bfd:
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
0b302171 3 Copyright (C) 2003-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
43bd9a9e 38#include "gdb_assert.h"
386c036b 39#include "gdb_string.h"
c906108c 40
386c036b 41#include "sparc-tdep.h"
c906108c 42
a54124c5
MK
43struct regset;
44
9eb42ed1
MK
45/* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 48 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 49 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59/* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 65 big-endian IA-64 Quad-Precision format. */
8da61cc4 66#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
67
68/* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71#undef BIAS
72#define BIAS 2047
73
74/* Macros to extract fields from SPARC instructions. */
c906108c
SS
75#define X_OP(i) (((i) >> 30) & 0x3)
76#define X_RD(i) (((i) >> 25) & 0x1f)
77#define X_A(i) (((i) >> 29) & 1)
78#define X_COND(i) (((i) >> 25) & 0xf)
79#define X_OP2(i) (((i) >> 22) & 0x7)
80#define X_IMM22(i) ((i) & 0x3fffff)
81#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 82#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 83#define X_RS2(i) ((i) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 88#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 89
386c036b
MK
90/* Fetch the instruction at PC. Instructions are always big-endian
91 even if the processor operates in little-endian mode. */
92
93unsigned long
94sparc_fetch_instruction (CORE_ADDR pc)
c906108c 95{
e1613aba 96 gdb_byte buf[4];
386c036b
MK
97 unsigned long insn;
98 int i;
99
690668cc 100 /* If we can't read the instruction at PC, return zero. */
8defab1a 101 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 102 return 0;
c906108c 103
386c036b
MK
104 insn = 0;
105 for (i = 0; i < sizeof (buf); i++)
106 insn = (insn << 8) | buf[i];
107 return insn;
108}
42cdca6c
MK
109\f
110
5465445a
JB
111/* Return non-zero if the instruction corresponding to PC is an "unimp"
112 instruction. */
113
114static int
115sparc_is_unimp_insn (CORE_ADDR pc)
116{
117 const unsigned long insn = sparc_fetch_instruction (pc);
118
119 return ((insn & 0xc1c00000) == 0);
120}
121
42cdca6c
MK
122/* OpenBSD/sparc includes StackGhost, which according to the author's
123 website http://stackghost.cerias.purdue.edu "... transparently and
124 automatically protects applications' stack frames; more
125 specifically, it guards the return pointers. The protection
126 mechanisms require no application source or binary modification and
127 imposes only a negligible performance penalty."
128
129 The same website provides the following description of how
130 StackGhost works:
131
132 "StackGhost interfaces with the kernel trap handler that would
133 normally write out registers to the stack and the handler that
134 would read them back in. By XORing a cookie into the
135 return-address saved in the user stack when it is actually written
136 to the stack, and then XOR it out when the return-address is pulled
137 from the stack, StackGhost can cause attacker corrupted return
138 pointers to behave in a manner the attacker cannot predict.
139 StackGhost can also use several unused bits in the return pointer
140 to detect a smashed return pointer and abort the process."
141
142 For GDB this means that whenever we're reading %i7 from a stack
143 frame's window save area, we'll have to XOR the cookie.
144
145 More information on StackGuard can be found on in:
146
c378eb4e 147 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
148 Stack Protection." 2001. Published in USENIX Security Symposium
149 '01. */
150
151/* Fetch StackGhost Per-Process XOR cookie. */
152
153ULONGEST
e17a4113 154sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 155{
e17a4113 156 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 157 struct target_ops *ops = &current_target;
e1613aba 158 gdb_byte buf[8];
baf92889
MK
159 int len;
160
13547ab6 161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
162 if (len == -1)
163 return 0;
42cdca6c 164
baf92889
MK
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
e17a4113 168 return extract_unsigned_integer (buf, len, byte_order);
baf92889 169}
386c036b 170\f
baf92889 171
386c036b
MK
172/* The functions on this page are intended to be used to classify
173 function arguments. */
c906108c 174
386c036b 175/* Check whether TYPE is "Integral or Pointer". */
c906108c 176
386c036b
MK
177static int
178sparc_integral_or_pointer_p (const struct type *type)
c906108c 179{
80ad1639
MK
180 int len = TYPE_LENGTH (type);
181
386c036b 182 switch (TYPE_CODE (type))
c906108c 183 {
386c036b
MK
184 case TYPE_CODE_INT:
185 case TYPE_CODE_BOOL:
186 case TYPE_CODE_CHAR:
187 case TYPE_CODE_ENUM:
188 case TYPE_CODE_RANGE:
80ad1639
MK
189 /* We have byte, half-word, word and extended-word/doubleword
190 integral types. The doubleword is an extension to the
191 original 32-bit ABI by the SCD 2.4.x. */
192 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
193 case TYPE_CODE_PTR:
194 case TYPE_CODE_REF:
80ad1639
MK
195 /* Allow either 32-bit or 64-bit pointers. */
196 return (len == 4 || len == 8);
386c036b
MK
197 default:
198 break;
199 }
c906108c 200
386c036b
MK
201 return 0;
202}
c906108c 203
386c036b 204/* Check whether TYPE is "Floating". */
c906108c 205
386c036b
MK
206static int
207sparc_floating_p (const struct type *type)
208{
209 switch (TYPE_CODE (type))
c906108c 210 {
386c036b
MK
211 case TYPE_CODE_FLT:
212 {
213 int len = TYPE_LENGTH (type);
214 return (len == 4 || len == 8 || len == 16);
215 }
216 default:
217 break;
218 }
219
220 return 0;
221}
c906108c 222
fe10a582
DM
223/* Check whether TYPE is "Complex Floating". */
224
225static int
226sparc_complex_floating_p (const struct type *type)
227{
228 switch (TYPE_CODE (type))
229 {
230 case TYPE_CODE_COMPLEX:
231 {
232 int len = TYPE_LENGTH (type);
233 return (len == 8 || len == 16 || len == 32);
234 }
235 default:
236 break;
237 }
238
239 return 0;
240}
241
0497f5b0
JB
242/* Check whether TYPE is "Structure or Union".
