cannot close \"%s\": %s",
1019 bfd_filename, bfd_errmsg (bfd_get_error ()));
c906108c 1020 }
07cd4b97
JB
1021
1022 if (bfd_filename)
1023 free (bfd_filename);
1024
1025 free (so);
1026}
1027
1028
1029/* On some systems, the only way to recognize the link map entry for
1030 the main executable file is by looking at its name. Return
1031 non-zero iff SONAME matches one of the known main executable names. */
1032
1033static int
1034match_main (soname)
1035 char *soname;
1036{
1037 char **mainp;
1038
1039 for (mainp = main_name_list; *mainp != NULL; mainp++)
c906108c 1040 {
07cd4b97
JB
1041 if (strcmp (soname, *mainp) == 0)
1042 return (1);
c906108c 1043 }
07cd4b97
JB
1044
1045 return (0);
1046}
1047
1048
1049/* LOCAL FUNCTION
1050
1051 current_sos -- build a list of currently loaded shared objects
1052
1053 SYNOPSIS
1054
1055 struct so_list *current_sos ()
1056
1057 DESCRIPTION
1058
1059 Build a list of `struct so_list' objects describing the shared
1060 objects currently loaded in the inferior. This list does not
1061 include an entry for the main executable file.
1062
1063 Note that we only gather information directly available from the
1064 inferior --- we don't examine any of the shared library files
1065 themselves. The declaration of `struct so_list' says which fields
1066 we provide values for. */
1067
1068static struct so_list *
1069current_sos ()
1070{
1071 CORE_ADDR lm;
1072 struct so_list *head = 0;
1073 struct so_list **link_ptr = &head;
1074
1075 /* Make sure we've looked up the inferior's dynamic linker's base
1076 structure. */
1077 if (! debug_base)
c906108c 1078 {
07cd4b97
JB
1079 debug_base = locate_base ();
1080
1081 /* If we can't find the dynamic linker's base structure, this
1082 must not be a dynamically linked executable. Hmm. */
1083 if (! debug_base)
1084 return 0;
1085 }
1086
1087 /* Walk the inferior's link map list, and build our list of
1088 `struct so_list' nodes. */
1089 lm = first_link_map_member ();
1090 while (lm)
1091 {
1092 struct so_list *new
1093 = (struct so_list *) xmalloc (sizeof (struct so_list));
1094 memset (new, 0, sizeof (*new));
1095
c5aa993b 1096 new->lmaddr = lm;
07cd4b97 1097 read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
c906108c 1098
07cd4b97 1099 lm = LM_NEXT (new);
c5aa993b 1100
c906108c 1101 /* For SVR4 versions, the first entry in the link map is for the
c5aa993b
JM
1102 inferior executable, so we must ignore it. For some versions of
1103 SVR4, it has no name. For others (Solaris 2.3 for example), it
1104 does have a name, so we can no longer use a missing name to
1105 decide when to ignore it. */
07cd4b97
JB
1106 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
1107 {
1108 free_so (new);
1109 }
1110 else
c906108c
SS
1111 {
1112 int errcode;
1113 char *buffer;
07cd4b97
JB
1114
1115 /* Extract this shared object's name. */
1116 target_read_string (LM_NAME (new), &buffer,
c906108c
SS
1117 MAX_PATH_SIZE - 1, &errcode);
1118 if (errcode != 0)
1119 {
07cd4b97 1120 warning ("current_sos: Can't read pathname for load map: %s\n",
c906108c 1121 safe_strerror (errcode));
c906108c 1122 }
07cd4b97
JB
1123 else
1124 {
1125 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1126 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1127 free (buffer);
1128 strcpy (new->so_original_name, new->so_name);
1129 }
1130
1131 /* If this entry has no name, or its name matches the name
1132 for the main executable, don't include it in the list. */
1133 if (! new->so_name[0]
1134 || match_main (new->so_name))
1135 free_so (new);
1136 else
1137 {
1138 new->next = 0;
1139 *link_ptr = new;
1140 link_ptr = &new->next;
1141 }
c5aa993b 1142 }
c906108c 1143 }
07cd4b97
JB
1144
1145 return head;
c906108c
SS
1146}
1147
07cd4b97 1148
c906108c
SS
1149/* A small stub to get us past the arg-passing pinhole of catch_errors. */
1150
1151static int
1152symbol_add_stub (arg)
1153 PTR arg;
1154{
07cd4b97 1155 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
c906108c
SS
1156 CORE_ADDR text_addr = 0;
1157
07cd4b97
JB
1158 /* Have we already loaded this shared object? */
1159 ALL_OBJFILES (so->objfile)
1160 {
1161 if (strcmp (so->objfile->name, so->so_name) == 0)
1162 return 1;
1163 }
1164
1165 /* Find the shared object's text segment. */
c5aa993b
JM
1166 if (so->textsection)
1167 text_addr = so->textsection->addr;
1168 else if (so->abfd != NULL)
