Add gdbarch callback to provide formats for debug info float types
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
618f726f 3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
386c036b 38#include "sparc-tdep.h"
e6f9c00b 39#include "sparc-ravenscar-thread.h"
c906108c 40
a54124c5
MK
41struct regset;
42
9eb42ed1
MK
43/* This file implements the SPARC 32-bit ABI as defined by the section
44 "Low-Level System Information" of the SPARC Compliance Definition
45 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 46 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 47 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
48
49 Note that if we talk about SunOS, we mean SunOS 4.x, which was
50 BSD-based, which is sometimes (retroactively?) referred to as
51 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
52 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
53 suffering from severe version number inflation). Solaris 2.x is
54 also known as SunOS 5.x, since that's what uname(1) says. Solaris
55 2.x is SVR4-based. */
56
57/* Please use the sparc32_-prefix for 32-bit specific code, the
58 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
59 code that can handle both. The 64-bit specific code lives in
60 sparc64-tdep.c; don't add any here. */
61
62/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 63 big-endian IA-64 Quad-Precision format. */
8da61cc4 64#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
65
66/* The stack pointer is offset from the stack frame by a BIAS of 2047
67 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
68 hosts, so undefine it first. */
69#undef BIAS
70#define BIAS 2047
71
72/* Macros to extract fields from SPARC instructions. */
c906108c
SS
73#define X_OP(i) (((i) >> 30) & 0x3)
74#define X_RD(i) (((i) >> 25) & 0x1f)
75#define X_A(i) (((i) >> 29) & 1)
76#define X_COND(i) (((i) >> 25) & 0xf)
77#define X_OP2(i) (((i) >> 22) & 0x7)
78#define X_IMM22(i) ((i) & 0x3fffff)
79#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 80#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 81#define X_RS2(i) ((i) & 0x1f)
c906108c 82#define X_I(i) (((i) >> 13) & 1)
c906108c 83/* Sign extension macros. */
c906108c 84#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 85#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 86#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 87#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
961842b2
JM
88/* Macros to identify some instructions. */
89/* RETURN (RETT in V8) */
90#define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
c906108c 91
386c036b
MK
92/* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95unsigned long
96sparc_fetch_instruction (CORE_ADDR pc)
c906108c 97{
e1613aba 98 gdb_byte buf[4];
386c036b
MK
99 unsigned long insn;
100 int i;
101
690668cc 102 /* If we can't read the instruction at PC, return zero. */
8defab1a 103 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 104 return 0;
c906108c 105
386c036b
MK
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110}
42cdca6c
MK
111\f
112
5465445a
JB
113/* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116static int
117sparc_is_unimp_insn (CORE_ADDR pc)
118{
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122}
123
d0b5971a
JM
124/* Return non-zero if the instruction corresponding to PC is an
125 "annulled" branch, i.e. the annul bit is set. */
126
127int
128sparc_is_annulled_branch_insn (CORE_ADDR pc)
129{
130 /* The branch instructions featuring an annul bit can be identified
131 by the following bit patterns:
132
133 OP=0
134 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
135 OP2=2: Branch on Integer Condition Codes (Bcc).
136 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
137 OP2=6: Branch on FP Condition Codes (FBcc).
138 OP2=3 && Bit28=0:
139 Branch on Integer Register with Prediction (BPr).
140
141 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
142 coprocessor branch instructions (Op2=7). */
143
144 const unsigned long insn = sparc_fetch_instruction (pc);
145 const unsigned op2 = X_OP2 (insn);
146
147 if ((X_OP (insn) == 0)
148 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
149 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
150 return X_A (insn);
151 else
152 return 0;
153}
154
42cdca6c
MK
155/* OpenBSD/sparc includes StackGhost, which according to the author's
156 website http://stackghost.cerias.purdue.edu "... transparently and
157 automatically protects applications' stack frames; more
158 specifically, it guards the return pointers. The protection
159 mechanisms require no application source or binary modification and
160 imposes only a negligible performance penalty."
161
162 The same website provides the following description of how
163 StackGhost works:
164
165 "StackGhost interfaces with the kernel trap handler that would
166 normally write out registers to the stack and the handler that
167 would read them back in. By XORing a cookie into the
168 return-address saved in the user stack when it is actually written
169 to the stack, and then XOR it out when the return-address is pulled
170 from the stack, StackGhost can cause attacker corrupted return
171 pointers to behave in a manner the attacker cannot predict.
172 StackGhost can also use several unused bits in the return pointer
173 to detect a smashed return pointer and abort the process."
174
175 For GDB this means that whenever we're reading %i7 from a stack
176 frame's window save area, we'll have to XOR the cookie.
177
178 More information on StackGuard can be found on in:
179
c378eb4e 180 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
181 Stack Protection." 2001. Published in USENIX Security Symposium
182 '01. */
183
184/* Fetch StackGhost Per-Process XOR cookie. */
185
186ULONGEST
e17a4113 187sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 188{
e17a4113 189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 190 struct target_ops *ops = &current_target;
e1613aba 191 gdb_byte buf[8];
baf92889
MK
192 int len;
193
13547ab6 194 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
195 if (len == -1)
196 return 0;
42cdca6c 197
baf92889
MK
198 /* We should have either an 32-bit or an 64-bit cookie. */
199 gdb_assert (len == 4 || len == 8);
200
e17a4113 201 return extract_unsigned_integer (buf, len, byte_order);
baf92889 202}
386c036b 203\f
baf92889 204
386c036b
MK
205/* The functions on this page are intended to be used to classify
206 function arguments. */
c906108c 207
386c036b 208/* Check whether TYPE is "Integral or Pointer". */
c906108c 209
386c036b
MK
210static int
211sparc_integral_or_pointer_p (const struct type *type)
c906108c 212{
80ad1639
MK
213 int len = TYPE_LENGTH (type);
214
386c036b 215 switch (TYPE_CODE (type))
c906108c 216 {
386c036b
MK
217 case TYPE_CODE_INT:
218 case TYPE_CODE_BOOL:
219 case TYPE_CODE_CHAR:
220 case TYPE_CODE_ENUM:
221 case TYPE_CODE_RANGE:
80ad1639
MK
222 /* We have byte, half-word, word and extended-word/doubleword
223 integral types. The doubleword is an extension to the
224 original 32-bit ABI by the SCD 2.4.x. */
225 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
226 case TYPE_CODE_PTR:
227 case TYPE_CODE_REF:
80ad1639
MK
228 /* Allow either 32-bit or 64-bit pointers. */
229 return (len == 4 || len == 8);
386c036b
MK
230 default:
231 break;
232 }
c906108c 233
386c036b
MK
234 return 0;
235}
c906108c 236
386c036b 237/* Check whether TYPE is "Floating". */
c906108c 238
386c036b
MK
239static int
240sparc_floating_p (const struct type *type)
241{
242 switch (TYPE_CODE (type))
c906108c 243 {
386c036b
MK
244 case TYPE_CODE_FLT:
245 {
246 int len = TYPE_LENGTH (type);
247 return (len == 4 || len == 8 || len == 16);
248 }
249 default:
250 break;
251 }
252
253 return 0;
254}
c906108c 255
fe10a582
DM
256/* Check whether TYPE is "Complex Floating". */
257
258static int
259sparc_complex_floating_p (const struct type *type)
260{
261 switch (TYPE_CODE (type))
262 {
263 case TYPE_CODE_COMPLEX:
264 {
265 int len = TYPE_LENGTH (type);
266 return (len == 8 || len == 16 || len == 32);
267 }
268 default:
269 break;
270 }
271
272 return 0;
273}
274
0497f5b0
JB
275/* Check whether TYPE is "Structure or Union".
