*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
0fd88904 3 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
c906108c 22#include "defs.h"
5af923b0 23#include "arch-utils.h"
386c036b
MK
24#include "dis-asm.h"
25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67#define floatformat_sparc_quad floatformat_ia64_quad_big
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 88#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 89
386c036b
MK
90/* Fetch the instruction at PC. Instructions are always big-endian
91 even if the processor operates in little-endian mode. */
92
93unsigned long
94sparc_fetch_instruction (CORE_ADDR pc)
c906108c 95{
e1613aba 96 gdb_byte buf[4];
386c036b
MK
97 unsigned long insn;
98 int i;
99
690668cc
MK
100 /* If we can't read the instruction at PC, return zero. */
101 if (target_read_memory (pc, buf, sizeof (buf)))
102 return 0;
c906108c 103
386c036b
MK
104 insn = 0;
105 for (i = 0; i < sizeof (buf); i++)
106 insn = (insn << 8) | buf[i];
107 return insn;
108}
42cdca6c
MK
109\f
110
5465445a
JB
111/* Return non-zero if the instruction corresponding to PC is an "unimp"
112 instruction. */
113
114static int
115sparc_is_unimp_insn (CORE_ADDR pc)
116{
117 const unsigned long insn = sparc_fetch_instruction (pc);
118
119 return ((insn & 0xc1c00000) == 0);
120}
121
42cdca6c
MK
122/* OpenBSD/sparc includes StackGhost, which according to the author's
123 website http://stackghost.cerias.purdue.edu "... transparently and
124 automatically protects applications' stack frames; more
125 specifically, it guards the return pointers. The protection
126 mechanisms require no application source or binary modification and
127 imposes only a negligible performance penalty."
128
129 The same website provides the following description of how
130 StackGhost works:
131
132 "StackGhost interfaces with the kernel trap handler that would
133 normally write out registers to the stack and the handler that
134 would read them back in. By XORing a cookie into the
135 return-address saved in the user stack when it is actually written
136 to the stack, and then XOR it out when the return-address is pulled
137 from the stack, StackGhost can cause attacker corrupted return
138 pointers to behave in a manner the attacker cannot predict.
139 StackGhost can also use several unused bits in the return pointer
140 to detect a smashed return pointer and abort the process."
141
142 For GDB this means that whenever we're reading %i7 from a stack
143 frame's window save area, we'll have to XOR the cookie.
144
145 More information on StackGuard can be found on in:
146
147 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
148 Stack Protection." 2001. Published in USENIX Security Symposium
149 '01. */
150
151/* Fetch StackGhost Per-Process XOR cookie. */
152
153ULONGEST
154sparc_fetch_wcookie (void)
155{
baf92889 156 struct target_ops *ops = &current_target;
e1613aba 157 gdb_byte buf[8];
baf92889
MK
158 int len;
159
160 len = target_read_partial (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
161 if (len == -1)
162 return 0;
42cdca6c 163
baf92889
MK
164 /* We should have either an 32-bit or an 64-bit cookie. */
165 gdb_assert (len == 4 || len == 8);
166
167 return extract_unsigned_integer (buf, len);
168}
386c036b 169\f
baf92889 170
386c036b 171/* Return the contents if register REGNUM as an address. */
c906108c 172
386c036b
MK
173static CORE_ADDR
174sparc_address_from_register (int regnum)
175{
176 ULONGEST addr;
c906108c 177
386c036b
MK
178 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
179 return addr;
180}
181\f
c906108c 182
386c036b
MK
183/* The functions on this page are intended to be used to classify
184 function arguments. */
c906108c 185
386c036b 186/* Check whether TYPE is "Integral or Pointer". */
c906108c 187
386c036b
MK
188static int
189sparc_integral_or_pointer_p (const struct type *type)
c906108c 190{
80ad1639
MK
191 int len = TYPE_LENGTH (type);
192
386c036b 193 switch (TYPE_CODE (type))
c906108c 194 {
386c036b
MK
195 case TYPE_CODE_INT:
196 case TYPE_CODE_BOOL:
197 case TYPE_CODE_CHAR:
198 case TYPE_CODE_ENUM:
199 case TYPE_CODE_RANGE:
80ad1639
MK
200 /* We have byte, half-word, word and extended-word/doubleword
201 integral types. The doubleword is an extension to the
202 original 32-bit ABI by the SCD 2.4.x. */
203 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
204 case TYPE_CODE_PTR:
205 case TYPE_CODE_REF:
80ad1639
MK
206 /* Allow either 32-bit or 64-bit pointers. */
207 return (len == 4 || len == 8);
386c036b
MK
208 default:
209 break;
210 }
c906108c 211
386c036b
MK
212 return 0;
213}
c906108c 214
386c036b 215/* Check whether TYPE is "Floating". */
c906108c 216
386c036b
MK
217static int
218sparc_floating_p (const struct type *type)
219{
220 switch (TYPE_CODE (type))
c906108c 221 {
386c036b
MK
222 case TYPE_CODE_FLT:
223 {
224 int len = TYPE_LENGTH (type);
225 return (len == 4 || len == 8 || len == 16);
226 }
227 default:
228 break;
229 }
230
231 return 0;
232}
c906108c 233
386c036b 234/* Check whether TYPE is "Structure or Union". */
c906108c 235
386c036b
MK
236static int
237sparc_structure_or_union_p (const struct type *type)
238{
239 switch (TYPE_CODE (type))
240 {
241 case TYPE_CODE_STRUCT:
242 case TYPE_CODE_UNION:
243 return 1;
244 default:
245 break;
c906108c 246 }
386c036b
MK
247
248 return 0;
c906108c 249}
386c036b
MK
250
251/* Register information. */
252
253static const char *sparc32_register_names[] =
5af923b0 254{
386c036b
MK
255 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
256 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
257 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
258 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
259
260 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
261 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
262 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
263 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
264
265 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
266};
267
386c036b
MK
268/* Total number of registers. */
269#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 270
386c036b
MK
271/* We provide the aliases %d0..%d30 for the floating registers as
272 "psuedo" registers. */
273
274static const char *sparc32_pseudo_register_names[] =
275{
276 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
277 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
278};
279
280/* Total number of pseudo registers. */
281#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
282
283/* Return the name of register REGNUM. */
284
285static const char *
286sparc32_register_name (int regnum)
287{
288 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
289 return sparc32_register_names[regnum];
290
291 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
292 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
293
294 return NULL;
295}
296
297/* Return the GDB type object for the "standard" data type of data in
298 register REGNUM. */
299
300static struct type *
301sparc32_register_type (struct gdbarch *gdbarch, int regnum)
302{
303 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
304 return builtin_type_float;
305
306 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
307 return builtin_type_double;
308
309 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
310 return builtin_type_void_data_ptr;
311
312 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
313 return builtin_type_void_func_ptr;
314
315 return builtin_type_int32;
316}
317
318static void
319sparc32_pseudo_register_read (struct gdbarch *gdbarch,
320 struct regcache *regcache,
e1613aba 321 int regnum, gdb_byte *buf)
386c036b
MK
322{
323 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
324
325 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
326 regcache_raw_read (regcache, regnum, buf);
e1613aba 327 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
328}
329
330static void
331sparc32_pseudo_register_write (struct gdbarch *gdbarch,
332 struct regcache *regcache,
e1613aba 333 int regnum, const gdb_byte *buf)
386c036b
MK
334{
335 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