c906108c
SS
1169 {
1170 asection *lowest_sect;
1171
1172 /* If we didn't find a mapped non zero sized .text section, set up
c5aa993b 1173 text_addr so that the relocation in symbol_file_add does no harm. */
c5aa993b 1174 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
c906108c 1175 if (lowest_sect == NULL)
c5aa993b 1176 bfd_map_over_sections (so->abfd, find_lowest_section,
96baa820 1177 (PTR) &lowest_sect);
c906108c 1178 if (lowest_sect)
c5aa993b 1179 text_addr = bfd_section_vma (so->abfd, lowest_sect)
07cd4b97 1180 + LM_ADDR (so);
c906108c 1181 }
c5aa993b 1182
c5aa993b 1183 {
07cd4b97 1184 struct section_addr_info section_addrs;
c906108c 1185
07cd4b97
JB
1186 memset (&section_addrs, 0, sizeof (section_addrs));
1187 section_addrs.text_addr = text_addr;
c906108c 1188
07cd4b97
JB
1189 so->objfile = symbol_file_add (so->so_name, so->from_tty,
1190 &section_addrs, 0, OBJF_SHARED);
1191 }
c906108c 1192
07cd4b97 1193 return (1);
c906108c
SS
1194}
1195
c906108c 1196
07cd4b97 1197/* LOCAL FUNCTION
c906108c 1198
07cd4b97 1199 solib_add -- synchronize GDB's shared object list with the inferior's
c906108c 1200
c5aa993b 1201 SYNOPSIS
c906108c 1202
07cd4b97 1203 void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
c906108c 1204
c5aa993b 1205 DESCRIPTION
c906108c 1206
07cd4b97
JB
1207 Extract the list of currently loaded shared objects from the
1208 inferior, and compare it with the list of shared objects for which
1209 GDB has currently loaded symbolic information. If new shared
1210 objects have been loaded, or old shared objects have disappeared,
1211 make the appropriate changes to GDB's tables.
c906108c 1212
07cd4b97
JB
1213 If PATTERN is non-null, read symbols only for shared objects
1214 whose names match PATTERN.
1215
1216 If FROM_TTY is non-null, feel free to print messages about what
1217 we're doing.
c906108c 1218
07cd4b97
JB
1219 If TARGET is non-null, add the sections of all new shared objects
1220 to TARGET's section table. Note that this doesn't remove any
1221 sections for shared objects that have been unloaded, and it
1222 doesn't check to see if the new shared objects are already present in
1223 the section table. But we only use this for core files and
1224 processes we've just attached to, so that's okay. */
c906108c 1225
07cd4b97
JB
1226void
1227solib_add (char *pattern, int from_tty, struct target_ops *target)
1228{
1229 struct so_list *inferior = current_sos ();
1230 struct so_list *gdb, **gdb_link;
1231
1232 /* #define JIMB_DEBUG */
1233#ifdef JIMB_DEBUG
1234 printf ("GDB's shared library list:\n");
1235 for (gdb = so_list_head; gdb; gdb = gdb->next)
1236 printf (" %s\n", gdb->so_original_name);
1237 printf ("inferior's shared library list:\n");
1238 for (gdb = inferior; gdb; gdb = gdb->next)
1239 printf (" %s\n", gdb->so_original_name);
1240#endif
c5aa993b 1241
104c1213
JM
1242#ifdef SVR4_SHARED_LIBS
1243 /* If we are attaching to a running process for which we
1244 have not opened a symbol file, we may be able to get its
1245 symbols now! */
1246 if (attach_flag &&
1247 symfile_objfile == NULL)
1248 catch_errors (open_symbol_file_object, (PTR) from_tty,
1249 "Error reading attached process's symbol file.\n",
1250 RETURN_MASK_ALL);
1251
1252#endif SVR4_SHARED_LIBS
1253
07cd4b97 1254 if (pattern)
c906108c 1255 {
07cd4b97
JB
1256 char *re_err = re_comp (pattern);
1257
1258 if (re_err)
1259 error ("Invalid regexp: %s", re_err);
1260 }
1261
1262 /* Since this function might actually add some elements to the
1263 so_list_head list, arrange for it to be cleaned up when
1264 appropriate. */
1265 if (!solib_cleanup_queued)
1266 {
1267 make_run_cleanup (do_clear_solib, NULL);
1268 solib_cleanup_queued = 1;
c906108c 1269 }
c5aa993b 1270
07cd4b97
JB
1271 /* GDB and the inferior's dynamic linker each maintain their own
1272 list of currently loaded shared objects; we want to bring the
1273 former in sync with the latter. Scan both lists, seeing which
1274 shared objects appear where. There are three cases:
1275
1276 - A shared object appears on both lists. This means that GDB
1277 knows about it already, and it's still loaded in the inferior.
1278 Nothing needs to happen.
1279
1280 - A shared object appears only on GDB's list. This means that
1281 the inferior has unloaded it. We should remove the shared
1282 object from GDB's tables.
