* gc++filt.m4: New file.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
4c38e0a4 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
0497f5b0
JB
224/* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
c906108c 229
386c036b
MK
230static int
231sparc_structure_or_union_p (const struct type *type)
232{
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
0497f5b0 237 case TYPE_CODE_ARRAY:
386c036b
MK
238 return 1;
239 default:
240 break;
c906108c 241 }
386c036b
MK
242
243 return 0;
c906108c 244}
386c036b
MK
245
246/* Register information. */
247
248static const char *sparc32_register_names[] =
5af923b0 249{
386c036b
MK
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
261};
262
386c036b
MK
263/* Total number of registers. */
264#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 265
386c036b
MK
266/* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269static const char *sparc32_pseudo_register_names[] =
270{
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273};
274
275/* Total number of pseudo registers. */
276#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278/* Return the name of register REGNUM. */
279
280static const char *
d93859e2 281sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
282{
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290}
2d457077 291\f
209bd28e 292/* Construct types for ISA-specific registers. */
2d457077 293
209bd28e
UW
294static struct type *
295sparc_psr_type (struct gdbarch *gdbarch)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 298
209bd28e
UW
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
2d457077 302
e9bb382b 303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
2d457077 309
209bd28e
UW
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314}
315
316static struct type *
317sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 318{
209bd28e
UW
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
e9bb382b 325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
2d457077 347}
386c036b
MK
348
349/* Return the GDB type object for the "standard" data type of data in
350 register REGNUM. */
351
352static struct type *
353sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354{
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 356 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 359 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 362 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 365 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 366
2d457077 367 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 368 return sparc_psr_type (gdbarch);
2d457077
MK
369
370 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 371 return sparc_fsr_type (gdbarch);
2d457077 372
df4df182 373 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
374}
375
376static void
377sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
e1613aba 379 int regnum, gdb_byte *buf)
386c036b
MK
380{
381 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
382
383 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
384 regcache_raw_read (regcache, regnum, buf);
e1613aba 385 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
386}
387
388static void
389sparc32_pseudo_register_write (struct gdbarch *gdbarch,
390 struct regcache *regcache,
e1613aba 391 int regnum, const gdb_byte *buf)
386c036b
MK
392{
393 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
394
395 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
396 regcache_raw_write (regcache, regnum, buf);
e1613aba 397 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
398}
399\f
400
401static CORE_ADDR
402sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 403 CORE_ADDR funcaddr,
386c036b
MK
404 struct value **args, int nargs,
405 struct type *value_type,
e4fd649a
UW
406 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
407 struct regcache *regcache)
c906108c 408{
e17a4113
UW
409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
410
386c036b
MK
411 *bp_addr = sp - 4;
412 *real_pc = funcaddr;
413
d80b854b 414 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 415 {
e1613aba 416 gdb_byte buf[4];
386c036b
MK
417
418 /* This is an UNIMP instruction. */
e17a4113
UW
419 store_unsigned_integer (buf, 4, byte_order,
420 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
421 write_memory (sp - 8, buf, 4);
422 return sp - 8;
c906108c
SS
423 }
424
386c036b
MK
425 return sp - 4;
426}
427
428static CORE_ADDR
429sparc32_store_arguments (struct regcache *regcache, int nargs,
430 struct value **args, CORE_ADDR sp,
431 int struct_return, CORE_ADDR struct_addr)
432{
df4df182 433 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
435 /* Number of words in the "parameter array". */
436 int num_elements = 0;
437 int element = 0;
438 int i;
439
440 for (i = 0; i < nargs; i++)
c906108c 441 {
4991999e 442 struct type *type = value_type (args[i]);
386c036b
MK
443 int len = TYPE_LENGTH (type);
444
445 if (sparc_structure_or_union_p (type)
446 || (sparc_floating_p (type) && len == 16))
c906108c 447 {
386c036b
MK
448 /* Structure, Union and Quad-Precision Arguments. */
449 sp -= len;
450
451 /* Use doubleword alignment for these values. That's always
452 correct, and wasting a few bytes shouldn't be a problem. */
453 sp &= ~0x7;
454
0fd88904 455 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
456 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
457 num_elements++;
458 }
459 else if (sparc_floating_p (type))
460 {
461 /* Floating arguments. */
462 gdb_assert (len == 4 || len == 8);
463 num_elements += (len / 4);
c906108c 464 }
c5aa993b
JM
465 else
466 {
386c036b
MK
467 /* Integral and pointer arguments. */
468 gdb_assert (sparc_integral_or_pointer_p (type));
469
470 if (len < 4)
df4df182
UW
471 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
472 args[i]);
386c036b 473 num_elements += ((len + 3) / 4);
c5aa993b 474 }
c906108c 475 }
c906108c 476
386c036b
MK
477 /* Always allocate at least six words. */
478 sp -= max (6, num_elements) * 4;
c906108c 479
386c036b
MK
