Commit | Line | Data |
---|---|---|
f9e3b3cc | 1 | /* Target-dependent code for the SPARC for GDB, the GNU debugger. |
e50f526e | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997 |
94d4b713 | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
5259796b | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
5259796b JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
5259796b | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
5259796b | 18 | along with this program; if not, write to the Free Software |
673e1bab | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 | 20 | |
8b0f5a9d DE |
21 | /* ??? Support for calling functions from gdb in sparc64 is unfinished. */ |
22 | ||
bd5635a1 | 23 | #include "defs.h" |
bd5635a1 RP |
24 | #include "frame.h" |
25 | #include "inferior.h" | |
26 | #include "obstack.h" | |
bd5635a1 | 27 | #include "target.h" |
48792545 | 28 | #include "value.h" |
91550191 | 29 | #include "bfd.h" |
e50f526e | 30 | #include "gdb_string.h" |
4365c36c | 31 | |
8f86a4e4 JG |
32 | #ifdef USE_PROC_FS |
33 | #include <sys/procfs.h> | |
8f86a4e4 | 34 | #endif |
bd5635a1 | 35 | |
bd5635a1 RP |
36 | #include "gdbcore.h" |
37 | ||
33c65ba3 MA |
38 | #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE) |
39 | #define SPARC_HAS_FPU 0 | |
40 | #else | |
41 | #define SPARC_HAS_FPU 1 | |
42 | #endif | |
43 | ||
8b0f5a9d | 44 | #ifdef GDB_TARGET_IS_SPARC64 |
012be3ce | 45 | #define FP_REGISTER_BYTES (64 * 4) |
8b0f5a9d | 46 | #else |
012be3ce DP |
47 | #define FP_REGISTER_BYTES (32 * 4) |
48 | #endif | |
49 | ||
50 | /* If not defined, assume 32 bit sparc. */ | |
51 | #ifndef FP_MAX_REGNUM | |
52 | #define FP_MAX_REGNUM (FP0_REGNUM + 32) | |
8b0f5a9d DE |
53 | #endif |
54 | ||
55 | #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) | |
56 | ||
bd5635a1 RP |
57 | /* From infrun.c */ |
58 | extern int stop_after_trap; | |
59 | ||
b38f304c JG |
60 | /* We don't store all registers immediately when requested, since they |
61 | get sent over in large chunks anyway. Instead, we accumulate most | |
62 | of the changes and send them over once. "deferred_stores" keeps | |
63 | track of which sets of registers we have locally-changed copies of, | |
64 | so we only need send the groups that have changed. */ | |
65 | ||
66 | int deferred_stores = 0; /* Cumulates stores we want to do eventually. */ | |
67 | ||
33c65ba3 MA |
68 | |
69 | /* Fetch a single instruction. Even on bi-endian machines | |
70 | such as sparc86x, instructions are always big-endian. */ | |
71 | ||
72 | static unsigned long | |
73 | fetch_instruction (pc) | |
74 | CORE_ADDR pc; | |
75 | { | |
76 | unsigned long retval; | |
77 | int i; | |
78 | unsigned char buf[4]; | |
79 | ||
80 | read_memory (pc, buf, sizeof (buf)); | |
81 | ||
82 | /* Start at the most significant end of the integer, and work towards | |
83 | the least significant. */ | |
84 | retval = 0; | |
85 | for (i = 0; i < sizeof (buf); ++i) | |
86 | retval = (retval << 8) | buf[i]; | |
87 | return retval; | |
88 | } | |
89 | ||
90 | ||
8b0f5a9d DE |
91 | /* Branches with prediction are treated like their non-predicting cousins. */ |
92 | /* FIXME: What about floating point branches? */ | |
93 | ||
ee7b9e92 JK |
94 | /* Macros to extract fields from sparc instructions. */ |
95 | #define X_OP(i) (((i) >> 30) & 0x3) | |
96 | #define X_RD(i) (((i) >> 25) & 0x1f) | |
97 | #define X_A(i) (((i) >> 29) & 1) | |
98 | #define X_COND(i) (((i) >> 25) & 0xf) | |
99 | #define X_OP2(i) (((i) >> 22) & 0x7) | |
100 | #define X_IMM22(i) ((i) & 0x3fffff) | |
101 | #define X_OP3(i) (((i) >> 19) & 0x3f) | |
102 | #define X_RS1(i) (((i) >> 14) & 0x1f) | |
103 | #define X_I(i) (((i) >> 13) & 1) | |
104 | #define X_IMM13(i) ((i) & 0x1fff) | |
105 | /* Sign extension macros. */ | |
106 | #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) | |
107 | #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) | |
8b0f5a9d DE |
108 | #define X_CC(i) (((i) >> 20) & 3) |
109 | #define X_P(i) (((i) >> 19) & 1) | |
110 | #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) | |
111 | #define X_RCOND(i) (((i) >> 25) & 7) | |
112 | #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) | |
113 | #define X_FCN(i) (((i) >> 25) & 31) | |
ee7b9e92 | 114 | |
bd5635a1 RP |
115 | typedef enum |
116 | { | |
8b0f5a9d DE |
117 | Error, not_branch, bicc, bicca, ba, baa, ticc, ta, |
118 | #ifdef GDB_TARGET_IS_SPARC64 | |
119 | done_retry | |
120 | #endif | |
bd5635a1 RP |
121 | } branch_type; |
122 | ||
123 | /* Simulate single-step ptrace call for sun4. Code written by Gary | |
124 | Beihl (beihl@mcc.com). */ | |
125 | ||
126 | /* npc4 and next_pc describe the situation at the time that the | |
127 | step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ | |
128 | static CORE_ADDR next_pc, npc4, target; | |
129 | static int brknpc4, brktrg; | |
130 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
131 | static binsn_quantum break_mem[3]; | |
132 | ||
133 | /* Non-zero if we just simulated a single-step ptrace call. This is | |
134 | needed because we cannot remove the breakpoints in the inferior | |
135 | process until after the `wait' in `wait_for_inferior'. Used for | |
136 | sun4. */ | |
137 | ||
138 | int one_stepped; | |
139 | ||
e50f526e MA |
140 | static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *)); |
141 | ||
d11c44f1 JG |
142 | /* single_step() is called just before we want to resume the inferior, |
143 | if we want to single-step it but there is no hardware or kernel single-step | |
144 | support (as on all SPARCs). We find all the possible targets of the | |
145 | coming instruction and breakpoint them. | |
146 | ||
147 | single_step is also called just after the inferior stops. If we had | |
148 | set up a simulated single-step, we undo our damage. */ | |
149 | ||
bd5635a1 | 150 | void |
8f86a4e4 | 151 | single_step (ignore) |
e50f526e | 152 | enum target_signal ignore; /* pid, but we don't need it */ |
bd5635a1 | 153 | { |
e50f526e | 154 | branch_type br; |
bd5635a1 RP |
155 | CORE_ADDR pc; |
156 | long pc_instruction; | |
157 | ||
158 | if (!one_stepped) | |
159 | { | |
160 | /* Always set breakpoint for NPC. */ | |
161 | next_pc = read_register (NPC_REGNUM); | |
162 | npc4 = next_pc + 4; /* branch not taken */ | |
163 | ||
164 | target_insert_breakpoint (next_pc, break_mem[0]); | |
f1de67d3 | 165 | /* printf_unfiltered ("set break at %x\n",next_pc); */ |
bd5635a1 RP |
166 | |
167 | pc = read_register (PC_REGNUM); | |
33c65ba3 | 168 | pc_instruction = fetch_instruction (pc); |
8b0f5a9d | 169 | br = isbranch (pc_instruction, pc, &target); |
bd5635a1 RP |
170 | brknpc4 = brktrg = 0; |
171 | ||
172 | if (br == bicca) | |
173 | { | |
174 | /* Conditional annulled branch will either end up at | |
175 | npc (if taken) or at npc+4 (if not taken). | |
176 | Trap npc+4. */ | |
177 | brknpc4 = 1; | |
178 | target_insert_breakpoint (npc4, break_mem[1]); | |
179 | } | |
180 | else if (br == baa && target != next_pc) | |
181 | { | |
182 | /* Unconditional annulled branch will always end up at | |
183 | the target. */ | |
184 | brktrg = 1; | |
185 | target_insert_breakpoint (target, break_mem[2]); | |
186 | } | |
8b0f5a9d DE |
187 | #ifdef GDB_TARGET_IS_SPARC64 |
188 | else if (br == done_retry) | |
189 | { | |
190 | brktrg = 1; | |
191 | target_insert_breakpoint (target, break_mem[2]); | |
192 | } | |
193 | #endif | |
bd5635a1 | 194 | |
d11c44f1 | 195 | /* We are ready to let it go */ |
bd5635a1 RP |
196 | one_stepped = 1; |
197 | return; | |
198 | } | |
199 | else | |
200 | { | |
201 | /* Remove breakpoints */ | |
202 | target_remove_breakpoint (next_pc, break_mem[0]); | |
203 | ||
204 | if (brknpc4) | |
205 | target_remove_breakpoint (npc4, break_mem[1]); | |
206 | ||
207 | if (brktrg) | |
208 | target_remove_breakpoint (target, break_mem[2]); | |
209 | ||
210 | one_stepped = 0; | |
211 | } | |
212 | } | |
213 | \f | |
84bdfea6 PS |
214 | /* Call this for each newly created frame. For SPARC, we need to calculate |
215 | the bottom of the frame, and do some extra work if the prologue | |
216 | has been generated via the -mflat option to GCC. In particular, | |
217 | we need to know where the previous fp and the pc have been stashed, | |
218 | since their exact position within the frame may vary. */ | |
219 | ||
220 | void | |
221 | sparc_init_extra_frame_info (fromleaf, fi) | |
222 | int fromleaf; | |
223 | struct frame_info *fi; | |
224 | { | |
225 | char *name; | |
226 | CORE_ADDR addr; | |
ee7b9e92 | 227 | int insn; |
84bdfea6 PS |
228 | |
229 | fi->bottom = | |
230 | (fi->next ? | |
231 | (fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) : | |
33c65ba3 | 232 | read_sp ()); |
84bdfea6 | 233 | |
ee7b9e92 JK |
234 | /* If fi->next is NULL, then we already set ->frame by passing read_fp() |
235 | to create_new_frame. */ | |
236 | if (fi->next) | |
237 | { | |
238 | char buf[MAX_REGISTER_RAW_SIZE]; | |
ee7b9e92 JK |
239 | |
240 | /* Compute ->frame as if not flat. If it is flat, we'll change | |
241 | it later. */ | |
e50f526e MA |
242 | if (fi->next->next != NULL |
243 | && (fi->next->next->signal_handler_caller | |
244 | || frame_in_dummy (fi->next->next)) | |
245 | && frameless_look_for_prologue (fi->next)) | |
246 | { | |
247 | /* A frameless function interrupted by a signal did not change | |
248 | the frame pointer, fix up frame pointer accordingly. */ | |
249 | fi->frame = FRAME_FP (fi->next); | |
250 | fi->bottom = fi->next->bottom; | |
251 | } | |
252 | else | |
253 | { | |
33c65ba3 | 254 | /* Should we adjust for stack bias here? */ |
e50f526e MA |
255 | get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); |
256 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); | |
33c65ba3 MA |
257 | #ifdef GDB_TARGET_IS_SPARC64 |
258 | if (fi->frame & 1) | |
259 | fi->frame += 2047; | |
260 | #endif | |
261 | ||
e50f526e | 262 | } |
ee7b9e92 JK |
263 | } |
264 | ||
84bdfea6 PS |
265 | /* Decide whether this is a function with a ``flat register window'' |
266 | frame. For such functions, the frame pointer is actually in %i7. */ | |