276
277 In terms of Ada subprogram calls, arrays are treated the same as
278 struct and union types. So this function also returns non-zero
279 for array types. */
c906108c 280
386c036b
MK
281static int
282sparc_structure_or_union_p (const struct type *type)
283{
284 switch (TYPE_CODE (type))
285 {
286 case TYPE_CODE_STRUCT:
287 case TYPE_CODE_UNION:
0497f5b0 288 case TYPE_CODE_ARRAY:
386c036b
MK
289 return 1;
290 default:
291 break;
c906108c 292 }
386c036b
MK
293
294 return 0;
c906108c 295}
386c036b
MK
296
297/* Register information. */
298
299static const char *sparc32_register_names[] =
5af923b0 300{
386c036b
MK
301 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
302 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
303 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
304 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
305
306 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
307 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
308 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
309 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
310
311 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
312};
313
386c036b
MK
314/* Total number of registers. */
315#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 316
386c036b
MK
317/* We provide the aliases %d0..%d30 for the floating registers as
318 "psuedo" registers. */
319
320static const char *sparc32_pseudo_register_names[] =
321{
322 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
323 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
324};
325
326/* Total number of pseudo registers. */
327#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
328
329/* Return the name of register REGNUM. */
330
331static const char *
d93859e2 332sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
333{
334 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
335 return sparc32_register_names[regnum];
336
337 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
338 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
339
340 return NULL;
341}
2d457077 342\f
209bd28e 343/* Construct types for ISA-specific registers. */
2d457077 344
209bd28e
UW
345static struct type *
346sparc_psr_type (struct gdbarch *gdbarch)
347{
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 349
209bd28e
UW
350 if (!tdep->sparc_psr_type)
351 {
352 struct type *type;
2d457077 353
e9bb382b 354 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
355 append_flags_type_flag (type, 5, "ET");
356 append_flags_type_flag (type, 6, "PS");
357 append_flags_type_flag (type, 7, "S");
358 append_flags_type_flag (type, 12, "EF");
359 append_flags_type_flag (type, 13, "EC");
2d457077 360
209bd28e
UW
361 tdep->sparc_psr_type = type;
362 }
363
364 return tdep->sparc_psr_type;
365}
366
367static struct type *
368sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 369{
209bd28e
UW
370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
371
372 if (!tdep->sparc_fsr_type)
373 {
374 struct type *type;
375
e9bb382b 376 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
377 append_flags_type_flag (type, 0, "NXA");
378 append_flags_type_flag (type, 1, "DZA");
379 append_flags_type_flag (type, 2, "UFA");
380 append_flags_type_flag (type, 3, "OFA");
381 append_flags_type_flag (type, 4, "NVA");
382 append_flags_type_flag (type, 5, "NXC");
383 append_flags_type_flag (type, 6, "DZC");
384 append_flags_type_flag (type, 7, "UFC");
385 append_flags_type_flag (type, 8, "OFC");
386 append_flags_type_flag (type, 9, "NVC");
387 append_flags_type_flag (type, 22, "NS");
388 append_flags_type_flag (type, 23, "NXM");
389 append_flags_type_flag (type, 24, "DZM");
390 append_flags_type_flag (type, 25, "UFM");
391 append_flags_type_flag (type, 26, "OFM");
392 append_flags_type_flag (type, 27, "NVM");
393
394 tdep->sparc_fsr_type = type;
395 }
396
397 return tdep->sparc_fsr_type;
2d457077 398}
386c036b
MK
399
400/* Return the GDB type object for the "standard" data type of data in
c378eb4e 401 register REGNUM. */
386c036b
MK
402
403static struct type *
404sparc32_register_type (struct gdbarch *gdbarch, int regnum)
405{
406 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 407 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
408
409 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 410 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
411
412 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 413 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
414
415 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 416 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 417
2d457077 418 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 419 return sparc_psr_type (gdbarch);
2d457077
MK
420
421 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 422 return sparc_fsr_type (gdbarch);
2d457077 423
df4df182 424 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
425}
426
05d1431c 427static enum register_status
386c036b
MK
428sparc32_pseudo_register_read (struct gdbarch *gdbarch,
429 struct regcache *regcache,
e1613aba 430 int regnum, gdb_byte *buf)
386c036b 431{
05d1431c
PA
432 enum register_status status;
433
386c036b
MK
434 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
435
436 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
437 status = regcache_raw_read (regcache, regnum, buf);
438 if (status == REG_VALID)
439 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
440 return status;
386c036b
MK
441}
442
443static void
444sparc32_pseudo_register_write (struct gdbarch *gdbarch,
445 struct regcache *regcache,
e1613aba 446 int regnum, const gdb_byte *buf)
386c036b
MK
447{
448 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
449
450 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
451 regcache_raw_write (regcache, regnum, buf);
e1613aba 452 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
453}
454\f
c9cf6e20 455/* Implement the stack_frame_destroyed_p gdbarch method. */
961842b2
JM
456
457int
c9cf6e20 458sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
961842b2
JM
459{
460 /* This function must return true if we are one instruction after an
461 instruction that destroyed the stack frame of the current
462 function. The SPARC instructions used to restore the callers
463 stack frame are RESTORE and RETURN/RETT.
464
465 Of these RETURN/RETT is a branch instruction and thus we return
466 true if we are in its delay slot.
467
468 RESTORE is almost always found in the delay slot of a branch
469 instruction that transfers control to the caller, such as JMPL.
470 Thus the next instruction is in the caller frame and we don't
471 need to do anything about it. */
472
473 unsigned int insn = sparc_fetch_instruction (pc - 4);
474
475 return X_RETTURN (insn);
476}
477\f
386c036b 478
49a45ecf
JB
479static CORE_ADDR
480sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
481{
482 /* The ABI requires double-word alignment. */
483 return address & ~0x7;
484}
485
386c036b
MK
486static CORE_ADDR
487sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 488 CORE_ADDR funcaddr,
386c036b
MK
489 struct value **args, int nargs,
490 struct type *value_type,
e4fd649a
UW
491 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
492 struct regcache *regcache)
c906108c 493{
e17a4113
UW
494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495
386c036b
MK
496 *bp_addr = sp - 4;
497 *real_pc = funcaddr;
498
d80b854b 499 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 500 {
e1613aba 501 gdb_byte buf[4];
386c036b
MK
502
503 /* This is an UNIMP instruction. */
e17a4113
UW
504 store_unsigned_integer (buf, 4, byte_order,
505 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
506 write_memory (sp - 8, buf, 4);
507 return sp - 8;
c906108c
SS
508 }
509
386c036b
MK
510 return sp - 4;
511}
512
513static CORE_ADDR
514sparc32_store_arguments (struct regcache *regcache, int nargs,
515 struct value **args, CORE_ADDR sp,
516 int struct_return, CORE_ADDR struct_addr)
517{
df4df182 518 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
520 /* Number of words in the "parameter array". */
521 int num_elements = 0;
522 int element = 0;
523 int i;
524
525 for (i = 0; i < nargs; i++)
c906108c 526 {
4991999e 527 struct type *type = value_type (args[i]);