1283
1284 - A shared object appears only on the inferior's list. This
1285 means that it's just been loaded. We should add it to GDB's
1286 tables.
1287
1288 So we walk GDB's list, checking each entry to see if it appears
1289 in the inferior's list too. If it does, no action is needed, and
1290 we remove it from the inferior's list. If it doesn't, the
1291 inferior has unloaded it, and we remove it from GDB's list. By
1292 the time we're done walking GDB's list, the inferior's list
1293 contains only the new shared objects, which we then add. */
1294
1295 gdb = so_list_head;
1296 gdb_link = &so_list_head;
1297 while (gdb)
c906108c 1298 {
07cd4b97
JB
1299 struct so_list *i = inferior;
1300 struct so_list **i_link = &inferior;
1301
1302 /* Check to see whether the shared object *gdb also appears in
1303 the inferior's current list. */
1304 while (i)
c906108c 1305 {
07cd4b97
JB
1306 if (! strcmp (gdb->so_original_name, i->so_original_name))
1307 break;
1308
1309 i_link = &i->next;
1310 i = *i_link;
c906108c 1311 }
c5aa993b 1312
07cd4b97
JB
1313 /* If the shared object appears on the inferior's list too, then
1314 it's still loaded, so we don't need to do anything. Delete
1315 it from the inferior's list, and leave it on GDB's list. */
1316 if (i)
c906108c 1317 {
07cd4b97
JB
1318 *i_link = i->next;
1319#ifdef JIMB_DEBUG
1320 printf ("unchanged: %s\n", i->so_name);
1321#endif
1322 free_so (i);
1323 gdb_link = &gdb->next;
1324 gdb = *gdb_link;
1325 }
1326
1327 /* If it's not on the inferior's list, remove it from GDB's tables. */
1328 else
1329 {
1330 *gdb_link = gdb->next;
1331#ifdef JIMB_DEBUG
1332 printf ("removed: %s\n", gdb->so_name);
1333#endif
1334
1335 /* Unless the user loaded it explicitly, free SO's objfile. */
1336 if (! (gdb->objfile->flags & OBJF_USERLOADED))
1337 free_objfile (gdb->objfile);
1338
1339 /* Some targets' section tables might be referring to
1340 sections from so->abfd; remove them. */
1341 remove_target_sections (gdb->abfd);
1342
1343 free_so (gdb);
1344 gdb = *gdb_link;
c906108c
SS
1345 }
1346 }
c5aa993b 1347
07cd4b97
JB
1348 /* Now the inferior's list contains only shared objects that don't
1349 appear in GDB's list --- those that are newly loaded. Add them
1350 to GDB's shared object list, and read in their symbols, if
1351 appropriate. */
1352 if (inferior)
c906108c 1353 {
07cd4b97
JB
1354 struct so_list *i;
1355
1356 /* Add the new shared objects to GDB's list. */
1357 *gdb_link = inferior;
1358
1359 /* Fill in the rest of each of the `struct so_list' nodes, and
1360 read symbols for those files whose names match PATTERN. */
1361 for (i = inferior; i; i = i->next)
c906108c 1362 {
07cd4b97
JB
1363 i->from_tty = from_tty;
1364
1365 /* Fill in the rest of the `struct so_list' node. */
1366 catch_errors (solib_map_sections, i,
1367 "Error while mapping shared library sections:\n",
1368 RETURN_MASK_ALL);
1369
1370 if (! pattern || re_exec (i->so_name))
c906108c 1371 {
07cd4b97 1372 if (i->symbols_loaded)
c906108c 1373 {
07cd4b97
JB
1374 if (from_tty)
1375 printf_unfiltered ("Symbols already loaded for %s\n",
1376 i->so_name);
1377 }
1378 else
1379 {
1380#ifdef JIMB_DEBUG
1381 printf ("added: %s\n", i->so_name);
1382#endif
1383 if (catch_errors
1384 (symbol_add_stub, i,
1385 "Error while reading shared library symbols:\n",
1386 RETURN_MASK_ALL))
1387 {
1388 if (from_tty)
1389 printf_unfiltered ("Loaded symbols for %s\n",
1390 i->so_name);
1391 i->symbols_loaded = 1;
1392 }
c906108c
SS
1393 }
1394 }
07cd4b97
JB
1395 }
1396
1397 /* If requested, add the shared objects' sections to the the
1398 TARGET's section table. */
1399 if (target)
1400 {
1401 int new_sections;
1402
1403 /* Figure out how many sections we'll need to add in total. */
1404 new_sections = 0;
1405 for (i = inferior; i; i = i->next)
1406 new_sections += (i->sections_end - i->sections);
1407
1408 if (new_sections > 0)
c906108c 1409 {
07cd4b97
JB
1410 int space = target_resize_to_sections (target, new_sections);
1411
1412 for (i = inferior; i; i = i->next)
1413 {
1414 int count = (i->sections_end - i->sections);
1415 memcpy (target->to_sections + space,
1416 i->sections,
1417 count * sizeof (i->sections[0]));
1418 space += count;
1419 }
c906108c
SS
1420 }
1421 }
c906108c 1422
07cd4b97
JB
1423 /* Getting new symbols may change our opinion about what is
1424 frameless. */
1425 reinit_frame_cache ();
c906108c 1426
07cd4b97
JB
1427 special_symbol_handling ();
1428 }
1429
1430#ifdef JIMB_DEBUG
1431 putchar ('\n');
1432#endif
c906108c
SS
1433}
1434
07cd4b97 1435
c906108c
SS
1436/*
1437
c5aa993b 1438 LOCAL FUNCTION
c906108c 1439
c5aa993b 1440 info_sharedlibrary_command -- code for "info sharedlibrary"
c906108c 1441
c5aa993b 1442 SYNOPSIS
c906108c 1443
c5aa993b 1444 static void info_sharedlibrary_command ()
c906108c 1445
c5aa993b 1446 DESCRIPTION
c906108c 1447
c5aa993b
JM
1448 Walk through the shared library list and print information
1449 about each attached library.