480 /* The psABI says that "Software convention requires space for the
481 struct/union return value pointer, even if the word is unused." */
482 sp -= 4;
c906108c 483
386c036b
MK
484 /* The psABI says that "Although software convention and the
485 operating system require every stack frame to be doubleword
486 aligned." */
487 sp &= ~0x7;
c906108c 488
386c036b 489 for (i = 0; i < nargs; i++)
c906108c 490 {
0fd88904 491 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 492 struct type *type = value_type (args[i]);
386c036b 493 int len = TYPE_LENGTH (type);
c906108c 494
386c036b 495 gdb_assert (len == 4 || len == 8);
c906108c 496
386c036b
MK
497 if (element < 6)
498 {
499 int regnum = SPARC_O0_REGNUM + element;
c906108c 500
386c036b
MK
501 regcache_cooked_write (regcache, regnum, valbuf);
502 if (len > 4 && element < 5)
503 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
504 }
5af923b0 505
386c036b
MK
506 /* Always store the argument in memory. */
507 write_memory (sp + 4 + element * 4, valbuf, len);
508 element += len / 4;
509 }
c906108c 510
386c036b 511 gdb_assert (element == num_elements);
c906108c 512
386c036b 513 if (struct_return)
c906108c 514 {
e1613aba 515 gdb_byte buf[4];
c906108c 516
e17a4113 517 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
518 write_memory (sp, buf, 4);
519 }
c906108c 520
386c036b 521 return sp;
c906108c
SS
522}
523
386c036b 524static CORE_ADDR
7d9b040b 525sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
526 struct regcache *regcache, CORE_ADDR bp_addr,
527 int nargs, struct value **args, CORE_ADDR sp,
528 int struct_return, CORE_ADDR struct_addr)
c906108c 529{
386c036b
MK
530 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
531
532 /* Set return address. */
533 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
534
535 /* Set up function arguments. */
536 sp = sparc32_store_arguments (regcache, nargs, args, sp,
537 struct_return, struct_addr);
538
539 /* Allocate the 16-word window save area. */
540 sp -= 16 * 4;
c906108c 541
386c036b
MK
542 /* Stack should be doubleword aligned at this point. */
543 gdb_assert (sp % 8 == 0);
c906108c 544
386c036b
MK
545 /* Finally, update the stack pointer. */
546 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
547
548 return sp;
549}
550\f
c906108c 551
386c036b
MK
552/* Use the program counter to determine the contents and size of a
553 breakpoint instruction. Return a pointer to a string of bytes that
554 encode a breakpoint instruction, store the length of the string in
555 *LEN and optionally adjust *PC to point to the correct memory
556 location for inserting the breakpoint. */
557
e1613aba 558static const gdb_byte *
67d57894 559sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 560{
864a1a37 561 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 562
386c036b
MK
563 *len = sizeof (break_insn);
564 return break_insn;
c906108c 565}
386c036b 566\f
c906108c 567
386c036b 568/* Allocate and initialize a frame cache. */
c906108c 569
386c036b
MK
570static struct sparc_frame_cache *
571sparc_alloc_frame_cache (void)
572{
573 struct sparc_frame_cache *cache;
574 int i;
c906108c 575
386c036b 576 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 577
386c036b
MK
578 /* Base address. */
579 cache->base = 0;
580 cache->pc = 0;
c906108c 581
386c036b
MK
582 /* Frameless until proven otherwise. */
583 cache->frameless_p = 1;
584
585 cache->struct_return_p = 0;
586
587 return cache;
588}
589
b0b92586
JB
590/* GCC generates several well-known sequences of instructions at the begining
591 of each function prologue when compiling with -fstack-check. If one of
592 such sequences starts at START_PC, then return the address of the
593 instruction immediately past this sequence. Otherwise, return START_PC. */
594
595static CORE_ADDR
596sparc_skip_stack_check (const CORE_ADDR start_pc)
597{
598 CORE_ADDR pc = start_pc;
599 unsigned long insn;
600 int offset_stack_checking_sequence = 0;
601
602 /* With GCC, all stack checking sequences begin with the same two
603 instructions. */
604
605 /* sethi <some immediate>,%g1 */
606 insn = sparc_fetch_instruction (pc);
607 pc = pc + 4;
608 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
609 return start_pc;
610
611 /* sub %sp, %g1, %g1 */
612 insn = sparc_fetch_instruction (pc);
613 pc = pc + 4;
614 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
615 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
616 return start_pc;
617
618 insn = sparc_fetch_instruction (pc);
619 pc = pc + 4;
620
621 /* First possible sequence:
622 [first two instructions above]
623 clr [%g1 - some immediate] */
624
625 /* clr [%g1 - some immediate] */
626 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
627 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
628 {
629 /* Valid stack-check sequence, return the new PC. */
630 return pc;
631 }
632
633 /* Second possible sequence: A small number of probes.
634 [first two instructions above]
635 clr [%g1]
636 add %g1, -<some immediate>, %g1
637 clr [%g1]
638 [repeat the two instructions above any (small) number of times]
639 clr [%g1 - some immediate] */
640
641 /* clr [%g1] */
642 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
643 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
644 {
645 while (1)
646 {
647 /* add %g1, -<some immediate>, %g1 */
648 insn = sparc_fetch_instruction (pc);
649 pc = pc + 4;
650 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
651 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
652 break;
653
654 /* clr [%g1] */
655 insn = sparc_fetch_instruction (pc);
656 pc = pc + 4;
657 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
658 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
659 return start_pc;
660 }
661
662 /* clr [%g1 - some immediate] */
663 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
664 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
665 return start_pc;
666
667 /* We found a valid stack-check sequence, return the new PC. */
668 return pc;
669 }
670
671 /* Third sequence: A probing loop.