267 | fi->flat = 0; | |
268 | if (find_pc_partial_function (fi->pc, &name, &addr, NULL)) | |
269 | { | |
270 | /* See if the function starts with an add (which will be of a | |
ee7b9e92 JK |
271 | negative number if a flat frame) to the sp. FIXME: Does not |
272 | handle large frames which will need more than one instruction | |
273 | to adjust the sp. */ | |
33c65ba3 | 274 | insn = fetch_instruction (addr); |
ee7b9e92 JK |
275 | if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 |
276 | && X_I (insn) && X_SIMM13 (insn) < 0) | |
84bdfea6 | 277 | { |
ee7b9e92 JK |
278 | int offset = X_SIMM13 (insn); |
279 | ||
84bdfea6 | 280 | /* Then look for a save of %i7 into the frame. */ |
33c65ba3 | 281 | insn = fetch_instruction (addr + 4); |
ee7b9e92 JK |
282 | if (X_OP (insn) == 3 |
283 | && X_RD (insn) == 31 | |
284 | && X_OP3 (insn) == 4 | |
285 | && X_RS1 (insn) == 14) | |
84bdfea6 | 286 | { |
ee7b9e92 JK |
287 | char buf[MAX_REGISTER_RAW_SIZE]; |
288 | ||
84bdfea6 PS |
289 | /* We definitely have a flat frame now. */ |
290 | fi->flat = 1; | |
ee7b9e92 JK |
291 | |
292 | fi->sp_offset = offset; | |
293 | ||
84bdfea6 | 294 | /* Overwrite the frame's address with the value in %i7. */ |
ee7b9e92 JK |
295 | get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); |
296 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); | |
33c65ba3 MA |
297 | #ifdef GDB_TARGET_IS_SPARC64 |
298 | if (fi->frame & 1) | |
299 | fi->frame += 2047; | |
300 | #endif | |
84bdfea6 | 301 | /* Record where the fp got saved. */ |
ee7b9e92 JK |
302 | fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); |
303 | ||
84bdfea6 PS |
304 | /* Also try to collect where the pc got saved to. */ |
305 | fi->pc_addr = 0; | |
33c65ba3 | 306 | insn = fetch_instruction (addr + 12); |
ee7b9e92 JK |
307 | if (X_OP (insn) == 3 |
308 | && X_RD (insn) == 15 | |
309 | && X_OP3 (insn) == 4 | |
310 | && X_RS1 (insn) == 14) | |
311 | fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn); | |
84bdfea6 PS |
312 | } |
313 | } | |
314 | } | |
ee7b9e92 JK |
315 | if (fi->next && fi->frame == 0) |
316 | { | |
317 | /* Kludge to cause init_prev_frame_info to destroy the new frame. */ | |
318 | fi->frame = fi->next->frame; | |
319 | fi->pc = fi->next->pc; | |
320 | } | |
84bdfea6 PS |
321 | } |
322 | ||
d11c44f1 | 323 | CORE_ADDR |
84bdfea6 PS |
324 | sparc_frame_chain (frame) |
325 | struct frame_info *frame; | |
d11c44f1 | 326 | { |
ee7b9e92 JK |
327 | /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain |
328 | value. If it realy is zero, we detect it later in | |
329 | sparc_init_prev_frame. */ | |
330 | return (CORE_ADDR)1; | |
d11c44f1 JG |
331 | } |
332 | ||
333 | CORE_ADDR | |
334 | sparc_extract_struct_value_address (regbuf) | |
335 | char regbuf[REGISTER_BYTES]; | |
336 | { | |
b9e58503 PS |
337 | #ifdef GDB_TARGET_IS_SPARC64 |
338 | return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), | |
339 | REGISTER_RAW_SIZE (O0_REGNUM)); | |
340 | #else | |
e50f526e MA |
341 | CORE_ADDR sp = extract_address (®buf [REGISTER_BYTE (SP_REGNUM)], |
342 | REGISTER_RAW_SIZE (SP_REGNUM)); | |
343 | return read_memory_integer (sp + (16 * SPARC_INTREG_SIZE), | |
f1de67d3 | 344 | TARGET_PTR_BIT / TARGET_CHAR_BIT); |
b9e58503 | 345 | #endif |
d11c44f1 JG |
346 | } |
347 | ||
f9e3b3cc JG |
348 | /* Find the pc saved in frame FRAME. */ |
349 | ||
bd5635a1 | 350 | CORE_ADDR |
8bf94f44 | 351 | sparc_frame_saved_pc (frame) |
84bdfea6 | 352 | struct frame_info *frame; |
bd5635a1 | 353 | { |
f1de67d3 | 354 | char buf[MAX_REGISTER_RAW_SIZE]; |
34df79fc | 355 | CORE_ADDR addr; |
f9e3b3cc | 356 | |
48792545 JK |
357 | if (frame->signal_handler_caller) |
358 | { | |
359 | /* This is the signal trampoline frame. | |
360 | Get the saved PC from the sigcontext structure. */ | |
361 | ||
362 | #ifndef SIGCONTEXT_PC_OFFSET | |
363 | #define SIGCONTEXT_PC_OFFSET 12 | |
364 | #endif | |
365 | ||
366 | CORE_ADDR sigcontext_addr; | |
367 | char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT]; | |
94d4b713 JK |
368 | int saved_pc_offset = SIGCONTEXT_PC_OFFSET; |
369 | char *name = NULL; | |
370 | ||
371 | /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext | |
372 | as the third parameter. The offset to the saved pc is 12. */ | |
373 | find_pc_partial_function (frame->pc, &name, | |
374 | (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); | |
375 | if (name && STREQ (name, "ucbsigvechandler")) | |
376 | saved_pc_offset = 12; | |
48792545 JK |
377 | |
378 | /* The sigcontext address is contained in register O2. */ | |
379 | get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, | |
380 | frame, O0_REGNUM + 2, (enum lval_type *)NULL); | |
8b0f5a9d | 381 | sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); |
48792545 JK |
382 | |
383 | /* Don't cause a memory_error when accessing sigcontext in case the | |
384 | stack layout has changed or the stack is corrupt. */ | |
94d4b713 | 385 | target_read_memory (sigcontext_addr + saved_pc_offset, |
48792545 JK |
386 | scbuf, sizeof (scbuf)); |
387 | return extract_address (scbuf, sizeof (scbuf)); | |
388 | } | |
e50f526e MA |
389 | else if (frame->next != NULL |
390 | && (frame->next->signal_handler_caller | |
391 | || frame_in_dummy (frame->next)) | |
392 | && frameless_look_for_prologue (frame)) | |
393 | { | |
394 | /* A frameless function interrupted by a signal did not save | |
395 | the PC, it is still in %o7. */ | |
396 | get_saved_register (buf, (int *)NULL, (CORE_ADDR *)NULL, | |
397 | frame, O7_REGNUM, (enum lval_type *)NULL); | |
398 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); | |
399 | } | |
84bdfea6 PS |
400 | if (frame->flat) |
401 | addr = frame->pc_addr; | |
402 | else | |
403 | addr = frame->bottom + FRAME_SAVED_I0 + | |
8b0f5a9d | 404 | SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); |
ee7b9e92 JK |
405 | |
406 | if (addr == 0) | |
407 | /* A flat frame leaf function might not save the PC anywhere, | |
408 | just leave it in %o7. */ | |
409 | return PC_ADJUST (read_register (O7_REGNUM)); | |
410 | ||
8b0f5a9d DE |
411 | read_memory (addr, buf, SPARC_INTREG_SIZE); |
412 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); | |
bd5635a1 RP |
413 | } |
414 | ||
84bdfea6 PS |
415 | /* Since an individual frame in the frame cache is defined by two |
416 | arguments (a frame pointer and a stack pointer), we need two | |
417 | arguments to get info for an arbitrary stack frame. This routine | |
418 | takes two arguments and makes the cached frames look as if these | |
419 | two arguments defined a frame on the cache. This allows the rest | |
420 | of info frame to extract the important arguments without | |
421 | difficulty. */ | |
422 | ||
423 | struct frame_info * | |
2093fe68 RP |
424 | setup_arbitrary_frame (argc, argv) |
425 | int argc; | |
84bdfea6 | 426 | CORE_ADDR *argv; |
bd5635a1 | 427 | { |
84bdfea6 | 428 | struct frame_info *frame; |
2093fe68 RP |
429 | |
430 | if (argc != 2) | |
431 | error ("Sparc frame specifications require two arguments: fp and sp"); | |
432 | ||
84bdfea6 | 433 | frame = create_new_frame (argv[0], 0); |
bd5635a1 | 434 | |
84bdfea6 PS |
435 | if (!frame) |
436 | fatal ("internal: create_new_frame returned invalid frame"); | |
bd5635a1 | 437 | |
84bdfea6 PS |
438 | frame->bottom = argv[1]; |
439 | frame->pc = FRAME_SAVED_PC (frame); | |
440 | return frame; | |
bd5635a1 RP |
441 | } |
442 | ||
5259796b JG |
443 | /* Given a pc value, skip it forward past the function prologue by |
444 | disassembling instructions that appear to be a prologue. | |
445 | ||
446 | If FRAMELESS_P is set, we are only testing to see if the function | |
447 | is frameless. This allows a quicker answer. | |
448 | ||
449 | This routine should be more specific in its actions; making sure | |
192cbba9 | 450 | that it uses the same register in the initial prologue section. */ |
84bdfea6 | 451 | |
ee7b9e92 JK |
452 | static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *, |
453 | struct frame_saved_regs *)); | |
454 | ||
455 | static CORE_ADDR | |
456 | examine_prologue (start_pc, frameless_p, fi, saved_regs) | |
192cbba9 | 457 | CORE_ADDR start_pc; |
5259796b | 458 | int frameless_p; |
ee7b9e92 JK |
459 | struct frame_info *fi; |
460 | struct frame_saved_regs *saved_regs; | |
bd5635a1 | 461 | { |
ee7b9e92 | 462 | int insn; |
bd5635a1 | 463 | int dest = -1; |
192cbba9 | 464 | CORE_ADDR pc = start_pc; |
84bdfea6 | 465 | int is_flat = 0; |
bd5635a1 | 466 | |
33c65ba3 | 467 | insn = fetch_instruction (pc); |
bd5635a1 RP |
468 | |
469 | /* Recognize the `sethi' insn and record its destination. */ | |
ee7b9e92 | 470 | if (X_OP (insn) == 0 && X_OP2 (insn) == 4) |
bd5635a1 | 471 | { |
ee7b9e92 | 472 | dest = X_RD (insn); |
bd5635a1 | 473 | pc += 4; |
33c65ba3 | 474 | insn = fetch_instruction (pc); |
bd5635a1 RP |
475 | } |
476 | ||
477 | /* Recognize an add immediate value to register to either %g1 or | |
478 | the destination register recorded above. Actually, this might | |
192cbba9 JK |
479 | well recognize several different arithmetic operations. |
480 | It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" | |
481 | followed by "save %sp, %g1, %sp" is a valid prologue (Not that | |
482 | I imagine any compiler really does that, however). */ | |
ee7b9e92 JK |
483 | if (X_OP (insn) == 2 |
484 | && X_I (insn) | |
485 | && (X_RD (insn) == 1 || X_RD (insn) == dest)) | |
bd5635a1 RP |
486 | { |
487 | pc += 4; | |
33c65ba3 | 488 | insn = fetch_instruction (pc); |
bd5635a1 RP |
489 | } |
490 | ||
ee7b9e92 JK |
491 | /* Recognize any SAVE insn. */ |
492 | if (X_OP (insn) == 2 && X_OP3 (insn) == 60) | |
bd5635a1 RP |
493 | { |
494 | pc += 4; | |
5259796b JG |
495 | if (frameless_p) /* If the save is all we care about, */ |
496 | return pc; /* return before doing more work */ | |
33c65ba3 | 497 | insn = fetch_instruction (pc); |
bd5635a1 | 498 | } |
ee7b9e92 JK |
499 | /* Recognize add to %sp. */ |
500 | else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) | |
5259796b | 501 | { |
84bdfea6 PS |
502 | pc += 4; |