1450 */
c906108c
SS
1451
1452static void
1453info_sharedlibrary_command (ignore, from_tty)
1454 char *ignore;
1455 int from_tty;
1456{
c5aa993b 1457 register struct so_list *so = NULL; /* link map state variable */
c906108c
SS
1458 int header_done = 0;
1459 int addr_width;
1460 char *addr_fmt;
1461
1462 if (exec_bfd == NULL)
1463 {
4ce44c66 1464 printf_unfiltered ("No executable file.\n");
c906108c
SS
1465 return;
1466 }
1467
1468#ifndef TARGET_ELF64
c5aa993b 1469 addr_width = 8 + 4;
c906108c
SS
1470 addr_fmt = "08l";
1471#else
c5aa993b 1472 addr_width = 16 + 4;
c906108c
SS
1473 addr_fmt = "016l";
1474#endif
1475
07cd4b97
JB
1476 solib_add (0, 0, 0);
1477
1478 for (so = so_list_head; so; so = so->next)
c906108c 1479 {
c5aa993b 1480 if (so->so_name[0])
c906108c
SS
1481 {
1482 if (!header_done)
1483 {
c5aa993b
JM
1484 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1485 addr_width, "To", "Syms Read",
1486 "Shared Object Library");
c906108c
SS
1487 header_done++;
1488 }
1489
1490 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1491 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1492 addr_fmt));
c906108c 1493 printf_unfiltered ("%-*s", addr_width,
c5aa993b
JM
1494 local_hex_string_custom ((unsigned long) so->lmend,
1495 addr_fmt));
1496 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1497 printf_unfiltered ("%s\n", so->so_name);
c906108c
SS
1498 }
1499 }
1500 if (so_list_head == NULL)
1501 {
c5aa993b 1502 printf_unfiltered ("No shared libraries loaded at this time.\n");
c906108c
SS
1503 }
1504}
1505
1506/*
1507
c5aa993b 1508 GLOBAL FUNCTION
c906108c 1509
c5aa993b 1510 solib_address -- check to see if an address is in a shared lib
c906108c 1511
c5aa993b 1512 SYNOPSIS
c906108c 1513
c5aa993b 1514 char * solib_address (CORE_ADDR address)
c906108c 1515
c5aa993b 1516 DESCRIPTION
c906108c 1517
c5aa993b
JM
1518 Provides a hook for other gdb routines to discover whether or
1519 not a particular address is within the mapped address space of
1520 a shared library. Any address between the base mapping address
1521 and the first address beyond the end of the last mapping, is
1522 considered to be within the shared library address space, for
1523 our purposes.
c906108c 1524
c5aa993b
JM
1525 For example, this routine is called at one point to disable
1526 breakpoints which are in shared libraries that are not currently
1527 mapped in.
c906108c
SS
1528 */
1529
1530char *
1531solib_address (address)
1532 CORE_ADDR address;
1533{
c5aa993b
JM
1534 register struct so_list *so = 0; /* link map state variable */
1535
07cd4b97 1536 for (so = so_list_head; so; so = so->next)
c906108c 1537 {
07cd4b97
JB
1538 if (LM_ADDR (so) <= address && address < so->lmend)
1539 return (so->so_name);
c906108c 1540 }
07cd4b97 1541
c906108c
SS
1542 return (0);
1543}
1544
1545/* Called by free_all_symtabs */
1546
c5aa993b 1547void
085dd6e6 1548clear_solib ()
c906108c 1549{
085dd6e6
JM
1550 /* This function is expected to handle ELF shared libraries. It is
1551 also used on Solaris, which can run either ELF or a.out binaries
1552 (for compatibility with SunOS 4), both of which can use shared
1553 libraries. So we don't know whether we have an ELF executable or
1554 an a.out executable until the user chooses an executable file.
