* ada-lang.c (user_select_syms): Use SYMBOL_SYMTAB.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
0b302171 3 Copyright (C) 2003-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
43bd9a9e 38#include "gdb_assert.h"
386c036b 39#include "gdb_string.h"
c906108c 40
386c036b 41#include "sparc-tdep.h"
c906108c 42
a54124c5
MK
43struct regset;
44
9eb42ed1
MK
45/* This file implements the SPARC 32-bit ABI as defined by the section
46 "Low-Level System Information" of the SPARC Compliance Definition
47 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 48 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 49 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
50
51 Note that if we talk about SunOS, we mean SunOS 4.x, which was
52 BSD-based, which is sometimes (retroactively?) referred to as
53 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
54 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
55 suffering from severe version number inflation). Solaris 2.x is
56 also known as SunOS 5.x, since that's what uname(1) says. Solaris
57 2.x is SVR4-based. */
58
59/* Please use the sparc32_-prefix for 32-bit specific code, the
60 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
61 code that can handle both. The 64-bit specific code lives in
62 sparc64-tdep.c; don't add any here. */
63
64/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 65 big-endian IA-64 Quad-Precision format. */
8da61cc4 66#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
67
68/* The stack pointer is offset from the stack frame by a BIAS of 2047
69 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
70 hosts, so undefine it first. */
71#undef BIAS
72#define BIAS 2047
73
74/* Macros to extract fields from SPARC instructions. */
c906108c
SS
75#define X_OP(i) (((i) >> 30) & 0x3)
76#define X_RD(i) (((i) >> 25) & 0x1f)
77#define X_A(i) (((i) >> 29) & 1)
78#define X_COND(i) (((i) >> 25) & 0xf)
79#define X_OP2(i) (((i) >> 22) & 0x7)
80#define X_IMM22(i) ((i) & 0x3fffff)
81#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 82#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 83#define X_RS2(i) ((i) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 88#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
c378eb4e 148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
fe10a582
DM
224/* Check whether TYPE is "Complex Floating". */
225
226static int
227sparc_complex_floating_p (const struct type *type)
228{
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_COMPLEX:
232 {
233 int len = TYPE_LENGTH (type);
234 return (len == 8 || len == 16 || len == 32);
235 }
236 default:
237 break;
238 }
239
240 return 0;
241}
242
0497f5b0
JB
243/* Check whether TYPE is "Structure or Union".
244
245 In terms of Ada subprogram calls, arrays are treated the same as
246 struct and union types. So this function also returns non-zero
247 for array types. */
c906108c 248
386c036b
MK
249static int
250sparc_structure_or_union_p (const struct type *type)
251{
252 switch (TYPE_CODE (type))
253 {
254 case TYPE_CODE_STRUCT:
255 case TYPE_CODE_UNION:
0497f5b0 256 case TYPE_CODE_ARRAY:
386c036b
MK
257 return 1;
258 default:
259 break;
c906108c 260 }
386c036b
MK
261
262 return 0;
c906108c 263}
386c036b
MK
264
265/* Register information. */
266
267static const char *sparc32_register_names[] =
5af923b0 268{
386c036b
MK
269 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
270 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
271 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
272 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
273
274 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
275 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
276 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
277 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
278
279 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
280};
281
386c036b
MK
282/* Total number of registers. */
283#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 284
386c036b
MK
285/* We provide the aliases %d0..%d30 for the floating registers as
286 "psuedo" registers. */
287
288static const char *sparc32_pseudo_register_names[] =
289{
290 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
291 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
292};
293
294/* Total number of pseudo registers. */
295#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
296
297/* Return the name of register REGNUM. */
298
299static const char *
d93859e2 300sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
301{
302 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
303 return sparc32_register_names[regnum];
304
305 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
306 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
307
308 return NULL;
309}
2d457077 310\f
209bd28e 311/* Construct types for ISA-specific registers. */
2d457077 312
209bd28e
UW
313static struct type *
314sparc_psr_type (struct gdbarch *gdbarch)
315{
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 317
209bd28e
UW
318 if (!tdep->sparc_psr_type)
319 {
320 struct type *type;
2d457077 321
e9bb382b 322 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
323 append_flags_type_flag (type, 5, "ET");
324 append_flags_type_flag (type, 6, "PS");
325 append_flags_type_flag (type, 7, "S");
326 append_flags_type_flag (type, 12, "EF");
327 append_flags_type_flag (type, 13, "EC");
2d457077 328
209bd28e
UW
329 tdep->sparc_psr_type = type;
330 }
331
332 return tdep->sparc_psr_type;
333}
334
335static struct type *
336sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 337{
209bd28e
UW
338 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
339
340 if (!tdep->sparc_fsr_type)
341 {
342 struct type *type;
343
e9bb382b 344 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
345 append_flags_type_flag (type, 0, "NXA");
346 append_flags_type_flag (type, 1, "DZA");
347 append_flags_type_flag (type, 2, "UFA");
348 append_flags_type_flag (type, 3, "OFA");
349 append_flags_type_flag (type, 4, "NVA");
350 append_flags_type_flag (type, 5, "NXC");
351 append_flags_type_flag (type, 6, "DZC");
352 append_flags_type_flag (type, 7, "UFC");
353 append_flags_type_flag (type, 8, "OFC");
354 append_flags_type_flag (type, 9, "NVC");
355 append_flags_type_flag (type, 22, "NS");
356 append_flags_type_flag (type, 23, "NXM");
357 append_flags_type_flag (type, 24, "DZM");
358 append_flags_type_flag (type, 25, "UFM");
359 append_flags_type_flag (type, 26, "OFM");
360 append_flags_type_flag (type, 27, "NVM");
361
362 tdep->sparc_fsr_type = type;
363 }
364
365 return tdep->sparc_fsr_type;
2d457077 366}
386c036b
MK
367
368/* Return the GDB type object for the "standard" data type of data in
c378eb4e 369 register REGNUM. */
386c036b
MK
370
371static struct type *
372sparc32_register_type (struct gdbarch *gdbarch, int regnum)
373{
374 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 375 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
376
377 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 378 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