243
244 In terms of Ada subprogram calls, arrays are treated the same as
245 struct and union types. So this function also returns non-zero
246 for array types. */
c906108c 247
386c036b
MK
248static int
249sparc_structure_or_union_p (const struct type *type)
250{
251 switch (TYPE_CODE (type))
252 {
253 case TYPE_CODE_STRUCT:
254 case TYPE_CODE_UNION:
0497f5b0 255 case TYPE_CODE_ARRAY:
386c036b
MK
256 return 1;
257 default:
258 break;
c906108c 259 }
386c036b
MK
260
261 return 0;
c906108c 262}
386c036b
MK
263
264/* Register information. */
265
266static const char *sparc32_register_names[] =
5af923b0 267{
386c036b
MK
268 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
269 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
270 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
271 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
272
273 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
274 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
275 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
276 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
277
278 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
279};
280
386c036b
MK
281/* Total number of registers. */
282#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 283
386c036b
MK
284/* We provide the aliases %d0..%d30 for the floating registers as
285 "psuedo" registers. */
286
287static const char *sparc32_pseudo_register_names[] =
288{
289 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
290 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
291};
292
293/* Total number of pseudo registers. */
294#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
295
296/* Return the name of register REGNUM. */
297
298static const char *
d93859e2 299sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
300{
301 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
302 return sparc32_register_names[regnum];
303
304 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
305 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
306
307 return NULL;
308}
2d457077 309\f
209bd28e 310/* Construct types for ISA-specific registers. */
2d457077 311
209bd28e
UW
312static struct type *
313sparc_psr_type (struct gdbarch *gdbarch)
314{
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 316
209bd28e
UW
317 if (!tdep->sparc_psr_type)
318 {
319 struct type *type;
2d457077 320
e9bb382b 321 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
322 append_flags_type_flag (type, 5, "ET");
323 append_flags_type_flag (type, 6, "PS");
324 append_flags_type_flag (type, 7, "S");
325 append_flags_type_flag (type, 12, "EF");
326 append_flags_type_flag (type, 13, "EC");
2d457077 327
209bd28e
UW
328 tdep->sparc_psr_type = type;
329 }
330
331 return tdep->sparc_psr_type;
332}
333
334static struct type *
335sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 336{
209bd28e
UW
337 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
338
339 if (!tdep->sparc_fsr_type)
340 {
341 struct type *type;
342
e9bb382b 343 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
344 append_flags_type_flag (type, 0, "NXA");
345 append_flags_type_flag (type, 1, "DZA");
346 append_flags_type_flag (type, 2, "UFA");
347 append_flags_type_flag (type, 3, "OFA");
348 append_flags_type_flag (type, 4, "NVA");
349 append_flags_type_flag (type, 5, "NXC");
350 append_flags_type_flag (type, 6, "DZC");
351 append_flags_type_flag (type, 7, "UFC");
352 append_flags_type_flag (type, 8, "OFC");
353 append_flags_type_flag (type, 9, "NVC");
354 append_flags_type_flag (type, 22, "NS");
355 append_flags_type_flag (type, 23, "NXM");
356 append_flags_type_flag (type, 24, "DZM");
357 append_flags_type_flag (type, 25, "UFM");
358 append_flags_type_flag (type, 26, "OFM");
359 append_flags_type_flag (type, 27, "NVM");
360
361 tdep->sparc_fsr_type = type;
362 }
363
364 return tdep->sparc_fsr_type;
2d457077 365}
386c036b
MK
366
367/* Return the GDB type object for the "standard" data type of data in
c378eb4e 368 register REGNUM. */
386c036b
MK
369
370static struct type *
371sparc32_register_type (struct gdbarch *gdbarch, int regnum)
372{
373 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 374 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
375
376 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 377 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
378
379 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 380 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
381
382 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 383 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 384
2d457077 385 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 386 return sparc_psr_type (gdbarch);
2d457077
MK
387
388 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 389 return sparc_fsr_type (gdbarch);
2d457077 390
df4df182 391 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
392}
393
05d1431c 394static enum register_status
386c036b
MK
395sparc32_pseudo_register_read (struct gdbarch *gdbarch,
396 struct regcache *regcache,
e1613aba 397 int regnum, gdb_byte *buf)
386c036b 398{
05d1431c
PA
399 enum register_status status;
400
386c036b
MK
401 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
402
403 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
404 status = regcache_raw_read (regcache, regnum, buf);
405 if (status == REG_VALID)
406 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
407 return status;
386c036b
MK
408}
409
410static void
411sparc32_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
e1613aba 413 int regnum, const gdb_byte *buf)
386c036b
MK
414{
415 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
416
417 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
418 regcache_raw_write (regcache, regnum, buf);
e1613aba 419 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
420}
421\f
422
49a45ecf
JB
423static CORE_ADDR
424sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
425{
426 /* The ABI requires double-word alignment. */
427 return address & ~0x7;
428}
429
386c036b
MK
430static CORE_ADDR
431sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 432 CORE_ADDR funcaddr,
386c036b
MK
433 struct value **args, int nargs,
434 struct type *value_type,
e4fd649a
UW
435 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
436 struct regcache *regcache)
c906108c 437{
e17a4113
UW
438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
439
386c036b
MK
440 *bp_addr = sp - 4;
441 *real_pc = funcaddr;
442
d80b854b 443 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 444 {
e1613aba 445 gdb_byte buf[4];
386c036b
MK
446
447 /* This is an UNIMP instruction. */
e17a4113
UW
448 store_unsigned_integer (buf, 4, byte_order,
449 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
450 write_memory (sp - 8, buf, 4);
451 return sp - 8;
c906108c
SS
452 }
453
386c036b
MK
454 return sp - 4;
455}
456
457static CORE_ADDR
458sparc32_store_arguments (struct regcache *regcache, int nargs,
459 struct value **args, CORE_ADDR sp,
460 int struct_return, CORE_ADDR struct_addr)
461{
df4df182 462 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
464 /* Number of words in the "parameter array". */
465 int num_elements = 0;
466 int element = 0;
467 int i;
468
469 for (i = 0; i < nargs; i++)
c906108c 470 {
4991999e 471 struct type *type = value_type (args[i]);
386c036b
MK
472 int len = TYPE_LENGTH (type);
473
474 if (sparc_structure_or_union_p (type)
fe10a582
DM
475 || (sparc_floating_p (type) && len == 16)
476 || sparc_complex_floating_p (type))
c906108c 477 {
386c036b
MK
478 /* Structure, Union and Quad-Precision Arguments. */
479 sp -= len;
480
481 /* Use doubleword alignment for these values. That's always
482 correct, and wasting a few bytes shouldn't be a problem. */
483 sp &= ~0x7;
484
0fd88904 485 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