503 | if (frameless_p) /* If the add is all we care about, */ | |
504 | return pc; /* return before doing more work */ | |
ee7b9e92 | 505 | is_flat = 1; |
33c65ba3 | 506 | insn = fetch_instruction (pc); |
ee7b9e92 JK |
507 | /* Recognize store of frame pointer (i7). */ |
508 | if (X_OP (insn) == 3 | |
509 | && X_RD (insn) == 31 | |
510 | && X_OP3 (insn) == 4 | |
511 | && X_RS1 (insn) == 14) | |
512 | { | |
513 | pc += 4; | |
33c65ba3 | 514 | insn = fetch_instruction (pc); |
ee7b9e92 JK |
515 | |
516 | /* Recognize sub %sp, <anything>, %i7. */ | |
517 | if (X_OP (insn) == 2 | |
518 | && X_OP3 (insn) == 4 | |
519 | && X_RS1 (insn) == 14 | |
520 | && X_RD (insn) == 31) | |
521 | { | |
522 | pc += 4; | |
33c65ba3 | 523 | insn = fetch_instruction (pc); |
ee7b9e92 JK |
524 | } |
525 | else | |
526 | return pc; | |
527 | } | |
528 | else | |
529 | return pc; | |
5259796b | 530 | } |
84bdfea6 PS |
531 | else |
532 | /* Without a save or add instruction, it's not a prologue. */ | |
533 | return start_pc; | |
bd5635a1 | 534 | |
ee7b9e92 | 535 | while (1) |
bd5635a1 | 536 | { |
ee7b9e92 JK |
537 | /* Recognize stores into the frame from the input registers. |
538 | This recognizes all non alternate stores of input register, | |
539 | into a location offset from the frame pointer. */ | |
540 | if ((X_OP (insn) == 3 | |
541 | && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ | |
542 | && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ | |
543 | && X_I (insn) /* Immediate mode. */ | |
544 | && X_RS1 (insn) == 30 /* Off of frame pointer. */ | |
545 | /* Into reserved stack space. */ | |
546 | && X_SIMM13 (insn) >= 0x44 | |
547 | && X_SIMM13 (insn) < 0x5b)) | |
548 | ; | |
549 | else if (is_flat | |
550 | && X_OP (insn) == 3 | |
551 | && X_OP3 (insn) == 4 | |
552 | && X_RS1 (insn) == 14 | |
553 | ) | |
554 | { | |
555 | if (saved_regs && X_I (insn)) | |
556 | saved_regs->regs[X_RD (insn)] = | |
557 | fi->frame + fi->sp_offset + X_SIMM13 (insn); | |
558 | } | |
559 | else | |
560 | break; | |
bd5635a1 | 561 | pc += 4; |
33c65ba3 | 562 | insn = fetch_instruction (pc); |
bd5635a1 | 563 | } |
84bdfea6 | 564 | |
5259796b | 565 | return pc; |
bd5635a1 RP |
566 | } |
567 | ||
ee7b9e92 JK |
568 | CORE_ADDR |
569 | skip_prologue (start_pc, frameless_p) | |
570 | CORE_ADDR start_pc; | |
571 | int frameless_p; | |
572 | { | |
573 | return examine_prologue (start_pc, frameless_p, NULL, NULL); | |
574 | } | |
575 | ||
8b0f5a9d DE |
576 | /* Check instruction at ADDR to see if it is a branch. |
577 | All non-annulled instructions will go to NPC or will trap. | |
578 | Set *TARGET if we find a candidate branch; set to zero if not. | |
579 | ||
580 | This isn't static as it's used by remote-sa.sparc.c. */ | |
581 | ||
e50f526e | 582 | static branch_type |
8b0f5a9d | 583 | isbranch (instruction, addr, target) |
bd5635a1 RP |
584 | long instruction; |
585 | CORE_ADDR addr, *target; | |
586 | { | |
587 | branch_type val = not_branch; | |
e50f526e | 588 | long int offset = 0; /* Must be signed for sign-extend. */ |
bd5635a1 RP |
589 | |
590 | *target = 0; | |
bd5635a1 | 591 | |
ee7b9e92 JK |
592 | if (X_OP (instruction) == 0 |
593 | && (X_OP2 (instruction) == 2 | |
594 | || X_OP2 (instruction) == 6 | |
8b0f5a9d DE |
595 | || X_OP2 (instruction) == 1 |
596 | || X_OP2 (instruction) == 3 | |
597 | || X_OP2 (instruction) == 5 | |
e50f526e | 598 | #ifndef GDB_TARGET_IS_SPARC64 |
8b0f5a9d DE |
599 | || X_OP2 (instruction) == 7 |
600 | #endif | |
601 | )) | |
bd5635a1 | 602 | { |
ee7b9e92 JK |
603 | if (X_COND (instruction) == 8) |
604 | val = X_A (instruction) ? baa : ba; | |
bd5635a1 | 605 | else |
ee7b9e92 | 606 | val = X_A (instruction) ? bicca : bicc; |
673e1bab | 607 | switch (X_OP2 (instruction)) |
8b0f5a9d DE |
608 | { |
609 | case 2: | |
610 | case 6: | |
611 | #ifndef GDB_TARGET_IS_SPARC64 | |
612 | case 7: | |
613 | #endif | |
614 | offset = 4 * X_DISP22 (instruction); | |
615 | break; | |
8b0f5a9d DE |
616 | case 1: |
617 | case 5: | |
618 | offset = 4 * X_DISP19 (instruction); | |
619 | break; | |
620 | case 3: | |
621 | offset = 4 * X_DISP16 (instruction); | |
622 | break; | |
8b0f5a9d | 623 | } |
bd5635a1 RP |
624 | *target = addr + offset; |
625 | } | |
8b0f5a9d DE |
626 | #ifdef GDB_TARGET_IS_SPARC64 |
627 | else if (X_OP (instruction) == 2 | |
628 | && X_OP3 (instruction) == 62) | |
629 | { | |
630 | if (X_FCN (instruction) == 0) | |
631 | { | |
632 | /* done */ | |
633 | *target = read_register (TNPC_REGNUM); | |
634 | val = done_retry; | |
635 | } | |
636 | else if (X_FCN (instruction) == 1) | |
637 | { | |
638 | /* retry */ | |
639 | *target = read_register (TPC_REGNUM); | |
640 | val = done_retry; | |
641 | } | |
642 | } | |
643 | #endif | |
bd5635a1 RP |
644 | |
645 | return val; | |
646 | } | |
ee7b9e92 JK |
647 | \f |
648 | /* Find register number REGNUM relative to FRAME and put its | |
649 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
650 | was optimized out (and thus can't be fetched). If the variable | |
651 | was fetched from memory, set *ADDRP to where it was fetched from, | |
652 | otherwise it was fetched from a register. | |
653 | ||
654 | The argument RAW_BUFFER must point to aligned memory. */ | |
655 | ||
656 | void | |
657 | get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval) | |
658 | char *raw_buffer; | |
659 | int *optimized; | |
660 | CORE_ADDR *addrp; | |
661 | struct frame_info *frame; | |
662 | int regnum; | |
663 | enum lval_type *lval; | |
664 | { | |
665 | struct frame_info *frame1; | |
666 | CORE_ADDR addr; | |
667 | ||
888a18ee JK |
668 | if (!target_has_registers) |
669 | error ("No registers."); | |
670 | ||
ee7b9e92 JK |
671 | if (optimized) |
672 | *optimized = 0; | |
673 | ||
674 | addr = 0; | |
012be3ce DP |
675 | |
676 | /* FIXME This code extracted from infcmd.c; should put elsewhere! */ | |
677 | if (frame == NULL) | |
678 | { | |
679 | /* error ("No selected frame."); */ | |
680 | if (!target_has_registers) | |
681 | error ("The program has no registers now."); | |
682 | if (selected_frame == NULL) | |
683 | error ("No selected frame."); | |
684 | /* Try to use selected frame */ | |
685 | frame = get_prev_frame (selected_frame); | |
686 | if (frame == 0) | |
687 | error ("Cmd not meaningful in the outermost frame."); | |
688 | } | |
689 | ||
690 | ||
ee7b9e92 | 691 | frame1 = frame->next; |
e50f526e MA |
692 | |
693 | /* Get saved PC from the frame info if not in innermost frame. */ | |
694 | if (regnum == PC_REGNUM && frame1 != NULL) | |
695 | { | |
696 | if (lval != NULL) | |
697 | *lval = not_lval; | |
698 | if (raw_buffer != NULL) | |
699 | { | |
700 | /* Put it back in target format. */ | |
701 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); | |
702 | } | |
703 | if (addrp != NULL) | |
704 | *addrp = 0; | |
705 | return; | |
706 | } | |
707 | ||
ee7b9e92 JK |
708 | while (frame1 != NULL) |
709 | { | |
710 | if (frame1->pc >= (frame1->bottom ? frame1->bottom : | |
33c65ba3 | 711 | read_sp ()) |
ee7b9e92 JK |
712 | && frame1->pc <= FRAME_FP (frame1)) |
713 | { | |
012be3ce DP |
714 | /* Dummy frame. All but the window regs are in there somewhere. |
715 | The window registers are saved on the stack, just like in a | |
716 | normal frame. */ | |
ee7b9e92 | 717 | if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) |
8b0f5a9d | 718 | addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
012be3ce | 719 | - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); |
ee7b9e92 | 720 | else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) |
012be3ce DP |
721 | addr = (frame1->prev->bottom |
722 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE | |
723 | + FRAME_SAVED_I0); | |
724 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
725 | addr = (frame1->prev->bottom | |
726 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE | |
727 | + FRAME_SAVED_L0); | |
728 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
729 | addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE | |
730 | - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); | |
731 | #ifdef FP0_REGNUM | |
732 | else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) | |
8b0f5a9d | 733 | addr = frame1->frame + (regnum - FP0_REGNUM) * 4 |
012be3ce DP |
734 | - (FP_REGISTER_BYTES); |
735 | #ifdef GDB_TARGET_IS_SPARC64 | |
736 | else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) | |
737 | addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 | |
738 | - (FP_REGISTER_BYTES); | |
739 | #endif | |
740 | #endif /* FP0_REGNUM */ | |
ee7b9e92 | 741 | else if (regnum >= Y_REGNUM && regnum < NUM_REGS) |
8b0f5a9d | 742 | addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE |
012be3ce | 743 | - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); |
ee7b9e92 JK |
744 | } |
745 | else if (frame1->flat) | |
746 | { | |
747 | ||
748 | if (regnum == RP_REGNUM) | |
749 | addr = frame1->pc_addr; | |
750 | else if (regnum == I7_REGNUM) | |
751 | addr = frame1->fp_addr; | |
752 | else | |
753 | { | |
754 | CORE_ADDR func_start; | |
755 | struct frame_saved_regs regs; | |
756 | memset (®s, 0, sizeof (regs)); | |
757 | ||
758 | find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); | |
759 | examine_prologue (func_start, 0, frame1, ®s); | |
760 | addr = regs.regs[regnum]; | |
761 | } | |
762 | } | |
763 | else | |
764 | { | |
765 | /* Normal frame. Local and In registers are saved on stack. */ | |
766 | if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
767 | addr = (frame1->prev->bottom | |
8b0f5a9d | 768 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
ee7b9e92 JK |
769 | + FRAME_SAVED_I0); |
770 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
771 | addr = (frame1->prev->bottom | |
8b0f5a9d | 772 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
ee7b9e92 JK |
773 | + FRAME_SAVED_L0); |
774 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
775 | { | |
776 | /* Outs become ins. */ | |
777 | get_saved_register (raw_buffer, optimized, addrp, frame1, | |
778 | (regnum - O0_REGNUM + I0_REGNUM), lval); | |
779 | return; | |