379
380 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 381 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
382
383 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 384 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 385
2d457077 386 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 387 return sparc_psr_type (gdbarch);
2d457077
MK
388
389 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 390 return sparc_fsr_type (gdbarch);
2d457077 391
df4df182 392 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
393}
394
05d1431c 395static enum register_status
386c036b
MK
396sparc32_pseudo_register_read (struct gdbarch *gdbarch,
397 struct regcache *regcache,
e1613aba 398 int regnum, gdb_byte *buf)
386c036b 399{
05d1431c
PA
400 enum register_status status;
401
386c036b
MK
402 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
403
404 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
405 status = regcache_raw_read (regcache, regnum, buf);
406 if (status == REG_VALID)
407 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
408 return status;
386c036b
MK
409}
410
411static void
412sparc32_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
e1613aba 414 int regnum, const gdb_byte *buf)
386c036b
MK
415{
416 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
417
418 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
419 regcache_raw_write (regcache, regnum, buf);
e1613aba 420 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
421}
422\f
423
49a45ecf
JB
424static CORE_ADDR
425sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
426{
427 /* The ABI requires double-word alignment. */
428 return address & ~0x7;
429}
430
386c036b
MK
431static CORE_ADDR
432sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 433 CORE_ADDR funcaddr,
386c036b
MK
434 struct value **args, int nargs,
435 struct type *value_type,
e4fd649a
UW
436 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
437 struct regcache *regcache)
c906108c 438{
e17a4113
UW
439 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
440
386c036b
MK
441 *bp_addr = sp - 4;
442 *real_pc = funcaddr;
443
d80b854b 444 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 445 {
e1613aba 446 gdb_byte buf[4];
386c036b
MK
447
448 /* This is an UNIMP instruction. */
e17a4113
UW
449 store_unsigned_integer (buf, 4, byte_order,
450 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
451 write_memory (sp - 8, buf, 4);
452 return sp - 8;
c906108c
SS
453 }
454
386c036b
MK
455 return sp - 4;
456}
457
458static CORE_ADDR
459sparc32_store_arguments (struct regcache *regcache, int nargs,
460 struct value **args, CORE_ADDR sp,
461 int struct_return, CORE_ADDR struct_addr)
462{
df4df182 463 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
465 /* Number of words in the "parameter array". */
466 int num_elements = 0;
467 int element = 0;
468 int i;
469
470 for (i = 0; i < nargs; i++)
c906108c 471 {
4991999e 472 struct type *type = value_type (args[i]);
386c036b
MK
473 int len = TYPE_LENGTH (type);
474
475 if (sparc_structure_or_union_p (type)
fe10a582
DM
476 || (sparc_floating_p (type) && len == 16)
477 || sparc_complex_floating_p (type))
c906108c 478 {
386c036b
MK
479 /* Structure, Union and Quad-Precision Arguments. */
480 sp -= len;
481
482 /* Use doubleword alignment for these values. That's always
483 correct, and wasting a few bytes shouldn't be a problem. */
484 sp &= ~0x7;
485
0fd88904 486 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
487 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
488 num_elements++;
489 }
490 else if (sparc_floating_p (type))
491 {
492 /* Floating arguments. */
493 gdb_assert (len == 4 || len == 8);
494 num_elements += (len / 4);
c906108c 495 }
c5aa993b
JM
496 else
497 {
386c036b
MK
498 /* Integral and pointer arguments. */
499 gdb_assert (sparc_integral_or_pointer_p (type));
500
501 if (len < 4)
df4df182
UW
502 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
503 args[i]);
386c036b 504 num_elements += ((len + 3) / 4);
c5aa993b 505 }
c906108c 506 }
c906108c 507
386c036b
MK
508 /* Always allocate at least six words. */
509 sp -= max (6, num_elements) * 4;
c906108c 510
386c036b
MK
511 /* The psABI says that "Software convention requires space for the
512 struct/union return value pointer, even if the word is unused." */
513 sp -= 4;
c906108c 514
386c036b
MK
515 /* The psABI says that "Although software convention and the
516 operating system require every stack frame to be doubleword
517 aligned." */
518 sp &= ~0x7;
c906108c 519
386c036b 520 for (i = 0; i < nargs; i++)
c906108c 521 {
0fd88904 522 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 523 struct type *type = value_type (args[i]);
386c036b 524 int len = TYPE_LENGTH (type);
c906108c 525
386c036b 526 gdb_assert (len == 4 || len == 8);
c906108c 527
386c036b
MK
528 if (element < 6)
529 {
530 int regnum = SPARC_O0_REGNUM + element;
c906108c 531
386c036b
MK
532 regcache_cooked_write (regcache, regnum, valbuf);
533 if (len > 4 && element < 5)
534 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
535 }
5af923b0 536
386c036b
MK
537 /* Always store the argument in memory. */
538 write_memory (sp + 4 + element * 4, valbuf, len);
539 element += len / 4;
540 }
c906108c 541
386c036b 542 gdb_assert (element == num_elements);
c906108c 543
386c036b 544 if (struct_return)
c906108c 545 {
e1613aba 546 gdb_byte buf[4];
c906108c 547
e17a4113 548 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
549 write_memory (sp, buf, 4);
550 }
c906108c 551
386c036b 552 return sp;
c906108c
SS
553}
554
386c036b 555static CORE_ADDR
7d9b040b 556sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
557 struct regcache *regcache, CORE_ADDR bp_addr,
558 int nargs, struct value **args, CORE_ADDR sp,
559 int struct_return, CORE_ADDR struct_addr)
c906108c 560{
386c036b
MK
561 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
562
563 /* Set return address. */
564 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
565
566 /* Set up function arguments. */
567 sp = sparc32_store_arguments (regcache, nargs, args, sp,
568 struct_return, struct_addr);
569
570 /* Allocate the 16-word window save area. */
571 sp -= 16 * 4;
c906108c 572
386c036b
MK
573 /* Stack should be doubleword aligned at this point. */
574 gdb_assert (sp % 8 == 0);
c906108c 575
386c036b
MK
576 /* Finally, update the stack pointer. */
577 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
578
579 return sp;
580}
581\f
c906108c 582
386c036b
MK
583/* Use the program counter to determine the contents and size of a
584 breakpoint instruction. Return a pointer to a string of bytes that
585 encode a breakpoint instruction, store the length of the string in
586 *LEN and optionally adjust *PC to point to the correct memory
587 location for inserting the breakpoint. */
588
e1613aba 589static const gdb_byte *
67d57894 590sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 591{
864a1a37 592 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 593
386c036b
MK