336
337 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
338 regcache_raw_write (regcache, regnum, buf);
e1613aba 339 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
340}
341\f
342
343static CORE_ADDR
344sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
345 CORE_ADDR funcaddr, int using_gcc,
346 struct value **args, int nargs,
347 struct type *value_type,
348 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
c906108c 349{
386c036b
MK
350 *bp_addr = sp - 4;
351 *real_pc = funcaddr;
352
353 if (using_struct_return (value_type, using_gcc))
c906108c 354 {
e1613aba 355 gdb_byte buf[4];
386c036b
MK
356
357 /* This is an UNIMP instruction. */
358 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
359 write_memory (sp - 8, buf, 4);
360 return sp - 8;
c906108c
SS
361 }
362
386c036b
MK
363 return sp - 4;
364}
365
366static CORE_ADDR
367sparc32_store_arguments (struct regcache *regcache, int nargs,
368 struct value **args, CORE_ADDR sp,
369 int struct_return, CORE_ADDR struct_addr)
370{
371 /* Number of words in the "parameter array". */
372 int num_elements = 0;
373 int element = 0;
374 int i;
375
376 for (i = 0; i < nargs; i++)
c906108c 377 {
4991999e 378 struct type *type = value_type (args[i]);
386c036b
MK
379 int len = TYPE_LENGTH (type);
380
381 if (sparc_structure_or_union_p (type)
382 || (sparc_floating_p (type) && len == 16))
c906108c 383 {
386c036b
MK
384 /* Structure, Union and Quad-Precision Arguments. */
385 sp -= len;
386
387 /* Use doubleword alignment for these values. That's always
388 correct, and wasting a few bytes shouldn't be a problem. */
389 sp &= ~0x7;
390
0fd88904 391 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
392 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
393 num_elements++;
394 }
395 else if (sparc_floating_p (type))
396 {
397 /* Floating arguments. */
398 gdb_assert (len == 4 || len == 8);
399 num_elements += (len / 4);
c906108c 400 }
c5aa993b
JM
401 else
402 {
386c036b
MK
403 /* Integral and pointer arguments. */
404 gdb_assert (sparc_integral_or_pointer_p (type));
405
406 if (len < 4)
407 args[i] = value_cast (builtin_type_int32, args[i]);
408 num_elements += ((len + 3) / 4);
c5aa993b 409 }
c906108c 410 }
c906108c 411
386c036b
MK
412 /* Always allocate at least six words. */
413 sp -= max (6, num_elements) * 4;
c906108c 414
386c036b
MK
415 /* The psABI says that "Software convention requires space for the
416 struct/union return value pointer, even if the word is unused." */
417 sp -= 4;
c906108c 418
386c036b
MK
419 /* The psABI says that "Although software convention and the
420 operating system require every stack frame to be doubleword
421 aligned." */
422 sp &= ~0x7;
c906108c 423
386c036b 424 for (i = 0; i < nargs; i++)
c906108c 425 {
0fd88904 426 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 427 struct type *type = value_type (args[i]);
386c036b 428 int len = TYPE_LENGTH (type);
c906108c 429
386c036b 430 gdb_assert (len == 4 || len == 8);
c906108c 431
386c036b
MK
432 if (element < 6)
433 {
434 int regnum = SPARC_O0_REGNUM + element;
c906108c 435
386c036b
MK
436 regcache_cooked_write (regcache, regnum, valbuf);
437 if (len > 4 && element < 5)
438 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
439 }
5af923b0 440
386c036b
MK
441 /* Always store the argument in memory. */
442 write_memory (sp + 4 + element * 4, valbuf, len);
443 element += len / 4;
444 }
c906108c 445
386c036b 446 gdb_assert (element == num_elements);
c906108c 447
386c036b 448 if (struct_return)
c906108c 449 {
e1613aba 450 gdb_byte buf[4];
c906108c 451
386c036b
MK
452 store_unsigned_integer (buf, 4, struct_addr);
453 write_memory (sp, buf, 4);
454 }
c906108c 455
386c036b 456 return sp;
c906108c
SS
457}
458
386c036b 459static CORE_ADDR
7d9b040b 460sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
461 struct regcache *regcache, CORE_ADDR bp_addr,
462 int nargs, struct value **args, CORE_ADDR sp,
463 int struct_return, CORE_ADDR struct_addr)
c906108c 464{
386c036b
MK
465 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