1555
1556 ELF shared libraries don't get mapped into the address space
1557 until after the program starts, so we'd better not try to insert
1558 breakpoints in them immediately. We have to wait until the
1559 dynamic linker has loaded them; we'll hit a bp_shlib_event
1560 breakpoint (look for calls to create_solib_event_breakpoint) when
1561 it's ready.
1562
1563 SunOS shared libraries seem to be different --- they're present
1564 as soon as the process begins execution, so there's no need to
1565 put off inserting breakpoints. There's also nowhere to put a
1566 bp_shlib_event breakpoint, so if we put it off, we'll never get
1567 around to it.
1568
1569 So: disable breakpoints only if we're using ELF shared libs. */
1570 if (exec_bfd != NULL
1571 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1572 disable_breakpoints_in_shlibs (1);
1573
c906108c
SS
1574 while (so_list_head)
1575 {
07cd4b97
JB
1576 struct so_list *so = so_list_head;
1577 so_list_head = so->next;
1578 free_so (so);
c906108c 1579 }
07cd4b97 1580
c906108c
SS
1581 debug_base = 0;
1582}
1583
1584static void
1585do_clear_solib (dummy)
1586 PTR dummy;
1587{
1588 solib_cleanup_queued = 0;
1589 clear_solib ();
1590}
1591
1592#ifdef SVR4_SHARED_LIBS
1593
1594/* Return 1 if PC lies in the dynamic symbol resolution code of the
1595 SVR4 run time loader. */
1596
1597static CORE_ADDR interp_text_sect_low;
1598static CORE_ADDR interp_text_sect_high;
1599static CORE_ADDR interp_plt_sect_low;
1600static CORE_ADDR interp_plt_sect_high;
1601
1602int
1603in_svr4_dynsym_resolve_code (pc)
1604 CORE_ADDR pc;
1605{
1606 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1607 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1608 || in_plt_section (pc, NULL));
1609}
1610#endif
1611
1612/*
1613
c5aa993b 1614 LOCAL FUNCTION
c906108c 1615
c5aa993b 1616 disable_break -- remove the "mapping changed" breakpoint
c906108c 1617
c5aa993b 1618 SYNOPSIS
c906108c 1619
c5aa993b 1620 static int disable_break ()
c906108c 1621
c5aa993b 1622 DESCRIPTION
c906108c 1623
c5aa993b
JM
1624 Removes the breakpoint that gets hit when the dynamic linker
1625 completes a mapping change.
c906108c 1626
c5aa993b 1627 */
c906108c
SS
1628
1629#ifndef SVR4_SHARED_LIBS
1630
1631static int
1632disable_break ()
1633{
1634 int status = 1;
1635
1636#ifndef SVR4_SHARED_LIBS
1637
1638 int in_debugger = 0;
c5aa993b 1639
c906108c
SS
1640 /* Read the debugger structure from the inferior to retrieve the
1641 address of the breakpoint and the original contents of the
1642 breakpoint address. Remove the breakpoint by writing the original
1643 contents back. */
1644
1645 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1646
1647 /* Set `in_debugger' to zero now. */
1648
1649 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1650
07cd4b97 1651 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
c906108c
SS
1652 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1653 sizeof (debug_copy.ldd_bp_inst));
1654
c5aa993b 1655#else /* SVR4_SHARED_LIBS */
c906108c
SS
1656
1657 /* Note that breakpoint address and original contents are in our address
1658 space, so we just need to write the original contents back. */
1659
1660 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1661 {
1662 status = 0;
1663 }
1664
c5aa993b 1665#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1666
1667 /* For the SVR4 version, we always know the breakpoint address. For the
1668 SunOS version we don't know it until the above code is executed.
1669 Grumble if we are stopped anywhere besides the breakpoint address. */
1670
1671 if (stop_pc != breakpoint_addr)
1672 {
1673 warning ("stopped at unknown breakpoint while handling shared libraries");
1674 }
1675
1676 return (status);
1677}
1678
c5aa993b 1679#endif /* #ifdef SVR4_SHARED_LIBS */
c906108c
SS
1680
1681/*
1682
c5aa993b
JM
1683 LOCAL FUNCTION
1684
1685 enable_break -- arrange for dynamic linker to hit breakpoint
1686
1687 SYNOPSIS
1688
1689 int enable_break (void)
1690
1691 DESCRIPTION
1692
1693 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1694 debugger interface, support for arranging for the inferior to hit
1695 a breakpoint after mapping in the shared libraries. This function
1696 enables that breakpoint.
1697
1698 For SunOS, there is a special flag location (in_debugger) which we
1699 set to 1. When the dynamic linker sees this flag set, it will set
1700 a breakpoint at a location known only to itself, after saving the
1701 original contents of that place and the breakpoint address itself,
1702 in it's own internal structures. When we resume the inferior, it
1703 will eventually take a SIGTRAP when it runs into the breakpoint.