672 [first two instructions above]
673 sethi <some immediate>, %g4
674 sub %g1, %g4, %g4
675 cmp %g1, %g4
676 be <disp>
677 add %g1, -<some immediate>, %g1
678 ba <disp>
679 clr [%g1]
680 clr [%g4 - some immediate] */
681
682 /* sethi <some immediate>, %g4 */
683 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
684 {
685 /* sub %g1, %g4, %g4 */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
689 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
690 return start_pc;
691
692 /* cmp %g1, %g4 */
693 insn = sparc_fetch_instruction (pc);
694 pc = pc + 4;
695 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
696 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
697 return start_pc;
698
699 /* be <disp> */
700 insn = sparc_fetch_instruction (pc);
701 pc = pc + 4;
702 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
703 return start_pc;
704
705 /* add %g1, -<some immediate>, %g1 */
706 insn = sparc_fetch_instruction (pc);
707 pc = pc + 4;
708 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
709 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
710 return start_pc;
711
712 /* ba <disp> */
713 insn = sparc_fetch_instruction (pc);
714 pc = pc + 4;
715 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
716 return start_pc;
717
718 /* clr [%g1] */
719 insn = sparc_fetch_instruction (pc);
720 pc = pc + 4;
721 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
722 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
723 return start_pc;
724
725 /* clr [%g4 - some immediate] */
726 insn = sparc_fetch_instruction (pc);
727 pc = pc + 4;
728 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
729 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
730 return start_pc;
731
732 /* We found a valid stack-check sequence, return the new PC. */
733 return pc;
734 }
735
736 /* No stack check code in our prologue, return the start_pc. */
737 return start_pc;
738}
739
386c036b 740CORE_ADDR
be8626e0
MD
741sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
742 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 743{
be8626e0 744 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
745 unsigned long insn;
746 int offset = 0;
c906108c 747 int dest = -1;
c906108c 748
b0b92586
JB
749 pc = sparc_skip_stack_check (pc);
750
386c036b
MK
751 if (current_pc <= pc)
752 return current_pc;
753
754 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
755 SPARC the linker usually defines a symbol (typically
756 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
757 This symbol makes us end up here with PC pointing at the start of
758 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
759 would do our normal prologue analysis, we would probably conclude
760 that we've got a frame when in reality we don't, since the
761 dynamic linker patches up the first PLT with some code that
762 starts with a SAVE instruction. Patch up PC such that it points
763 at the start of our PLT entry. */
764 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
765 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 766
386c036b
MK
767 insn = sparc_fetch_instruction (pc);
768
769 /* Recognize a SETHI insn and record its destination. */
770 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
771 {
772 dest = X_RD (insn);
386c036b
MK
773 offset += 4;
774
775 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
776 }
777
386c036b
MK
778 /* Allow for an arithmetic operation on DEST or %g1. */
779 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
780 && (X_RD (insn) == 1 || X_RD (insn) == dest))
781 {
386c036b 782 offset += 4;
c906108c 783
386c036b 784 insn = sparc_fetch_instruction (pc + 8);
c906108c 785 }
c906108c 786
386c036b
MK
787 /* Check for the SAVE instruction that sets up the frame. */
788 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 789 {
386c036b
MK
790 cache->frameless_p = 0;
791 return pc + offset + 4;
c906108c
SS
792 }
793
794 return pc;
795}
796
386c036b 797static CORE_ADDR
236369e7 798sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
799{
800 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 801 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
802}
803
804/* Return PC of first real instruction of the function starting at
805 START_PC. */
f510d44e 806
386c036b 807static CORE_ADDR
6093d2eb 808sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 809{
f510d44e
DM
810 struct symtab_and_line sal;
811 CORE_ADDR func_start, func_end;
386c036b 812 struct sparc_frame_cache cache;
f510d44e
DM
813
814 /* This is the preferred method, find the end of the prologue by
815 using the debugging information. */
816 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
817 {
818 sal = find_pc_line (func_start, 0);
819
820 if (sal.end < func_end
821 && start_pc <= sal.end)
822 return sal.end;
823 }
824
be8626e0 825 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
826
827 /* The psABI says that "Although the first 6 words of arguments
828 reside in registers, the standard stack frame reserves space for
829 them.". It also suggests that a function may use that space to
830 "write incoming arguments 0 to 5" into that space, and that's
831 indeed what GCC seems to be doing. In that case GCC will
832 generate debug information that points to the stack slots instead
833 of the registers, so we should consider the instructions that
834 write out these incoming arguments onto the stack. Of course we
835 only need to do this if we have a stack frame. */
836
837 while (!cache.frameless_p)
838 {
839 unsigned long insn = sparc_fetch_instruction (start_pc);
840
841 /* Recognize instructions that store incoming arguments in
842 %i0...%i5 into the corresponding stack slot. */
843 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
844 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
845 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
846 {
847 start_pc += 4;
848 continue;
849 }
850
851 break;
852 }
853
854 return start_pc;
c906108c
SS
855}