386c036b
MK
528 int len = TYPE_LENGTH (type);
529
530 if (sparc_structure_or_union_p (type)
fe10a582
DM
531 || (sparc_floating_p (type) && len == 16)
532 || sparc_complex_floating_p (type))
c906108c 533 {
386c036b
MK
534 /* Structure, Union and Quad-Precision Arguments. */
535 sp -= len;
536
537 /* Use doubleword alignment for these values. That's always
538 correct, and wasting a few bytes shouldn't be a problem. */
539 sp &= ~0x7;
540
0fd88904 541 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
542 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
543 num_elements++;
544 }
545 else if (sparc_floating_p (type))
546 {
547 /* Floating arguments. */
548 gdb_assert (len == 4 || len == 8);
549 num_elements += (len / 4);
c906108c 550 }
c5aa993b
JM
551 else
552 {
386c036b
MK
553 /* Integral and pointer arguments. */
554 gdb_assert (sparc_integral_or_pointer_p (type));
555
556 if (len < 4)
df4df182
UW
557 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
558 args[i]);
386c036b 559 num_elements += ((len + 3) / 4);
c5aa993b 560 }
c906108c 561 }
c906108c 562
386c036b
MK
563 /* Always allocate at least six words. */
564 sp -= max (6, num_elements) * 4;
c906108c 565
386c036b
MK
566 /* The psABI says that "Software convention requires space for the
567 struct/union return value pointer, even if the word is unused." */
568 sp -= 4;
c906108c 569
386c036b
MK
570 /* The psABI says that "Although software convention and the
571 operating system require every stack frame to be doubleword
572 aligned." */
573 sp &= ~0x7;
c906108c 574
386c036b 575 for (i = 0; i < nargs; i++)
c906108c 576 {
0fd88904 577 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 578 struct type *type = value_type (args[i]);
386c036b 579 int len = TYPE_LENGTH (type);
c906108c 580
386c036b 581 gdb_assert (len == 4 || len == 8);
c906108c 582
386c036b
MK
583 if (element < 6)
584 {
585 int regnum = SPARC_O0_REGNUM + element;
c906108c 586
386c036b
MK
587 regcache_cooked_write (regcache, regnum, valbuf);
588 if (len > 4 && element < 5)
589 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
590 }
5af923b0 591
386c036b
MK
592 /* Always store the argument in memory. */
593 write_memory (sp + 4 + element * 4, valbuf, len);
594 element += len / 4;
595 }
c906108c 596
386c036b 597 gdb_assert (element == num_elements);
c906108c 598
386c036b 599 if (struct_return)
c906108c 600 {
e1613aba 601 gdb_byte buf[4];
c906108c 602
e17a4113 603 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
604 write_memory (sp, buf, 4);
605 }
c906108c 606
386c036b 607 return sp;
c906108c
SS
608}
609
386c036b 610static CORE_ADDR
7d9b040b 611sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
612 struct regcache *regcache, CORE_ADDR bp_addr,
613 int nargs, struct value **args, CORE_ADDR sp,
614 int struct_return, CORE_ADDR struct_addr)
c906108c 615{
386c036b
MK
616 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
617
618 /* Set return address. */
619 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
620
621 /* Set up function arguments. */
622 sp = sparc32_store_arguments (regcache, nargs, args, sp,
623 struct_return, struct_addr);
624
625 /* Allocate the 16-word window save area. */
626 sp -= 16 * 4;
c906108c 627
386c036b
MK
628 /* Stack should be doubleword aligned at this point. */
629 gdb_assert (sp % 8 == 0);
c906108c 630
386c036b
MK
631 /* Finally, update the stack pointer. */
632 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
633
634 return sp;
635}
636\f
c906108c 637
386c036b
MK
638/* Use the program counter to determine the contents and size of a
639 breakpoint instruction. Return a pointer to a string of bytes that
640 encode a breakpoint instruction, store the length of the string in
641 *LEN and optionally adjust *PC to point to the correct memory
642 location for inserting the breakpoint. */
643
e1613aba 644static const gdb_byte *
67d57894 645sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 646{
864a1a37 647 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 648
386c036b
MK
649 *len = sizeof (break_insn);
650 return break_insn;
c906108c 651}
386c036b 652\f
c906108c 653
386c036b 654/* Allocate and initialize a frame cache. */
c906108c 655
386c036b
MK
656static struct sparc_frame_cache *
657sparc_alloc_frame_cache (void)
658{
659 struct sparc_frame_cache *cache;
c906108c 660
386c036b 661 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 662
386c036b
MK
663 /* Base address. */
664 cache->base = 0;
665 cache->pc = 0;
c906108c 666
386c036b
MK
667 /* Frameless until proven otherwise. */
668 cache->frameless_p = 1;
369c397b
JB
669 cache->frame_offset = 0;
670 cache->saved_regs_mask = 0;
671 cache->copied_regs_mask = 0;
386c036b
MK
672 cache->struct_return_p = 0;
673
674 return cache;
675}
676
b0b92586
JB
677/* GCC generates several well-known sequences of instructions at the begining
678 of each function prologue when compiling with -fstack-check. If one of
679 such sequences starts at START_PC, then return the address of the
680 instruction immediately past this sequence. Otherwise, return START_PC. */
681
682static CORE_ADDR
683sparc_skip_stack_check (const CORE_ADDR start_pc)
684{
685 CORE_ADDR pc = start_pc;
686 unsigned long insn;
2067c8d4 687 int probing_loop = 0;
b0b92586
JB
688
689 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 690 instructions, plus an optional one in the case of a probing loop:
b0b92586 691
2067c8d4
JG
692 sethi <some immediate>, %g1
693 sub %sp, %g1, %g1
694
695 or:
696
697 sethi <some immediate>, %g1
698 sethi <some immediate>, %g4
699 sub %sp, %g1, %g1
700
701 or:
702
703 sethi <some immediate>, %g1
704 sub %sp, %g1, %g1
705 sethi <some immediate>, %g4
706
707 If the optional instruction is found (setting g4), assume that a
708 probing loop will follow. */
709
710 /* sethi <some immediate>, %g1 */
b0b92586
JB
711 insn = sparc_fetch_instruction (pc);
712 pc = pc + 4;
713 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
714 return start_pc;
715
2067c8d4 716 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
2067c8d4
JG
719 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
720 {
721 probing_loop = 1;
722 insn = sparc_fetch_instruction (pc);
723 pc = pc + 4;
724 }
725
726 /* sub %sp, %g1, %g1 */
b0b92586
JB
727 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
728 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
729 return start_pc;
730
731 insn = sparc_fetch_instruction (pc);
732 pc = pc + 4;
733
2067c8d4
JG
734 /* optional: sethi <some immediate>, %g4 */
735 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
736 {
737 probing_loop = 1;
738 insn = sparc_fetch_instruction (pc);
739 pc = pc + 4;
740 }
741
b0b92586
JB
742 /* First possible sequence:
743 [first two instructions above]
744 clr [%g1 - some immediate] */
745
746 /* clr [%g1 - some immediate] */
747 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
748 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
749 {
750 /* Valid stack-check sequence, return the new PC. */
751 return pc;
752 }
753
754 /* Second possible sequence: A small number of probes.
755 [first two instructions above]
756 clr [%g1]
757 add %g1, -<some immediate>, %g1
758 clr [%g1]
759 [repeat the two instructions above any (small) number of times]
760 clr [%g1 - some immediate] */
761
762 /* clr [%g1] */
763 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
764 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
765 {
766 while (1)
767 {
768 /* add %g1, -<some immediate>, %g1 */
769 insn = sparc_fetch_instruction (pc);
770 pc = pc + 4;
771 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
772 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
773 break;
774
775 /* clr [%g1] */
776 insn = sparc_fetch_instruction (pc);
777 pc = pc + 4;
778 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
779 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
780 return start_pc;
781 }
782
783 /* clr [%g1 - some immediate] */
784 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
785 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
786 return start_pc;
787
788 /* We found a valid stack-check sequence, return the new PC. */
789 return pc;
790 }
791
792 /* Third sequence: A probing loop.