780 | } | |
781 | } | |
782 | if (addr != 0) | |
783 | break; | |
784 | frame1 = frame1->next; | |
785 | } | |
786 | if (addr != 0) | |
787 | { | |
788 | if (lval != NULL) | |
789 | *lval = lval_memory; | |
790 | if (regnum == SP_REGNUM) | |
791 | { | |
792 | if (raw_buffer != NULL) | |
793 | { | |
794 | /* Put it back in target format. */ | |
795 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
796 | } | |
797 | if (addrp != NULL) | |
798 | *addrp = 0; | |
799 | return; | |
800 | } | |
801 | if (raw_buffer != NULL) | |
802 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
803 | } | |
804 | else | |
805 | { | |
806 | if (lval != NULL) | |
807 | *lval = lval_register; | |
808 | addr = REGISTER_BYTE (regnum); | |
809 | if (raw_buffer != NULL) | |
810 | read_register_gen (regnum, raw_buffer); | |
811 | } | |
812 | if (addrp != NULL) | |
813 | *addrp = addr; | |
814 | } | |
815 | ||
816 | /* Push an empty stack frame, and record in it the current PC, regs, etc. | |
817 | ||
818 | We save the non-windowed registers and the ins. The locals and outs | |
819 | are new; they don't need to be saved. The i's and l's of | |
820 | the last frame were already saved on the stack. */ | |
821 | ||
822 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
823 | ||
8b0f5a9d DE |
824 | #ifdef GDB_TARGET_IS_SPARC64 |
825 | #define DUMMY_REG_SAVE_OFFSET (128 + 16) | |
826 | #else | |
827 | #define DUMMY_REG_SAVE_OFFSET 0x60 | |
828 | #endif | |
829 | ||
830 | /* See tm-sparc.h for how this is calculated. */ | |
012be3ce | 831 | #ifdef FP0_REGNUM |
8b0f5a9d | 832 | #define DUMMY_STACK_REG_BUF_SIZE \ |
33c65ba3 | 833 | (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES) |
012be3ce DP |
834 | #else |
835 | #define DUMMY_STACK_REG_BUF_SIZE \ | |
836 | (((8+8+8) * SPARC_INTREG_SIZE) ) | |
837 | #endif /* FP0_REGNUM */ | |
8b0f5a9d DE |
838 | #define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) |
839 | ||
ee7b9e92 JK |
840 | void |
841 | sparc_push_dummy_frame () | |
842 | { | |
843 | CORE_ADDR sp, old_sp; | |
8b0f5a9d | 844 | char register_temp[DUMMY_STACK_SIZE]; |
ee7b9e92 | 845 | |
33c65ba3 | 846 | old_sp = sp = read_sp (); |
ee7b9e92 | 847 | |
8b0f5a9d | 848 | #ifdef GDB_TARGET_IS_SPARC64 |
33c65ba3 MA |
849 | /* PC, NPC, CCR, FSR, FPRS, Y, ASI */ |
850 | read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0], | |
851 | REGISTER_RAW_SIZE (PC_REGNUM) * 7); | |
852 | read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), ®ister_temp[8], | |
853 | REGISTER_RAW_SIZE (PSTATE_REGNUM)); | |
8b0f5a9d DE |
854 | /* FIXME: not sure what needs to be saved here. */ |
855 | #else | |
ee7b9e92 JK |
856 | /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ |
857 | read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0], | |
858 | REGISTER_RAW_SIZE (Y_REGNUM) * 8); | |
8b0f5a9d | 859 | #endif |
ee7b9e92 | 860 | |
8b0f5a9d DE |
861 | read_register_bytes (REGISTER_BYTE (O0_REGNUM), |
862 | ®ister_temp[8 * SPARC_INTREG_SIZE], | |
863 | SPARC_INTREG_SIZE * 8); | |
ee7b9e92 | 864 | |
8b0f5a9d DE |
865 | read_register_bytes (REGISTER_BYTE (G0_REGNUM), |
866 | ®ister_temp[16 * SPARC_INTREG_SIZE], | |
867 | SPARC_INTREG_SIZE * 8); | |
ee7b9e92 | 868 | |
012be3ce | 869 | #ifdef FP0_REGNUM |
8b0f5a9d DE |
870 | read_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
871 | ®ister_temp[24 * SPARC_INTREG_SIZE], | |
012be3ce DP |
872 | FP_REGISTER_BYTES); |
873 | #endif /* FP0_REGNUM */ | |
ee7b9e92 | 874 | |
8b0f5a9d | 875 | sp -= DUMMY_STACK_SIZE; |
ee7b9e92 | 876 | |
33c65ba3 | 877 | write_sp (sp); |
ee7b9e92 | 878 | |
8b0f5a9d DE |
879 | write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], |
880 | DUMMY_STACK_REG_BUF_SIZE); | |
ee7b9e92 | 881 | |
33c65ba3 MA |
882 | if (strcmp (target_shortname, "sim") != 0) |
883 | { | |
884 | write_fp (old_sp); | |
ee7b9e92 | 885 | |
33c65ba3 MA |
886 | /* Set return address register for the call dummy to the current PC. */ |
887 | write_register (I7_REGNUM, read_pc() - 8); | |
888 | } | |
889 | else | |
890 | { | |
891 | /* The call dummy will write this value to FP before executing | |
892 | the 'save'. This ensures that register window flushes work | |
893 | correctly in the simulator. */ | |
894 | write_register (G0_REGNUM+1, read_register (FP_REGNUM)); | |
895 | ||
896 | /* The call dummy will write this value to FP after executing | |
897 | the 'save'. */ | |
898 | write_register (G0_REGNUM+2, old_sp); | |
899 | ||
900 | /* The call dummy will write this value to the return address (%i7) after | |
901 | executing the 'save'. */ | |
902 | write_register (G0_REGNUM+3, read_pc() - 8); | |
903 | ||
904 | /* Set the FP that the call dummy will be using after the 'save'. | |
905 | This makes backtraces from an inferior function call work properly. */ | |
906 | write_register (FP_REGNUM, old_sp); | |
907 | } | |
ee7b9e92 | 908 | } |
bd5635a1 | 909 | |
ee7b9e92 JK |
910 | /* sparc_frame_find_saved_regs (). This function is here only because |
911 | pop_frame uses it. Note there is an interesting corner case which | |
912 | I think few ports of GDB get right--if you are popping a frame | |
913 | which does not save some register that *is* saved by a more inner | |
914 | frame (such a frame will never be a dummy frame because dummy | |
915 | frames save all registers). Rewriting pop_frame to use | |
916 | get_saved_register would solve this problem and also get rid of the | |
917 | ugly duplication between sparc_frame_find_saved_regs and | |
918 | get_saved_register. | |
bd5635a1 RP |
919 | |
920 | Stores, into a struct frame_saved_regs, | |
921 | the addresses of the saved registers of frame described by FRAME_INFO. | |
922 | This includes special registers such as pc and fp saved in special | |
923 | ways in the stack frame. sp is even more special: | |
924 | the address we return for it IS the sp for the next frame. | |
925 | ||
926 | Note that on register window machines, we are currently making the | |
927 | assumption that window registers are being saved somewhere in the | |
928 | frame in which they are being used. If they are stored in an | |
929 | inferior frame, find_saved_register will break. | |
930 | ||
931 | On the Sun 4, the only time all registers are saved is when | |
932 | a dummy frame is involved. Otherwise, the only saved registers | |
933 | are the LOCAL and IN registers which are saved as a result | |
934 | of the "save/restore" opcodes. This condition is determined | |
935 | by address rather than by value. | |
936 | ||
937 | The "pc" is not stored in a frame on the SPARC. (What is stored | |
938 | is a return address minus 8.) sparc_pop_frame knows how to | |
939 | deal with that. Other routines might or might not. | |
940 | ||
33c65ba3 | 941 | See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information |
bd5635a1 RP |
942 | about how this works. */ |
943 | ||
ee7b9e92 JK |
944 | static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *, |
945 | struct frame_saved_regs *)); | |
946 | ||
947 | static void | |
bd5635a1 RP |
948 | sparc_frame_find_saved_regs (fi, saved_regs_addr) |
949 | struct frame_info *fi; | |
950 | struct frame_saved_regs *saved_regs_addr; | |
951 | { | |
952 | register int regnum; | |
84bdfea6 | 953 | CORE_ADDR frame_addr = FRAME_FP (fi); |
bd5635a1 | 954 | |
84bdfea6 | 955 | if (!fi) |
bd5635a1 RP |
956 | fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); |
957 | ||
b38f304c | 958 | memset (saved_regs_addr, 0, sizeof (*saved_regs_addr)); |
bd5635a1 | 959 | |
bd5635a1 | 960 | if (fi->pc >= (fi->bottom ? fi->bottom : |
33c65ba3 | 961 | read_sp ()) |
bd5635a1 RP |
962 | && fi->pc <= FRAME_FP(fi)) |
963 | { | |
964 | /* Dummy frame. All but the window regs are in there somewhere. */ | |
965 | for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++) | |
966 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 967 | frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
e50f526e | 968 | - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE; |
bd5635a1 RP |
969 | for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) |
970 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 971 | frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
e50f526e | 972 | - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE; |
012be3ce | 973 | #ifdef FP0_REGNUM |
bd5635a1 RP |
974 | for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++) |
975 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 976 | frame_addr + (regnum - FP0_REGNUM) * 4 |
e50f526e | 977 | - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; |
012be3ce DP |
978 | #ifdef GDB_TARGET_IS_SPARC64 |
979 | for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++) | |
980 | saved_regs_addr->regs[regnum] = | |
33c65ba3 | 981 | frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4 |
e50f526e | 982 | - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; |
012be3ce DP |
983 | #endif |
984 | #endif /* FP0_REGNUM */ | |
33c65ba3 MA |
985 | #ifdef GDB_TARGET_IS_SPARC64 |
986 | for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++) | |
987 | { | |
988 | saved_regs_addr->regs[regnum] = | |
989 | frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE | |
990 | - DUMMY_STACK_REG_BUF_SIZE; | |
991 | } | |
992 | saved_regs_addr->regs[PSTATE_REGNUM] = | |
993 | frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE; | |
994 | #else | |
bd5635a1 RP |
995 | for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) |
996 | saved_regs_addr->regs[regnum] = | |
e50f526e MA |
997 | frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE |
998 | - DUMMY_STACK_REG_BUF_SIZE; | |
33c65ba3 | 999 | #endif |
84bdfea6 | 1000 | frame_addr = fi->bottom ? |
33c65ba3 | 1001 | fi->bottom : read_sp (); |
bd5635a1 | 1002 | } |
84bdfea6 PS |
1003 | else if (fi->flat) |
1004 | { | |
ee7b9e92 JK |
1005 | CORE_ADDR func_start; |
1006 | find_pc_partial_function (fi->pc, NULL, &func_start, NULL); | |
1007 | examine_prologue (func_start, 0, fi, saved_regs_addr); | |
1008 | ||
84bdfea6 PS |
1009 | /* Flat register window frame. */ |