466
467 /* Set return address. */
468 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
469
470 /* Set up function arguments. */
471 sp = sparc32_store_arguments (regcache, nargs, args, sp,
472 struct_return, struct_addr);
473
474 /* Allocate the 16-word window save area. */
475 sp -= 16 * 4;
c906108c 476
386c036b
MK
477 /* Stack should be doubleword aligned at this point. */
478 gdb_assert (sp % 8 == 0);
c906108c 479
386c036b
MK
480 /* Finally, update the stack pointer. */
481 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
482
483 return sp;
484}
485\f
c906108c 486
386c036b
MK
487/* Use the program counter to determine the contents and size of a
488 breakpoint instruction. Return a pointer to a string of bytes that
489 encode a breakpoint instruction, store the length of the string in
490 *LEN and optionally adjust *PC to point to the correct memory
491 location for inserting the breakpoint. */
492
e1613aba 493static const gdb_byte *
386c036b
MK
494sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
495{
e1613aba 496 static gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 497
386c036b
MK
498 *len = sizeof (break_insn);
499 return break_insn;
c906108c 500}
386c036b 501\f
c906108c 502
386c036b 503/* Allocate and initialize a frame cache. */
c906108c 504
386c036b
MK
505static struct sparc_frame_cache *
506sparc_alloc_frame_cache (void)
507{
508 struct sparc_frame_cache *cache;
509 int i;
c906108c 510
386c036b 511 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 512
386c036b
MK
513 /* Base address. */
514 cache->base = 0;
515 cache->pc = 0;
c906108c 516
386c036b
MK
517 /* Frameless until proven otherwise. */
518 cache->frameless_p = 1;
519
520 cache->struct_return_p = 0;
521
522 return cache;
523}
524
525CORE_ADDR
526sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
527 struct sparc_frame_cache *cache)
c906108c 528{
386c036b
MK
529 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
530 unsigned long insn;
531 int offset = 0;
c906108c 532 int dest = -1;
c906108c 533
386c036b
MK
534 if (current_pc <= pc)
535 return current_pc;
536
537 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
538 SPARC the linker usually defines a symbol (typically
539 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
540 This symbol makes us end up here with PC pointing at the start of
541 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
542 would do our normal prologue analysis, we would probably conclude
543 that we've got a frame when in reality we don't, since the
544 dynamic linker patches up the first PLT with some code that
545 starts with a SAVE instruction. Patch up PC such that it points
546 at the start of our PLT entry. */
547 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
548 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 549
386c036b
MK
550 insn = sparc_fetch_instruction (pc);
551
552 /* Recognize a SETHI insn and record its destination. */
553 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
554 {
555 dest = X_RD (insn);
386c036b
MK
556 offset += 4;
557
558 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
559 }
560
386c036b
MK
561 /* Allow for an arithmetic operation on DEST or %g1. */
562 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
563 && (X_RD (insn) == 1 || X_RD (insn) == dest))
564 {
386c036b 565 offset += 4;
c906108c 566
386c036b 567 insn = sparc_fetch_instruction (pc + 8);
c906108c 568 }
c906108c 569
386c036b
MK
570 /* Check for the SAVE instruction that sets up the frame. */
571 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 572 {
386c036b
MK
573 cache->frameless_p = 0;
574 return pc + offset + 4;
c906108c
SS
575 }
576
577 return pc;
578}
579
386c036b
MK
580static CORE_ADDR
581sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
582{
583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
584 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
585}
586
587/* Return PC of first real instruction of the function starting at
588 START_PC. */
f510d44e 589
386c036b
MK
590static CORE_ADDR
591sparc32_skip_prologue (CORE_ADDR start_pc)