486 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
487 num_elements++;
488 }
489 else if (sparc_floating_p (type))
490 {
491 /* Floating arguments. */
492 gdb_assert (len == 4 || len == 8);
493 num_elements += (len / 4);
c906108c 494 }
c5aa993b
JM
495 else
496 {
386c036b
MK
497 /* Integral and pointer arguments. */
498 gdb_assert (sparc_integral_or_pointer_p (type));
499
500 if (len < 4)
df4df182
UW
501 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
502 args[i]);
386c036b 503 num_elements += ((len + 3) / 4);
c5aa993b 504 }
c906108c 505 }
c906108c 506
386c036b
MK
507 /* Always allocate at least six words. */
508 sp -= max (6, num_elements) * 4;
c906108c 509
386c036b
MK
510 /* The psABI says that "Software convention requires space for the
511 struct/union return value pointer, even if the word is unused." */
512 sp -= 4;
c906108c 513
386c036b
MK
514 /* The psABI says that "Although software convention and the
515 operating system require every stack frame to be doubleword
516 aligned." */
517 sp &= ~0x7;
c906108c 518
386c036b 519 for (i = 0; i < nargs; i++)
c906108c 520 {
0fd88904 521 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 522 struct type *type = value_type (args[i]);
386c036b 523 int len = TYPE_LENGTH (type);
c906108c 524
386c036b 525 gdb_assert (len == 4 || len == 8);
c906108c 526
386c036b
MK
527 if (element < 6)
528 {
529 int regnum = SPARC_O0_REGNUM + element;
c906108c 530
386c036b
MK
531 regcache_cooked_write (regcache, regnum, valbuf);
532 if (len > 4 && element < 5)
533 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
534 }
5af923b0 535
386c036b
MK
536 /* Always store the argument in memory. */
537 write_memory (sp + 4 + element * 4, valbuf, len);
538 element += len / 4;
539 }
c906108c 540
386c036b 541 gdb_assert (element == num_elements);
c906108c 542
386c036b 543 if (struct_return)
c906108c 544 {
e1613aba 545 gdb_byte buf[4];
c906108c 546
e17a4113 547 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
548 write_memory (sp, buf, 4);
549 }
c906108c 550
386c036b 551 return sp;
c906108c
SS
552}
553
386c036b 554static CORE_ADDR
7d9b040b 555sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
556 struct regcache *regcache, CORE_ADDR bp_addr,
557 int nargs, struct value **args, CORE_ADDR sp,
558 int struct_return, CORE_ADDR struct_addr)
c906108c 559{
386c036b
MK
560 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
561
562 /* Set return address. */
563 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
564
565 /* Set up function arguments. */
566 sp = sparc32_store_arguments (regcache, nargs, args, sp,
567 struct_return, struct_addr);
568
569 /* Allocate the 16-word window save area. */
570 sp -= 16 * 4;
c906108c 571
386c036b
MK
572 /* Stack should be doubleword aligned at this point. */
573 gdb_assert (sp % 8 == 0);
c906108c 574
386c036b
MK
575 /* Finally, update the stack pointer. */
576 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
577
578 return sp;
579}
580\f
c906108c 581
386c036b
MK
582/* Use the program counter to determine the contents and size of a
583 breakpoint instruction. Return a pointer to a string of bytes that
584 encode a breakpoint instruction, store the length of the string in
585 *LEN and optionally adjust *PC to point to the correct memory
586 location for inserting the breakpoint. */
587
e1613aba 588static const gdb_byte *
67d57894 589sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 590{
864a1a37 591 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 592
386c036b
MK
593 *len = sizeof (break_insn);
594 return break_insn;
c906108c 595}
386c036b 596\f
c906108c 597
386c036b 598/* Allocate and initialize a frame cache. */
c906108c 599
386c036b
MK
600static struct sparc_frame_cache *
601sparc_alloc_frame_cache (void)
602{
603 struct sparc_frame_cache *cache;
604 int i;
c906108c 605
386c036b 606 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 607
386c036b
MK
608 /* Base address. */
609 cache->base = 0;
610 cache->pc = 0;
c906108c 611
386c036b
MK
612 /* Frameless until proven otherwise. */
613 cache->frameless_p = 1;
369c397b
JB
614 cache->frame_offset = 0;
615 cache->saved_regs_mask = 0;
616 cache->copied_regs_mask = 0;
386c036b
MK
617 cache->struct_return_p = 0;
618
619 return cache;
620}
621
b0b92586
JB
622/* GCC generates several well-known sequences of instructions at the begining
623 of each function prologue when compiling with -fstack-check. If one of
624 such sequences starts at START_PC, then return the address of the
625 instruction immediately past this sequence. Otherwise, return START_PC. */
626
627static CORE_ADDR
628sparc_skip_stack_check (const CORE_ADDR start_pc)
629{
630 CORE_ADDR pc = start_pc;
631 unsigned long insn;
632 int offset_stack_checking_sequence = 0;
2067c8d4 633 int probing_loop = 0;
b0b92586
JB
634
635 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 636 instructions, plus an optional one in the case of a probing loop:
b0b92586 637
2067c8d4
JG
638 sethi <some immediate>, %g1
639 sub %sp, %g1, %g1
640
641 or:
642
643 sethi <some immediate>, %g1
644 sethi <some immediate>, %g4
645 sub %sp, %g1, %g1
646
647 or:
648
649 sethi <some immediate>, %g1
650 sub %sp, %g1, %g1
651 sethi <some immediate>, %g4
652
653 If the optional instruction is found (setting g4), assume that a
654 probing loop will follow. */
655
656 /* sethi <some immediate>, %g1 */
b0b92586
JB
657 insn = sparc_fetch_instruction (pc);
658 pc = pc + 4;
659 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
660 return start_pc;
661
2067c8d4 662 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
663 insn = sparc_fetch_instruction (pc);
664 pc = pc + 4;
2067c8d4
JG
665 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
666 {
667 probing_loop = 1;
668 insn = sparc_fetch_instruction (pc);
669 pc = pc + 4;
670 }
671
672 /* sub %sp, %g1, %g1 */
b0b92586
JB
673 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
674 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
675 return start_pc;
676
677 insn = sparc_fetch_instruction (pc);
678 pc = pc + 4;
679
2067c8d4
JG
680 /* optional: sethi <some immediate>, %g4 */
681 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
682 {
683 probing_loop = 1;
684 insn = sparc_fetch_instruction (pc);
685 pc = pc + 4;
686 }
687
b0b92586
JB
688 /* First possible sequence:
689 [first two instructions above]
690 clr [%g1 - some immediate] */
691
692 /* clr [%g1 - some immediate] */
693 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
694 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
695 {
696 /* Valid stack-check sequence, return the new PC. */
697 return pc;
698 }
699
700 /* Second possible sequence: A small number of probes.
701 [first two instructions above]
702 clr [%g1]
703 add %g1, -<some immediate>, %g1
704 clr [%g1]
705 [repeat the two instructions above any (small) number of times]
706 clr [%g1 - some immediate] */
707
708 /* clr [%g1] */
709 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
710 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
711 {
712 while (1)
713 {
714 /* add %g1, -<some immediate>, %g1 */
715 insn = sparc_fetch_instruction (pc);
716 pc = pc + 4;
717 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
718 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
719 break;
720
721 /* clr [%g1] */
722 insn = sparc_fetch_instruction (pc);
723 pc = pc + 4;
724 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
725 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
726 return start_pc;
727 }
728
729 /* clr [%g1 - some immediate] */
730 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
731 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
732 return start_pc;
733
734 /* We found a valid stack-check sequence, return the new PC. */
735 return pc;
736 }
737
738 /* Third sequence: A probing loop.