1010 | saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr; | |
1011 | saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr; | |
84bdfea6 | 1012 | } |
bd5635a1 RP |
1013 | else |
1014 | { | |
1015 | /* Normal frame. Just Local and In registers */ | |
84bdfea6 | 1016 | frame_addr = fi->bottom ? |
33c65ba3 | 1017 | fi->bottom : read_sp (); |
84bdfea6 | 1018 | for (regnum = L0_REGNUM; regnum < L0_REGNUM+8; regnum++) |
16726dd1 | 1019 | saved_regs_addr->regs[regnum] = |
8b0f5a9d | 1020 | (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 PS |
1021 | + FRAME_SAVED_L0); |
1022 | for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) | |
1023 | saved_regs_addr->regs[regnum] = | |
8b0f5a9d | 1024 | (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 | 1025 | + FRAME_SAVED_I0); |
bd5635a1 RP |
1026 | } |
1027 | if (fi->next) | |
1028 | { | |
84bdfea6 PS |
1029 | if (fi->flat) |
1030 | { | |
1031 | saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr; | |
1032 | } | |
1033 | else | |
1034 | { | |
1035 | /* Pull off either the next frame pointer or the stack pointer */ | |
1036 | CORE_ADDR next_next_frame_addr = | |
1037 | (fi->next->bottom ? | |
1038 | fi->next->bottom : | |
33c65ba3 | 1039 | read_sp ()); |
84bdfea6 PS |
1040 | for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++) |
1041 | saved_regs_addr->regs[regnum] = | |
1042 | (next_next_frame_addr | |
8b0f5a9d | 1043 | + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE |
84bdfea6 PS |
1044 | + FRAME_SAVED_I0); |
1045 | } | |
bd5635a1 RP |
1046 | } |
1047 | /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ | |
33c65ba3 | 1048 | /* FIXME -- should this adjust for the sparc64 offset? */ |
bd5635a1 RP |
1049 | saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi); |
1050 | } | |
1051 | ||
bd5635a1 RP |
1052 | /* Discard from the stack the innermost frame, restoring all saved registers. |
1053 | ||
1054 | Note that the values stored in fsr by get_frame_saved_regs are *in | |
1055 | the context of the called frame*. What this means is that the i | |
1056 | regs of fsr must be restored into the o regs of the (calling) frame that | |
1057 | we pop into. We don't care about the output regs of the calling frame, | |
1058 | since unless it's a dummy frame, it won't have any output regs in it. | |
1059 | ||
1060 | We never have to bother with %l (local) regs, since the called routine's | |
1061 | locals get tossed, and the calling routine's locals are already saved | |
1062 | on its stack. */ | |
1063 | ||
1064 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
1065 | ||
1066 | void | |
1067 | sparc_pop_frame () | |
1068 | { | |
84bdfea6 | 1069 | register struct frame_info *frame = get_current_frame (); |
bd5635a1 RP |
1070 | register CORE_ADDR pc; |
1071 | struct frame_saved_regs fsr; | |
bd5635a1 | 1072 | char raw_buffer[REGISTER_BYTES]; |
84bdfea6 | 1073 | int regnum; |
bd5635a1 | 1074 | |
ee7b9e92 | 1075 | sparc_frame_find_saved_regs (frame, &fsr); |
012be3ce | 1076 | #ifdef FP0_REGNUM |
bd5635a1 RP |
1077 | if (fsr.regs[FP0_REGNUM]) |
1078 | { | |
012be3ce | 1079 | read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); |
8b0f5a9d | 1080 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
012be3ce | 1081 | raw_buffer, FP_REGISTER_BYTES); |
bd5635a1 | 1082 | } |
8b0f5a9d | 1083 | #ifndef GDB_TARGET_IS_SPARC64 |
f1de67d3 PS |
1084 | if (fsr.regs[FPS_REGNUM]) |
1085 | { | |
1086 | read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4); | |
1087 | write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4); | |
1088 | } | |
1089 | if (fsr.regs[CPS_REGNUM]) | |
1090 | { | |
1091 | read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4); | |
1092 | write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4); | |
1093 | } | |
8b0f5a9d | 1094 | #endif |
012be3ce | 1095 | #endif /* FP0_REGNUM */ |
bd5635a1 RP |
1096 | if (fsr.regs[G1_REGNUM]) |
1097 | { | |
8b0f5a9d DE |
1098 | read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); |
1099 | write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, | |
1100 | 7 * SPARC_INTREG_SIZE); | |
bd5635a1 | 1101 | } |
84bdfea6 PS |
1102 | |
1103 | if (frame->flat) | |
1104 | { | |
1105 | /* Each register might or might not have been saved, need to test | |
1106 | individually. */ | |
1107 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) | |
1108 | if (fsr.regs[regnum]) | |
8b0f5a9d DE |
1109 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
1110 | SPARC_INTREG_SIZE)); | |
84bdfea6 PS |
1111 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) |
1112 | if (fsr.regs[regnum]) | |
8b0f5a9d DE |
1113 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
1114 | SPARC_INTREG_SIZE)); | |
ee7b9e92 JK |
1115 | |
1116 | /* Handle all outs except stack pointer (o0-o5; o7). */ | |
1117 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) | |
84bdfea6 | 1118 | if (fsr.regs[regnum]) |
8b0f5a9d DE |
1119 | write_register (regnum, read_memory_integer (fsr.regs[regnum], |
1120 | SPARC_INTREG_SIZE)); | |
ee7b9e92 JK |
1121 | if (fsr.regs[O0_REGNUM + 7]) |
1122 | write_register (O0_REGNUM + 7, | |
8b0f5a9d DE |
1123 | read_memory_integer (fsr.regs[O0_REGNUM + 7], |
1124 | SPARC_INTREG_SIZE)); | |
ee7b9e92 | 1125 | |
33c65ba3 | 1126 | write_sp (frame->frame); |
84bdfea6 PS |
1127 | } |
1128 | else if (fsr.regs[I0_REGNUM]) | |
bd5635a1 | 1129 | { |
dd99f8e4 JK |
1130 | CORE_ADDR sp; |
1131 | ||
1132 | char reg_temp[REGISTER_BYTES]; | |
1133 | ||
8b0f5a9d | 1134 | read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); |
dd99f8e4 JK |
1135 | |
1136 | /* Get the ins and locals which we are about to restore. Just | |
1137 | moving the stack pointer is all that is really needed, except | |
1138 | store_inferior_registers is then going to write the ins and | |
1139 | locals from the registers array, so we need to muck with the | |
1140 | registers array. */ | |
1141 | sp = fsr.regs[SP_REGNUM]; | |
33c65ba3 MA |
1142 | #ifdef GDB_TARGET_IS_SPARC64 |
1143 | if (sp & 1) | |
1144 | sp += 2047; | |
1145 | #endif | |
8b0f5a9d | 1146 | read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); |
dd99f8e4 JK |
1147 | |
1148 | /* Restore the out registers. | |
1149 | Among other things this writes the new stack pointer. */ | |
1150 | write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, | |
8b0f5a9d | 1151 | SPARC_INTREG_SIZE * 8); |
dd99f8e4 JK |
1152 | |
1153 | write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, | |
8b0f5a9d | 1154 | SPARC_INTREG_SIZE * 16); |
bd5635a1 | 1155 | } |
8b0f5a9d | 1156 | #ifndef GDB_TARGET_IS_SPARC64 |
bd5635a1 RP |
1157 | if (fsr.regs[PS_REGNUM]) |
1158 | write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); | |
8b0f5a9d | 1159 | #endif |
bd5635a1 | 1160 | if (fsr.regs[Y_REGNUM]) |
8b0f5a9d | 1161 | write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM))); |
bd5635a1 RP |
1162 | if (fsr.regs[PC_REGNUM]) |
1163 | { | |
1164 | /* Explicitly specified PC (and maybe NPC) -- just restore them. */ | |
8b0f5a9d DE |
1165 | write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], |
1166 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
bd5635a1 RP |
1167 | if (fsr.regs[NPC_REGNUM]) |
1168 | write_register (NPC_REGNUM, | |
8b0f5a9d DE |
1169 | read_memory_integer (fsr.regs[NPC_REGNUM], |
1170 | REGISTER_RAW_SIZE (NPC_REGNUM))); | |
bd5635a1 | 1171 | } |
ee7b9e92 | 1172 | else if (frame->flat) |
84bdfea6 | 1173 | { |
ee7b9e92 | 1174 | if (frame->pc_addr) |
8b0f5a9d DE |
1175 | pc = PC_ADJUST ((CORE_ADDR) |
1176 | read_memory_integer (frame->pc_addr, | |
1177 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
ee7b9e92 JK |
1178 | else |
1179 | { | |
1180 | /* I think this happens only in the innermost frame, if so then | |
1181 | it is a complicated way of saying | |
1182 | "pc = read_register (O7_REGNUM);". */ | |
1183 | char buf[MAX_REGISTER_RAW_SIZE]; | |
1184 | get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); | |
1185 | pc = PC_ADJUST (extract_address | |
1186 | (buf, REGISTER_RAW_SIZE (O7_REGNUM))); | |
1187 | } | |
1188 | ||
84bdfea6 PS |
1189 | write_register (PC_REGNUM, pc); |
1190 | write_register (NPC_REGNUM, pc + 4); | |
1191 | } | |
bd5635a1 RP |
1192 | else if (fsr.regs[I7_REGNUM]) |
1193 | { | |
1194 | /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ | |
8b0f5a9d DE |
1195 | pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM], |
1196 | SPARC_INTREG_SIZE)); | |
bd5635a1 RP |
1197 | write_register (PC_REGNUM, pc); |
1198 | write_register (NPC_REGNUM, pc + 4); | |
1199 | } | |
1200 | flush_cached_frames (); | |
bd5635a1 RP |
1201 | } |
1202 | ||
5e5215eb JG |
1203 | /* On the Sun 4 under SunOS, the compile will leave a fake insn which |
1204 | encodes the structure size being returned. If we detect such | |
1205 | a fake insn, step past it. */ | |
1206 | ||
1207 | CORE_ADDR | |
1208 | sparc_pc_adjust(pc) | |
1209 | CORE_ADDR pc; | |
1210 | { | |
34df79fc JK |
1211 | unsigned long insn; |
1212 | char buf[4]; | |
5e5215eb JG |
1213 | int err; |
1214 | ||
e50f526e | 1215 | err = target_read_memory (pc + 8, buf, 4); |
34df79fc | 1216 | insn = extract_unsigned_integer (buf, 4); |
e4dbd248 | 1217 | if ((err == 0) && (insn & 0xffc00000) == 0) |
5e5215eb JG |
1218 | return pc+12; |
1219 | else | |
1220 | return pc+8; | |
1221 | } | |
84bdfea6 PS |
1222 | |
1223 | /* If pc is in a shared library trampoline, return its target. | |
1224 | The SunOs 4.x linker rewrites the jump table entries for PIC | |
1225 | compiled modules in the main executable to bypass the dynamic linker | |
1226 | with jumps of the form | |
1227 | sethi %hi(addr),%g1 | |
1228 | jmp %g1+%lo(addr) | |
1229 | and removes the corresponding jump table relocation entry in the | |
1230 | dynamic relocations. | |
1231 | find_solib_trampoline_target relies on the presence of the jump | |
1232 | table relocation entry, so we have to detect these jump instructions | |
1233 | by hand. */ | |
1234 | ||
1235 | CORE_ADDR | |
1236 | sunos4_skip_trampoline_code (pc) | |
1237 | CORE_ADDR pc; | |