594 *len = sizeof (break_insn);
595 return break_insn;
c906108c 596}
386c036b 597\f
c906108c 598
386c036b 599/* Allocate and initialize a frame cache. */
c906108c 600
386c036b
MK
601static struct sparc_frame_cache *
602sparc_alloc_frame_cache (void)
603{
604 struct sparc_frame_cache *cache;
c906108c 605
386c036b 606 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 607
386c036b
MK
608 /* Base address. */
609 cache->base = 0;
610 cache->pc = 0;
c906108c 611
386c036b
MK
612 /* Frameless until proven otherwise. */
613 cache->frameless_p = 1;
369c397b
JB
614 cache->frame_offset = 0;
615 cache->saved_regs_mask = 0;
616 cache->copied_regs_mask = 0;
386c036b
MK
617 cache->struct_return_p = 0;
618
619 return cache;
620}
621
b0b92586
JB
622/* GCC generates several well-known sequences of instructions at the begining
623 of each function prologue when compiling with -fstack-check. If one of
624 such sequences starts at START_PC, then return the address of the
625 instruction immediately past this sequence. Otherwise, return START_PC. */
626
627static CORE_ADDR
628sparc_skip_stack_check (const CORE_ADDR start_pc)
629{
630 CORE_ADDR pc = start_pc;
631 unsigned long insn;
632 int offset_stack_checking_sequence = 0;
2067c8d4 633 int probing_loop = 0;
b0b92586
JB
634
635 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 636 instructions, plus an optional one in the case of a probing loop:
b0b92586 637
2067c8d4
JG
638 sethi <some immediate>, %g1
639 sub %sp, %g1, %g1
640
641 or:
642
643 sethi <some immediate>, %g1
644 sethi <some immediate>, %g4
645 sub %sp, %g1, %g1
646
647 or:
648
649 sethi <some immediate>, %g1
650 sub %sp, %g1, %g1
651 sethi <some immediate>, %g4
652
653 If the optional instruction is found (setting g4), assume that a
654 probing loop will follow. */
655
656 /* sethi <some immediate>, %g1 */
b0b92586
JB
657 insn = sparc_fetch_instruction (pc);
658 pc = pc + 4;
659 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
660 return start_pc;
661
2067c8d4 662 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
663 insn = sparc_fetch_instruction (pc);
664 pc = pc + 4;
2067c8d4
JG
665 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
666 {
667 probing_loop = 1;
668 insn = sparc_fetch_instruction (pc);
669 pc = pc + 4;
670 }
671
672 /* sub %sp, %g1, %g1 */
b0b92586
JB
673 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
674 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
675 return start_pc;
676
677 insn = sparc_fetch_instruction (pc);
678 pc = pc + 4;
679
2067c8d4
JG
680 /* optional: sethi <some immediate>, %g4 */
681 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
682 {
683 probing_loop = 1;
684 insn = sparc_fetch_instruction (pc);
685 pc = pc + 4;
686 }
687
b0b92586
JB
688 /* First possible sequence:
689 [first two instructions above]
690 clr [%g1 - some immediate] */
691
692 /* clr [%g1 - some immediate] */
693 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
694 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
695 {
696 /* Valid stack-check sequence, return the new PC. */
697 return pc;
698 }
699
700 /* Second possible sequence: A small number of probes.
701 [first two instructions above]
702 clr [%g1]
703 add %g1, -<some immediate>, %g1
704 clr [%g1]
705 [repeat the two instructions above any (small) number of times]
706 clr [%g1 - some immediate] */
707
708 /* clr [%g1] */
709 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
710 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
711 {
712 while (1)
713 {
714 /* add %g1, -<some immediate>, %g1 */
715 insn = sparc_fetch_instruction (pc);
716 pc = pc + 4;
717 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
718 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
719 break;
720
721 /* clr [%g1] */
722 insn = sparc_fetch_instruction (pc);
723 pc = pc + 4;
724 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
725 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
726 return start_pc;
727 }
728
729 /* clr [%g1 - some immediate] */
730 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
731 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
732 return start_pc;
733
734 /* We found a valid stack-check sequence, return the new PC. */
735 return pc;
736 }
737
738 /* Third sequence: A probing loop.
2067c8d4 739 [first three instructions above]
b0b92586
JB
740 sub %g1, %g4, %g4
741 cmp %g1, %g4
742 be <disp>
743 add %g1, -<some immediate>, %g1
744 ba <disp>
745 clr [%g1]
2067c8d4
JG
746
747 And an optional last probe for the remainder:
748
b0b92586
JB
749 clr [%g4 - some immediate] */
750
2067c8d4 751 if (probing_loop)
b0b92586
JB
752 {
753 /* sub %g1, %g4, %g4 */
b0b92586
JB
754 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
755 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
756 return start_pc;
757
758 /* cmp %g1, %g4 */
759 insn = sparc_fetch_instruction (pc);
760 pc = pc + 4;
761 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
762 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
763 return start_pc;
764
765 /* be <disp> */
766 insn = sparc_fetch_instruction (pc);
767 pc = pc + 4;
768 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
769 return start_pc;
770
771 /* add %g1, -<some immediate>, %g1 */
772 insn = sparc_fetch_instruction (pc);
773 pc = pc + 4;
774 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
775 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
776 return start_pc;
777
778 /* ba <disp> */
779 insn = sparc_fetch_instruction (pc);
780 pc = pc + 4;
781 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
782 return start_pc;
783
2067c8d4 784 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
785 insn = sparc_fetch_instruction (pc);
786 pc = pc + 4;
2067c8d4
JG
787 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
788 && X_RD (insn) == 0 && X_RS1 (insn) == 1
789 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
790 return start_pc;
791
2067c8d4
JG
792 /* We found a valid stack-check sequence, return the new PC. */
793
794 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
795 insn = sparc_fetch_instruction (pc);
796 pc = pc + 4;
797 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
798 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
799 return pc - 4;
800 else
801 return pc;
b0b92586
JB
802 }
803
804 /* No stack check code in our prologue, return the start_pc. */
805 return start_pc;
806}
807
369c397b
JB
808/* Record the effect of a SAVE instruction on CACHE. */
809
810void
811sparc_record_save_insn (struct sparc_frame_cache *cache)
812{
813 /* The frame is set up. */
814 cache->frameless_p = 0;
815
816 /* The frame pointer contains the CFA. */
817 cache->frame_offset = 0;
818
819 /* The `local' and `in' registers are all saved. */
820 cache->saved_regs_mask = 0xffff;
821
822 /* The `out' registers are all renamed. */
823 cache->copied_regs_mask = 0xff;
824}
825
826/* Do a full analysis of the prologue at PC and update CACHE accordingly.
827 Bail out early if CURRENT_PC is reached. Return the address where
828 the analysis stopped.