2067c8d4 793 [first three instructions above]
b0b92586
JB
794 sub %g1, %g4, %g4
795 cmp %g1, %g4
796 be <disp>
797 add %g1, -<some immediate>, %g1
798 ba <disp>
799 clr [%g1]
2067c8d4
JG
800
801 And an optional last probe for the remainder:
802
b0b92586
JB
803 clr [%g4 - some immediate] */
804
2067c8d4 805 if (probing_loop)
b0b92586
JB
806 {
807 /* sub %g1, %g4, %g4 */
b0b92586
JB
808 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
809 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
810 return start_pc;
811
812 /* cmp %g1, %g4 */
813 insn = sparc_fetch_instruction (pc);
814 pc = pc + 4;
815 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
816 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
817 return start_pc;
818
819 /* be <disp> */
820 insn = sparc_fetch_instruction (pc);
821 pc = pc + 4;
822 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
823 return start_pc;
824
825 /* add %g1, -<some immediate>, %g1 */
826 insn = sparc_fetch_instruction (pc);
827 pc = pc + 4;
828 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
829 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
830 return start_pc;
831
832 /* ba <disp> */
833 insn = sparc_fetch_instruction (pc);
834 pc = pc + 4;
835 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
836 return start_pc;
837
2067c8d4 838 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
839 insn = sparc_fetch_instruction (pc);
840 pc = pc + 4;
2067c8d4
JG
841 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
842 && X_RD (insn) == 0 && X_RS1 (insn) == 1
843 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
844 return start_pc;
845
2067c8d4
JG
846 /* We found a valid stack-check sequence, return the new PC. */
847
848 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
849 insn = sparc_fetch_instruction (pc);
850 pc = pc + 4;
851 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
852 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
853 return pc - 4;
854 else
855 return pc;
b0b92586
JB
856 }
857
858 /* No stack check code in our prologue, return the start_pc. */
859 return start_pc;
860}
861
369c397b
JB
862/* Record the effect of a SAVE instruction on CACHE. */
863
864void
865sparc_record_save_insn (struct sparc_frame_cache *cache)
866{
867 /* The frame is set up. */
868 cache->frameless_p = 0;
869
870 /* The frame pointer contains the CFA. */
871 cache->frame_offset = 0;
872
873 /* The `local' and `in' registers are all saved. */
874 cache->saved_regs_mask = 0xffff;
875
876 /* The `out' registers are all renamed. */
877 cache->copied_regs_mask = 0xff;
878}
879
880/* Do a full analysis of the prologue at PC and update CACHE accordingly.
881 Bail out early if CURRENT_PC is reached. Return the address where
882 the analysis stopped.
883
884 We handle both the traditional register window model and the single
885 register window (aka flat) model. */
886
386c036b 887CORE_ADDR
be8626e0
MD
888sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
889 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 890{
be8626e0 891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
892 unsigned long insn;
893 int offset = 0;
c906108c 894 int dest = -1;
c906108c 895
b0b92586
JB
896 pc = sparc_skip_stack_check (pc);
897
386c036b
MK
898 if (current_pc <= pc)
899 return current_pc;
900
901 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
902 SPARC the linker usually defines a symbol (typically
903 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
904 This symbol makes us end up here with PC pointing at the start of
905 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
906 would do our normal prologue analysis, we would probably conclude
907 that we've got a frame when in reality we don't, since the
908 dynamic linker patches up the first PLT with some code that
909 starts with a SAVE instruction. Patch up PC such that it points
910 at the start of our PLT entry. */
3e5d3a5a 911 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
386c036b 912 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 913
386c036b
MK
914 insn = sparc_fetch_instruction (pc);
915
369c397b
JB
916 /* Recognize store insns and record their sources. */
917 while (X_OP (insn) == 3
918 && (X_OP3 (insn) == 0x4 /* stw */
919 || X_OP3 (insn) == 0x7 /* std */
920 || X_OP3 (insn) == 0xe) /* stx */
921 && X_RS1 (insn) == SPARC_SP_REGNUM)
922 {
923 int regnum = X_RD (insn);
924
925 /* Recognize stores into the corresponding stack slots. */
926 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
927 && ((X_I (insn)
928 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
929 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
930 : (regnum - SPARC_L0_REGNUM) * 4))
931 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
932 {
933 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
934 if (X_OP3 (insn) == 0x7)
935 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
936 }
937
938 offset += 4;
939
940 insn = sparc_fetch_instruction (pc + offset);
941 }
942
386c036b
MK
943 /* Recognize a SETHI insn and record its destination. */
944 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
945 {
946 dest = X_RD (insn);
386c036b
MK
947 offset += 4;
948
369c397b 949 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
950 }
951
386c036b
MK
952 /* Allow for an arithmetic operation on DEST or %g1. */
953 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
954 && (X_RD (insn) == 1 || X_RD (insn) == dest))
955 {
386c036b 956 offset += 4;
c906108c 957
369c397b 958 insn = sparc_fetch_instruction (pc + offset);
c906108c 959 }
c906108c 960
386c036b
MK
961 /* Check for the SAVE instruction that sets up the frame. */
962 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 963 {
369c397b
JB
964 sparc_record_save_insn (cache);
965 offset += 4;
966 return pc + offset;
967 }
968
969 /* Check for an arithmetic operation on %sp. */
970 if (X_OP (insn) == 2
971 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
972 && X_RS1 (insn) == SPARC_SP_REGNUM
973 && X_RD (insn) == SPARC_SP_REGNUM)
974 {
975 if (X_I (insn))
976 {
977 cache->frame_offset = X_SIMM13 (insn);
978 if (X_OP3 (insn) == 0)
979 cache->frame_offset = -cache->frame_offset;
980 }
981 offset += 4;
982
983 insn = sparc_fetch_instruction (pc + offset);
984
985 /* Check for an arithmetic operation that sets up the frame. */
986 if (X_OP (insn) == 2
987 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
988 && X_RS1 (insn) == SPARC_SP_REGNUM
989 && X_RD (insn) == SPARC_FP_REGNUM)
990 {
991 cache->frameless_p = 0;
992 cache->frame_offset = 0;
993 /* We could check that the amount subtracted to %sp above is the
994 same as the one added here, but this seems superfluous. */
995 cache->copied_regs_mask |= 0x40;
996 offset += 4;
997
998 insn = sparc_fetch_instruction (pc + offset);
999 }
1000
1001 /* Check for a move (or) operation that copies the return register. */
1002 if (X_OP (insn) == 2
1003 && X_OP3 (insn) == 0x2
1004 && !X_I (insn)
1005 && X_RS1 (insn) == SPARC_G0_REGNUM
1006 && X_RS2 (insn) == SPARC_O7_REGNUM
1007 && X_RD (insn) == SPARC_I7_REGNUM)
1008 {
1009 cache->copied_regs_mask |= 0x80;
1010 offset += 4;
1011 }
1012
1013 return pc + offset;
c906108c
SS
1014 }
1015
1016 return pc;
1017}
1018
386c036b 1019static CORE_ADDR
236369e7 1020sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1021{
1022 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 1023 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
1024}
1025
1026/* Return PC of first real instruction of the function starting at
1027 START_PC. */
f510d44e 1028
386c036b 1029static CORE_ADDR
6093d2eb 1030sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1031{
f510d44e
DM
1032 struct symtab_and_line sal;
1033 CORE_ADDR func_start, func_end;
386c036b 1034 struct sparc_frame_cache cache;
f510d44e
DM
1035
1036 /* This is the preferred method, find the end of the prologue by
1037 using the debugging information. */
1038 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1039 {
1040 sal = find_pc_line (func_start, 0);
1041
1042 if (sal.end < func_end
1043 && start_pc <= sal.end)
1044 return sal.end;
1045 }
1046
be8626e0 1047 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
1048
1049 /* The psABI says that "Although the first 6 words of arguments
1050 reside in registers, the standard stack frame reserves space for
1051 them.". It also suggests that a function may use that space to
1052 "write incoming arguments 0 to 5" into that space, and that's
1053 indeed what GCC seems to be doing. In that case GCC will