1238 | { | |
1239 | unsigned long insn1; | |
1240 | char buf[4]; | |
1241 | int err; | |
1242 | ||
1243 | err = target_read_memory (pc, buf, 4); | |
1244 | insn1 = extract_unsigned_integer (buf, 4); | |
1245 | if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) | |
1246 | { | |
1247 | unsigned long insn2; | |
1248 | ||
1249 | err = target_read_memory (pc + 4, buf, 4); | |
1250 | insn2 = extract_unsigned_integer (buf, 4); | |
1251 | if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) | |
1252 | { | |
1253 | CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; | |
1254 | int delta = insn2 & 0x1fff; | |
1255 | ||
1256 | /* Sign extend the displacement. */ | |
1257 | if (delta & 0x1000) | |
1258 | delta |= ~0x1fff; | |
1259 | return target_pc + delta; | |
1260 | } | |
1261 | } | |
1262 | return find_solib_trampoline_target (pc); | |
1263 | } | |
8f86a4e4 JG |
1264 | \f |
1265 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ | |
1266 | ||
1267 | /* The /proc interface divides the target machine's register set up into | |
1268 | two different sets, the general register set (gregset) and the floating | |
1269 | point register set (fpregset). For each set, there is an ioctl to get | |
1270 | the current register set and another ioctl to set the current values. | |
1271 | ||
1272 | The actual structure passed through the ioctl interface is, of course, | |
1273 | naturally machine dependent, and is different for each set of registers. | |
1274 | For the sparc for example, the general register set is typically defined | |
1275 | by: | |
1276 | ||
1277 | typedef int gregset_t[38]; | |
1278 | ||
1279 | #define R_G0 0 | |
1280 | ... | |
1281 | #define R_TBR 37 | |
1282 | ||
1283 | and the floating point set by: | |
1284 | ||
1285 | typedef struct prfpregset { | |
1286 | union { | |
1287 | u_long pr_regs[32]; | |
1288 | double pr_dregs[16]; | |
1289 | } pr_fr; | |
1290 | void * pr_filler; | |
1291 | u_long pr_fsr; | |
1292 | u_char pr_qcnt; | |
1293 | u_char pr_q_entrysize; | |
1294 | u_char pr_en; | |
1295 | u_long pr_q[64]; | |
1296 | } prfpregset_t; | |
1297 | ||
1298 | These routines provide the packing and unpacking of gregset_t and | |
1299 | fpregset_t formatted data. | |
1300 | ||
1301 | */ | |
1302 | ||
8b0f5a9d DE |
1303 | /* Given a pointer to a general register set in /proc format (gregset_t *), |
1304 | unpack the register contents and supply them as gdb's idea of the current | |
1305 | register values. */ | |
8f86a4e4 JG |
1306 | |
1307 | void | |
1308 | supply_gregset (gregsetp) | |
1309 | prgregset_t *gregsetp; | |
1310 | { | |
b38f304c | 1311 | register int regi; |
8f86a4e4 | 1312 | register prgreg_t *regp = (prgreg_t *) gregsetp; |
e4dbd248 | 1313 | static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; |
8f86a4e4 JG |
1314 | |
1315 | /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ | |
b38f304c | 1316 | for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++) |
8f86a4e4 | 1317 | { |
b38f304c | 1318 | supply_register (regi, (char *) (regp + regi)); |
8f86a4e4 JG |
1319 | } |
1320 | ||
1321 | /* These require a bit more care. */ | |
1322 | supply_register (PS_REGNUM, (char *) (regp + R_PS)); | |
1323 | supply_register (PC_REGNUM, (char *) (regp + R_PC)); | |
1324 | supply_register (NPC_REGNUM,(char *) (regp + R_nPC)); | |
1325 | supply_register (Y_REGNUM, (char *) (regp + R_Y)); | |
e4dbd248 PS |
1326 | |
1327 | /* Fill inaccessible registers with zero. */ | |
1328 | supply_register (WIM_REGNUM, zerobuf); | |
1329 | supply_register (TBR_REGNUM, zerobuf); | |
1330 | supply_register (CPS_REGNUM, zerobuf); | |
8f86a4e4 JG |
1331 | } |
1332 | ||
1333 | void | |
1334 | fill_gregset (gregsetp, regno) | |
1335 | prgregset_t *gregsetp; | |
1336 | int regno; | |
1337 | { | |
1338 | int regi; | |
1339 | register prgreg_t *regp = (prgreg_t *) gregsetp; | |
8f86a4e4 JG |
1340 | |
1341 | for (regi = 0 ; regi <= R_I7 ; regi++) | |
1342 | { | |
1343 | if ((regno == -1) || (regno == regi)) | |
1344 | { | |
b38f304c | 1345 | *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)]; |
8f86a4e4 JG |
1346 | } |
1347 | } | |
1348 | if ((regno == -1) || (regno == PS_REGNUM)) | |
1349 | { | |
1350 | *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)]; | |
1351 | } | |
1352 | if ((regno == -1) || (regno == PC_REGNUM)) | |
1353 | { | |
1354 | *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)]; | |
1355 | } | |
1356 | if ((regno == -1) || (regno == NPC_REGNUM)) | |
1357 | { | |
1358 | *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)]; | |
1359 | } | |
1360 | if ((regno == -1) || (regno == Y_REGNUM)) | |
1361 | { | |
1362 | *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)]; | |
1363 | } | |
1364 | } | |
1365 | ||
1366 | #if defined (FP0_REGNUM) | |
1367 | ||
1368 | /* Given a pointer to a floating point register set in /proc format | |
1369 | (fpregset_t *), unpack the register contents and supply them as gdb's | |
1370 | idea of the current floating point register values. */ | |
1371 | ||
1372 | void | |
1373 | supply_fpregset (fpregsetp) | |
1374 | prfpregset_t *fpregsetp; | |
1375 | { | |
1376 | register int regi; | |
1377 | char *from; | |
1378 | ||
012be3ce | 1379 | for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) |
8f86a4e4 JG |
1380 | { |
1381 | from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; | |
1382 | supply_register (regi, from); | |
1383 | } | |
1384 | supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); | |
1385 | } | |
1386 | ||
1387 | /* Given a pointer to a floating point register set in /proc format | |
1388 | (fpregset_t *), update the register specified by REGNO from gdb's idea | |
1389 | of the current floating point register set. If REGNO is -1, update | |
1390 | them all. */ | |
8b0f5a9d | 1391 | /* ??? This will probably need some changes for sparc64. */ |
8f86a4e4 JG |
1392 | |
1393 | void | |
1394 | fill_fpregset (fpregsetp, regno) | |
1395 | prfpregset_t *fpregsetp; | |
1396 | int regno; | |
1397 | { | |
1398 | int regi; | |
1399 | char *to; | |
1400 | char *from; | |
8f86a4e4 | 1401 | |
012be3ce | 1402 | for (regi = FP0_REGNUM ; regi < FP_MAX_REGNUM ; regi++) |
8f86a4e4 JG |
1403 | { |
1404 | if ((regno == -1) || (regno == regi)) | |
1405 | { | |
1406 | from = (char *) ®isters[REGISTER_BYTE (regi)]; | |
1407 | to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM]; | |
b38f304c | 1408 | memcpy (to, from, REGISTER_RAW_SIZE (regi)); |
8f86a4e4 JG |
1409 | } |
1410 | } | |
1411 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
1412 | { | |
1413 | fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)]; | |
1414 | } | |
1415 | } | |
1416 | ||
1417 | #endif /* defined (FP0_REGNUM) */ | |
1418 | ||
1419 | #endif /* USE_PROC_FS */ | |
1420 | ||
1421 | ||
1422 | #ifdef GET_LONGJMP_TARGET | |
f9e3b3cc JG |
1423 | |
1424 | /* Figure out where the longjmp will land. We expect that we have just entered | |
1425 | longjmp and haven't yet setup the stack frame, so the args are still in the | |
1426 | output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we | |
1427 | extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. | |
1428 | This routine returns true on success */ | |
1429 | ||
1430 | int | |
84bdfea6 | 1431 | get_longjmp_target (pc) |
f9e3b3cc JG |
1432 | CORE_ADDR *pc; |
1433 | { | |
1434 | CORE_ADDR jb_addr; | |
34df79fc JK |
1435 | #define LONGJMP_TARGET_SIZE 4 |
1436 | char buf[LONGJMP_TARGET_SIZE]; | |
f9e3b3cc | 1437 | |
84bdfea6 | 1438 | jb_addr = read_register (O0_REGNUM); |
f9e3b3cc | 1439 | |
84bdfea6 PS |
1440 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, |
1441 | LONGJMP_TARGET_SIZE)) | |
f9e3b3cc JG |
1442 | return 0; |
1443 | ||
34df79fc | 1444 | *pc = extract_address (buf, LONGJMP_TARGET_SIZE); |
f9e3b3cc JG |
1445 | |
1446 | return 1; | |
1447 | } | |
8f86a4e4 | 1448 | #endif /* GET_LONGJMP_TARGET */ |
8b0f5a9d DE |
1449 | \f |
1450 | #ifdef STATIC_TRANSFORM_NAME | |
1451 | /* SunPRO (3.0 at least), encodes the static variables. This is not | |
1452 | related to C++ mangling, it is done for C too. */ | |
1453 | ||
1454 | char * | |
b9e58503 | 1455 | sunpro_static_transform_name (name) |
8b0f5a9d DE |
1456 | char *name; |
1457 | { | |
1458 | char *p; | |
1459 | if (name[0] == '$') | |
1460 | { | |
1461 | /* For file-local statics there will be a dollar sign, a bunch | |
1462 | of junk (the contents of which match a string given in the | |
1463 | N_OPT), a period and the name. For function-local statics | |
1464 | there will be a bunch of junk (which seems to change the | |
1465 | second character from 'A' to 'B'), a period, the name of the | |
1466 | function, and the name. So just skip everything before the | |
1467 | last period. */ | |
1468 | p = strrchr (name, '.'); | |
1469 | if (p != NULL) | |
1470 | name = p + 1; | |
1471 | } | |
1472 | return name; | |
1473 | } | |
1474 | #endif /* STATIC_TRANSFORM_NAME */ | |
1475 | \f | |
8b0f5a9d | 1476 | |
8b0f5a9d DE |
1477 | /* Utilities for printing registers. |
1478 | Page numbers refer to the SPARC Architecture Manual. */ | |
1479 | ||
b9e58503 PS |
1480 | static void dump_ccreg PARAMS ((char *, int)); |
1481 | ||
8b0f5a9d DE |
1482 | static void |
1483 | dump_ccreg (reg, val) | |
1484 | char *reg; | |
1485 | int val; | |
1486 | { | |
1487 | /* page 41 */ | |
1488 | printf_unfiltered ("%s:%s,%s,%s,%s", reg, | |
1489 | val & 8 ? "N" : "NN", | |
1490 | val & 4 ? "Z" : "NZ", | |
1491 | val & 2 ? "O" : "NO", | |
1492 | val & 1 ? "C" : "NC" | |
1493 | ); | |
1494 | } | |
1495 | ||
1496 | static char * | |
1497 | decode_asi (val) | |
1498 | int val; | |
1499 | { | |
1500 | /* page 72 */ | |
1501 | switch (val) | |
1502 | { | |
1503 | case 4 : return "ASI_NUCLEUS"; | |
1504 | case 0x0c : return "ASI_NUCLEUS_LITTLE"; | |
1505 | case 0x10 : return "ASI_AS_IF_USER_PRIMARY"; | |
1506 | case 0x11 : return "ASI_AS_IF_USER_SECONDARY"; | |
1507 | case 0x18 : return "ASI_AS_IF_USER_PRIMARY_LITTLE"; | |
1508 | case 0x19 : return "ASI_AS_IF_USER_SECONDARY_LITTLE"; | |
1509 | case 0x80 : return "ASI_PRIMARY"; | |