829
830 We handle both the traditional register window model and the single
831 register window (aka flat) model. */
832
386c036b 833CORE_ADDR
be8626e0
MD
834sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
835 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 836{
be8626e0 837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
838 unsigned long insn;
839 int offset = 0;
c906108c 840 int dest = -1;
c906108c 841
b0b92586
JB
842 pc = sparc_skip_stack_check (pc);
843
386c036b
MK
844 if (current_pc <= pc)
845 return current_pc;
846
847 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
848 SPARC the linker usually defines a symbol (typically
849 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
850 This symbol makes us end up here with PC pointing at the start of
851 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
852 would do our normal prologue analysis, we would probably conclude
853 that we've got a frame when in reality we don't, since the
854 dynamic linker patches up the first PLT with some code that
855 starts with a SAVE instruction. Patch up PC such that it points
856 at the start of our PLT entry. */
857 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
858 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 859
386c036b
MK
860 insn = sparc_fetch_instruction (pc);
861
369c397b
JB
862 /* Recognize store insns and record their sources. */
863 while (X_OP (insn) == 3
864 && (X_OP3 (insn) == 0x4 /* stw */
865 || X_OP3 (insn) == 0x7 /* std */
866 || X_OP3 (insn) == 0xe) /* stx */
867 && X_RS1 (insn) == SPARC_SP_REGNUM)
868 {
869 int regnum = X_RD (insn);
870
871 /* Recognize stores into the corresponding stack slots. */
872 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
873 && ((X_I (insn)
874 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
875 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
876 : (regnum - SPARC_L0_REGNUM) * 4))
877 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
878 {
879 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
880 if (X_OP3 (insn) == 0x7)
881 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
882 }
883
884 offset += 4;
885
886 insn = sparc_fetch_instruction (pc + offset);
887 }
888
386c036b
MK
889 /* Recognize a SETHI insn and record its destination. */
890 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
891 {
892 dest = X_RD (insn);
386c036b
MK
893 offset += 4;
894
369c397b 895 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
896 }
897
386c036b
MK
898 /* Allow for an arithmetic operation on DEST or %g1. */
899 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
900 && (X_RD (insn) == 1 || X_RD (insn) == dest))
901 {
386c036b 902 offset += 4;
c906108c 903
369c397b 904 insn = sparc_fetch_instruction (pc + offset);
c906108c 905 }
c906108c 906
386c036b
MK
907 /* Check for the SAVE instruction that sets up the frame. */
908 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 909 {
369c397b
JB
910 sparc_record_save_insn (cache);
911 offset += 4;
912 return pc + offset;
913 }
914
915 /* Check for an arithmetic operation on %sp. */
916 if (X_OP (insn) == 2
917 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
918 && X_RS1 (insn) == SPARC_SP_REGNUM
919 && X_RD (insn) == SPARC_SP_REGNUM)
920 {
921 if (X_I (insn))
922 {
923 cache->frame_offset = X_SIMM13 (insn);
924 if (X_OP3 (insn) == 0)
925 cache->frame_offset = -cache->frame_offset;
926 }
927 offset += 4;
928
929 insn = sparc_fetch_instruction (pc + offset);
930
931 /* Check for an arithmetic operation that sets up the frame. */
932 if (X_OP (insn) == 2
933 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
934 && X_RS1 (insn) == SPARC_SP_REGNUM
935 && X_RD (insn) == SPARC_FP_REGNUM)
936 {
937 cache->frameless_p = 0;
938 cache->frame_offset = 0;
939 /* We could check that the amount subtracted to %sp above is the
940 same as the one added here, but this seems superfluous. */
941 cache->copied_regs_mask |= 0x40;
942 offset += 4;
943
944 insn = sparc_fetch_instruction (pc + offset);
945 }
946
947 /* Check for a move (or) operation that copies the return register. */
948 if (X_OP (insn) == 2
949 && X_OP3 (insn) == 0x2
950 && !X_I (insn)
951 && X_RS1 (insn) == SPARC_G0_REGNUM
952 && X_RS2 (insn) == SPARC_O7_REGNUM
953 && X_RD (insn) == SPARC_I7_REGNUM)
954 {
955 cache->copied_regs_mask |= 0x80;
956 offset += 4;
957 }
958
959 return pc + offset;
c906108c
SS
960 }
961
962 return pc;
963}
964
386c036b 965static CORE_ADDR
236369e7 966sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
967{
968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 969 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
970}
971
972/* Return PC of first real instruction of the function starting at
973 START_PC. */
f510d44e 974
386c036b 975static CORE_ADDR
6093d2eb 976sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 977{
f510d44e
DM
978 struct symtab_and_line sal;
979 CORE_ADDR func_start, func_end;
386c036b 980 struct sparc_frame_cache cache;
f510d44e
DM
981
982 /* This is the preferred method, find the end of the prologue by
983 using the debugging information. */
984 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
985 {
986 sal = find_pc_line (func_start, 0);
987
988 if (sal.end < func_end
989 && start_pc <= sal.end)
990 return sal.end;
991 }
992
be8626e0 993 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
994
995 /* The psABI says that "Although the first 6 words of arguments
996 reside in registers, the standard stack frame reserves space for
997 them.". It also suggests that a function may use that space to
998 "write incoming arguments 0 to 5" into that space, and that's
999 indeed what GCC seems to be doing. In that case GCC will
1000 generate debug information that points to the stack slots instead
1001 of the registers, so we should consider the instructions that
369c397b 1002 write out these incoming arguments onto the stack. */
075ccec8 1003
369c397b 1004 while (1)
075ccec8
MK
1005 {
1006 unsigned long insn = sparc_fetch_instruction (start_pc);
1007
369c397b
JB
1008 /* Recognize instructions that store incoming arguments into the
1009 corresponding stack slots. */
1010 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1011 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1012 {
369c397b
JB
1013 int regnum = X_RD (insn);
1014
1015 /* Case of arguments still in %o[0..5]. */
1016 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1017 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1018 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1019 {
1020 start_pc += 4;
1021 continue;
1022 }
1023
1024 /* Case of arguments copied into %i[0..5]. */
1025 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1026 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1027 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1028 {
1029 start_pc += 4;
1030 continue;
1031 }
075ccec8
MK
1032 }
1033
1034 break;
1035 }
1036
1037 return start_pc;
c906108c
SS
1038}
1039
386c036b 1040/* Normal frames. */
9319a2fe 1041
386c036b 1042struct sparc_frame_cache *
236369e7 1043sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1044{
386c036b 1045 struct sparc_frame_cache *cache;
9319a2fe 1046
386c036b
MK
1047 if (*this_cache)
1048 return *this_cache;
c906108c 1049
386c036b
MK
1050 cache = sparc_alloc_frame_cache ();
1051 *this_cache = cache;
c906108c 1052
236369e7 1053 cache->pc = get_frame_func (this_frame);
386c036b 1054 if (cache->pc != 0)
236369e7
JB
1055 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1056 get_frame_pc (this_frame), cache);
386c036b
MK
1057
1058 if (cache->frameless_p)
c906108c 1059 {
cbeae229
MK
1060 /* This function is frameless, so %fp (%i6) holds the frame
1061 pointer for our calling frame. Use %sp (%o6) as this frame's
1062 base address. */
1063 cache->base =
236369e7 1064 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1065 }