1054 generate debug information that points to the stack slots instead
1055 of the registers, so we should consider the instructions that
369c397b 1056 write out these incoming arguments onto the stack. */
075ccec8 1057
369c397b 1058 while (1)
075ccec8
MK
1059 {
1060 unsigned long insn = sparc_fetch_instruction (start_pc);
1061
369c397b
JB
1062 /* Recognize instructions that store incoming arguments into the
1063 corresponding stack slots. */
1064 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1065 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1066 {
369c397b
JB
1067 int regnum = X_RD (insn);
1068
1069 /* Case of arguments still in %o[0..5]. */
1070 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1071 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1072 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1073 {
1074 start_pc += 4;
1075 continue;
1076 }
1077
1078 /* Case of arguments copied into %i[0..5]. */
1079 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1080 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1081 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1082 {
1083 start_pc += 4;
1084 continue;
1085 }
075ccec8
MK
1086 }
1087
1088 break;
1089 }
1090
1091 return start_pc;
c906108c
SS
1092}
1093
386c036b 1094/* Normal frames. */
9319a2fe 1095
386c036b 1096struct sparc_frame_cache *
236369e7 1097sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1098{
386c036b 1099 struct sparc_frame_cache *cache;
9319a2fe 1100
386c036b 1101 if (*this_cache)
19ba03f4 1102 return (struct sparc_frame_cache *) *this_cache;
c906108c 1103
386c036b
MK
1104 cache = sparc_alloc_frame_cache ();
1105 *this_cache = cache;
c906108c 1106
236369e7 1107 cache->pc = get_frame_func (this_frame);
386c036b 1108 if (cache->pc != 0)
236369e7
JB
1109 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1110 get_frame_pc (this_frame), cache);
386c036b
MK
1111
1112 if (cache->frameless_p)
c906108c 1113 {
cbeae229
MK
1114 /* This function is frameless, so %fp (%i6) holds the frame
1115 pointer for our calling frame. Use %sp (%o6) as this frame's
1116 base address. */
1117 cache->base =
236369e7 1118 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1119 }
1120 else
1121 {
1122 /* For normal frames, %fp (%i6) holds the frame pointer, the
1123 base address for the current stack frame. */
1124 cache->base =
236369e7 1125 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1126 }
c906108c 1127
369c397b
JB
1128 cache->base += cache->frame_offset;
1129
5b2d44a0
MK
1130 if (cache->base & 1)
1131 cache->base += BIAS;
1132
386c036b 1133 return cache;
c906108c 1134}
c906108c 1135
aff37fc1
DM
1136static int
1137sparc32_struct_return_from_sym (struct symbol *sym)
1138{
1139 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1140 enum type_code code = TYPE_CODE (type);
1141
1142 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1143 {
1144 type = check_typedef (TYPE_TARGET_TYPE (type));
1145 if (sparc_structure_or_union_p (type)
1146 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1147 return 1;
1148 }
1149
1150 return 0;
1151}
1152
386c036b 1153struct sparc_frame_cache *
236369e7 1154sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1155{
386c036b
MK
1156 struct sparc_frame_cache *cache;
1157 struct symbol *sym;
c906108c 1158
386c036b 1159 if (*this_cache)
19ba03f4 1160 return (struct sparc_frame_cache *) *this_cache;
c906108c 1161
236369e7 1162 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1163
386c036b
MK
1164 sym = find_pc_function (cache->pc);
1165 if (sym)
c906108c 1166 {
aff37fc1 1167 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1168 }
5465445a
JB
1169 else
1170 {
1171 /* There is no debugging information for this function to
1172 help us determine whether this function returns a struct
1173 or not. So we rely on another heuristic which is to check
1174 the instruction at the return address and see if this is
1175 an "unimp" instruction. If it is, then it is a struct-return
1176 function. */
1177 CORE_ADDR pc;
369c397b
JB
1178 int regnum =
1179 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1180
236369e7 1181 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1182 if (sparc_is_unimp_insn (pc))
1183 cache->struct_return_p = 1;
1184 }
c906108c 1185
386c036b
MK
1186 return cache;
1187}
1188
1189static void
236369e7 1190sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1191 struct frame_id *this_id)
1192{
1193 struct sparc_frame_cache *cache =
236369e7 1194 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1195
1196 /* This marks the outermost frame. */
1197 if (cache->base == 0)
1198 return;
1199
1200 (*this_id) = frame_id_build (cache->base, cache->pc);
1201}
c906108c 1202
236369e7
JB
1203static struct value *
1204sparc32_frame_prev_register (struct frame_info *this_frame,
1205 void **this_cache, int regnum)
386c036b 1206{
e17a4113 1207 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1208 struct sparc_frame_cache *cache =
236369e7 1209 sparc32_frame_cache (this_frame, this_cache);
c906108c 1210
386c036b 1211 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1212 {
236369e7 1213 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1214
236369e7
JB
1215 /* If this functions has a Structure, Union or Quad-Precision
1216 return value, we have to skip the UNIMP instruction that encodes
1217 the size of the structure. */
1218 if (cache->struct_return_p)
1219 pc += 4;
386c036b 1220
369c397b
JB
1221 regnum =
1222 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1223 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1224 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1225 }
1226
42cdca6c
MK
1227 /* Handle StackGhost. */
1228 {
e17a4113 1229 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1230
1231 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1232 {
236369e7
JB
1233 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1234 ULONGEST i7;
1235
1236 /* Read the value in from memory. */
1237 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1238 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1239 }
1240 }
1241
369c397b 1242 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1243 in the register save area. */
369c397b
JB
1244 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1245 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1246 {
236369e7 1247 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1248
236369e7 1249 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1250 }
c906108c 1251
369c397b
JB
1252 /* The previous frame's `out' registers may be accessible as the current
1253 frame's `in' registers. */
1254 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1255 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1256 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1257
236369e7 1258 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1259}
c906108c 1260
386c036b
MK
1261static const struct frame_unwind sparc32_frame_unwind =
1262{
1263 NORMAL_FRAME,
8fbca658 1264 default_frame_unwind_stop_reason,
386c036b 1265 sparc32_frame_this_id,
236369e7
JB
1266 sparc32_frame_prev_register,
1267 NULL,
1268 default_frame_sniffer
386c036b 1269};
386c036b 1270\f
c906108c 1271
386c036b 1272static CORE_ADDR
236369e7 1273sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1274{
1275 struct sparc_frame_cache *cache =
236369e7 1276 sparc32_frame_cache (this_frame, this_cache);
c906108c 1277
386c036b
MK
1278 return cache->base;
1279}
c906108c 1280
386c036b
MK
1281static const struct frame_base sparc32_frame_base =
1282{
1283 &sparc32_frame_unwind,
1284 sparc32_frame_base_address,
1285 sparc32_frame_base_address,
1286 sparc32_frame_base_address
1287};
c906108c 1288
386c036b 1289static struct frame_id
236369e7 1290sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1291{
1292 CORE_ADDR sp;
5af923b0 1293
236369e7 1294 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1295 if (sp & 1)
1296 sp += BIAS;
236369e7 1297 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1298}
1299\f
c906108c 1300
3923a2b2
MK
1301/* Extract a function return value of TYPE from REGCACHE, and copy
1302 that into VALBUF. */
5af923b0 1303
386c036b
MK
1304static void
1305sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1306 gdb_byte *valbuf)
386c036b
MK
1307{
1308 int len = TYPE_LENGTH (type);
fe10a582 1309 gdb_byte buf[32];
c906108c 1310
386c036b
MK
1311 gdb_assert (!sparc_structure_or_union_p (type));
1312 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1313
fe10a582 1314 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1315 {
386c036b
MK