c906108c 592{
f510d44e
DM
593 struct symtab_and_line sal;
594 CORE_ADDR func_start, func_end;
386c036b 595 struct sparc_frame_cache cache;
f510d44e
DM
596
597 /* This is the preferred method, find the end of the prologue by
598 using the debugging information. */
599 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
600 {
601 sal = find_pc_line (func_start, 0);
602
603 if (sal.end < func_end
604 && start_pc <= sal.end)
605 return sal.end;
606 }
607
075ccec8
MK
608 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
609
610 /* The psABI says that "Although the first 6 words of arguments
611 reside in registers, the standard stack frame reserves space for
612 them.". It also suggests that a function may use that space to
613 "write incoming arguments 0 to 5" into that space, and that's
614 indeed what GCC seems to be doing. In that case GCC will
615 generate debug information that points to the stack slots instead
616 of the registers, so we should consider the instructions that
617 write out these incoming arguments onto the stack. Of course we
618 only need to do this if we have a stack frame. */
619
620 while (!cache.frameless_p)
621 {
622 unsigned long insn = sparc_fetch_instruction (start_pc);
623
624 /* Recognize instructions that store incoming arguments in
625 %i0...%i5 into the corresponding stack slot. */
626 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
627 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
628 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
629 {
630 start_pc += 4;
631 continue;
632 }
633
634 break;
635 }
636
637 return start_pc;
c906108c
SS
638}
639
386c036b 640/* Normal frames. */
9319a2fe 641
386c036b
MK
642struct sparc_frame_cache *
643sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
9319a2fe 644{
386c036b 645 struct sparc_frame_cache *cache;
9319a2fe 646
386c036b
MK
647 if (*this_cache)
648 return *this_cache;
c906108c 649
386c036b
MK
650 cache = sparc_alloc_frame_cache ();
651 *this_cache = cache;
c906108c 652
386c036b
MK
653 cache->pc = frame_func_unwind (next_frame);
654 if (cache->pc != 0)
c906108c 655 {
386c036b
MK
656 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
657 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
c906108c 658 }
386c036b
MK
659
660 if (cache->frameless_p)
c906108c 661 {
cbeae229
MK
662 /* This function is frameless, so %fp (%i6) holds the frame
663 pointer for our calling frame. Use %sp (%o6) as this frame's
664 base address. */
665 cache->base =
666 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
667 }
668 else
669 {
670 /* For normal frames, %fp (%i6) holds the frame pointer, the
671 base address for the current stack frame. */
672 cache->base =
673 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
c906108c 674 }
c906108c 675
5b2d44a0
MK
676 if (cache->base & 1)
677 cache->base += BIAS;
678
386c036b 679 return cache;
c906108c 680}
c906108c 681
386c036b
MK
682struct sparc_frame_cache *
683sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 684{
386c036b
MK
685 struct sparc_frame_cache *cache;
686 struct symbol *sym;
c906108c 687
386c036b
MK
688 if (*this_cache)
689 return *this_cache;
c906108c 690
386c036b 691 cache = sparc_frame_cache (next_frame, this_cache);
c906108c 692
386c036b
MK
693 sym = find_pc_function (cache->pc);
694 if (sym)
c906108c 695 {
386c036b
MK
696 struct type *type = check_typedef (SYMBOL_TYPE (sym));
697 enum type_code code = TYPE_CODE (type);
698
699 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
700 {
701 type = check_typedef (TYPE_TARGET_TYPE (type));
702 if (sparc_structure_or_union_p (type)
703 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
704 cache->struct_return_p = 1;
705 }
c906108c 706 }
5465445a
JB
707 else
708 {
709 /* There is no debugging information for this function to
710 help us determine whether this function returns a struct
711 or not. So we rely on another heuristic which is to check
712 the instruction at the return address and see if this is
713 an "unimp" instruction. If it is, then it is a struct-return