1066 else
1067 {
1068 /* For normal frames, %fp (%i6) holds the frame pointer, the
1069 base address for the current stack frame. */
1070 cache->base =
236369e7 1071 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1072 }
c906108c 1073
369c397b
JB
1074 cache->base += cache->frame_offset;
1075
5b2d44a0
MK
1076 if (cache->base & 1)
1077 cache->base += BIAS;
1078
386c036b 1079 return cache;
c906108c 1080}
c906108c 1081
aff37fc1
DM
1082static int
1083sparc32_struct_return_from_sym (struct symbol *sym)
1084{
1085 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1086 enum type_code code = TYPE_CODE (type);
1087
1088 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1089 {
1090 type = check_typedef (TYPE_TARGET_TYPE (type));
1091 if (sparc_structure_or_union_p (type)
1092 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1093 return 1;
1094 }
1095
1096 return 0;
1097}
1098
386c036b 1099struct sparc_frame_cache *
236369e7 1100sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1101{
386c036b
MK
1102 struct sparc_frame_cache *cache;
1103 struct symbol *sym;
c906108c 1104
386c036b
MK
1105 if (*this_cache)
1106 return *this_cache;
c906108c 1107
236369e7 1108 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1109
386c036b
MK
1110 sym = find_pc_function (cache->pc);
1111 if (sym)
c906108c 1112 {
aff37fc1 1113 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1114 }
5465445a
JB
1115 else
1116 {
1117 /* There is no debugging information for this function to
1118 help us determine whether this function returns a struct
1119 or not. So we rely on another heuristic which is to check
1120 the instruction at the return address and see if this is
1121 an "unimp" instruction. If it is, then it is a struct-return
1122 function. */
1123 CORE_ADDR pc;
369c397b
JB
1124 int regnum =
1125 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1126
236369e7 1127 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1128 if (sparc_is_unimp_insn (pc))
1129 cache->struct_return_p = 1;
1130 }
c906108c 1131
386c036b
MK
1132 return cache;
1133}
1134
1135static void
236369e7 1136sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1137 struct frame_id *this_id)
1138{
1139 struct sparc_frame_cache *cache =
236369e7 1140 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1141
1142 /* This marks the outermost frame. */
1143 if (cache->base == 0)
1144 return;
1145
1146 (*this_id) = frame_id_build (cache->base, cache->pc);
1147}
c906108c 1148
236369e7
JB
1149static struct value *
1150sparc32_frame_prev_register (struct frame_info *this_frame,
1151 void **this_cache, int regnum)
386c036b 1152{
e17a4113 1153 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1154 struct sparc_frame_cache *cache =
236369e7 1155 sparc32_frame_cache (this_frame, this_cache);
c906108c 1156
386c036b 1157 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1158 {
236369e7 1159 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1160
236369e7
JB
1161 /* If this functions has a Structure, Union or Quad-Precision
1162 return value, we have to skip the UNIMP instruction that encodes
1163 the size of the structure. */
1164 if (cache->struct_return_p)
1165 pc += 4;
386c036b 1166
369c397b
JB
1167 regnum =
1168 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1169 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1170 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1171 }
1172
42cdca6c
MK
1173 /* Handle StackGhost. */
1174 {
e17a4113 1175 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1176
1177 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1178 {
236369e7
JB
1179 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1180 ULONGEST i7;
1181
1182 /* Read the value in from memory. */
1183 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1184 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1185 }
1186 }
1187
369c397b 1188 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1189 in the register save area. */
369c397b
JB
1190 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1191 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1192 {
236369e7 1193 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1194
236369e7 1195 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1196 }
c906108c 1197
369c397b
JB
1198 /* The previous frame's `out' registers may be accessible as the current
1199 frame's `in' registers. */
1200 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1201 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1202 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1203
236369e7 1204 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1205}
c906108c 1206
386c036b
MK
1207static const struct frame_unwind sparc32_frame_unwind =
1208{
1209 NORMAL_FRAME,
8fbca658 1210 default_frame_unwind_stop_reason,
386c036b 1211 sparc32_frame_this_id,
236369e7
JB
1212 sparc32_frame_prev_register,
1213 NULL,
1214 default_frame_sniffer
386c036b 1215};
386c036b 1216\f
c906108c 1217
386c036b 1218static CORE_ADDR
236369e7 1219sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1220{
1221 struct sparc_frame_cache *cache =
236369e7 1222 sparc32_frame_cache (this_frame, this_cache);
c906108c 1223
386c036b
MK
1224 return cache->base;
1225}
c906108c 1226
386c036b
MK
1227static const struct frame_base sparc32_frame_base =
1228{
1229 &sparc32_frame_unwind,
1230 sparc32_frame_base_address,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address
1233};
c906108c 1234
386c036b 1235static struct frame_id
236369e7 1236sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1237{
1238 CORE_ADDR sp;
5af923b0 1239
236369e7 1240 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1241 if (sp & 1)
1242 sp += BIAS;
236369e7 1243 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1244}
1245\f
c906108c 1246
3923a2b2
MK
1247/* Extract a function return value of TYPE from REGCACHE, and copy
1248 that into VALBUF. */
5af923b0 1249
386c036b
MK
1250static void
1251sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1252 gdb_byte *valbuf)
386c036b
MK
1253{
1254 int len = TYPE_LENGTH (type);
fe10a582 1255 gdb_byte buf[32];
c906108c 1256
386c036b
MK
1257 gdb_assert (!sparc_structure_or_union_p (type));
1258 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1259
fe10a582 1260 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1261 {
386c036b
MK
1262 /* Floating return values. */
1263 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1264 if (len > 4)
1265 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1266 if (len > 8)
1267 {
1268 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1269 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1270 }
1271 if (len > 16)
1272 {
1273 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1274 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1275 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1276 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1277 }
386c036b 1278 memcpy (valbuf, buf, len);
5af923b0
MS
1279 }
1280 else
1281 {
386c036b
MK
1282 /* Integral and pointer return values. */
1283 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1284
386c036b
MK
1285 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1286 if (len > 4)
1287 {
1288 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1289 gdb_assert (len == 8);
1290 memcpy (valbuf, buf, 8);
1291 }
1292 else
1293 {
1294 /* Just stripping off any unused bytes should preserve the
1295 signed-ness just fine. */
1296 memcpy (valbuf, buf + 4 - len, len);
1297 }
1298 }
1299}
c906108c 1300
3923a2b2
MK
1301/* Store the function return value of type TYPE from VALBUF into
1302 REGCACHE. */
c906108c 1303
386c036b
MK
1304static void
1305sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1306 const gdb_byte *valbuf)
386c036b
MK
1307{
1308 int len = TYPE_LENGTH (type);
e1613aba 1309 gdb_byte buf[8];
c906108c 1310
386c036b
MK