2067c8d4 739 [first three instructions above]
b0b92586
JB
740 sub %g1, %g4, %g4
741 cmp %g1, %g4
742 be <disp>
743 add %g1, -<some immediate>, %g1
744 ba <disp>
745 clr [%g1]
2067c8d4
JG
746
747 And an optional last probe for the remainder:
748
b0b92586
JB
749 clr [%g4 - some immediate] */
750
2067c8d4 751 if (probing_loop)
b0b92586
JB
752 {
753 /* sub %g1, %g4, %g4 */
b0b92586
JB
754 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
755 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
756 return start_pc;
757
758 /* cmp %g1, %g4 */
759 insn = sparc_fetch_instruction (pc);
760 pc = pc + 4;
761 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
762 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
763 return start_pc;
764
765 /* be <disp> */
766 insn = sparc_fetch_instruction (pc);
767 pc = pc + 4;
768 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
769 return start_pc;
770
771 /* add %g1, -<some immediate>, %g1 */
772 insn = sparc_fetch_instruction (pc);
773 pc = pc + 4;
774 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
775 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
776 return start_pc;
777
778 /* ba <disp> */
779 insn = sparc_fetch_instruction (pc);
780 pc = pc + 4;
781 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
782 return start_pc;
783
2067c8d4 784 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
785 insn = sparc_fetch_instruction (pc);
786 pc = pc + 4;
2067c8d4
JG
787 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
788 && X_RD (insn) == 0 && X_RS1 (insn) == 1
789 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
790 return start_pc;
791
2067c8d4
JG
792 /* We found a valid stack-check sequence, return the new PC. */
793
794 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
795 insn = sparc_fetch_instruction (pc);
796 pc = pc + 4;
797 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
798 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
799 return pc - 4;
800 else
801 return pc;
b0b92586
JB
802 }
803
804 /* No stack check code in our prologue, return the start_pc. */
805 return start_pc;
806}
807
369c397b
JB
808/* Record the effect of a SAVE instruction on CACHE. */
809
810void
811sparc_record_save_insn (struct sparc_frame_cache *cache)
812{
813 /* The frame is set up. */
814 cache->frameless_p = 0;
815
816 /* The frame pointer contains the CFA. */
817 cache->frame_offset = 0;
818
819 /* The `local' and `in' registers are all saved. */
820 cache->saved_regs_mask = 0xffff;
821
822 /* The `out' registers are all renamed. */
823 cache->copied_regs_mask = 0xff;
824}
825
826/* Do a full analysis of the prologue at PC and update CACHE accordingly.
827 Bail out early if CURRENT_PC is reached. Return the address where
828 the analysis stopped.
829
830 We handle both the traditional register window model and the single
831 register window (aka flat) model. */
832
386c036b 833CORE_ADDR
be8626e0
MD
834sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
835 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 836{
be8626e0 837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
838 unsigned long insn;
839 int offset = 0;
c906108c 840 int dest = -1;
c906108c 841
b0b92586
JB
842 pc = sparc_skip_stack_check (pc);
843
386c036b
MK
844 if (current_pc <= pc)
845 return current_pc;
846
847 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
848 SPARC the linker usually defines a symbol (typically
849 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
850 This symbol makes us end up here with PC pointing at the start of
851 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
852 would do our normal prologue analysis, we would probably conclude
853 that we've got a frame when in reality we don't, since the
854 dynamic linker patches up the first PLT with some code that
855 starts with a SAVE instruction. Patch up PC such that it points
856 at the start of our PLT entry. */
857 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
858 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 859
386c036b
MK
860 insn = sparc_fetch_instruction (pc);
861
369c397b
JB
862 /* Recognize store insns and record their sources. */
863 while (X_OP (insn) == 3
864 && (X_OP3 (insn) == 0x4 /* stw */
865 || X_OP3 (insn) == 0x7 /* std */
866 || X_OP3 (insn) == 0xe) /* stx */
867 && X_RS1 (insn) == SPARC_SP_REGNUM)
868 {
869 int regnum = X_RD (insn);
870
871 /* Recognize stores into the corresponding stack slots. */
872 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
873 && ((X_I (insn)
874 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
875 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
876 : (regnum - SPARC_L0_REGNUM) * 4))
877 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
878 {
879 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
880 if (X_OP3 (insn) == 0x7)
881 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
882 }
883
884 offset += 4;
885
886 insn = sparc_fetch_instruction (pc + offset);
887 }
888
386c036b
MK
889 /* Recognize a SETHI insn and record its destination. */
890 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
891 {
892 dest = X_RD (insn);
386c036b
MK
893 offset += 4;
894
369c397b 895 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
896 }
897
386c036b
MK
898 /* Allow for an arithmetic operation on DEST or %g1. */
899 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
900 && (X_RD (insn) == 1 || X_RD (insn) == dest))
901 {
386c036b 902 offset += 4;
c906108c 903
369c397b 904 insn = sparc_fetch_instruction (pc + offset);
c906108c 905 }
c906108c 906
386c036b
MK
907 /* Check for the SAVE instruction that sets up the frame. */
908 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 909 {
369c397b
JB
910 sparc_record_save_insn (cache);
911 offset += 4;
912 return pc + offset;
913 }
914
915 /* Check for an arithmetic operation on %sp. */
916 if (X_OP (insn) == 2
917 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
918 && X_RS1 (insn) == SPARC_SP_REGNUM
919 && X_RD (insn) == SPARC_SP_REGNUM)
920 {
921 if (X_I (insn))
922 {
923 cache->frame_offset = X_SIMM13 (insn);
924 if (X_OP3 (insn) == 0)
925 cache->frame_offset = -cache->frame_offset;
926 }
927 offset += 4;
928
929 insn = sparc_fetch_instruction (pc + offset);
930
931 /* Check for an arithmetic operation that sets up the frame. */
932 if (X_OP (insn) == 2
933 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
934 && X_RS1 (insn) == SPARC_SP_REGNUM
935 && X_RD (insn) == SPARC_FP_REGNUM)
936 {
937 cache->frameless_p = 0;
938 cache->frame_offset = 0;
939 /* We could check that the amount subtracted to %sp above is the
940 same as the one added here, but this seems superfluous. */
941 cache->copied_regs_mask |= 0x40;
942 offset += 4;
943
944 insn = sparc_fetch_instruction (pc + offset);
945 }
946
947 /* Check for a move (or) operation that copies the return register. */
948 if (X_OP (insn) == 2
949 && X_OP3 (insn) == 0x2
950 && !X_I (insn)
951 && X_RS1 (insn) == SPARC_G0_REGNUM
952 && X_RS2 (insn) == SPARC_O7_REGNUM
953 && X_RD (insn) == SPARC_I7_REGNUM)
954 {
955 cache->copied_regs_mask |= 0x80;
956 offset += 4;
957 }
958
959 return pc + offset;
c906108c
SS
960 }
961
962 return pc;
963}
964
386c036b 965static CORE_ADDR
236369e7 966sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
967{
968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 969 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
970}
971
972/* Return PC of first real instruction of the function starting at
973 START_PC. */
f510d44e 974
386c036b 975static CORE_ADDR
6093d2eb 976sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 977{
f510d44e
DM
978 struct symtab_and_line sal;
979 CORE_ADDR func_start, func_end;
386c036b 980 struct sparc_frame_cache cache;
f510d44e
DM
981
982 /* This is the preferred method, find the end of the prologue by
983 using the debugging information. */
984 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
985 {
986 sal = find_pc_line (func_start, 0);
987
988 if (sal.end < func_end
989 && start_pc <= sal.end)
990 return sal.end;
991 }
992
be8626e0 993 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
994
995 /* The psABI says that "Although the first 6 words of arguments