1704 We handle this (in a different place) by restoring the contents of
1705 the breakpointed location (which is only known after it stops),
1706 chasing around to locate the shared libraries that have been
1707 loaded, then resuming.
1708
1709 For SVR4, the debugger interface structure contains a member (r_brk)
1710 which is statically initialized at the time the shared library is
1711 built, to the offset of a function (_r_debug_state) which is guaran-
1712 teed to be called once before mapping in a library, and again when
1713 the mapping is complete. At the time we are examining this member,
1714 it contains only the unrelocated offset of the function, so we have
1715 to do our own relocation. Later, when the dynamic linker actually
1716 runs, it relocates r_brk to be the actual address of _r_debug_state().
1717
1718 The debugger interface structure also contains an enumeration which
1719 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1720 depending upon whether or not the library is being mapped or unmapped,
1721 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1722 */
c906108c
SS
1723
1724static int
1725enable_break ()
1726{
1727 int success = 0;
1728
1729#ifndef SVR4_SHARED_LIBS
1730
1731 int j;
1732 int in_debugger;
1733
1734 /* Get link_dynamic structure */
1735
1736 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1737 sizeof (dynamic_copy));
1738 if (j)
1739 {
1740 /* unreadable */
1741 return (0);
1742 }
1743
1744 /* Calc address of debugger interface structure */
1745
07cd4b97 1746 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
1747
1748 /* Calc address of `in_debugger' member of debugger interface structure */
1749
1750 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1751 (char *) &debug_copy);
1752
1753 /* Write a value of 1 to this member. */
1754
1755 in_debugger = 1;
1756 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1757 success = 1;
1758
c5aa993b 1759#else /* SVR4_SHARED_LIBS */
c906108c
SS
1760
1761#ifdef BKPT_AT_SYMBOL
1762
1763 struct minimal_symbol *msymbol;
1764 char **bkpt_namep;
1765 asection *interp_sect;
1766
1767 /* First, remove all the solib event breakpoints. Their addresses
1768 may have changed since the last time we ran the program. */
1769 remove_solib_event_breakpoints ();
1770
1771#ifdef SVR4_SHARED_LIBS
1772 interp_text_sect_low = interp_text_sect_high = 0;
1773 interp_plt_sect_low = interp_plt_sect_high = 0;
1774
1775 /* Find the .interp section; if not found, warn the user and drop
1776 into the old breakpoint at symbol code. */
1777 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1778 if (interp_sect)
1779 {
1780 unsigned int interp_sect_size;
1781 char *buf;
1782 CORE_ADDR load_addr;
1783 bfd *tmp_bfd;
1784 CORE_ADDR sym_addr = 0;
1785
1786 /* Read the contents of the .interp section into a local buffer;
c5aa993b 1787 the contents specify the dynamic linker this program uses. */
c906108c
SS
1788 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1789 buf = alloca (interp_sect_size);
1790 bfd_get_section_contents (exec_bfd, interp_sect,
1791 buf, 0, interp_sect_size);
1792
1793 /* Now we need to figure out where the dynamic linker was
c5aa993b
JM
1794 loaded so that we can load its symbols and place a breakpoint
1795 in the dynamic linker itself.
c906108c 1796
c5aa993b
JM
1797 This address is stored on the stack. However, I've been unable
1798 to find any magic formula to find it for Solaris (appears to
1799 be trivial on GNU/Linux). Therefore, we have to try an alternate
1800 mechanism to find the dynamic linker's base address. */
c906108c
SS
1801 tmp_bfd = bfd_openr (buf, gnutarget);
1802 if (tmp_bfd == NULL)
1803 goto bkpt_at_symbol;
1804
1805 /* Make sure the dynamic linker's really a useful object. */
1806 if (!bfd_check_format (tmp_bfd, bfd_object))
1807 {
1808 warning ("Unable to grok dynamic linker %s as an object file", buf);
1809 bfd_close (tmp_bfd);
1810 goto bkpt_at_symbol;
1811 }
1812
1813 /* We find the dynamic linker's base address by examining the
c5aa993b
JM
1814 current pc (which point at the entry point for the dynamic
1815 linker) and subtracting the offset of the entry point. */
c906108c
SS
1816 load_addr = read_pc () - tmp_bfd->start_address;
1817
1818 /* Record the relocated start and end address of the dynamic linker
c5aa993b 1819 text and plt section for in_svr4_dynsym_resolve_code. */
c906108c
SS
1820 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1821 if (interp_sect)
1822 {
1823 interp_text_sect_low =
1824 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1825 interp_text_sect_high =
1826 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1827 }
1828 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1829 if (interp_sect)
1830 {
1831 interp_plt_sect_low =
1832 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1833 interp_plt_sect_high =
1834 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1835 }
1836
1837 /* Now try to set a breakpoint in the dynamic linker. */
1838 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1839 {
1840 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1841 if (sym_addr != 0)
1842 break;
1843 }
1844
1845 /* We're done with the temporary bfd. */
1846 bfd_close (tmp_bfd);
1847
1848 if (sym_addr != 0)
1849 {
1850 create_solib_event_breakpoint (load_addr + sym_addr);
1851 return 1;
1852 }
1853
1854 /* For whatever reason we couldn't set a breakpoint in the dynamic
c5aa993b
JM
1855 linker. Warn and drop into the old code. */
1856 bkpt_at_symbol:
c906108c