1311 gdb_assert (!sparc_structure_or_union_p (type));
1312 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1313 gdb_assert (len <= 8);
c906108c 1314
fe10a582 1315 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1316 {
1317 /* Floating return values. */
1318 memcpy (buf, valbuf, len);
1319 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1320 if (len > 4)
1321 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1322 if (len > 8)
1323 {
1324 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1325 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1326 }
1327 if (len > 16)
1328 {
1329 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1330 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1331 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1332 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1333 }
386c036b
MK
1334 }
1335 else
c906108c 1336 {
386c036b
MK
1337 /* Integral and pointer return values. */
1338 gdb_assert (sparc_integral_or_pointer_p (type));
1339
1340 if (len > 4)
2757dd86 1341 {
386c036b
MK
1342 gdb_assert (len == 8);
1343 memcpy (buf, valbuf, 8);
1344 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1345 }
1346 else
1347 {
386c036b
MK
1348 /* ??? Do we need to do any sign-extension here? */
1349 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1350 }
386c036b 1351 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1352 }
1353}
1354
b9d4c5ed 1355static enum return_value_convention
6a3a010b 1356sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1357 struct type *type, struct regcache *regcache,
1358 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1359{
e17a4113
UW
1360 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1361
0a8f48b9
MK
1362 /* The psABI says that "...every stack frame reserves the word at
1363 %fp+64. If a function returns a structure, union, or
1364 quad-precision value, this word should hold the address of the
1365 object into which the return value should be copied." This
1366 guarantees that we can always find the return value, not just
1367 before the function returns. */
1368
b9d4c5ed
MK
1369 if (sparc_structure_or_union_p (type)
1370 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1371 {
1372 if (readbuf)
1373 {
1374 ULONGEST sp;
1375 CORE_ADDR addr;
1376
1377 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1378 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1379 read_memory (addr, readbuf, TYPE_LENGTH (type));
1380 }
1381
1382 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1383 }
b9d4c5ed
MK
1384
1385 if (readbuf)
1386 sparc32_extract_return_value (type, regcache, readbuf);
1387 if (writebuf)
1388 sparc32_store_return_value (type, regcache, writebuf);
1389
1390 return RETURN_VALUE_REGISTER_CONVENTION;
1391}
1392
386c036b
MK
1393static int
1394sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1395{
386c036b 1396 return (sparc_structure_or_union_p (type)
fe10a582
DM
1397 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1398 || sparc_complex_floating_p (type));
386c036b 1399}
c906108c 1400
aff37fc1 1401static int
4a4e5149 1402sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1403{
236369e7 1404 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1405 struct symbol *sym = find_pc_function (pc);
1406
1407 if (sym)
1408 return sparc32_struct_return_from_sym (sym);
1409 return 0;
1410}
1411
f5a9b87d
DM
1412static void
1413sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1414 struct dwarf2_frame_state_reg *reg,
4a4e5149 1415 struct frame_info *this_frame)
f5a9b87d 1416{
aff37fc1
DM
1417 int off;
1418
f5a9b87d
DM
1419 switch (regnum)
1420 {
1421 case SPARC_G0_REGNUM:
1422 /* Since %g0 is always zero, there is no point in saving it, and
1423 people will be inclined omit it from the CFI. Make sure we
1424 don't warn about that. */
1425 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1426 break;
1427 case SPARC_SP_REGNUM:
1428 reg->how = DWARF2_FRAME_REG_CFA;
1429 break;
1430 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1431 case SPARC32_NPC_REGNUM:
1432 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1433 off = 8;
4a4e5149 1434 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1435 off += 4;
1436 if (regnum == SPARC32_NPC_REGNUM)
1437 off += 4;
1438 reg->loc.offset = off;
f5a9b87d
DM
1439 break;
1440 }
1441}
1442
386c036b
MK
1443\f
1444/* The SPARC Architecture doesn't have hardware single-step support,
1445 and most operating systems don't implement it either, so we provide
1446 software single-step mechanism. */
c906108c 1447
386c036b 1448static CORE_ADDR
0b1b3e42 1449sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1450 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1451{
1452 unsigned long insn = sparc_fetch_instruction (pc);
1453 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1454 int branch_p = 0, fused_p = 0;
386c036b 1455 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1456
8d1b3521 1457 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1458 {
8d1b3521
DM
1459 if ((insn & 0x10000000) == 0)
1460 {
1461 /* Branch on Integer Register with Prediction (BPr). */
1462 branch_p = 1;
1463 conditional_p = 1;
1464 }
1465 else
1466 {
1467 /* Compare and Branch */
1468 branch_p = 1;
1469 fused_p = 1;
1470 offset = 4 * X_DISP10 (insn);
1471 }
c906108c 1472 }
386c036b 1473 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1474 {
386c036b
MK
1475 /* Branch on Floating-Point Condition Codes (FBfcc). */
1476 branch_p = 1;
1477 offset = 4 * X_DISP22 (insn);
c906108c 1478 }
386c036b
MK
1479 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1480 {
1481 /* Branch on Floating-Point Condition Codes with Prediction
1482 (FBPfcc). */
1483 branch_p = 1;
1484 offset = 4 * X_DISP19 (insn);
1485 }
1486 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1487 {
1488 /* Branch on Integer Condition Codes (Bicc). */
1489 branch_p = 1;
1490 offset = 4 * X_DISP22 (insn);
1491 }
1492 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1493 {
386c036b
MK
1494 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1495 branch_p = 1;
1496 offset = 4 * X_DISP19 (insn);
c906108c 1497 }
c893be75
MK
1498 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1499 {
1500 /* Trap instruction (TRAP). */
0b1b3e42 1501 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1502 }
386c036b
MK
1503
1504 /* FIXME: Handle DONE and RETRY instructions. */
1505
386c036b 1506 if (branch_p)
c906108c 1507 {
8d1b3521
DM
1508 if (fused_p)
1509 {
1510 /* Fused compare-and-branch instructions are non-delayed,
1511 and do not have an annuling capability. So we need to
1512 always set a breakpoint on both the NPC and the branch
1513 target address. */
1514 gdb_assert (offset != 0);
1515 return pc + offset;
1516 }
1517 else if (conditional_p)
c906108c 1518 {
386c036b
MK
1519 /* For conditional branches, return nPC + 4 iff the annul
1520 bit is 1. */
1521 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1522 }
1523 else
1524 {
386c036b
MK
1525 /* For unconditional branches, return the target if its
1526 specified condition is "always" and return nPC + 4 if the
1527 condition is "never". If the annul bit is 1, set *NPC to
1528 zero. */
1529 if (X_COND (insn) == 0x0)
1530 pc = *npc, offset = 4;
1531 if (X_A (insn))
1532 *npc = 0;
1533
1534 gdb_assert (offset != 0);
1535 return pc + offset;
c906108c
SS
1536 }
1537 }
386c036b
MK
1538
1539 return 0;
c906108c
SS
1540}
1541
c893be75 1542static CORE_ADDR
0b1b3e42 1543sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1544{
1545 return 0;
1546}
1547
e6590a1b 1548int
0b1b3e42 1549sparc_software_single_step (struct frame_info *frame)
386c036b 1550{
0b1b3e42 1551 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1552 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1553 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1554 CORE_ADDR npc, nnpc;
c906108c 1555