996 reside in registers, the standard stack frame reserves space for
997 them.". It also suggests that a function may use that space to
998 "write incoming arguments 0 to 5" into that space, and that's
999 indeed what GCC seems to be doing. In that case GCC will
1000 generate debug information that points to the stack slots instead
1001 of the registers, so we should consider the instructions that
369c397b 1002 write out these incoming arguments onto the stack. */
075ccec8 1003
369c397b 1004 while (1)
075ccec8
MK
1005 {
1006 unsigned long insn = sparc_fetch_instruction (start_pc);
1007
369c397b
JB
1008 /* Recognize instructions that store incoming arguments into the
1009 corresponding stack slots. */
1010 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1011 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1012 {
369c397b
JB
1013 int regnum = X_RD (insn);
1014
1015 /* Case of arguments still in %o[0..5]. */
1016 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1017 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1018 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1019 {
1020 start_pc += 4;
1021 continue;
1022 }
1023
1024 /* Case of arguments copied into %i[0..5]. */
1025 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1026 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1027 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1028 {
1029 start_pc += 4;
1030 continue;
1031 }
075ccec8
MK
1032 }
1033
1034 break;
1035 }
1036
1037 return start_pc;
c906108c
SS
1038}
1039
386c036b 1040/* Normal frames. */
9319a2fe 1041
386c036b 1042struct sparc_frame_cache *
236369e7 1043sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1044{
386c036b 1045 struct sparc_frame_cache *cache;
9319a2fe 1046
386c036b
MK
1047 if (*this_cache)
1048 return *this_cache;
c906108c 1049
386c036b
MK
1050 cache = sparc_alloc_frame_cache ();
1051 *this_cache = cache;
c906108c 1052
236369e7 1053 cache->pc = get_frame_func (this_frame);
386c036b 1054 if (cache->pc != 0)
236369e7
JB
1055 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1056 get_frame_pc (this_frame), cache);
386c036b
MK
1057
1058 if (cache->frameless_p)
c906108c 1059 {
cbeae229
MK
1060 /* This function is frameless, so %fp (%i6) holds the frame
1061 pointer for our calling frame. Use %sp (%o6) as this frame's
1062 base address. */
1063 cache->base =
236369e7 1064 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1065 }
1066 else
1067 {
1068 /* For normal frames, %fp (%i6) holds the frame pointer, the
1069 base address for the current stack frame. */
1070 cache->base =
236369e7 1071 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1072 }
c906108c 1073
369c397b
JB
1074 cache->base += cache->frame_offset;
1075
5b2d44a0
MK
1076 if (cache->base & 1)
1077 cache->base += BIAS;
1078
386c036b 1079 return cache;
c906108c 1080}
c906108c 1081
aff37fc1
DM
1082static int
1083sparc32_struct_return_from_sym (struct symbol *sym)
1084{
1085 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1086 enum type_code code = TYPE_CODE (type);
1087
1088 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1089 {
1090 type = check_typedef (TYPE_TARGET_TYPE (type));
1091 if (sparc_structure_or_union_p (type)
1092 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1093 return 1;
1094 }
1095
1096 return 0;
1097}
1098
386c036b 1099struct sparc_frame_cache *
236369e7 1100sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1101{
386c036b
MK
1102 struct sparc_frame_cache *cache;
1103 struct symbol *sym;
c906108c 1104
386c036b
MK
1105 if (*this_cache)
1106 return *this_cache;
c906108c 1107
236369e7 1108 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1109
386c036b
MK
1110 sym = find_pc_function (cache->pc);
1111 if (sym)
c906108c 1112 {
aff37fc1 1113 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1114 }
5465445a
JB
1115 else
1116 {
1117 /* There is no debugging information for this function to
1118 help us determine whether this function returns a struct
1119 or not. So we rely on another heuristic which is to check
1120 the instruction at the return address and see if this is
1121 an "unimp" instruction. If it is, then it is a struct-return
1122 function. */
1123 CORE_ADDR pc;
369c397b
JB
1124 int regnum =
1125 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1126
236369e7 1127 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1128 if (sparc_is_unimp_insn (pc))
1129 cache->struct_return_p = 1;
1130 }
c906108c 1131
386c036b
MK
1132 return cache;
1133}
1134
1135static void
236369e7 1136sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1137 struct frame_id *this_id)
1138{
1139 struct sparc_frame_cache *cache =
236369e7 1140 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1141
1142 /* This marks the outermost frame. */
1143 if (cache->base == 0)
1144 return;
1145
1146 (*this_id) = frame_id_build (cache->base, cache->pc);
1147}
c906108c 1148
236369e7
JB
1149static struct value *
1150sparc32_frame_prev_register (struct frame_info *this_frame,
1151 void **this_cache, int regnum)
386c036b 1152{
e17a4113 1153 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1154 struct sparc_frame_cache *cache =
236369e7 1155 sparc32_frame_cache (this_frame, this_cache);
c906108c 1156
386c036b 1157 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1158 {
236369e7 1159 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1160
236369e7
JB
1161 /* If this functions has a Structure, Union or Quad-Precision
1162 return value, we have to skip the UNIMP instruction that encodes
1163 the size of the structure. */
1164 if (cache->struct_return_p)
1165 pc += 4;
386c036b 1166
369c397b
JB
1167 regnum =
1168 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1169 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1170 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1171 }
1172
42cdca6c
MK
1173 /* Handle StackGhost. */
1174 {
e17a4113 1175 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1176
1177 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1178 {
236369e7
JB
1179 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1180 ULONGEST i7;
1181
1182 /* Read the value in from memory. */
1183 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1184 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1185 }
1186 }
1187
369c397b 1188 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1189 in the register save area. */
369c397b
JB
1190 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1191 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1192 {
236369e7 1193 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1194
236369e7 1195 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1196 }
c906108c 1197
369c397b
JB
1198 /* The previous frame's `out' registers may be accessible as the current
1199 frame's `in' registers. */
1200 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1201 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1202 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1203
236369e7 1204 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1205}
c906108c 1206
386c036b
MK
1207static const struct frame_unwind sparc32_frame_unwind =
1208{
1209 NORMAL_FRAME,
8fbca658 1210 default_frame_unwind_stop_reason,
386c036b 1211 sparc32_frame_this_id,
236369e7
JB
1212 sparc32_frame_prev_register,
1213 NULL,
1214 default_frame_sniffer
386c036b 1215};
386c036b 1216\f
c906108c 1217
386c036b 1218static CORE_ADDR
236369e7 1219sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1220{
1221 struct sparc_frame_cache *cache =
236369e7 1222 sparc32_frame_cache (this_frame, this_cache);
c906108c 1223
386c036b
MK
1224 return cache->base;
1225}
c906108c 1226
386c036b
MK
1227static const struct frame_base sparc32_frame_base =
1228{
1229 &sparc32_frame_unwind,
1230 sparc32_frame_base_address,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address
1233};
c906108c 1234
386c036b 1235static struct frame_id
236369e7 1236sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1237{
1238 CORE_ADDR sp;
5af923b0 1239
236369e7 1240 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1241 if (sp & 1)
1242 sp += BIAS;
236369e7 1243 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1244}