SS
1857 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1858 }
1859#endif
1860
1861 /* Scan through the list of symbols, trying to look up the symbol and
1862 set a breakpoint there. Terminate loop when we/if we succeed. */
1863
1864 breakpoint_addr = 0;
1865 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1866 {
1867 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1868 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1869 {
1870 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1871 return 1;
1872 }
1873 }
1874
1875 /* Nothing good happened. */
1876 success = 0;
1877
c5aa993b 1878#endif /* BKPT_AT_SYMBOL */
c906108c 1879
c5aa993b 1880#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
1881
1882 return (success);
1883}
c5aa993b 1884
c906108c 1885/*
c5aa993b
JM
1886
1887 GLOBAL FUNCTION
1888
1889 solib_create_inferior_hook -- shared library startup support
1890
1891 SYNOPSIS
1892
1893 void solib_create_inferior_hook()
1894
1895 DESCRIPTION
1896
1897 When gdb starts up the inferior, it nurses it along (through the
1898 shell) until it is ready to execute it's first instruction. At this
1899 point, this function gets called via expansion of the macro
1900 SOLIB_CREATE_INFERIOR_HOOK.
1901
1902 For SunOS executables, this first instruction is typically the
1903 one at "_start", or a similar text label, regardless of whether
1904 the executable is statically or dynamically linked. The runtime
1905 startup code takes care of dynamically linking in any shared
1906 libraries, once gdb allows the inferior to continue.
1907
1908 For SVR4 executables, this first instruction is either the first
1909 instruction in the dynamic linker (for dynamically linked
1910 executables) or the instruction at "start" for statically linked
1911 executables. For dynamically linked executables, the system
1912 first exec's /lib/libc.so.N, which contains the dynamic linker,
1913 and starts it running. The dynamic linker maps in any needed
1914 shared libraries, maps in the actual user executable, and then
1915 jumps to "start" in the user executable.
1916
1917 For both SunOS shared libraries, and SVR4 shared libraries, we
1918 can arrange to cooperate with the dynamic linker to discover the
1919 names of shared libraries that are dynamically linked, and the
1920 base addresses to which they are linked.
1921
1922 This function is responsible for discovering those names and
1923 addresses, and saving sufficient information about them to allow
1924 their symbols to be read at a later time.
1925
1926 FIXME
1927
1928 Between enable_break() and disable_break(), this code does not
1929 properly handle hitting breakpoints which the user might have
1930 set in the startup code or in the dynamic linker itself. Proper
1931 handling will probably have to wait until the implementation is
1932 changed to use the "breakpoint handler function" method.
1933
1934 Also, what if child has exit()ed? Must exit loop somehow.
1935 */
1936
1937void
1938solib_create_inferior_hook ()
c906108c
SS
1939{
1940 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1941 yet. In fact, in the case of a SunOS4 executable being run on
07cd4b97 1942 Solaris, we can't get it yet. current_sos will get it when it needs
c906108c
SS
1943 it. */
1944#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1945 if ((debug_base = locate_base ()) == 0)
1946 {
1947 /* Can't find the symbol or the executable is statically linked. */
1948 return;
1949 }
1950#endif
1951
1952 if (!enable_break ())
1953 {
1954 warning ("shared library handler failed to enable breakpoint");
1955 return;
1956 }
1957
1958#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1959 /* SCO and SunOS need the loop below, other systems should be using the
1960 special shared library breakpoints and the shared library breakpoint
1961 service routine.
1962
1963 Now run the target. It will eventually hit the breakpoint, at
1964 which point all of the libraries will have been mapped in and we
1965 can go groveling around in the dynamic linker structures to find
1966 out what we need to know about them. */
1967
1968 clear_proceed_status ();
1969 stop_soon_quietly = 1;
1970 stop_signal = TARGET_SIGNAL_0;
1971 do
1972 {
1973 target_resume (-1, 0, stop_signal);
1974 wait_for_inferior ();
1975 }
1976 while (stop_signal != TARGET_SIGNAL_TRAP);
1977 stop_soon_quietly = 0;
1978
1979#if !defined(_SCO_DS)
1980 /* We are now either at the "mapping complete" breakpoint (or somewhere
1981 else, a condition we aren't prepared to deal with anyway), so adjust
1982 the PC as necessary after a breakpoint, disable the breakpoint, and
1983 add any shared libraries that were mapped in. */
1984
1985 if (DECR_PC_AFTER_BREAK)
1986 {
1987 stop_pc -= DECR_PC_AFTER_BREAK;
1988 write_register (PC_REGNUM, stop_pc);
1989 }
1990
1991 if (!disable_break ())
1992 {
1993 warning ("shared library handler failed to disable breakpoint");
1994 }
1995
1996 if (auto_solib_add)
1997 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1998#endif /* ! _SCO_DS */
1999#endif
2000}
2001
2002/*
2003
c5aa993b 2004 LOCAL FUNCTION
c906108c 2005
c5aa993b 2006 special_symbol_handling -- additional shared library symbol handling
c906108c 2007
c5aa993b 2008 SYNOPSIS
c906108c 2009
07cd4b97 2010 void special_symbol_handling ()
c906108c 2011
c5aa993b 2012 DESCRIPTION
c906108c 2013
c5aa993b
JM
2014 Once the symbols from a shared object have been loaded in the usual
2015 way, we are called to do any system specific symbol handling that
2016 is needed.