1510 | case 0x81 : return "ASI_SECONDARY"; | |
1511 | case 0x82 : return "ASI_PRIMARY_NOFAULT"; | |
1512 | case 0x83 : return "ASI_SECONDARY_NOFAULT"; | |
1513 | case 0x88 : return "ASI_PRIMARY_LITTLE"; | |
1514 | case 0x89 : return "ASI_SECONDARY_LITTLE"; | |
1515 | case 0x8a : return "ASI_PRIMARY_NOFAULT_LITTLE"; | |
1516 | case 0x8b : return "ASI_SECONDARY_NOFAULT_LITTLE"; | |
1517 | default : return NULL; | |
1518 | } | |
1519 | } | |
1520 | ||
1521 | /* PRINT_REGISTER_HOOK routine. | |
1522 | Pretty print various registers. */ | |
1523 | /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ | |
1524 | ||
1525 | void | |
1526 | sparc_print_register_hook (regno) | |
1527 | int regno; | |
1528 | { | |
e50f526e | 1529 | ULONGEST val; |
8b0f5a9d | 1530 | |
012be3ce DP |
1531 | /* Handle double/quad versions of lower 32 fp regs. */ |
1532 | if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 | |
1533 | && (regno & 1) == 0) | |
1534 | { | |
1535 | char value[16]; | |
1536 | ||
1537 | if (!read_relative_register_raw_bytes (regno, value) | |
1538 | && !read_relative_register_raw_bytes (regno + 1, value + 4)) | |
1539 | { | |
1540 | printf_unfiltered ("\t"); | |
1541 | print_floating (value, builtin_type_double, gdb_stdout); | |
1542 | } | |
1543 | #if 0 /* FIXME: gdb doesn't handle long doubles */ | |
1544 | if ((regno & 3) == 0) | |
1545 | { | |
1546 | if (!read_relative_register_raw_bytes (regno + 2, value + 8) | |
1547 | && !read_relative_register_raw_bytes (regno + 3, value + 12)) | |
1548 | { | |
1549 | printf_unfiltered ("\t"); | |
1550 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1551 | } | |
1552 | } | |
1553 | #endif | |
1554 | return; | |
1555 | } | |
1556 | ||
1557 | #if 0 /* FIXME: gdb doesn't handle long doubles */ | |
1558 | /* Print upper fp regs as long double if appropriate. */ | |
1559 | if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM | |
1560 | /* We test for even numbered regs and not a multiple of 4 because | |
1561 | the upper fp regs are recorded as doubles. */ | |
1562 | && (regno & 1) == 0) | |
8b0f5a9d | 1563 | { |
012be3ce DP |
1564 | char value[16]; |
1565 | ||
1566 | if (!read_relative_register_raw_bytes (regno, value) | |
1567 | && !read_relative_register_raw_bytes (regno + 1, value + 8)) | |
8b0f5a9d | 1568 | { |
012be3ce DP |
1569 | printf_unfiltered ("\t"); |
1570 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
8b0f5a9d DE |
1571 | } |
1572 | return; | |
1573 | } | |
012be3ce | 1574 | #endif |
8b0f5a9d DE |
1575 | |
1576 | /* FIXME: Some of these are priviledged registers. | |
1577 | Not sure how they should be handled. */ | |
1578 | ||
1579 | #define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) | |
1580 | ||
1581 | val = read_register (regno); | |
1582 | ||
1583 | /* pages 40 - 60 */ | |
1584 | switch (regno) | |
1585 | { | |
33c65ba3 | 1586 | #ifdef GDB_TARGET_IS_SPARC64 |
8b0f5a9d DE |
1587 | case CCR_REGNUM : |
1588 | printf_unfiltered("\t"); | |
1589 | dump_ccreg ("xcc", val >> 4); | |
1590 | printf_unfiltered(", "); | |
1591 | dump_ccreg ("icc", val & 15); | |
1592 | break; | |
1593 | case FPRS_REGNUM : | |
1594 | printf ("\tfef:%d, du:%d, dl:%d", | |
1595 | BITS (2, 1), BITS (1, 1), BITS (0, 1)); | |
1596 | break; | |
1597 | case FSR_REGNUM : | |
1598 | { | |
1599 | static char *fcc[4] = { "=", "<", ">", "?" }; | |
1600 | static char *rd[4] = { "N", "0", "+", "-" }; | |
1601 | /* Long, yes, but I'd rather leave it as is and use a wide screen. */ | |
1602 | printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", | |
1603 | fcc[BITS (10, 3)], fcc[BITS (32, 3)], | |
1604 | fcc[BITS (34, 3)], fcc[BITS (36, 3)], | |
1605 | rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), | |
1606 | BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31)); | |
1607 | break; | |
1608 | } | |
1609 | case ASI_REGNUM : | |
1610 | { | |
1611 | char *asi = decode_asi (val); | |
1612 | if (asi != NULL) | |
1613 | printf ("\t%s", asi); | |
1614 | break; | |
1615 | } | |
1616 | case VER_REGNUM : | |
1617 | printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", | |
1618 | BITS (48, 0xffff), BITS (32, 0xffff), | |
1619 | BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); | |
1620 | break; | |
1621 | case PSTATE_REGNUM : | |
1622 | { | |
1623 | static char *mm[4] = { "tso", "pso", "rso", "?" }; | |
1624 | printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d", | |
1625 | BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1), | |
1626 | BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1), | |
1627 | BITS (0, 1)); | |
1628 | break; | |
1629 | } | |
1630 | case TSTATE_REGNUM : | |
1631 | /* FIXME: print all 4? */ | |
1632 | break; | |
1633 | case TT_REGNUM : | |
1634 | /* FIXME: print all 4? */ | |
1635 | break; | |
1636 | case TPC_REGNUM : | |
1637 | /* FIXME: print all 4? */ | |
1638 | break; | |
1639 | case TNPC_REGNUM : | |
1640 | /* FIXME: print all 4? */ | |
1641 | break; | |
1642 | case WSTATE_REGNUM : | |
1643 | printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); | |
1644 | break; | |
1645 | case CWP_REGNUM : | |
1646 | printf ("\t%d", BITS (0, 31)); | |
1647 | break; | |
1648 | case CANSAVE_REGNUM : | |
1649 | printf ("\t%-2d before spill", BITS (0, 31)); | |
1650 | break; | |
1651 | case CANRESTORE_REGNUM : | |
1652 | printf ("\t%-2d before fill", BITS (0, 31)); | |
1653 | break; | |
1654 | case CLEANWIN_REGNUM : | |
1655 | printf ("\t%-2d before clean", BITS (0, 31)); | |
1656 | break; | |
1657 | case OTHERWIN_REGNUM : | |
1658 | printf ("\t%d", BITS (0, 31)); | |
1659 | break; | |
33c65ba3 MA |
1660 | #else |
1661 | case PS_REGNUM: | |
1662 | printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d", | |
1663 | BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-', | |
1664 | BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-', | |
1665 | BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1), | |
1666 | BITS (0, 31)); | |
1667 | break; | |
1668 | case FPS_REGNUM: | |
1669 | { | |
1670 | static char *fcc[4] = { "=", "<", ">", "?" }; | |
1671 | static char *rd[4] = { "N", "0", "+", "-" }; | |
1672 | /* Long, yes, but I'd rather leave it as is and use a wide screen. */ | |
1673 | printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, " | |
1674 | "fcc:%s, aexc:%d, cexc:%d", | |
1675 | rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), | |
1676 | BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31), | |
1677 | BITS (0, 31)); | |
1678 | break; | |
1679 | } | |
1680 | ||
1681 | #endif /* GDB_TARGET_IS_SPARC64 */ | |
8b0f5a9d DE |
1682 | } |
1683 | ||
1684 | #undef BITS | |
1685 | } | |
8b0f5a9d | 1686 | \f |
e50f526e MA |
1687 | int |
1688 | gdb_print_insn_sparc (memaddr, info) | |
1689 | bfd_vma memaddr; | |
1690 | disassemble_info *info; | |
1691 | { | |
1692 | /* It's necessary to override mach again because print_insn messes it up. */ | |
1693 | info->mach = TM_PRINT_INSN_MACH; | |
1694 | return print_insn_sparc (memaddr, info); | |
1695 | } | |
1696 | \f | |
1697 | /* The SPARC passes the arguments on the stack; arguments smaller | |
1698 | than an int are promoted to an int. */ | |
1699 | ||
1700 | CORE_ADDR | |
1701 | sparc_push_arguments (nargs, args, sp, struct_return, struct_addr) | |
1702 | int nargs; | |
1703 | value_ptr *args; | |
1704 | CORE_ADDR sp; | |
1705 | int struct_return; | |
1706 | CORE_ADDR struct_addr; | |
1707 | { | |
1708 | int i; | |
1709 | int accumulate_size = 0; | |
1710 | struct sparc_arg | |
1711 | { | |
1712 | char *contents; | |
1713 | int len; | |
1714 | int offset; | |
1715 | }; | |
1716 | struct sparc_arg *sparc_args = | |
1717 | (struct sparc_arg*)alloca (nargs * sizeof (struct sparc_arg)); | |
1718 | struct sparc_arg *m_arg; | |
1719 | ||
1720 | /* Promote arguments if necessary, and calculate their stack offsets | |
1721 | and sizes. */ | |
1722 | for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++) | |
1723 | { | |
1724 | value_ptr arg = args[i]; | |
1725 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1726 | /* Cast argument to long if necessary as the compiler does it too. */ | |
1727 | switch (TYPE_CODE (arg_type)) | |
1728 | { | |
1729 | case TYPE_CODE_INT: | |
1730 | case TYPE_CODE_BOOL: | |
1731 | case TYPE_CODE_CHAR: | |
1732 | case TYPE_CODE_RANGE: | |
1733 | case TYPE_CODE_ENUM: | |
1734 | if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) | |
1735 | { | |
1736 | arg_type = builtin_type_long; | |
1737 | arg = value_cast (arg_type, arg); | |
1738 | } | |
1739 | break; | |
1740 | default: | |
1741 | break; | |
1742 | } | |
1743 | m_arg->len = TYPE_LENGTH (arg_type); | |
1744 | m_arg->offset = accumulate_size; | |
1745 | accumulate_size = (accumulate_size + m_arg->len + 3) & ~3; | |
1746 | m_arg->contents = VALUE_CONTENTS(arg); | |
1747 | } | |
1748 | ||
1749 | /* Make room for the arguments on the stack. */ | |
1750 | accumulate_size += CALL_DUMMY_STACK_ADJUST; | |
1751 | sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST; | |
1752 | ||
1753 | /* `Push' arguments on the stack. */ | |
1754 | for (i = nargs; m_arg--, --i >= 0; ) | |
1755 | write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len); | |
1756 | ||
1757 | return sp; | |
1758 | } | |
33c65ba3 MA |
1759 | |
1760 | ||
1761 | /* Extract from an array REGBUF containing the (raw) register state | |
1762 | a function return value of type TYPE, and copy that, in virtual format, | |
1763 | into VALBUF. */ | |
1764 | ||
1765 | void | |
1766 | sparc_extract_return_value (type, regbuf, valbuf) | |
1767 | struct type *type; | |
1768 | char *regbuf; | |
1769 | char *valbuf; | |
1770 | { | |
1771 | int typelen = TYPE_LENGTH (type); | |
1772 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
1773 | ||
1774 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
1775 | memcpy (valbuf, ®buf [REGISTER_BYTE (FP0_REGNUM)], typelen); | |
1776 | else | |
1777 | memcpy (valbuf, | |
1778 | ®buf [O0_REGNUM * regsize + | |
1779 | (typelen >= regsize ? 0 : regsize - typelen)], | |
1780 | typelen); | |
1781 | } | |
1782 | ||
1783 | ||