1245\f
c906108c 1246
3923a2b2
MK
1247/* Extract a function return value of TYPE from REGCACHE, and copy
1248 that into VALBUF. */
5af923b0 1249
386c036b
MK
1250static void
1251sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1252 gdb_byte *valbuf)
386c036b
MK
1253{
1254 int len = TYPE_LENGTH (type);
fe10a582 1255 gdb_byte buf[32];
c906108c 1256
386c036b
MK
1257 gdb_assert (!sparc_structure_or_union_p (type));
1258 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1259
fe10a582 1260 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1261 {
386c036b
MK
1262 /* Floating return values. */
1263 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1264 if (len > 4)
1265 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1266 if (len > 8)
1267 {
1268 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1269 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1270 }
1271 if (len > 16)
1272 {
1273 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1274 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1275 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1276 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1277 }
386c036b 1278 memcpy (valbuf, buf, len);
5af923b0
MS
1279 }
1280 else
1281 {
386c036b
MK
1282 /* Integral and pointer return values. */
1283 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1284
386c036b
MK
1285 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1286 if (len > 4)
1287 {
1288 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1289 gdb_assert (len == 8);
1290 memcpy (valbuf, buf, 8);
1291 }
1292 else
1293 {
1294 /* Just stripping off any unused bytes should preserve the
1295 signed-ness just fine. */
1296 memcpy (valbuf, buf + 4 - len, len);
1297 }
1298 }
1299}
c906108c 1300
3923a2b2
MK
1301/* Store the function return value of type TYPE from VALBUF into
1302 REGCACHE. */
c906108c 1303
386c036b
MK
1304static void
1305sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1306 const gdb_byte *valbuf)
386c036b
MK
1307{
1308 int len = TYPE_LENGTH (type);
e1613aba 1309 gdb_byte buf[8];
c906108c 1310
386c036b
MK
1311 gdb_assert (!sparc_structure_or_union_p (type));
1312 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1313 gdb_assert (len <= 8);
c906108c 1314
fe10a582 1315 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1316 {
1317 /* Floating return values. */
1318 memcpy (buf, valbuf, len);
1319 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1320 if (len > 4)
1321 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1322 if (len > 8)
1323 {
1324 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1325 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1326 }
1327 if (len > 16)
1328 {
1329 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1330 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1331 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1332 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1333 }
386c036b
MK
1334 }
1335 else
c906108c 1336 {
386c036b
MK
1337 /* Integral and pointer return values. */
1338 gdb_assert (sparc_integral_or_pointer_p (type));
1339
1340 if (len > 4)
2757dd86 1341 {
386c036b
MK
1342 gdb_assert (len == 8);
1343 memcpy (buf, valbuf, 8);
1344 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1345 }
1346 else
1347 {
386c036b
MK
1348 /* ??? Do we need to do any sign-extension here? */
1349 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1350 }
386c036b 1351 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1352 }
1353}
1354
b9d4c5ed 1355static enum return_value_convention
c055b101
CV
1356sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1357 struct type *type, struct regcache *regcache,
1358 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1359{
e17a4113
UW
1360 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1361
0a8f48b9
MK
1362 /* The psABI says that "...every stack frame reserves the word at
1363 %fp+64. If a function returns a structure, union, or
1364 quad-precision value, this word should hold the address of the
1365 object into which the return value should be copied." This
1366 guarantees that we can always find the return value, not just
1367 before the function returns. */
1368
b9d4c5ed
MK
1369 if (sparc_structure_or_union_p (type)
1370 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1371 {
1372 if (readbuf)
1373 {
1374 ULONGEST sp;
1375 CORE_ADDR addr;
1376
1377 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1378 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1379 read_memory (addr, readbuf, TYPE_LENGTH (type));
1380 }
1381
1382 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1383 }
b9d4c5ed
MK
1384
1385 if (readbuf)
1386 sparc32_extract_return_value (type, regcache, readbuf);
1387 if (writebuf)
1388 sparc32_store_return_value (type, regcache, writebuf);
1389
1390 return RETURN_VALUE_REGISTER_CONVENTION;
1391}
1392
386c036b
MK
1393static int
1394sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1395{
386c036b 1396 return (sparc_structure_or_union_p (type)
fe10a582
DM
1397 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1398 || sparc_complex_floating_p (type));
386c036b 1399}
c906108c 1400
aff37fc1 1401static int
4a4e5149 1402sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1403{
236369e7 1404 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1405 struct symbol *sym = find_pc_function (pc);
1406
1407 if (sym)
1408 return sparc32_struct_return_from_sym (sym);
1409 return 0;
1410}
1411
f5a9b87d
DM
1412static void
1413sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1414 struct dwarf2_frame_state_reg *reg,
4a4e5149 1415 struct frame_info *this_frame)
f5a9b87d 1416{
aff37fc1
DM
1417 int off;
1418
f5a9b87d
DM
1419 switch (regnum)
1420 {
1421 case SPARC_G0_REGNUM:
1422 /* Since %g0 is always zero, there is no point in saving it, and
1423 people will be inclined omit it from the CFI. Make sure we
1424 don't warn about that. */
1425 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1426 break;
1427 case SPARC_SP_REGNUM:
1428 reg->how = DWARF2_FRAME_REG_CFA;
1429 break;
1430 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1431 case SPARC32_NPC_REGNUM:
1432 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1433 off = 8;
4a4e5149 1434 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1435 off += 4;
1436 if (regnum == SPARC32_NPC_REGNUM)
1437 off += 4;
1438 reg->loc.offset = off;
f5a9b87d
DM
1439 break;
1440 }
1441}
1442
386c036b
MK
1443\f
1444/* The SPARC Architecture doesn't have hardware single-step support,
1445 and most operating systems don't implement it either, so we provide
1446 software single-step mechanism. */
c906108c 1447
386c036b 1448static CORE_ADDR
0b1b3e42 1449sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1450 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1451{
1452 unsigned long insn = sparc_fetch_instruction (pc);
1453 int conditional_p = X_COND (insn) & 0x7;
1454 int branch_p = 0;
1455 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1456
386c036b 1457 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1458 {
386c036b
MK
1459 /* Branch on Integer Register with Prediction (BPr). */
1460 branch_p = 1;
1461 conditional_p = 1;
c906108c 1462 }
386c036b 1463 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1464 {
386c036b
MK
1465 /* Branch on Floating-Point Condition Codes (FBfcc). */
1466 branch_p = 1;
1467 offset = 4 * X_DISP22 (insn);
c906108c 1468 }
386c036b
MK
1469 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1470 {
1471 /* Branch on Floating-Point Condition Codes with Prediction
1472 (FBPfcc). */
1473 branch_p = 1;
1474 offset = 4 * X_DISP19 (insn);
1475 }
1476 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1477 {
1478 /* Branch on Integer Condition Codes (Bicc). */
1479 branch_p = 1;
1480 offset = 4 * X_DISP22 (insn);
1481 }
1482 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1483 {
386c036b
MK
1484 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1485 branch_p = 1;
1486 offset = 4 * X_DISP19 (insn);
c906108c 1487 }
c893be75
MK
1488 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1489 {
1490 /* Trap instruction (TRAP). */