1316 /* Floating return values. */
1317 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1318 if (len > 4)
1319 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1320 if (len > 8)
1321 {
1322 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1323 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1324 }
1325 if (len > 16)
1326 {
1327 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1328 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1329 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1330 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1331 }
386c036b 1332 memcpy (valbuf, buf, len);
5af923b0
MS
1333 }
1334 else
1335 {
386c036b
MK
1336 /* Integral and pointer return values. */
1337 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1338
386c036b
MK
1339 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1340 if (len > 4)
1341 {
1342 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1343 gdb_assert (len == 8);
1344 memcpy (valbuf, buf, 8);
1345 }
1346 else
1347 {
1348 /* Just stripping off any unused bytes should preserve the
1349 signed-ness just fine. */
1350 memcpy (valbuf, buf + 4 - len, len);
1351 }
1352 }
1353}
c906108c 1354
3923a2b2
MK
1355/* Store the function return value of type TYPE from VALBUF into
1356 REGCACHE. */
c906108c 1357
386c036b
MK
1358static void
1359sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1360 const gdb_byte *valbuf)
386c036b
MK
1361{
1362 int len = TYPE_LENGTH (type);
e1613aba 1363 gdb_byte buf[8];
c906108c 1364
386c036b
MK
1365 gdb_assert (!sparc_structure_or_union_p (type));
1366 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1367 gdb_assert (len <= 8);
c906108c 1368
fe10a582 1369 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1370 {
1371 /* Floating return values. */
1372 memcpy (buf, valbuf, len);
1373 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1374 if (len > 4)
1375 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1376 if (len > 8)
1377 {
1378 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1379 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1380 }
1381 if (len > 16)
1382 {
1383 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1384 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1385 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1386 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1387 }
386c036b
MK
1388 }
1389 else
c906108c 1390 {
386c036b
MK
1391 /* Integral and pointer return values. */
1392 gdb_assert (sparc_integral_or_pointer_p (type));
1393
1394 if (len > 4)
2757dd86 1395 {
386c036b
MK
1396 gdb_assert (len == 8);
1397 memcpy (buf, valbuf, 8);
1398 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1399 }
1400 else
1401 {
386c036b
MK
1402 /* ??? Do we need to do any sign-extension here? */
1403 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1404 }
386c036b 1405 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1406 }
1407}
1408
b9d4c5ed 1409static enum return_value_convention
6a3a010b 1410sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1411 struct type *type, struct regcache *regcache,
1412 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1413{
e17a4113
UW
1414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1415
0a8f48b9
MK
1416 /* The psABI says that "...every stack frame reserves the word at
1417 %fp+64. If a function returns a structure, union, or
1418 quad-precision value, this word should hold the address of the
1419 object into which the return value should be copied." This
1420 guarantees that we can always find the return value, not just
1421 before the function returns. */
1422
b9d4c5ed
MK
1423 if (sparc_structure_or_union_p (type)
1424 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9 1425 {
bbfdfe1c
DM
1426 ULONGEST sp;
1427 CORE_ADDR addr;
1428
0a8f48b9
MK
1429 if (readbuf)
1430 {
0a8f48b9 1431 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1432 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1433 read_memory (addr, readbuf, TYPE_LENGTH (type));
1434 }
bbfdfe1c
DM
1435 if (writebuf)
1436 {
1437 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1438 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1439 write_memory (addr, writebuf, TYPE_LENGTH (type));
1440 }
0a8f48b9
MK
1441
1442 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1443 }
b9d4c5ed
MK
1444
1445 if (readbuf)
1446 sparc32_extract_return_value (type, regcache, readbuf);
1447 if (writebuf)
1448 sparc32_store_return_value (type, regcache, writebuf);
1449
1450 return RETURN_VALUE_REGISTER_CONVENTION;
1451}
1452
386c036b
MK
1453static int
1454sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1455{
386c036b 1456 return (sparc_structure_or_union_p (type)
fe10a582
DM
1457 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1458 || sparc_complex_floating_p (type));
386c036b 1459}
c906108c 1460
aff37fc1 1461static int
4a4e5149 1462sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1463{
236369e7 1464 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1465 struct symbol *sym = find_pc_function (pc);
1466
1467 if (sym)
1468 return sparc32_struct_return_from_sym (sym);
1469 return 0;
1470}
1471
f5a9b87d
DM
1472static void
1473sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1474 struct dwarf2_frame_state_reg *reg,
4a4e5149 1475 struct frame_info *this_frame)
f5a9b87d 1476{
aff37fc1
DM
1477 int off;
1478
f5a9b87d
DM
1479 switch (regnum)
1480 {
1481 case SPARC_G0_REGNUM:
1482 /* Since %g0 is always zero, there is no point in saving it, and
1483 people will be inclined omit it from the CFI. Make sure we
1484 don't warn about that. */
1485 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1486 break;
1487 case SPARC_SP_REGNUM:
1488 reg->how = DWARF2_FRAME_REG_CFA;
1489 break;
1490 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1491 case SPARC32_NPC_REGNUM:
1492 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1493 off = 8;
4a4e5149 1494 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1495 off += 4;
1496 if (regnum == SPARC32_NPC_REGNUM)
1497 off += 4;
1498 reg->loc.offset = off;
f5a9b87d
DM
1499 break;
1500 }
1501}
1502
386c036b
MK
1503\f
1504/* The SPARC Architecture doesn't have hardware single-step support,
1505 and most operating systems don't implement it either, so we provide
1506 software single-step mechanism. */
c906108c 1507
386c036b 1508static CORE_ADDR
0b1b3e42 1509sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1510 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1511{
1512 unsigned long insn = sparc_fetch_instruction (pc);
1513 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1514 int branch_p = 0, fused_p = 0;
386c036b 1515 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1516
8d1b3521 1517 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1518 {
8d1b3521
DM
1519 if ((insn & 0x10000000) == 0)
1520 {
1521 /* Branch on Integer Register with Prediction (BPr). */
1522 branch_p = 1;
1523 conditional_p = 1;
1524 }
1525 else
1526 {
1527 /* Compare and Branch */
1528 branch_p = 1;
1529 fused_p = 1;
1530 offset = 4 * X_DISP10 (insn);
1531 }
c906108c 1532 }
386c036b 1533 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1534 {
386c036b
MK
1535 /* Branch on Floating-Point Condition Codes (FBfcc). */
1536 branch_p = 1;
1537 offset = 4 * X_DISP22 (insn);
c906108c 1538 }
386c036b
MK
1539 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1540 {
1541 /* Branch on Floating-Point Condition Codes with Prediction
1542 (FBPfcc). */
1543 branch_p = 1;
1544 offset = 4 * X_DISP19 (insn);
1545 }
1546 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1547 {
1548 /* Branch on Integer Condition Codes (Bicc). */
1549 branch_p = 1;
1550 offset = 4 * X_DISP22 (insn);
1551 }
1552 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1553 {
386c036b
MK
1554 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1555 branch_p = 1;
1556 offset = 4 * X_DISP19 (insn);
c906108c 1557 }
c893be75
MK
1558 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1559 {
1560 /* Trap instruction (TRAP). */
0b1b3e42 1561 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1562 }
386c036b
MK
1563
1564 /* FIXME: Handle DONE and RETRY instructions. */
1565
386c036b 1566 if (branch_p)
c906108c 1567 {
8d1b3521
DM
1568 if (fused_p)
1569 {
1570 /* Fused compare-and-branch instructions are non-delayed,
1571 and do not have an annuling capability. So we need to
1572 always set a breakpoint on both the NPC and the branch
1573 target address. */
1574 gdb_assert (offset != 0);
1575 return pc + offset;
1576 }
1577 else if (conditional_p)