714 function. */
715 CORE_ADDR pc;
716 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
717
718 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
719 if (sparc_is_unimp_insn (pc))
720 cache->struct_return_p = 1;
721 }
c906108c 722
386c036b
MK
723 return cache;
724}
725
726static void
727sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
728 struct frame_id *this_id)
729{
730 struct sparc_frame_cache *cache =
731 sparc32_frame_cache (next_frame, this_cache);
732
733 /* This marks the outermost frame. */
734 if (cache->base == 0)
735 return;
736
737 (*this_id) = frame_id_build (cache->base, cache->pc);
738}
c906108c 739
386c036b
MK
740static void
741sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
742 int regnum, int *optimizedp,
743 enum lval_type *lvalp, CORE_ADDR *addrp,
47ef841b 744 int *realnump, gdb_byte *valuep)
386c036b
MK
745{
746 struct sparc_frame_cache *cache =
747 sparc32_frame_cache (next_frame, this_cache);
c906108c 748
386c036b 749 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 750 {
386c036b
MK
751 *optimizedp = 0;
752 *lvalp = not_lval;
753 *addrp = 0;
754 *realnump = -1;
755 if (valuep)
c906108c 756 {
386c036b
MK
757 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
758
759 /* If this functions has a Structure, Union or
760 Quad-Precision return value, we have to skip the UNIMP
761 instruction that encodes the size of the structure. */
762 if (cache->struct_return_p)
763 pc += 4;
764
765 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
766 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
767 store_unsigned_integer (valuep, 4, pc);
c906108c 768 }
c906108c
SS
769 return;
770 }
771
42cdca6c
MK
772 /* Handle StackGhost. */
773 {
774 ULONGEST wcookie = sparc_fetch_wcookie ();
775
776 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
777 {
778 *optimizedp = 0;
779 *lvalp = not_lval;
780 *addrp = 0;
781 *realnump = -1;
782 if (valuep)
783 {
784 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
7d34766b 785 ULONGEST i7;
42cdca6c
MK
786
787 /* Read the value in from memory. */
7d34766b
MK
788 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
789 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
42cdca6c
MK
790 }
791 return;
792 }
793 }
794
386c036b
MK
795 /* The previous frame's `local' and `in' registers have been saved
796 in the register save area. */
797 if (!cache->frameless_p
798 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 799 {
386c036b
MK
800 *optimizedp = 0;
801 *lvalp = lval_memory;
802 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
803 *realnump = -1;
804 if (valuep)
c906108c 805 {
386c036b
MK
806 struct gdbarch *gdbarch = get_frame_arch (next_frame);
807
808 /* Read the value in from memory. */
809 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
c906108c 810 }
386c036b
MK
811 return;
812 }
c906108c 813
386c036b
MK
814 /* The previous frame's `out' registers are accessable as the
815 current frame's `in' registers. */
816 if (!cache->frameless_p
817 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
818 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 819
00b25ff3
AC
820 *optimizedp = 0;
821 *lvalp = lval_register;
822 *addrp = 0;
823 *realnump = regnum;
824 if (valuep)
825 frame_unwind_register (next_frame, (*realnump), valuep);
386c036b 826}
c906108c 827
386c036b
MK
828static const struct frame_unwind sparc32_frame_unwind =
829{
830 NORMAL_FRAME,
831 sparc32_frame_this_id,
832 sparc32_frame_prev_register
833};
834
835static const struct frame_unwind *
836sparc32_frame_sniffer (struct frame_info *next_frame)
837{
838 return &sparc32_frame_unwind;
c906108c 839}
386c036b 840\f
c906108c 841
386c036b
MK
842static CORE_ADDR
843sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
844{
845 struct sparc_frame_cache *cache =
846 sparc32_frame_cache (next_frame, this_cache);
c906108c 847
386c036b
MK
848 return cache->base;
849}
c906108c 850
386c036b
MK
851static const struct frame_base sparc32_frame_base =
852{
853 &sparc32_frame_unwind,
854 sparc32_frame_base_address,
855 sparc32_frame_base_address,