c906108c 2017
c5aa993b
JM
2018 For SunOS4, this consists of grunging around in the dynamic
2019 linkers structures to find symbol definitions for "common" symbols
2020 and adding them to the minimal symbol table for the runtime common
2021 objfile.
c906108c 2022
c5aa993b 2023 */
c906108c
SS
2024
2025static void
07cd4b97 2026special_symbol_handling ()
c906108c
SS
2027{
2028#ifndef SVR4_SHARED_LIBS
2029 int j;
2030
2031 if (debug_addr == 0)
2032 {
2033 /* Get link_dynamic structure */
2034
2035 j = target_read_memory (debug_base, (char *) &dynamic_copy,
2036 sizeof (dynamic_copy));
2037 if (j)
2038 {
2039 /* unreadable */
2040 return;
2041 }
2042
2043 /* Calc address of debugger interface structure */
2044 /* FIXME, this needs work for cross-debugging of core files
c5aa993b 2045 (byteorder, size, alignment, etc). */
c906108c 2046
07cd4b97 2047 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
c906108c
SS
2048 }
2049
2050 /* Read the debugger structure from the inferior, just to make sure
2051 we have a current copy. */
2052
2053 j = target_read_memory (debug_addr, (char *) &debug_copy,
2054 sizeof (debug_copy));
2055 if (j)
c5aa993b 2056 return; /* unreadable */
c906108c
SS
2057
2058 /* Get common symbol definitions for the loaded object. */
2059
2060 if (debug_copy.ldd_cp)
2061 {
07cd4b97 2062 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
c906108c
SS
2063 }
2064
c5aa993b 2065#endif /* !SVR4_SHARED_LIBS */
c906108c
SS
2066}
2067
2068
2069/*
2070
c5aa993b 2071 LOCAL FUNCTION
c906108c 2072
c5aa993b 2073 sharedlibrary_command -- handle command to explicitly add library
c906108c 2074
c5aa993b 2075 SYNOPSIS
c906108c 2076
c5aa993b 2077 static void sharedlibrary_command (char *args, int from_tty)
c906108c 2078
c5aa993b 2079 DESCRIPTION
c906108c 2080
c5aa993b 2081 */
c906108c
SS
2082
2083static void
2084sharedlibrary_command (args, from_tty)
c5aa993b
JM
2085 char *args;
2086 int from_tty;
c906108c
SS
2087{
2088 dont_repeat ();
2089 solib_add (args, from_tty, (struct target_ops *) 0);
2090}
2091
2092#endif /* HAVE_LINK_H */
2093
2094void
c5aa993b 2095_initialize_solib ()
c906108c
SS
2096{
2097#ifdef HAVE_LINK_H
2098
2099 add_com ("sharedlibrary", class_files, sharedlibrary_command,
2100 "Load shared object library symbols for files matching REGEXP.");
c5aa993b 2101 add_info ("sharedlibrary", info_sharedlibrary_command,
c906108c
SS
2102 "Status of loaded shared object libraries.");
2103
2104 add_show_from_set
2105 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2106 (char *) &auto_solib_add,
2107 "Set autoloading of shared library symbols.\n\
2108If nonzero, symbols from all shared object libraries will be loaded\n\
2109automatically when the inferior begins execution or when the dynamic linker\n\
2110informs gdb that a new library has been loaded. Otherwise, symbols\n\
2111must be loaded manually, using `sharedlibrary'.",
2112 &setlist),
2113 &showlist);
2114
2115 add_show_from_set
2116 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2117 (char *) &solib_absolute_prefix,
2118 "Set prefix for loading absolute shared library symbol files.\n\
2119For other (relative) files, you can add values using `set solib-search-path'.",
2120 &setlist),
2121 &showlist);
2122 add_show_from_set
2123 (add_set_cmd ("solib-search-path", class_support, var_string,
2124 (char *) &solib_search_path,
2125 "Set the search path for loading non-absolute shared library symbol files.\n\
2126This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2127 &setlist),
2128 &showlist);
2129
2130#endif /* HAVE_LINK_H */
2131}
This page took 0.133148 seconds and 4 git commands to generate.