e0cd558a 1556 CORE_ADDR pc, orig_npc;
c906108c 1557
0b1b3e42
UW
1558 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1559 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1560
e0cd558a 1561 /* Analyze the instruction at PC. */
0b1b3e42 1562 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1563 if (npc != 0)
6c95b8df 1564 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1565
e0cd558a 1566 if (nnpc != 0)
6c95b8df 1567 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1568
e0cd558a
UW
1569 /* Assert that we have set at least one breakpoint, and that
1570 they're not set at the same spot - unless we're going
1571 from here straight to NULL, i.e. a call or jump to 0. */
1572 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1573 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1574
1575 return 1;
386c036b
MK
1576}
1577
1578static void
61a1198a 1579sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1580{
61a1198a 1581 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1582
61a1198a
UW
1583 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1584 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1585}
1586\f
5af923b0 1587
a54124c5
MK
1588/* Return the appropriate register set for the core section identified
1589 by SECT_NAME and SECT_SIZE. */
1590
63807e1d 1591static const struct regset *
a54124c5
MK
1592sparc_regset_from_core_section (struct gdbarch *gdbarch,
1593 const char *sect_name, size_t sect_size)
1594{
1595 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1596
c558d81a 1597 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1598 return tdep->gregset;
1599
c558d81a 1600 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1601 return tdep->fpregset;
1602
1603 return NULL;
1604}
1605\f
1606
386c036b
MK
1607static struct gdbarch *
1608sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1609{
1610 struct gdbarch_tdep *tdep;
1611 struct gdbarch *gdbarch;
c906108c 1612
386c036b
MK
1613 /* If there is already a candidate, use it. */
1614 arches = gdbarch_list_lookup_by_info (arches, &info);
1615 if (arches != NULL)
1616 return arches->gdbarch;
c906108c 1617
386c036b 1618 /* Allocate space for the new architecture. */
1390fcc2 1619 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1620 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1621
386c036b
MK
1622 tdep->pc_regnum = SPARC32_PC_REGNUM;
1623 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1624 tdep->step_trap = sparc_step_trap;
386c036b
MK
1625
1626 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1627 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1628
1629 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1630 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1631 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1632 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1633 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1634 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1635
1636 /* Register numbers of various important registers. */
1637 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1638 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1639 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1640
1641 /* Call dummy code. */
49a45ecf 1642 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1643 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1644 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1645 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1646
b9d4c5ed 1647 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1648 set_gdbarch_stabs_argument_has_addr
1649 (gdbarch, sparc32_stabs_argument_has_addr);
1650
1651 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1652
1653 /* Stack grows downward. */
1654 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1655
386c036b 1656 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1657
386c036b 1658 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1659
386c036b 1660 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1661
386c036b
MK
1662 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1663 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1664
236369e7 1665 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1666
386c036b 1667 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1668
386c036b
MK
1669 frame_base_set_default (gdbarch, &sparc32_frame_base);
1670
f5a9b87d
DM
1671 /* Hook in the DWARF CFI frame unwinder. */
1672 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1673 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1674 StackGhost issues have been resolved. */
1675
b2a0b9b2
DM
1676 /* Hook in ABI-specific overrides, if they have been registered. */
1677 gdbarch_init_osabi (info, gdbarch);
1678
236369e7 1679 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1680
a54124c5 1681 /* If we have register sets, enable the generic core file support. */
4c72d57a 1682 if (tdep->gregset)
a54124c5
MK
1683 set_gdbarch_regset_from_core_section (gdbarch,
1684 sparc_regset_from_core_section);
1685
386c036b
MK
1686 return gdbarch;
1687}
1688\f
1689/* Helper functions for dealing with register windows. */
1690
1691void
1692sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1693{
e17a4113
UW
1694 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1695 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1696 int offset = 0;
e1613aba 1697 gdb_byte buf[8];
386c036b
MK
1698 int i;
1699
1700 if (sp & 1)
1701 {
1702 /* Registers are 64-bit. */
1703 sp += BIAS;
c906108c 1704
386c036b
MK
1705 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1706 {
1707 if (regnum == i || regnum == -1)
1708 {
1709 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1710
1711 /* Handle StackGhost. */
1712 if (i == SPARC_I7_REGNUM)
1713 {
e17a4113
UW
1714 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1715 ULONGEST i7;
f700a364 1716
e17a4113
UW
1717 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1718 store_unsigned_integer (buf + offset, 8, byte_order,
1719 i7 ^ wcookie);
f700a364
MK
1720 }
1721
386c036b
MK
1722 regcache_raw_supply (regcache, i, buf);
1723 }
1724 }
1725 }
1726 else
c906108c 1727 {
386c036b
MK
1728 /* Registers are 32-bit. Toss any sign-extension of the stack
1729 pointer. */
1730 sp &= 0xffffffffUL;
c906108c 1731
386c036b
MK
1732 /* Clear out the top half of the temporary buffer, and put the
1733 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1734 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1735 {
386c036b
MK
1736 memset (buf, 0, 4);
1737 offset = 4;
1738 }
c906108c 1739
386c036b
MK
1740 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1741 {
1742 if (regnum == i || regnum == -1)
1743 {
1744 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1745 buf + offset, 4);
42cdca6c
MK
1746
1747 /* Handle StackGhost. */
1748 if (i == SPARC_I7_REGNUM)
1749 {
e17a4113
UW
1750 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1751 ULONGEST i7;
42cdca6c 1752
e17a4113
UW
1753 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1754 store_unsigned_integer (buf + offset, 4, byte_order,
1755 i7 ^ wcookie);
42cdca6c
MK
1756 }
1757
386c036b
MK
1758 regcache_raw_supply (regcache, i, buf);
1759 }
c906108c
SS
1760 }
1761 }
c906108c 1762}
c906108c
SS
1763
1764void
386c036b
MK
1765sparc_collect_rwindow (const struct regcache *regcache,
1766 CORE_ADDR sp, int regnum)
c906108c 1767{
e17a4113
UW
1768 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1769 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1770 int offset = 0;
e1613aba 1771 gdb_byte buf[8];
386c036b 1772 int i;
5af923b0 1773
386c036b 1774 if (sp & 1)
5af923b0 1775 {
386c036b
MK
1776 /* Registers are 64-bit. */
1777 sp += BIAS;
c906108c 1778
386c036b
MK
1779 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1780 {
1781 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1782 {
1783 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1784