856
386c036b 857/* Normal frames. */
9319a2fe 858
386c036b 859struct sparc_frame_cache *
236369e7 860sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 861{
386c036b 862 struct sparc_frame_cache *cache;
9319a2fe 863
386c036b
MK
864 if (*this_cache)
865 return *this_cache;
c906108c 866
386c036b
MK
867 cache = sparc_alloc_frame_cache ();
868 *this_cache = cache;
c906108c 869
236369e7 870 cache->pc = get_frame_func (this_frame);
386c036b 871 if (cache->pc != 0)
236369e7
JB
872 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
873 get_frame_pc (this_frame), cache);
386c036b
MK
874
875 if (cache->frameless_p)
c906108c 876 {
cbeae229
MK
877 /* This function is frameless, so %fp (%i6) holds the frame
878 pointer for our calling frame. Use %sp (%o6) as this frame's
879 base address. */
880 cache->base =
236369e7 881 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
882 }
883 else
884 {
885 /* For normal frames, %fp (%i6) holds the frame pointer, the
886 base address for the current stack frame. */
887 cache->base =
236369e7 888 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 889 }
c906108c 890
5b2d44a0
MK
891 if (cache->base & 1)
892 cache->base += BIAS;
893
386c036b 894 return cache;
c906108c 895}
c906108c 896
aff37fc1
DM
897static int
898sparc32_struct_return_from_sym (struct symbol *sym)
899{
900 struct type *type = check_typedef (SYMBOL_TYPE (sym));
901 enum type_code code = TYPE_CODE (type);
902
903 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
904 {
905 type = check_typedef (TYPE_TARGET_TYPE (type));
906 if (sparc_structure_or_union_p (type)
907 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
908 return 1;
909 }
910
911 return 0;
912}
913
386c036b 914struct sparc_frame_cache *
236369e7 915sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 916{
386c036b
MK
917 struct sparc_frame_cache *cache;
918 struct symbol *sym;
c906108c 919
386c036b
MK
920 if (*this_cache)
921 return *this_cache;
c906108c 922
236369e7 923 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 924
386c036b
MK
925 sym = find_pc_function (cache->pc);
926 if (sym)
c906108c 927 {
aff37fc1 928 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 929 }
5465445a
JB
930 else
931 {
932 /* There is no debugging information for this function to
933 help us determine whether this function returns a struct
934 or not. So we rely on another heuristic which is to check
935 the instruction at the return address and see if this is
936 an "unimp" instruction. If it is, then it is a struct-return
937 function. */
938 CORE_ADDR pc;
939 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
940
236369e7 941 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
942 if (sparc_is_unimp_insn (pc))
943 cache->struct_return_p = 1;
944 }
c906108c 945
386c036b
MK
946 return cache;
947}
948
949static void
236369e7 950sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
951 struct frame_id *this_id)
952{
953 struct sparc_frame_cache *cache =
236369e7 954 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
955
956 /* This marks the outermost frame. */
957 if (cache->base == 0)
958 return;
959
960 (*this_id) = frame_id_build (cache->base, cache->pc);
961}
c906108c 962
236369e7
JB
963static struct value *
964sparc32_frame_prev_register (struct frame_info *this_frame,
965 void **this_cache, int regnum)
386c036b 966{
e17a4113 967 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 968 struct sparc_frame_cache *cache =
236369e7 969 sparc32_frame_cache (this_frame, this_cache);
c906108c 970
386c036b 971 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 972 {
236369e7 973 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 974
236369e7
JB
975 /* If this functions has a Structure, Union or Quad-Precision
976 return value, we have to skip the UNIMP instruction that encodes
977 the size of the structure. */
978 if (cache->struct_return_p)
979 pc += 4;
386c036b 980
236369e7
JB
981 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
982 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
983 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
984 }
985
42cdca6c
MK
986 /* Handle StackGhost. */
987 {
e17a4113 988 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
989
990 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
991 {
236369e7
JB
992 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
993 ULONGEST i7;
994
995 /* Read the value in from memory. */
996 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
997 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
998 }
999 }
1000
386c036b
MK
1001 /* The previous frame's `local' and `in' registers have been saved
1002 in the register save area. */
1003 if (!cache->frameless_p
1004 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 1005 {
236369e7 1006 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1007
236369e7 1008 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1009 }
c906108c 1010
236369e7 1011 /* The previous frame's `out' registers are accessible as the
386c036b
MK
1012 current frame's `in' registers. */
1013 if (!cache->frameless_p
1014 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1015 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1016
236369e7 1017 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1018}
c906108c 1019
386c036b
MK
1020static const struct frame_unwind sparc32_frame_unwind =
1021{
1022 NORMAL_FRAME,
1023 sparc32_frame_this_id,
236369e7
JB
1024 sparc32_frame_prev_register,
1025 NULL,
1026 default_frame_sniffer
386c036b 1027};
386c036b 1028\f
c906108c 1029
386c036b 1030static CORE_ADDR
236369e7 1031sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1032{
1033 struct sparc_frame_cache *cache =
236369e7 1034 sparc32_frame_cache (this_frame, this_cache);
c906108c 1035
386c036b
MK
1036 return cache->base;
1037}
c906108c 1038
386c036b
MK
1039static const struct frame_base sparc32_frame_base =
1040{
1041 &sparc32_frame_unwind,
1042 sparc32_frame_base_address,