856 sparc32_frame_base_address
857};
c906108c 858
386c036b
MK
859static struct frame_id
860sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
861{
862 CORE_ADDR sp;
5af923b0 863
386c036b 864 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
865 if (sp & 1)
866 sp += BIAS;
386c036b
MK
867 return frame_id_build (sp, frame_pc_unwind (next_frame));
868}
869\f
c906108c 870
386c036b
MK
871/* Extract from an array REGBUF containing the (raw) register state, a
872 function return value of TYPE, and copy that into VALBUF. */
5af923b0 873
386c036b
MK
874static void
875sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 876 gdb_byte *valbuf)
386c036b
MK
877{
878 int len = TYPE_LENGTH (type);
e1613aba 879 gdb_byte buf[8];
c906108c 880
386c036b
MK
881 gdb_assert (!sparc_structure_or_union_p (type));
882 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 883
386c036b 884 if (sparc_floating_p (type))
5af923b0 885 {
386c036b
MK
886 /* Floating return values. */
887 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
888 if (len > 4)
889 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
890 memcpy (valbuf, buf, len);
5af923b0
MS
891 }
892 else
893 {
386c036b
MK
894 /* Integral and pointer return values. */
895 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 896
386c036b
MK
897 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
898 if (len > 4)
899 {
900 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
901 gdb_assert (len == 8);
902 memcpy (valbuf, buf, 8);
903 }
904 else
905 {
906 /* Just stripping off any unused bytes should preserve the
907 signed-ness just fine. */
908 memcpy (valbuf, buf + 4 - len, len);
909 }
910 }
911}
c906108c 912
386c036b
MK
913/* Write into the appropriate registers a function return value stored
914 in VALBUF of type TYPE. */
c906108c 915
386c036b
MK
916static void
917sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 918 const gdb_byte *valbuf)
386c036b
MK
919{
920 int len = TYPE_LENGTH (type);
e1613aba 921 gdb_byte buf[8];
c906108c 922
386c036b
MK
923 gdb_assert (!sparc_structure_or_union_p (type));
924 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 925
386c036b
MK
926 if (sparc_floating_p (type))
927 {
928 /* Floating return values. */
929 memcpy (buf, valbuf, len);
930 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
931 if (len > 4)
932 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
933 }
934 else
c906108c 935 {
386c036b
MK
936 /* Integral and pointer return values. */
937 gdb_assert (sparc_integral_or_pointer_p (type));
938
939 if (len > 4)
2757dd86 940 {
386c036b
MK
941 gdb_assert (len == 8);
942 memcpy (buf, valbuf, 8);
943 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
944 }
945 else
946 {
386c036b
MK
947 /* ??? Do we need to do any sign-extension here? */
948 memcpy (buf + 4 - len, valbuf, len);
2757dd86 949 }
386c036b 950 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
951 }
952}
953
b9d4c5ed
MK
954static enum return_value_convention
955sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
e1613aba
MK
956 struct regcache *regcache, gdb_byte *readbuf,
957 const gdb_byte *writebuf)
b9d4c5ed
MK
958{
959 if (sparc_structure_or_union_p (type)
960 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
961 return RETURN_VALUE_STRUCT_CONVENTION;
962
963 if (readbuf)
964 sparc32_extract_return_value (type, regcache, readbuf);
965 if (writebuf)
966 sparc32_store_return_value (type, regcache, writebuf);
967
968 return RETURN_VALUE_REGISTER_CONVENTION;
969}
970
931aecf5
AC
971#if 0
972/* NOTE: cagney/2004-01-17: For the moment disable this method. The
973 architecture and CORE-gdb will need new code (and a replacement for
74055713
AC
974 DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS) before this can be made to
975 work robustly. Here is a possible function signature: */
931aecf5
AC
976/* NOTE: cagney/2004-01-17: So far only the 32-bit SPARC ABI has been
977 identifed as having a way to robustly recover the address of a
978 struct-convention return-value (after the function has returned).