1785 /* Handle StackGhost. */
1786 if (i == SPARC_I7_REGNUM)
1787 {
e17a4113
UW
1788 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1789 ULONGEST i7;
f700a364 1790
e17a4113
UW
1791 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1792 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1793 }
1794
386c036b
MK
1795 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1796 }
1797 }
5af923b0
MS
1798 }
1799 else
1800 {
386c036b
MK
1801 /* Registers are 32-bit. Toss any sign-extension of the stack
1802 pointer. */
1803 sp &= 0xffffffffUL;
1804
1805 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1806 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1807 offset = 4;
1808
1809 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1810 {
1811 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1812 {
1813 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1814
1815 /* Handle StackGhost. */
1816 if (i == SPARC_I7_REGNUM)
1817 {
e17a4113
UW
1818 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1819 ULONGEST i7;
42cdca6c 1820
e17a4113
UW
1821 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1822 store_unsigned_integer (buf + offset, 4, byte_order,
1823 i7 ^ wcookie);
42cdca6c
MK
1824 }
1825
386c036b
MK
1826 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1827 buf + offset, 4);
1828 }
1829 }
5af923b0 1830 }
c906108c
SS
1831}
1832
386c036b
MK
1833/* Helper functions for dealing with register sets. */
1834
c906108c 1835void
386c036b
MK
1836sparc32_supply_gregset (const struct sparc_gregset *gregset,
1837 struct regcache *regcache,
1838 int regnum, const void *gregs)
c906108c 1839{
e1613aba 1840 const gdb_byte *regs = gregs;
22e74ef9 1841 gdb_byte zero[4] = { 0 };
386c036b 1842 int i;
5af923b0 1843
386c036b
MK
1844 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1845 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1846 regs + gregset->r_psr_offset);
c906108c 1847
386c036b
MK
1848 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1849 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1850 regs + gregset->r_pc_offset);
5af923b0 1851
386c036b
MK
1852 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1853 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1854 regs + gregset->r_npc_offset);
5af923b0 1855
386c036b
MK
1856 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1857 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1858 regs + gregset->r_y_offset);
5af923b0 1859
386c036b 1860 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1861 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1862
386c036b 1863 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1864 {
386c036b
MK
1865 int offset = gregset->r_g1_offset;
1866
1867 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1868 {
1869 if (regnum == i || regnum == -1)
1870 regcache_raw_supply (regcache, i, regs + offset);
1871 offset += 4;
1872 }
c906108c 1873 }
386c036b
MK
1874
1875 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1876 {
386c036b
MK
1877 /* Not all of the register set variants include Locals and
1878 Inputs. For those that don't, we read them off the stack. */
1879 if (gregset->r_l0_offset == -1)
1880 {
1881 ULONGEST sp;
1882
1883 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1884 sparc_supply_rwindow (regcache, sp, regnum);
1885 }
1886 else
1887 {
1888 int offset = gregset->r_l0_offset;
1889
1890 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1891 {
1892 if (regnum == i || regnum == -1)
1893 regcache_raw_supply (regcache, i, regs + offset);
1894 offset += 4;
1895 }
1896 }
c906108c
SS
1897 }
1898}
1899
c5aa993b 1900void
386c036b
MK
1901sparc32_collect_gregset (const struct sparc_gregset *gregset,
1902 const struct regcache *regcache,
1903 int regnum, void *gregs)
c906108c 1904{
e1613aba 1905 gdb_byte *regs = gregs;
386c036b 1906 int i;
c5aa993b 1907
386c036b
MK
1908 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1909 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1910 regs + gregset->r_psr_offset);
60054393 1911
386c036b
MK
1912 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1913 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1914 regs + gregset->r_pc_offset);
1915
1916 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1917 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1918 regs + gregset->r_npc_offset);
5af923b0 1919
386c036b
MK
1920 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1921 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1922 regs + gregset->r_y_offset);
1923
1924 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1925 {
386c036b
MK
1926 int offset = gregset->r_g1_offset;
1927
1928 /* %g0 is always zero. */
1929 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1930 {
1931 if (regnum == i || regnum == -1)
1932 regcache_raw_collect (regcache, i, regs + offset);
1933 offset += 4;
1934 }
5af923b0 1935 }
386c036b
MK
1936
1937 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1938 {
386c036b
MK
1939 /* Not all of the register set variants include Locals and
1940 Inputs. For those that don't, we read them off the stack. */
1941 if (gregset->r_l0_offset != -1)
1942 {
1943 int offset = gregset->r_l0_offset;
1944
1945 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1946 {
1947 if (regnum == i || regnum == -1)
1948 regcache_raw_collect (regcache, i, regs + offset);
1949 offset += 4;
1950 }
1951 }
5af923b0 1952 }
c906108c
SS
1953}
1954
c906108c 1955void
db75c717
DM
1956sparc32_supply_fpregset (const struct sparc_fpregset *fpregset,
1957 struct regcache *regcache,
386c036b 1958 int regnum, const void *fpregs)
c906108c 1959{
e1613aba 1960 const gdb_byte *regs = fpregs;
386c036b 1961 int i;
60054393 1962
386c036b 1963 for (i = 0; i < 32; i++)
c906108c 1964 {
386c036b 1965 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717
DM
1966 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
1967 regs + fpregset->r_f0_offset + (i * 4));
c906108c 1968 }
5af923b0 1969
386c036b 1970 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717
DM
1971 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1972 regs + fpregset->r_fsr_offset);
c906108c
SS
1973}
1974
386c036b 1975void
db75c717
DM
1976sparc32_collect_fpregset (const struct sparc_fpregset *fpregset,
1977 const struct regcache *regcache,
386c036b 1978 int regnum, void *fpregs)
c906108c 1979{
e1613aba 1980 gdb_byte *regs = fpregs;
386c036b 1981 int i;
c906108c 1982
386c036b
MK
1983 for (i = 0; i < 32; i++)
1984 {
1985 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717
DM
1986 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
1987 regs + fpregset->r_f0_offset + (i * 4));
386c036b 1988 }
c906108c 1989
386c036b 1990 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717
DM
1991 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
1992 regs + fpregset->r_fsr_offset);
c906108c 1993}
c906108c 1994\f
c906108c 1995
386c036b 1996/* SunOS 4. */
c906108c 1997
386c036b
MK
1998/* From <machine/reg.h>. */
1999const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 2000{
386c036b
MK
2001 0 * 4, /* %psr */
2002 1 * 4, /* %pc */
2003 2 * 4, /* %npc */
2004 3 * 4, /* %y */
2005 -1, /* %wim */
2006 -1, /* %tbr */
2007 4 * 4, /* %g1 */
2008 -1 /* %l0 */
2009};
db75c717
DM
2010
2011const struct sparc_fpregset sparc32_sunos4_fpregset =
2012{
2013 0 * 4, /* %f0 */
2014 33 * 4, /* %fsr */
2015};
2016
2017const struct sparc_fpregset sparc32_bsd_fpregset =
2018{
2019 0 * 4, /* %f0 */
2020 32 * 4, /* %fsr */
2021};
386c036b 2022\f
c906108c 2023
386c036b
MK
2024/* Provide a prototype to silence -Wmissing-prototypes. */
2025void _initialize_sparc_tdep (void);
c906108c
SS
2026
2027void
386c036b 2028_initialize_sparc_tdep (void)
c906108c 2029{
386c036b 2030 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2031}
This page took 1.695635 seconds and 4 git commands to generate.