0b1b3e42 1491 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1492 }
386c036b
MK
1493
1494 /* FIXME: Handle DONE and RETRY instructions. */
1495
386c036b 1496 if (branch_p)
c906108c 1497 {
386c036b 1498 if (conditional_p)
c906108c 1499 {
386c036b
MK
1500 /* For conditional branches, return nPC + 4 iff the annul
1501 bit is 1. */
1502 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1503 }
1504 else
1505 {
386c036b
MK
1506 /* For unconditional branches, return the target if its
1507 specified condition is "always" and return nPC + 4 if the
1508 condition is "never". If the annul bit is 1, set *NPC to
1509 zero. */
1510 if (X_COND (insn) == 0x0)
1511 pc = *npc, offset = 4;
1512 if (X_A (insn))
1513 *npc = 0;
1514
1515 gdb_assert (offset != 0);
1516 return pc + offset;
c906108c
SS
1517 }
1518 }
386c036b
MK
1519
1520 return 0;
c906108c
SS
1521}
1522
c893be75 1523static CORE_ADDR
0b1b3e42 1524sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1525{
1526 return 0;
1527}
1528
e6590a1b 1529int
0b1b3e42 1530sparc_software_single_step (struct frame_info *frame)
386c036b 1531{
0b1b3e42 1532 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1533 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1534 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1535 CORE_ADDR npc, nnpc;
c906108c 1536
e0cd558a 1537 CORE_ADDR pc, orig_npc;
c906108c 1538
0b1b3e42
UW
1539 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1540 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1541
e0cd558a 1542 /* Analyze the instruction at PC. */
0b1b3e42 1543 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1544 if (npc != 0)
6c95b8df 1545 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1546
e0cd558a 1547 if (nnpc != 0)
6c95b8df 1548 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1549
e0cd558a
UW
1550 /* Assert that we have set at least one breakpoint, and that
1551 they're not set at the same spot - unless we're going
1552 from here straight to NULL, i.e. a call or jump to 0. */
1553 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1554 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1555
1556 return 1;
386c036b
MK
1557}
1558
1559static void
61a1198a 1560sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1561{
61a1198a 1562 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1563
61a1198a
UW
1564 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1565 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1566}
1567\f
5af923b0 1568
a54124c5
MK
1569/* Return the appropriate register set for the core section identified
1570 by SECT_NAME and SECT_SIZE. */
1571
63807e1d 1572static const struct regset *
a54124c5
MK
1573sparc_regset_from_core_section (struct gdbarch *gdbarch,
1574 const char *sect_name, size_t sect_size)
1575{
1576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1577
c558d81a 1578 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1579 return tdep->gregset;
1580
c558d81a 1581 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1582 return tdep->fpregset;
1583
1584 return NULL;
1585}
1586\f
1587
386c036b
MK
1588static struct gdbarch *
1589sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1590{
1591 struct gdbarch_tdep *tdep;
1592 struct gdbarch *gdbarch;
c906108c 1593
386c036b
MK
1594 /* If there is already a candidate, use it. */
1595 arches = gdbarch_list_lookup_by_info (arches, &info);
1596 if (arches != NULL)
1597 return arches->gdbarch;
c906108c 1598
386c036b 1599 /* Allocate space for the new architecture. */
1390fcc2 1600 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1601 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1602
386c036b
MK
1603 tdep->pc_regnum = SPARC32_PC_REGNUM;
1604 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1605 tdep->step_trap = sparc_step_trap;
386c036b
MK
1606
1607 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1608 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1609
1610 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1611 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1612 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1613 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1614 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1615 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1616
1617 /* Register numbers of various important registers. */
1618 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1619 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1620 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1621
1622 /* Call dummy code. */
49a45ecf 1623 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1624 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1625 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1626 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1627
b9d4c5ed 1628 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1629 set_gdbarch_stabs_argument_has_addr
1630 (gdbarch, sparc32_stabs_argument_has_addr);
1631
1632 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1633
1634 /* Stack grows downward. */
1635 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1636
386c036b 1637 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1638
386c036b 1639 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1640
386c036b 1641 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1642
386c036b
MK
1643 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1644 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1645
236369e7 1646 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1647
386c036b 1648 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1649
386c036b
MK
1650 frame_base_set_default (gdbarch, &sparc32_frame_base);
1651
f5a9b87d
DM
1652 /* Hook in the DWARF CFI frame unwinder. */
1653 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1654 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1655 StackGhost issues have been resolved. */
1656
b2a0b9b2
DM
1657 /* Hook in ABI-specific overrides, if they have been registered. */
1658 gdbarch_init_osabi (info, gdbarch);
1659
236369e7 1660 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1661
a54124c5 1662 /* If we have register sets, enable the generic core file support. */
4c72d57a 1663 if (tdep->gregset)
a54124c5
MK
1664 set_gdbarch_regset_from_core_section (gdbarch,
1665 sparc_regset_from_core_section);
1666
386c036b
MK
1667 return gdbarch;
1668}
1669\f
1670/* Helper functions for dealing with register windows. */
1671
1672void
1673sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1674{
e17a4113
UW
1675 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1677 int offset = 0;
e1613aba 1678 gdb_byte buf[8];
386c036b
MK
1679 int i;
1680
1681 if (sp & 1)
1682 {
1683 /* Registers are 64-bit. */
1684 sp += BIAS;
c906108c 1685
386c036b
MK
1686 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1687 {
1688 if (regnum == i || regnum == -1)
1689 {
1690 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1691
1692 /* Handle StackGhost. */
1693 if (i == SPARC_I7_REGNUM)
1694 {
e17a4113
UW
1695 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1696 ULONGEST i7;
f700a364 1697
e17a4113
UW
1698 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1699 store_unsigned_integer (buf + offset, 8, byte_order,
1700 i7 ^ wcookie);
f700a364
MK
1701 }
1702
386c036b
MK
1703 regcache_raw_supply (regcache, i, buf);
1704 }
1705 }
1706 }
1707 else
c906108c 1708 {
386c036b
MK
1709 /* Registers are 32-bit. Toss any sign-extension of the stack
1710 pointer. */
1711 sp &= 0xffffffffUL;
c906108c 1712
386c036b
MK
1713 /* Clear out the top half of the temporary buffer, and put the
1714 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1715 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1716 {
386c036b
MK
1717 memset (buf, 0, 4);
1718 offset = 4;
1719 }
c906108c 1720
386c036b
MK
1721 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1722 {
1723 if (regnum == i || regnum == -1)
1724 {
1725 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1726 buf + offset, 4);
42cdca6c
MK
1727
1728 /* Handle StackGhost. */
1729 if (i == SPARC_I7_REGNUM)
1730 {
e17a4113
UW
1731 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1732 ULONGEST i7;
42cdca6c 1733
e17a4113
UW