1784 | /* Write into appropriate registers a function return value | |
1785 | of type TYPE, given in virtual format. On SPARCs with FPUs, | |
1786 | float values are returned in %f0 (and %f1). In all other cases, | |
1787 | values are returned in register %o0. */ | |
1788 | ||
1789 | void | |
1790 | sparc_store_return_value (type, valbuf) | |
1791 | struct type *type; | |
1792 | char *valbuf; | |
1793 | { | |
1794 | int regno; | |
1795 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1796 | ||
1797 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
1798 | /* Floating-point values are returned in the register pair */ | |
1799 | /* formed by %f0 and %f1 (doubles are, anyway). */ | |
1800 | regno = FP0_REGNUM; | |
1801 | else | |
1802 | /* Other values are returned in register %o0. */ | |
1803 | regno = O0_REGNUM; | |
1804 | ||
1805 | /* Add leading zeros to the value. */ | |
1806 | if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE(regno)) | |
1807 | { | |
1808 | bzero (buffer, REGISTER_RAW_SIZE(regno)); | |
1809 | memcpy (buffer + REGISTER_RAW_SIZE(regno) - TYPE_LENGTH (type), valbuf, | |
1810 | TYPE_LENGTH (type)); | |
1811 | write_register_bytes (REGISTER_BYTE (regno), buffer, | |
1812 | REGISTER_RAW_SIZE(regno)); | |
1813 | } | |
1814 | else | |
1815 | write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type)); | |
1816 | } | |
1817 | ||
1818 | ||
1819 | /* Insert the function address into a call dummy instsruction sequence | |
1820 | stored at DUMMY. | |
1821 | ||
1822 | For structs and unions, if the function was compiled with Sun cc, | |
1823 | it expects 'unimp' after the call. But gcc doesn't use that | |
1824 | (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY | |
1825 | can assume it is operating on a pristine CALL_DUMMY, not one that | |
1826 | has already been customized for a different function). */ | |
1827 | ||
1828 | void | |
1829 | sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc) | |
1830 | char *dummy; | |
1831 | CORE_ADDR pc; | |
1832 | CORE_ADDR fun; | |
1833 | struct type *value_type; | |
1834 | int using_gcc; | |
1835 | { | |
1836 | int i; | |
1837 | ||
1838 | /* Store the relative adddress of the target function into the | |
1839 | 'call' instruction. */ | |
1840 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4, | |
1841 | (0x40000000 | |
1842 | | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2) | |
1843 | & 0x3fffffff))); | |
1844 | ||
1845 | /* Comply with strange Sun cc calling convention for struct-returning | |
1846 | functions. */ | |
1847 | if (!using_gcc | |
1848 | && (TYPE_CODE (value_type) == TYPE_CODE_STRUCT | |
1849 | || TYPE_CODE (value_type) == TYPE_CODE_UNION)) | |
1850 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4, | |
1851 | TYPE_LENGTH (value_type) & 0x1fff); | |
1852 | ||
1853 | #ifndef GDB_TARGET_IS_SPARC64 | |
1854 | /* If this is not a simulator target, change the first four instructions | |
1855 | of the call dummy to NOPs. Those instructions include a 'save' | |
1856 | instruction and are designed to work around problems with register | |
1857 | window flushing in the simulator. */ | |
1858 | if (strcmp (target_shortname, "sim") != 0) | |
1859 | { | |
1860 | for (i = 0; i < 4; i++) | |
1861 | store_unsigned_integer (dummy + (i * 4), 4, 0x01000000); | |
1862 | } | |
1863 | #endif | |
1864 | } | |
1865 | ||
1866 | ||
1867 | /* Set target byte order based on machine type. */ | |
1868 | ||
1869 | static int | |
1870 | sparc_target_architecture_hook (ap) | |
1871 | const bfd_arch_info_type *ap; | |
1872 | { | |
1873 | int i, j; | |
1874 | ||
cda8a2bb | 1875 | #ifdef TARGET_BYTE_ORDER_SELECTABLE |
33c65ba3 MA |
1876 | if (ap->mach == bfd_mach_sparc_sparclite_le) |
1877 | target_byte_order = LITTLE_ENDIAN; | |
cda8a2bb | 1878 | #endif |
33c65ba3 MA |
1879 | return 1; |
1880 | } | |
1881 | ||
e50f526e | 1882 | \f |
8b0f5a9d DE |
1883 | void |
1884 | _initialize_sparc_tdep () | |
1885 | { | |
e50f526e | 1886 | tm_print_insn = gdb_print_insn_sparc; |
91550191 | 1887 | tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ |
33c65ba3 MA |
1888 | target_architecture_hook = sparc_target_architecture_hook; |
1889 | } | |
1890 | ||
1891 | ||
1892 | #ifdef GDB_TARGET_IS_SPARC64 | |
1893 | ||
1894 | /* Compensate for stack bias. Note that we currently don't handle mixed | |
1895 | 32/64 bit code. */ | |
1896 | CORE_ADDR | |
1897 | sparc64_read_sp () | |
1898 | { | |
1899 | CORE_ADDR sp = read_register (SP_REGNUM); | |
1900 | ||
1901 | if (sp & 1) | |
1902 | sp += 2047; | |
1903 | return sp; | |
1904 | } | |
1905 | ||
1906 | CORE_ADDR | |
1907 | sparc64_read_fp () | |
1908 | { | |
1909 | CORE_ADDR fp = read_register (FP_REGNUM); | |
1910 | ||
1911 | if (fp & 1) | |
1912 | fp += 2047; | |
1913 | return fp; | |
1914 | } | |
1915 | ||
1916 | void | |
1917 | sparc64_write_sp (val) | |
1918 | CORE_ADDR val; | |
1919 | { | |
1920 | CORE_ADDR oldsp = read_register (SP_REGNUM); | |
1921 | if (oldsp & 1) | |
1922 | write_register (SP_REGNUM, val - 2047); | |
1923 | else | |
1924 | write_register (SP_REGNUM, val); | |
1925 | } | |
1926 | ||
1927 | void | |
1928 | sparc64_write_fp (val) | |
1929 | CORE_ADDR val; | |
1930 | { | |
1931 | CORE_ADDR oldfp = read_register (FP_REGNUM); | |
1932 | if (oldfp & 1) | |
1933 | write_register (FP_REGNUM, val - 2047); | |
1934 | else | |
1935 | write_register (FP_REGNUM, val); | |
1936 | } | |
1937 | ||
1938 | /* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are | |
1939 | also copied onto the stack in the correct places. */ | |
1940 | ||
1941 | CORE_ADDR | |
1942 | sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr) | |
1943 | int nargs; | |
1944 | value_ptr *args; | |
1945 | CORE_ADDR sp; | |
1946 | unsigned char struct_return; | |
1947 | CORE_ADDR struct_retaddr; | |
1948 | { | |
1949 | int x; | |
1950 | int regnum = 0; | |
1951 | CORE_ADDR tempsp; | |
1952 | ||
1953 | sp = (sp & ~(((unsigned long)TYPE_LENGTH (builtin_type_long)) - 1UL)); | |
1954 | ||
1955 | /* Figure out how much space we'll need. */ | |
1956 | for (x = nargs - 1; x >= 0; x--) | |
1957 | { | |
1958 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x]))); | |
1959 | value_ptr copyarg = args[x]; | |
1960 | int copylen = len; | |
1961 | ||
1962 | /* This code is, of course, no longer correct. */ | |
1963 | if (copylen < TYPE_LENGTH (builtin_type_long)) | |
1964 | { | |
1965 | copyarg = value_cast(builtin_type_long, copyarg); | |
1966 | copylen = TYPE_LENGTH (builtin_type_long); | |
1967 | } | |
1968 | sp -= copylen; | |
1969 | } | |
1970 | ||
1971 | /* Round down. */ | |
1972 | sp = sp & ~7; | |
1973 | tempsp = sp; | |
1974 | ||
1975 | /* Now write the arguments onto the stack, while writing FP arguments | |
1976 | into the FP registers. */ | |
1977 | for (x = 0; x < nargs; x++) | |
1978 | { | |
1979 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x]))); | |
1980 | value_ptr copyarg = args[x]; | |
1981 | int copylen = len; | |
1982 | ||
1983 | /* This code is, of course, no longer correct. */ | |
1984 | if (copylen < TYPE_LENGTH (builtin_type_long)) | |
1985 | { | |
1986 | copyarg = value_cast(builtin_type_long, copyarg); | |
1987 | copylen = TYPE_LENGTH (builtin_type_long); | |
1988 | } | |
1989 | write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen); | |
1990 | tempsp += copylen; | |
1991 | if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32) | |
1992 | { | |
1993 | /* This gets copied into a FP register. */ | |
1994 | int nextreg = regnum + 2; | |
1995 | char *data = VALUE_CONTENTS (args[x]); | |
1996 | /* Floats go into the lower half of a FP register pair; quads | |
1997 | use 2 pairs. */ | |
1998 | ||
1999 | if (len == 16) | |
2000 | nextreg += 2; | |
2001 | else if (len == 4) | |
2002 | regnum++; | |
2003 | ||
2004 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum), | |
2005 | data, | |
2006 | len); | |
2007 | regnum = nextreg; | |
2008 | } | |
2009 | } | |
2010 | return sp; | |
2011 | } | |
2012 | ||
2013 | /* Values <= 32 bytes are returned in o0-o3 (floating-point values are | |
2014 | returned in f0-f3). */ | |
2015 | void | |
2016 | sparc64_extract_return_value (type, regbuf, valbuf, bitoffset) | |
2017 | struct type *type; | |
2018 | char *regbuf; | |
2019 | char *valbuf; | |
2020 | int bitoffset; | |
2021 | { | |
2022 | int typelen = TYPE_LENGTH (type); | |
2023 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
2024 | ||
2025 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
2026 | { | |
2027 | memcpy (valbuf, ®buf [REGISTER_BYTE (FP0_REGNUM)], typelen); | |
2028 | return; | |
2029 | } | |
2030 | ||
2031 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
2032 | || (TYPE_LENGTH (type) > 32)) | |
2033 | { | |
2034 | memcpy (valbuf, | |
2035 | ®buf [O0_REGNUM * regsize + | |
2036 | (typelen >= regsize ? 0 : regsize - typelen)], | |
2037 | typelen); | |
2038 | return; | |
2039 | } | |
2040 | else | |
2041 | { | |
2042 | char *o0 = ®buf[O0_REGNUM * regsize]; | |
2043 | char *f0 = ®buf[FP0_REGNUM * regsize]; | |
2044 | int x; | |
2045 | ||
2046 | for (x = 0; x < TYPE_NFIELDS (type); x++) | |
2047 | { | |
2048 | struct field *f = &TYPE_FIELDS(type)[x]; | |
2049 | /* FIXME: We may need to handle static fields here. */ | |
2050 | int whichreg = (f->loc.bitpos + bitoffset) / 32; | |
2051 | int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8; | |
2052 | int where = (f->loc.bitpos + bitoffset) / 8; | |
2053 | int size = TYPE_LENGTH (f->type); | |
2054 | int typecode = TYPE_CODE (f->type); | |
2055 | ||
2056 | if (typecode == TYPE_CODE_STRUCT) | |
2057 | { | |
2058 | sparc64_extract_return_value (f->type, | |
2059 | regbuf, | |
2060 | valbuf, | |
2061 | bitoffset + f->loc.bitpos); | |
2062 | } | |
2063 | else if (typecode == TYPE_CODE_FLT) | |
2064 | { | |
2065 | memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size); | |
2066 | } | |
2067 | else | |
2068 | { | |
2069 | memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size); | |
2070 | } | |
2071 | } | |
2072 | } | |
8b0f5a9d | 2073 | } |
33c65ba3 | 2074 | #endif |