sun386 host/target/native separation
[deliverable/binutils-gdb.git] / gdb / sparc-nat.c
CommitLineData
dfc82617
RP
1/* Functions specific to running gdb native on a Sun 4 running sunos4.
2 Copyright (C) 1989, 1992, Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20#include "defs.h"
21#include "inferior.h"
22#include "target.h"
23#include "nm.h"
24
25#include <signal.h>
26#include <sys/ptrace.h>
27#include <sys/wait.h>
28#include <machine/reg.h>
29
30/* We don't store all registers immediately when requested, since they
31 get sent over in large chunks anyway. Instead, we accumulate most
32 of the changes and send them over once. "deferred_stores" keeps
33 track of which sets of registers we have locally-changed copies of,
34 so we only need send the groups that have changed. */
35
36#define INT_REGS 1
37#define STACK_REGS 2
38#define FP_REGS 4
39
40/* Fetch one or more registers from the inferior. REGNO == -1 to get
41 them all. We actually fetch more than requested, when convenient,
42 marking them as valid so we won't fetch them again. */
43
44void
45fetch_inferior_registers (regno)
46 int regno;
47{
48 struct regs inferior_registers;
49 struct fp_status inferior_fp_registers;
50 int i;
51
52 /* We should never be called with deferred stores, because a prerequisite
53 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
54 if (deferred_stores) abort();
55
56 DO_DEFERRED_STORES;
57
58 /* Global and Out regs are fetched directly, as well as the control
59 registers. If we're getting one of the in or local regs,
60 and the stack pointer has not yet been fetched,
61 we have to do that first, since they're found in memory relative
62 to the stack pointer. */
63 if (regno < O7_REGNUM /* including -1 */
64 || regno >= Y_REGNUM
65 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
66 {
67 if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
68 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
69 perror("ptrace_getregs");
70
71 registers[REGISTER_BYTE (0)] = 0;
72 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
73 15 * REGISTER_RAW_SIZE (G0_REGNUM));
74 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
75 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
76 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
77 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
78
79 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
80 register_valid[i] = 1;
81 register_valid[Y_REGNUM] = 1;
82 register_valid[PS_REGNUM] = 1;
83 register_valid[PC_REGNUM] = 1;
84 register_valid[NPC_REGNUM] = 1;
85 /* If we don't set these valid, read_register_bytes() rereads
86 all the regs every time it is called! FIXME. */
87 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
88 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
89 register_valid[FPS_REGNUM] = 1; /* Not true yet, FIXME */
90 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
91 }
92
93 /* Floating point registers */
94 if (regno == -1 || (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
95 {
96 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
97 (PTRACE_ARG3_TYPE) &inferior_fp_registers,
98 0))
99 perror("ptrace_getfpregs");
100 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
101 sizeof inferior_fp_registers.fpu_fr);
102 /* bcopy (&inferior_fp_registers.Fpu_fsr,
103 &registers[REGISTER_BYTE (FPS_REGNUM)],
104 sizeof (FPU_FSR_TYPE)); FIXME??? -- gnu@cyg */
105 for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
106 register_valid[i] = 1;
107 register_valid[FPS_REGNUM] = 1;
108 }
109
110 /* These regs are saved on the stack by the kernel. Only read them
111 all (16 ptrace calls!) if we really need them. */
112 if (regno == -1)
113 {
114 target_xfer_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
115 &registers[REGISTER_BYTE (L0_REGNUM)],
116 16*REGISTER_RAW_SIZE (L0_REGNUM), 0);
117 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
118 register_valid[i] = 1;
119 }
120 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
121 {
122 CORE_ADDR sp = *(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)];
123 i = REGISTER_BYTE (regno);
124 if (register_valid[regno])
125 printf("register %d valid and read\n", regno);
126 target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
127 &registers[i], REGISTER_RAW_SIZE (regno), 0);
128 register_valid[regno] = 1;
129 }
130}
131
132/* Store our register values back into the inferior.
133 If REGNO is -1, do this for all registers.
134 Otherwise, REGNO specifies which register (so we can save time). */
135
136void
137store_inferior_registers (regno)
138 int regno;
139{
140 struct regs inferior_registers;
141 struct fp_status inferior_fp_registers;
142 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
143
144 /* First decide which pieces of machine-state we need to modify.