1734 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1735 store_unsigned_integer (buf + offset, 4, byte_order,
1736 i7 ^ wcookie);
42cdca6c
MK
1737 }
1738
386c036b
MK
1739 regcache_raw_supply (regcache, i, buf);
1740 }
c906108c
SS
1741 }
1742 }
c906108c 1743}
c906108c
SS
1744
1745void
386c036b
MK
1746sparc_collect_rwindow (const struct regcache *regcache,
1747 CORE_ADDR sp, int regnum)
c906108c 1748{
e17a4113
UW
1749 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1750 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1751 int offset = 0;
e1613aba 1752 gdb_byte buf[8];
386c036b 1753 int i;
5af923b0 1754
386c036b 1755 if (sp & 1)
5af923b0 1756 {
386c036b
MK
1757 /* Registers are 64-bit. */
1758 sp += BIAS;
c906108c 1759
386c036b
MK
1760 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1761 {
1762 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1763 {
1764 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1765
1766 /* Handle StackGhost. */
1767 if (i == SPARC_I7_REGNUM)
1768 {
e17a4113
UW
1769 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1770 ULONGEST i7;
f700a364 1771
e17a4113
UW
1772 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1773 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1774 }
1775
386c036b
MK
1776 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1777 }
1778 }
5af923b0
MS
1779 }
1780 else
1781 {
386c036b
MK
1782 /* Registers are 32-bit. Toss any sign-extension of the stack
1783 pointer. */
1784 sp &= 0xffffffffUL;
1785
1786 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1787 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1788 offset = 4;
1789
1790 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1791 {
1792 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1793 {
1794 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1795
1796 /* Handle StackGhost. */
1797 if (i == SPARC_I7_REGNUM)
1798 {
e17a4113
UW
1799 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1800 ULONGEST i7;
42cdca6c 1801
e17a4113
UW
1802 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1803 store_unsigned_integer (buf + offset, 4, byte_order,
1804 i7 ^ wcookie);
42cdca6c
MK
1805 }
1806
386c036b
MK
1807 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1808 buf + offset, 4);
1809 }
1810 }
5af923b0 1811 }
c906108c
SS
1812}
1813
386c036b
MK
1814/* Helper functions for dealing with register sets. */
1815
c906108c 1816void
386c036b
MK
1817sparc32_supply_gregset (const struct sparc_gregset *gregset,
1818 struct regcache *regcache,
1819 int regnum, const void *gregs)
c906108c 1820{
e1613aba 1821 const gdb_byte *regs = gregs;
22e74ef9 1822 gdb_byte zero[4] = { 0 };
386c036b 1823 int i;
5af923b0 1824
386c036b
MK
1825 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1826 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1827 regs + gregset->r_psr_offset);
c906108c 1828
386c036b
MK
1829 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1830 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1831 regs + gregset->r_pc_offset);
5af923b0 1832
386c036b
MK
1833 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1834 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1835 regs + gregset->r_npc_offset);
5af923b0 1836
386c036b
MK
1837 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1838 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1839 regs + gregset->r_y_offset);
5af923b0 1840
386c036b 1841 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1842 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1843
386c036b 1844 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1845 {
386c036b
MK
1846 int offset = gregset->r_g1_offset;
1847
1848 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1849 {
1850 if (regnum == i || regnum == -1)
1851 regcache_raw_supply (regcache, i, regs + offset);
1852 offset += 4;
1853 }
c906108c 1854 }
386c036b
MK
1855
1856 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1857 {
386c036b
MK
1858 /* Not all of the register set variants include Locals and
1859 Inputs. For those that don't, we read them off the stack. */
1860 if (gregset->r_l0_offset == -1)
1861 {
1862 ULONGEST sp;
1863
1864 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1865 sparc_supply_rwindow (regcache, sp, regnum);
1866 }
1867 else
1868 {
1869 int offset = gregset->r_l0_offset;
1870
1871 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1872 {
1873 if (regnum == i || regnum == -1)
1874 regcache_raw_supply (regcache, i, regs + offset);
1875 offset += 4;
1876 }
1877 }
c906108c
SS
1878 }
1879}
1880
c5aa993b 1881void
386c036b
MK
1882sparc32_collect_gregset (const struct sparc_gregset *gregset,
1883 const struct regcache *regcache,
1884 int regnum, void *gregs)
c906108c 1885{
e1613aba 1886 gdb_byte *regs = gregs;
386c036b 1887 int i;
c5aa993b 1888
386c036b
MK
1889 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1890 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1891 regs + gregset->r_psr_offset);
60054393 1892
386c036b
MK
1893 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1894 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1895 regs + gregset->r_pc_offset);
1896
1897 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1898 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1899 regs + gregset->r_npc_offset);
5af923b0 1900
386c036b
MK
1901 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1902 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1903 regs + gregset->r_y_offset);
1904
1905 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1906 {
386c036b
MK
1907 int offset = gregset->r_g1_offset;
1908
1909 /* %g0 is always zero. */
1910 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1911 {
1912 if (regnum == i || regnum == -1)
1913 regcache_raw_collect (regcache, i, regs + offset);
1914 offset += 4;
1915 }
5af923b0 1916 }
386c036b
MK
1917
1918 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1919 {
386c036b
MK
1920 /* Not all of the register set variants include Locals and
1921 Inputs. For those that don't, we read them off the stack. */
1922 if (gregset->r_l0_offset != -1)
1923 {
1924 int offset = gregset->r_l0_offset;
1925
1926 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1927 {
1928 if (regnum == i || regnum == -1)
1929 regcache_raw_collect (regcache, i, regs + offset);
1930 offset += 4;
1931 }
1932 }
5af923b0 1933 }
c906108c
SS
1934}
1935
c906108c 1936void
386c036b
MK
1937sparc32_supply_fpregset (struct regcache *regcache,
1938 int regnum, const void *fpregs)
c906108c 1939{
e1613aba 1940 const gdb_byte *regs = fpregs;
386c036b 1941 int i;
60054393 1942
386c036b 1943 for (i = 0; i < 32; i++)
c906108c 1944 {
386c036b
MK
1945 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1946 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1947 }
5af923b0 1948
386c036b
MK
1949 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1950 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1951}
1952
386c036b
MK
1953void
1954sparc32_collect_fpregset (const struct regcache *regcache,
1955 int regnum, void *fpregs)
c906108c 1956{
e1613aba 1957 gdb_byte *regs = fpregs;
386c036b 1958 int i;
c906108c 1959
386c036b
MK
1960 for (i = 0; i < 32; i++)
1961 {
1962 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1963 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1964 }
c906108c 1965
386c036b
MK
1966 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1967 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1968}
c906108c 1969\f
c906108c 1970
386c036b 1971/* SunOS 4. */
c906108c 1972
386c036b
MK
1973/* From <machine/reg.h>. */
1974const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1975{
386c036b
MK
1976 0 * 4, /* %psr */
1977 1 * 4, /* %pc */
1978 2 * 4, /* %npc */
1979 3 * 4, /* %y */
1980 -1, /* %wim */
1981 -1, /* %tbr */
1982 4 * 4, /* %g1 */
1983 -1 /* %l0 */
1984};
1985\f
c906108c 1986
386c036b
MK
1987/* Provide a prototype to silence -Wmissing-prototypes. */
1988void _initialize_sparc_tdep (void);
c906108c
SS
1989
1990void
386c036b 1991_initialize_sparc_tdep (void)
c906108c 1992{
386c036b 1993 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1994}
This page took 1.691615 seconds and 4 git commands to generate.