c906108c 1578 {
386c036b
MK
1579 /* For conditional branches, return nPC + 4 iff the annul
1580 bit is 1. */
1581 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1582 }
1583 else
1584 {
386c036b
MK
1585 /* For unconditional branches, return the target if its
1586 specified condition is "always" and return nPC + 4 if the
1587 condition is "never". If the annul bit is 1, set *NPC to
1588 zero. */
1589 if (X_COND (insn) == 0x0)
1590 pc = *npc, offset = 4;
1591 if (X_A (insn))
1592 *npc = 0;
1593
386c036b 1594 return pc + offset;
c906108c
SS
1595 }
1596 }
386c036b
MK
1597
1598 return 0;
c906108c
SS
1599}
1600
c893be75 1601static CORE_ADDR
0b1b3e42 1602sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1603{
1604 return 0;
1605}
1606
9c3f2234 1607static int
0b1b3e42 1608sparc_software_single_step (struct frame_info *frame)
386c036b 1609{
0b1b3e42 1610 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1611 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1612 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1613 CORE_ADDR npc, nnpc;
c906108c 1614
e0cd558a 1615 CORE_ADDR pc, orig_npc;
c906108c 1616
0b1b3e42
UW
1617 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1618 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1619
e0cd558a 1620 /* Analyze the instruction at PC. */
0b1b3e42 1621 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1622 if (npc != 0)
6c95b8df 1623 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1624
e0cd558a 1625 if (nnpc != 0)
6c95b8df 1626 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1627
e0cd558a
UW
1628 /* Assert that we have set at least one breakpoint, and that
1629 they're not set at the same spot - unless we're going
1630 from here straight to NULL, i.e. a call or jump to 0. */
1631 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1632 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1633
1634 return 1;
386c036b
MK
1635}
1636
1637static void
61a1198a 1638sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1639{
61a1198a 1640 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1641
61a1198a
UW
1642 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1643 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1644}
1645\f
5af923b0 1646
e5139de8 1647/* Iterate over core file register note sections. */
a54124c5 1648
e5139de8
AA
1649static void
1650sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1651 iterate_over_regset_sections_cb *cb,
1652 void *cb_data,
1653 const struct regcache *regcache)
a54124c5
MK
1654{
1655 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1656
e5139de8
AA
1657 cb (".reg", tdep->sizeof_gregset, tdep->gregset, NULL, cb_data);
1658 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
a54124c5
MK
1659}
1660\f
1661
386c036b
MK
1662static struct gdbarch *
1663sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1664{
1665 struct gdbarch_tdep *tdep;
1666 struct gdbarch *gdbarch;
c906108c 1667
386c036b
MK
1668 /* If there is already a candidate, use it. */
1669 arches = gdbarch_list_lookup_by_info (arches, &info);
1670 if (arches != NULL)
1671 return arches->gdbarch;
c906108c 1672
386c036b 1673 /* Allocate space for the new architecture. */
41bf6aca 1674 tdep = XCNEW (struct gdbarch_tdep);
386c036b 1675 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1676
386c036b
MK
1677 tdep->pc_regnum = SPARC32_PC_REGNUM;
1678 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1679 tdep->step_trap = sparc_step_trap;
386c036b
MK
1680
1681 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1682 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1683
1684 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1685 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1686 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1687 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1688 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1689 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1690
1691 /* Register numbers of various important registers. */
1692 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1693 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1694 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1695
1696 /* Call dummy code. */
49a45ecf 1697 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1698 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1699 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1700 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1701
b9d4c5ed 1702 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1703 set_gdbarch_stabs_argument_has_addr
1704 (gdbarch, sparc32_stabs_argument_has_addr);
1705
1706 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1707
1708 /* Stack grows downward. */
1709 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1710
386c036b 1711 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1712
386c036b 1713 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1714
386c036b 1715 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1716
386c036b
MK
1717 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1718 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1719
236369e7 1720 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1721
386c036b 1722 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1723
386c036b
MK
1724 frame_base_set_default (gdbarch, &sparc32_frame_base);
1725
f5a9b87d
DM
1726 /* Hook in the DWARF CFI frame unwinder. */
1727 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1728 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1729 StackGhost issues have been resolved. */
1730
b2a0b9b2
DM
1731 /* Hook in ABI-specific overrides, if they have been registered. */
1732 gdbarch_init_osabi (info, gdbarch);
1733
236369e7 1734 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1735
a54124c5 1736 /* If we have register sets, enable the generic core file support. */
4c72d57a 1737 if (tdep->gregset)
e5139de8
AA
1738 set_gdbarch_iterate_over_regset_sections
1739 (gdbarch, sparc_iterate_over_regset_sections);
a54124c5 1740
7e35103a
JB
1741 register_sparc_ravenscar_ops (gdbarch);
1742
386c036b
MK
1743 return gdbarch;
1744}
1745\f
1746/* Helper functions for dealing with register windows. */
1747
1748void
1749sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1750{
e17a4113
UW
1751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1752 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1753 int offset = 0;
e1613aba 1754 gdb_byte buf[8];
386c036b
MK
1755 int i;
1756
1757 if (sp & 1)
1758 {
1759 /* Registers are 64-bit. */
1760 sp += BIAS;
c906108c 1761
386c036b
MK
1762 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1763 {
1764 if (regnum == i || regnum == -1)
1765 {
1766 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1767
1768 /* Handle StackGhost. */
1769 if (i == SPARC_I7_REGNUM)
1770 {
e17a4113
UW
1771 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1772 ULONGEST i7;
f700a364 1773
e17a4113
UW
1774 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1775 store_unsigned_integer (buf + offset, 8, byte_order,
1776 i7 ^ wcookie);
f700a364
MK
1777 }
1778
386c036b
MK
1779 regcache_raw_supply (regcache, i, buf);
1780 }
1781 }
1782 }
1783 else
c906108c 1784 {
386c036b
MK
1785 /* Registers are 32-bit. Toss any sign-extension of the stack
1786 pointer. */
1787 sp &= 0xffffffffUL;
c906108c 1788
386c036b
MK
1789 /* Clear out the top half of the temporary buffer, and put the
1790 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1791 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1792 {
386c036b
MK
1793 memset (buf, 0, 4);
1794 offset = 4;
1795 }
c906108c 1796
386c036b
MK
1797 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1798 {
1799 if (regnum == i || regnum == -1)
1800 {
1801 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1802 buf + offset, 4);
42cdca6c
MK
1803
1804 /* Handle StackGhost. */
1805 if (i == SPARC_I7_REGNUM)
1806 {
e17a4113
UW
1807 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1808 ULONGEST i7;
42cdca6c 1809
e17a4113
UW
1810 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1811 store_unsigned_integer (buf + offset, 4, byte_order,
1812 i7 ^ wcookie);
42cdca6c
MK
1813 }
1814
386c036b
MK
1815 regcache_raw_supply (regcache, i, buf);
1816 }
c906108c
SS
1817 }
1818 }
c906108c 1819}
c906108c
SS
1820
1821void
386c036b
MK
1822sparc_collect_rwindow (const struct regcache *regcache,
1823 CORE_ADDR sp, int regnum)
c906108c 1824{
e17a4113
UW
1825 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1826 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1827 int offset = 0;