145 Default for regno == -1 case is all pieces. */
146 if (regno >= 0)
147 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
148 {
149 wanna_store = FP_REGS;
150 }
151 else
152 {
153 if (regno == SP_REGNUM)
154 wanna_store = INT_REGS + STACK_REGS;
155 else if (regno < L0_REGNUM || regno > I7_REGNUM)
156 wanna_store = INT_REGS;
157 else
158 wanna_store = STACK_REGS;
159 }
160
161 /* See if we're forcing the stores to happen now, or deferring. */
162 if (regno == -2)
163 {
164 wanna_store = deferred_stores;
165 deferred_stores = 0;
166 }
167 else
168 {
169 if (wanna_store == STACK_REGS)
170 {
171 /* Fall through and just store one stack reg. If we deferred
172 it, we'd have to store them all, or remember more info. */
173 }
174 else
175 {
176 deferred_stores |= wanna_store;
177 return;
178 }
179 }
180
181 if (wanna_store & STACK_REGS)
182 {
183 CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
184
185 if (regno < 0 || regno == SP_REGNUM)
186 {
187 if (!register_valid[L0_REGNUM+5]) abort();
188 target_xfer_memory (sp,
189 &registers[REGISTER_BYTE (L0_REGNUM)],
190 16*REGISTER_RAW_SIZE (L0_REGNUM), 1);
191 }
192 else
193 {
194 if (!register_valid[regno]) abort();
195 target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
196 &registers[REGISTER_BYTE (regno)],
197 REGISTER_RAW_SIZE (regno), 1);
198 }
199
200 }
201
202 if (wanna_store & INT_REGS)
203 {
204 if (!register_valid[G1_REGNUM]) abort();
205
206 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
207 15 * REGISTER_RAW_SIZE (G1_REGNUM));
208
209 inferior_registers.r_ps =
210 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
211 inferior_registers.r_pc =
212 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
213 inferior_registers.r_npc =
214 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
215 inferior_registers.r_y =
216 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
217
218 if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
219 (PTRACE_ARG3_TYPE) &inferior_registers, 0))
220 perror("ptrace_setregs");
221 }
222
223 if (wanna_store & FP_REGS)
224 {
225 if (!register_valid[FP0_REGNUM+9]) abort();
226 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
227 sizeof inferior_fp_registers.fpu_fr);
228
229/* memcpy (&inferior_fp_registers.Fpu_fsr,
230 &registers[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
231****/
232 if (0 !=
233 ptrace (PTRACE_SETFPREGS, inferior_pid,
234 (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
235 perror("ptrace_setfpregs");
236 }
237}
238
239
240void
241fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
242 char *core_reg_sect;
243 unsigned core_reg_size;
244 int which;
245 unsigned int ignore; /* reg addr, unused in this version */
246{
247
248 if (which == 0) {
249
250 /* Integer registers */
251
252#define gregs ((struct regs *)core_reg_sect)
253 /* G0 *always* holds 0. */
254 *(int *)&registers[REGISTER_BYTE (0)] = 0;
255
256 /* The globals and output registers. */
257 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
258 15 * REGISTER_RAW_SIZE (G1_REGNUM));
259 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
260 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
261 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
262 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
263
264 /* My best guess at where to get the locals and input
265 registers is exactly where they usually are, right above
266 the stack pointer. If the core dump was caused by a bus error
267 from blowing away the stack pointer (as is possible) then this
268 won't work, but it's worth the try. */
269 {
270 int sp;
271
272 sp = *(int *)&registers[REGISTER_BYTE (SP_REGNUM)];
273 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
274 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
275 {
276 /* fprintf so user can still use gdb */
277 fprintf (stderr,
278 "Couldn't read input and local registers from core file\n");
279 }
280 }
281 } else if (which == 2) {
282
283 /* Floating point registers */
284
285#define fpuregs ((struct fpu *) core_reg_sect)
286 if (core_reg_size >= sizeof (struct fpu))
287 {
288 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
289 sizeof (fpuregs->fpu_regs));
290 memcpy (&registers[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
291 sizeof (FPU_FSR_TYPE));
292 }
293 else
294 fprintf (stderr, "Couldn't read float regs from core file\n");
295 }
296}
297
This page took 0.035002 seconds and 4 git commands to generate.