1043 sparc32_frame_base_address,
1044 sparc32_frame_base_address
1045};
c906108c 1046
386c036b 1047static struct frame_id
236369e7 1048sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1049{
1050 CORE_ADDR sp;
5af923b0 1051
236369e7 1052 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1053 if (sp & 1)
1054 sp += BIAS;
236369e7 1055 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1056}
1057\f
c906108c 1058
3923a2b2
MK
1059/* Extract a function return value of TYPE from REGCACHE, and copy
1060 that into VALBUF. */
5af923b0 1061
386c036b
MK
1062static void
1063sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1064 gdb_byte *valbuf)
386c036b
MK
1065{
1066 int len = TYPE_LENGTH (type);
e1613aba 1067 gdb_byte buf[8];
c906108c 1068
386c036b
MK
1069 gdb_assert (!sparc_structure_or_union_p (type));
1070 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1071
386c036b 1072 if (sparc_floating_p (type))
5af923b0 1073 {
386c036b
MK
1074 /* Floating return values. */
1075 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1076 if (len > 4)
1077 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1078 memcpy (valbuf, buf, len);
5af923b0
MS
1079 }
1080 else
1081 {
386c036b
MK
1082 /* Integral and pointer return values. */
1083 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1084
386c036b
MK
1085 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1086 if (len > 4)
1087 {
1088 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1089 gdb_assert (len == 8);
1090 memcpy (valbuf, buf, 8);
1091 }
1092 else
1093 {
1094 /* Just stripping off any unused bytes should preserve the
1095 signed-ness just fine. */
1096 memcpy (valbuf, buf + 4 - len, len);
1097 }
1098 }
1099}
c906108c 1100
3923a2b2
MK
1101/* Store the function return value of type TYPE from VALBUF into
1102 REGCACHE. */
c906108c 1103
386c036b
MK
1104static void
1105sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1106 const gdb_byte *valbuf)
386c036b
MK
1107{
1108 int len = TYPE_LENGTH (type);
e1613aba 1109 gdb_byte buf[8];
c906108c 1110
386c036b
MK
1111 gdb_assert (!sparc_structure_or_union_p (type));
1112 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1113 gdb_assert (len <= 8);
c906108c 1114
386c036b
MK
1115 if (sparc_floating_p (type))
1116 {
1117 /* Floating return values. */
1118 memcpy (buf, valbuf, len);
1119 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1120 if (len > 4)
1121 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1122 }
1123 else
c906108c 1124 {
386c036b
MK
1125 /* Integral and pointer return values. */
1126 gdb_assert (sparc_integral_or_pointer_p (type));
1127
1128 if (len > 4)
2757dd86 1129 {
386c036b
MK
1130 gdb_assert (len == 8);
1131 memcpy (buf, valbuf, 8);
1132 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1133 }
1134 else
1135 {
386c036b
MK
1136 /* ??? Do we need to do any sign-extension here? */
1137 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1138 }
386c036b 1139 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1140 }
1141}
1142
b9d4c5ed 1143static enum return_value_convention
c055b101
CV
1144sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1145 struct type *type, struct regcache *regcache,
1146 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1147{
e17a4113
UW
1148 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1149
0a8f48b9
MK
1150 /* The psABI says that "...every stack frame reserves the word at
1151 %fp+64. If a function returns a structure, union, or
1152 quad-precision value, this word should hold the address of the
1153 object into which the return value should be copied." This
1154 guarantees that we can always find the return value, not just
1155 before the function returns. */
1156
b9d4c5ed
MK
1157 if (sparc_structure_or_union_p (type)
1158 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1159 {
1160 if (readbuf)
1161 {
1162 ULONGEST sp;
1163 CORE_ADDR addr;
1164
1165 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1166 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1167 read_memory (addr, readbuf, TYPE_LENGTH (type));
1168 }
1169
1170 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1171 }
b9d4c5ed
MK
1172
1173 if (readbuf)
1174 sparc32_extract_return_value (type, regcache, readbuf);
1175 if (writebuf)
1176 sparc32_store_return_value (type, regcache, writebuf);
1177
1178 return RETURN_VALUE_REGISTER_CONVENTION;
1179}
1180
386c036b
MK
1181static int
1182sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1183{
386c036b
MK
1184 return (sparc_structure_or_union_p (type)
1185 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1186}
c906108c 1187
aff37fc1 1188static int
4a4e5149 1189sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1190{
236369e7 1191 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1192 struct symbol *sym = find_pc_function (pc);
1193
1194 if (sym)
1195 return sparc32_struct_return_from_sym (sym);
1196 return 0;
1197}
1198
f5a9b87d
DM
1199static void
1200sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1201 struct dwarf2_frame_state_reg *reg,
4a4e5149 1202 struct frame_info *this_frame)
f5a9b87d 1203{
aff37fc1
DM
1204 int off;
1205
f5a9b87d
DM
1206 switch (regnum)
1207 {
1208 case SPARC_G0_REGNUM:
1209 /* Since %g0 is always zero, there is no point in saving it, and
1210 people will be inclined omit it from the CFI. Make sure we
1211 don't warn about that. */
1212 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1213 break;
1214 case SPARC_SP_REGNUM:
1215 reg->how = DWARF2_FRAME_REG_CFA;
1216 break;
1217 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1218 case SPARC32_NPC_REGNUM:
1219 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1220 off = 8;
4a4e5149 1221 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1222 off += 4;
1223 if (regnum == SPARC32_NPC_REGNUM)
1224 off += 4;
1225 reg->loc.offset = off;
f5a9b87d
DM
1226 break;
1227 }
1228}
1229
386c036b
MK
1230\f
1231/* The SPARC Architecture doesn't have hardware single-step support,