e1613aba 1828 gdb_byte buf[8];
386c036b 1829 int i;
5af923b0 1830
386c036b 1831 if (sp & 1)
5af923b0 1832 {
386c036b
MK
1833 /* Registers are 64-bit. */
1834 sp += BIAS;
c906108c 1835
386c036b
MK
1836 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1837 {
1838 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1839 {
1840 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1841
1842 /* Handle StackGhost. */
1843 if (i == SPARC_I7_REGNUM)
1844 {
e17a4113
UW
1845 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1846 ULONGEST i7;
f700a364 1847
e17a4113
UW
1848 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1849 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1850 }
1851
386c036b
MK
1852 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1853 }
1854 }
5af923b0
MS
1855 }
1856 else
1857 {
386c036b
MK
1858 /* Registers are 32-bit. Toss any sign-extension of the stack
1859 pointer. */
1860 sp &= 0xffffffffUL;
1861
1862 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1863 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1864 offset = 4;
1865
1866 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1867 {
1868 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1869 {
1870 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1871
1872 /* Handle StackGhost. */
1873 if (i == SPARC_I7_REGNUM)
1874 {
e17a4113
UW
1875 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1876 ULONGEST i7;
42cdca6c 1877
e17a4113
UW
1878 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1879 store_unsigned_integer (buf + offset, 4, byte_order,
1880 i7 ^ wcookie);
42cdca6c
MK
1881 }
1882
386c036b
MK
1883 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1884 buf + offset, 4);
1885 }
1886 }
5af923b0 1887 }
c906108c
SS
1888}
1889
386c036b
MK
1890/* Helper functions for dealing with register sets. */
1891
c906108c 1892void
b4fd25c9 1893sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1894 struct regcache *regcache,
1895 int regnum, const void *gregs)
c906108c 1896{
19ba03f4 1897 const gdb_byte *regs = (const gdb_byte *) gregs;
22e74ef9 1898 gdb_byte zero[4] = { 0 };
386c036b 1899 int i;
5af923b0 1900
386c036b
MK
1901 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1902 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
b4fd25c9 1903 regs + gregmap->r_psr_offset);
c906108c 1904
386c036b
MK
1905 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1906 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
b4fd25c9 1907 regs + gregmap->r_pc_offset);
5af923b0 1908
386c036b
MK
1909 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1910 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
b4fd25c9 1911 regs + gregmap->r_npc_offset);
5af923b0 1912
386c036b
MK
1913 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1914 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
b4fd25c9 1915 regs + gregmap->r_y_offset);
5af923b0 1916
386c036b 1917 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1918 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1919
386c036b 1920 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1921 {
b4fd25c9 1922 int offset = gregmap->r_g1_offset;
386c036b
MK
1923
1924 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1925 {
1926 if (regnum == i || regnum == -1)
1927 regcache_raw_supply (regcache, i, regs + offset);
1928 offset += 4;
1929 }
c906108c 1930 }
386c036b
MK
1931
1932 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1933 {
386c036b
MK
1934 /* Not all of the register set variants include Locals and
1935 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1936 if (gregmap->r_l0_offset == -1)
386c036b
MK
1937 {
1938 ULONGEST sp;
1939
1940 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1941 sparc_supply_rwindow (regcache, sp, regnum);
1942 }
1943 else
1944 {
b4fd25c9 1945 int offset = gregmap->r_l0_offset;
386c036b
MK
1946
1947 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1948 {
1949 if (regnum == i || regnum == -1)
1950 regcache_raw_supply (regcache, i, regs + offset);
1951 offset += 4;
1952 }
1953 }
c906108c
SS
1954 }
1955}
1956
c5aa993b 1957void
b4fd25c9 1958sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
386c036b
MK
1959 const struct regcache *regcache,
1960 int regnum, void *gregs)
c906108c 1961{
19ba03f4 1962 gdb_byte *regs = (gdb_byte *) gregs;
386c036b 1963 int i;
c5aa993b 1964
386c036b
MK
1965 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1966 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
b4fd25c9 1967 regs + gregmap->r_psr_offset);
60054393 1968
386c036b
MK
1969 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1970 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
b4fd25c9 1971 regs + gregmap->r_pc_offset);
386c036b
MK
1972
1973 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1974 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
b4fd25c9 1975 regs + gregmap->r_npc_offset);
5af923b0 1976
386c036b
MK
1977 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1978 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
b4fd25c9 1979 regs + gregmap->r_y_offset);
386c036b
MK
1980
1981 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1982 {
b4fd25c9 1983 int offset = gregmap->r_g1_offset;
386c036b
MK
1984
1985 /* %g0 is always zero. */
1986 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1987 {
1988 if (regnum == i || regnum == -1)
1989 regcache_raw_collect (regcache, i, regs + offset);
1990 offset += 4;
1991 }
5af923b0 1992 }
386c036b
MK
1993
1994 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1995 {
386c036b
MK
1996 /* Not all of the register set variants include Locals and
1997 Inputs. For those that don't, we read them off the stack. */
b4fd25c9 1998 if (gregmap->r_l0_offset != -1)
386c036b 1999 {
b4fd25c9 2000 int offset = gregmap->r_l0_offset;
386c036b
MK
2001
2002 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2003 {
2004 if (regnum == i || regnum == -1)
2005 regcache_raw_collect (regcache, i, regs + offset);
2006 offset += 4;
2007 }
2008 }
5af923b0 2009 }
c906108c
SS
2010}
2011
c906108c 2012void
b4fd25c9 2013sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2014 struct regcache *regcache,
386c036b 2015 int regnum, const void *fpregs)
c906108c 2016{
19ba03f4 2017 const gdb_byte *regs = (const gdb_byte *) fpregs;
386c036b 2018 int i;
60054393 2019
386c036b 2020 for (i = 0; i < 32; i++)
c906108c 2021 {
386c036b 2022 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717 2023 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
b4fd25c9 2024 regs + fpregmap->r_f0_offset + (i * 4));
c906108c 2025 }
5af923b0 2026
386c036b 2027 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717 2028 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
b4fd25c9 2029 regs + fpregmap->r_fsr_offset);
c906108c
SS
2030}
2031
386c036b 2032void
b4fd25c9 2033sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
db75c717 2034 const struct regcache *regcache,
386c036b 2035 int regnum, void *fpregs)
c906108c 2036{
19ba03f4 2037 gdb_byte *regs = (gdb_byte *) fpregs;
386c036b 2038 int i;
c906108c 2039
386c036b
MK
2040 for (i = 0; i < 32; i++)
2041 {
2042 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717 2043 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
b4fd25c9 2044 regs + fpregmap->r_f0_offset + (i * 4));
386c036b 2045 }
c906108c 2046
386c036b 2047 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717 2048 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
b4fd25c9 2049 regs + fpregmap->r_fsr_offset);
c906108c 2050}
c906108c 2051\f
c906108c 2052
386c036b 2053/* SunOS 4. */
c906108c 2054
386c036b 2055/* From <machine/reg.h>. */
b4fd25c9 2056const struct sparc_gregmap sparc32_sunos4_gregmap =
c906108c 2057{
386c036b
MK
2058 0 * 4, /* %psr */
2059 1 * 4, /* %pc */
2060 2 * 4, /* %npc */
2061 3 * 4, /* %y */
2062 -1, /* %wim */
2063 -1, /* %tbr */
2064 4 * 4, /* %g1 */
2065 -1 /* %l0 */
2066};
db75c717 2067
b4fd25c9 2068const struct sparc_fpregmap sparc32_sunos4_fpregmap =
db75c717
DM
2069{
2070 0 * 4, /* %f0 */
2071 33 * 4, /* %fsr */
2072};
2073
b4fd25c9 2074const struct sparc_fpregmap sparc32_bsd_fpregmap =
db75c717
DM
2075{
2076 0 * 4, /* %f0 */
2077 32 * 4, /* %fsr */
2078};
386c036b 2079\f
c906108c 2080
386c036b
MK
2081/* Provide a prototype to silence -Wmissing-prototypes. */
2082void _initialize_sparc_tdep (void);
c906108c
SS
2083
2084void
386c036b 2085_initialize_sparc_tdep (void)
c906108c 2086{
386c036b 2087 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2088}
This page took 2.030666 seconds and 4 git commands to generate.