1232 and most operating systems don't implement it either, so we provide
1233 software single-step mechanism. */
c906108c 1234
386c036b 1235static CORE_ADDR
0b1b3e42 1236sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1237 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1238{
1239 unsigned long insn = sparc_fetch_instruction (pc);
1240 int conditional_p = X_COND (insn) & 0x7;
1241 int branch_p = 0;
1242 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1243
386c036b 1244 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1245 {
386c036b
MK
1246 /* Branch on Integer Register with Prediction (BPr). */
1247 branch_p = 1;
1248 conditional_p = 1;
c906108c 1249 }
386c036b 1250 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1251 {
386c036b
MK
1252 /* Branch on Floating-Point Condition Codes (FBfcc). */
1253 branch_p = 1;
1254 offset = 4 * X_DISP22 (insn);
c906108c 1255 }
386c036b
MK
1256 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1257 {
1258 /* Branch on Floating-Point Condition Codes with Prediction
1259 (FBPfcc). */
1260 branch_p = 1;
1261 offset = 4 * X_DISP19 (insn);
1262 }
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1264 {
1265 /* Branch on Integer Condition Codes (Bicc). */
1266 branch_p = 1;
1267 offset = 4 * X_DISP22 (insn);
1268 }
1269 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1270 {
386c036b
MK
1271 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1272 branch_p = 1;
1273 offset = 4 * X_DISP19 (insn);
c906108c 1274 }
c893be75
MK
1275 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1276 {
1277 /* Trap instruction (TRAP). */
0b1b3e42 1278 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1279 }
386c036b
MK
1280
1281 /* FIXME: Handle DONE and RETRY instructions. */
1282
386c036b 1283 if (branch_p)
c906108c 1284 {
386c036b 1285 if (conditional_p)
c906108c 1286 {
386c036b
MK
1287 /* For conditional branches, return nPC + 4 iff the annul
1288 bit is 1. */
1289 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1290 }
1291 else
1292 {
386c036b
MK
1293 /* For unconditional branches, return the target if its
1294 specified condition is "always" and return nPC + 4 if the
1295 condition is "never". If the annul bit is 1, set *NPC to
1296 zero. */
1297 if (X_COND (insn) == 0x0)
1298 pc = *npc, offset = 4;
1299 if (X_A (insn))
1300 *npc = 0;
1301
1302 gdb_assert (offset != 0);
1303 return pc + offset;
c906108c
SS
1304 }
1305 }
386c036b
MK
1306
1307 return 0;
c906108c
SS
1308}
1309
c893be75 1310static CORE_ADDR
0b1b3e42 1311sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1312{
1313 return 0;
1314}
1315
e6590a1b 1316int
0b1b3e42 1317sparc_software_single_step (struct frame_info *frame)
386c036b 1318{
0b1b3e42 1319 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1320 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1321 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1322 CORE_ADDR npc, nnpc;
c906108c 1323
e0cd558a 1324 CORE_ADDR pc, orig_npc;
c906108c 1325
0b1b3e42
UW
1326 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1327 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1328
e0cd558a 1329 /* Analyze the instruction at PC. */
0b1b3e42 1330 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1331 if (npc != 0)
6c95b8df 1332 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1333
e0cd558a 1334 if (nnpc != 0)
6c95b8df 1335 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1336
e0cd558a
UW
1337 /* Assert that we have set at least one breakpoint, and that
1338 they're not set at the same spot - unless we're going
1339 from here straight to NULL, i.e. a call or jump to 0. */
1340 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1341 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1342
1343 return 1;
386c036b
MK
1344}
1345
1346static void
61a1198a 1347sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1348{
61a1198a 1349 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1350
61a1198a
UW
1351 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1352 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1353}
1354\f
5af923b0 1355
a54124c5
MK
1356/* Return the appropriate register set for the core section identified
1357 by SECT_NAME and SECT_SIZE. */
1358
63807e1d 1359static const struct regset *
a54124c5
MK
1360sparc_regset_from_core_section (struct gdbarch *gdbarch,
1361 const char *sect_name, size_t sect_size)
1362{
1363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1364
c558d81a 1365 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1366 return tdep->gregset;
1367
c558d81a 1368 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1369 return tdep->fpregset;
1370
1371 return NULL;
1372}
1373\f
1374
386c036b
MK
1375static struct gdbarch *
1376sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1377{
1378 struct gdbarch_tdep *tdep;
1379 struct gdbarch *gdbarch;
c906108c 1380
386c036b
MK
1381 /* If there is already a candidate, use it. */
1382 arches = gdbarch_list_lookup_by_info (arches, &info);
1383 if (arches != NULL)
1384 return arches->gdbarch;
c906108c 1385
386c036b 1386 /* Allocate space for the new architecture. */
1390fcc2 1387 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1388 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1389
386c036b
MK
1390 tdep->pc_regnum = SPARC32_PC_REGNUM;
1391 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1392 tdep->step_trap = sparc_step_trap;
386c036b
MK
1393
1394 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1395 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1396
1397 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1398 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1399 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1400 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1401 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1402 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1403
1404 /* Register numbers of various important registers. */
1405 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1406 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1407 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1408
1409 /* Call dummy code. */
1410 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1411 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1412 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1413
b9d4c5ed 1414 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1415 set_gdbarch_stabs_argument_has_addr
1416 (gdbarch, sparc32_stabs_argument_has_addr);
1417
1418 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1419
1420 /* Stack grows downward. */
1421 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1422
386c036b 1423 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1424
386c036b 1425 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1426
386c036b 1427 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1428
386c036b
MK
1429 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1430 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1431
236369e7 1432 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1433
386c036b 1434 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1435
386c036b
MK
1436 frame_base_set_default (gdbarch, &sparc32_frame_base);
1437
f5a9b87d
DM
1438 /* Hook in the DWARF CFI frame unwinder. */
1439 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1440 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1441 StackGhost issues have been resolved. */
1442
b2a0b9b2
DM
1443 /* Hook in ABI-specific overrides, if they have been registered. */
1444 gdbarch_init_osabi (info, gdbarch);
1445
236369e7 1446 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1447
a54124c5 1448 /* If we have register sets, enable the generic core file support. */
4c72d57a 1449 if (tdep->gregset)
a54124c5
MK
1450 set_gdbarch_regset_from_core_section (gdbarch,
1451 sparc_regset_from_core_section);
1452
386c036b
MK
1453 return gdbarch;
1454}
1455\f
1456/* Helper functions for dealing with register windows. */
1457
1458void
1459sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1460{
e17a4113
UW
1461 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1463 int offset = 0;
e1613aba 1464 gdb_byte buf[8];
386c036b
MK
1465 int i;
1466
1467 if (sp & 1)
1468 {
1469 /* Registers are 64-bit. */
1470 sp += BIAS;
c906108c 1471
386c036b
MK
1472 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1473 {
1474 if (regnum == i || regnum == -1)
1475 {
1476 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1477
1478 /* Handle StackGhost. */
1479 if (i == SPARC_I7_REGNUM)
1480 {
e17a4113
UW
1481 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1482 ULONGEST i7;
f700a364 1483
e17a4113
UW
1484 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1485 store_unsigned_integer (buf + offset, 8, byte_order,
1486 i7 ^ wcookie);
f700a364
MK
1487 }
1488
386c036b
MK
1489 regcache_raw_supply (regcache, i, buf);
1490 }
1491 }
1492 }
1493 else
c906108c 1494 {
386c036b
MK
1495 /* Registers are 32-bit. Toss any sign-extension of the stack
1496 pointer. */
1497 sp &= 0xffffffffUL;
c906108c 1498
386c036b
MK
1499 /* Clear out the top half of the temporary buffer, and put the
1500 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1501 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1502 {
386c036b
MK
1503 memset (buf, 0, 4);
1504 offset = 4;
1505 }
c906108c 1506
386c036b
MK
1507 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1508 {
1509 if (regnum == i || regnum == -1)
1510 {
1511 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1512 buf + offset, 4);
42cdca6c
MK
1513
1514 /* Handle StackGhost. */
1515 if (i == SPARC_I7_REGNUM)
1516 {
e17a4113
UW
1517 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1518 ULONGEST i7;
42cdca6c 1519
e17a4113
UW
1520 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1521 store_unsigned_integer (buf + offset, 4, byte_order,
1522 i7 ^ wcookie);
42cdca6c
MK
1523 }
1524
386c036b
MK
1525 regcache_raw_supply (regcache, i, buf);
1526 }
c906108c
SS
1527 }
1528 }
c906108c 1529}
c906108c
SS
1530
1531void
386c036b
MK
1532sparc_collect_rwindow (const struct regcache *regcache,
1533 CORE_ADDR sp, int regnum)
c906108c 1534{
e17a4113
UW
1535 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1536 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1537 int offset = 0;
e1613aba 1538 gdb_byte buf[8];
386c036b 1539 int i;
5af923b0 1540
386c036b 1541 if (sp & 1)
5af923b0 1542 {
386c036b
MK
1543 /* Registers are 64-bit. */
1544 sp += BIAS;
c906108c 1545
386c036b
MK
1546 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1547 {
1548 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1549 {
1550 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1551
1552 /* Handle StackGhost. */
1553 if (i == SPARC_I7_REGNUM)
1554 {
e17a4113
UW
1555 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1556 ULONGEST i7;
f700a364 1557
e17a4113
UW
1558 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1559 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1560 }
1561
386c036b
MK
1562 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1563 }
1564 }
5af923b0
MS
1565 }
1566 else
1567 {
386c036b
MK
1568 /* Registers are 32-bit. Toss any sign-extension of the stack
1569 pointer. */
1570 sp &= 0xffffffffUL;
1571
1572 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1573 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1574 offset = 4;
1575
1576 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1577 {
1578 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1579 {
1580 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1581
1582 /* Handle StackGhost. */
1583 if (i == SPARC_I7_REGNUM)
1584 {
e17a4113
UW
1585 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1586 ULONGEST i7;
42cdca6c 1587
e17a4113
UW
1588 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1589 store_unsigned_integer (buf + offset, 4, byte_order,
1590 i7 ^ wcookie);
42cdca6c
MK
1591 }
1592
386c036b
MK
1593 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1594 buf + offset, 4);
1595 }
1596 }
5af923b0 1597 }
c906108c
SS
1598}
1599
386c036b
MK
1600/* Helper functions for dealing with register sets. */
1601
c906108c 1602void
386c036b
MK
1603sparc32_supply_gregset (const struct sparc_gregset *gregset,
1604 struct regcache *regcache,
1605 int regnum, const void *gregs)
c906108c 1606{
e1613aba 1607 const gdb_byte *regs = gregs;
386c036b 1608 int i;
5af923b0 1609
386c036b
MK
1610 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1611 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1612 regs + gregset->r_psr_offset);
c906108c 1613
386c036b
MK
1614 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1615 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1616 regs + gregset->r_pc_offset);
5af923b0 1617
386c036b
MK
1618 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1619 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1620 regs + gregset->r_npc_offset);
5af923b0 1621
386c036b
MK
1622 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1623 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1624 regs + gregset->r_y_offset);
5af923b0 1625
386c036b
MK
1626 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1627 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1628
386c036b 1629 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1630 {
386c036b
MK
1631 int offset = gregset->r_g1_offset;
1632
1633 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1634 {
1635 if (regnum == i || regnum == -1)
1636 regcache_raw_supply (regcache, i, regs + offset);
1637 offset += 4;
1638 }
c906108c 1639 }
386c036b
MK
1640
1641 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1642 {
386c036b
MK
1643 /* Not all of the register set variants include Locals and
1644 Inputs. For those that don't, we read them off the stack. */
1645 if (gregset->r_l0_offset == -1)
1646 {
1647 ULONGEST sp;
1648
1649 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1650 sparc_supply_rwindow (regcache, sp, regnum);
1651 }
1652 else
1653 {
1654 int offset = gregset->r_l0_offset;
1655
1656 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1657 {
1658 if (regnum == i || regnum == -1)
1659 regcache_raw_supply (regcache, i, regs + offset);
1660 offset += 4;
1661 }
1662 }
c906108c
SS
1663 }
1664}
1665
c5aa993b 1666void
386c036b
MK
1667sparc32_collect_gregset (const struct sparc_gregset *gregset,
1668 const struct regcache *regcache,
1669 int regnum, void *gregs)
c906108c 1670{
e1613aba 1671 gdb_byte *regs = gregs;
386c036b 1672 int i;
c5aa993b 1673
386c036b
MK
1674 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1675 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1676 regs + gregset->r_psr_offset);
60054393 1677
386c036b
MK
1678 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1679 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1680 regs + gregset->r_pc_offset);
1681
1682 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1683 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1684 regs + gregset->r_npc_offset);
5af923b0 1685
386c036b
MK
1686 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1687 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1688 regs + gregset->r_y_offset);
1689
1690 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1691 {
386c036b
MK
1692 int offset = gregset->r_g1_offset;
1693
1694 /* %g0 is always zero. */
1695 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1696 {
1697 if (regnum == i || regnum == -1)
1698 regcache_raw_collect (regcache, i, regs + offset);
1699 offset += 4;
1700 }
5af923b0 1701 }
386c036b
MK
1702
1703 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1704 {
386c036b
MK
1705 /* Not all of the register set variants include Locals and
1706 Inputs. For those that don't, we read them off the stack. */
1707 if (gregset->r_l0_offset != -1)
1708 {
1709 int offset = gregset->r_l0_offset;
1710
1711 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1712 {
1713 if (regnum == i || regnum == -1)
1714 regcache_raw_collect (regcache, i, regs + offset);
1715 offset += 4;
1716 }
1717 }
5af923b0 1718 }
c906108c
SS
1719}
1720
c906108c 1721void
386c036b
MK
1722sparc32_supply_fpregset (struct regcache *regcache,
1723 int regnum, const void *fpregs)
c906108c 1724{
e1613aba 1725 const gdb_byte *regs = fpregs;
386c036b 1726 int i;
60054393 1727
386c036b 1728 for (i = 0; i < 32; i++)
c906108c 1729 {
386c036b
MK
1730 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1731 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1732 }
5af923b0 1733
386c036b
MK
1734 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1735 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1736}
1737
386c036b
MK
1738void
1739sparc32_collect_fpregset (const struct regcache *regcache,
1740 int regnum, void *fpregs)
c906108c 1741{
e1613aba 1742 gdb_byte *regs = fpregs;
386c036b 1743 int i;
c906108c 1744
386c036b
MK
1745 for (i = 0; i < 32; i++)
1746 {
1747 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1748 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1749 }
c906108c 1750
386c036b
MK
1751 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1752 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1753}
c906108c 1754\f
c906108c 1755
386c036b 1756/* SunOS 4. */
c906108c 1757
386c036b
MK
1758/* From <machine/reg.h>. */
1759const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1760{
386c036b
MK
1761 0 * 4, /* %psr */
1762 1 * 4, /* %pc */
1763 2 * 4, /* %npc */
1764 3 * 4, /* %y */
1765 -1, /* %wim */
1766 -1, /* %tbr */
1767 4 * 4, /* %g1 */
1768 -1 /* %l0 */
1769};
1770\f
c906108c 1771
386c036b
MK
1772/* Provide a prototype to silence -Wmissing-prototypes. */
1773void _initialize_sparc_tdep (void);
c906108c
SS
1774
1775void
386c036b 1776_initialize_sparc_tdep (void)
c906108c 1777{
386c036b 1778 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1779}
This page took 1.181231 seconds and 4 git commands to generate.