979 For all other ABIs so far examined, the calling convention makes no
980 guarenteed that the register containing the return-value will be
981 preserved and hence that the return-value's address can be
982 recovered. */
386c036b
MK
983/* Extract from REGCACHE, which contains the (raw) register state, the
984 address in which a function should return its structure value, as a
985 CORE_ADDR. */
c906108c 986
386c036b 987static CORE_ADDR
ca9d58e9 988sparc32_extract_struct_value_address (struct regcache *regcache)
386c036b 989{
9515395e 990 ULONGEST sp;
c906108c 991
9515395e
MK
992 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
993 return read_memory_unsigned_integer (sp + 64, 4);
386c036b 994}
931aecf5 995#endif
c906108c 996
386c036b
MK
997static int
998sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 999{
386c036b
MK
1000 return (sparc_structure_or_union_p (type)
1001 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1002}
c906108c 1003
386c036b
MK
1004\f
1005/* The SPARC Architecture doesn't have hardware single-step support,
1006 and most operating systems don't implement it either, so we provide
1007 software single-step mechanism. */
c906108c 1008
386c036b
MK
1009static CORE_ADDR
1010sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc)
1011{
1012 unsigned long insn = sparc_fetch_instruction (pc);
1013 int conditional_p = X_COND (insn) & 0x7;
1014 int branch_p = 0;
1015 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1016
386c036b 1017 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1018 {
386c036b
MK
1019 /* Branch on Integer Register with Prediction (BPr). */
1020 branch_p = 1;
1021 conditional_p = 1;
c906108c 1022 }
386c036b 1023 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1024 {
386c036b
MK
1025 /* Branch on Floating-Point Condition Codes (FBfcc). */
1026 branch_p = 1;
1027 offset = 4 * X_DISP22 (insn);
c906108c 1028 }
386c036b
MK
1029 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1030 {
1031 /* Branch on Floating-Point Condition Codes with Prediction
1032 (FBPfcc). */
1033 branch_p = 1;
1034 offset = 4 * X_DISP19 (insn);
1035 }
1036 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1037 {
1038 /* Branch on Integer Condition Codes (Bicc). */
1039 branch_p = 1;
1040 offset = 4 * X_DISP22 (insn);
1041 }
1042 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1043 {
386c036b
MK
1044 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1045 branch_p = 1;
1046 offset = 4 * X_DISP19 (insn);
c906108c 1047 }
386c036b
MK
1048
1049 /* FIXME: Handle DONE and RETRY instructions. */
1050
1051 /* FIXME: Handle the Trap instruction. */
1052
1053 if (branch_p)
c906108c 1054 {
386c036b 1055 if (conditional_p)
c906108c 1056 {
386c036b
MK
1057 /* For conditional branches, return nPC + 4 iff the annul
1058 bit is 1. */
1059 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1060 }
1061 else
1062 {
386c036b
MK
1063 /* For unconditional branches, return the target if its
1064 specified condition is "always" and return nPC + 4 if the
1065 condition is "never". If the annul bit is 1, set *NPC to
1066 zero. */
1067 if (X_COND (insn) == 0x0)
1068 pc = *npc, offset = 4;
1069 if (X_A (insn))
1070 *npc = 0;
1071
1072 gdb_assert (offset != 0);
1073 return pc + offset;
c906108c
SS
1074 }
1075 }
386c036b
MK
1076
1077 return 0;
c906108c
SS
1078}
1079
386c036b
MK
1080void
1081sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1082{
1083 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1084 static CORE_ADDR npc, nnpc;
e1613aba 1085 static gdb_byte npc_save[4], nnpc_save[4];
c906108c 1086
386c036b
MK
1087 if (insert_breakpoints_p)
1088 {
8c3900e4 1089 CORE_ADDR pc, orig_npc;
c906108c 1090
386c036b 1091 pc = sparc_address_from_register (tdep->pc_regnum);
8c3900e4 1092 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
c906108c 1093
386c036b
MK
1094 /* Analyze the instruction at PC. */
1095 nnpc = sparc_analyze_control_transfer (pc, &npc);
1096 if (npc != 0)
1097 target_insert_breakpoint (npc, npc_save);
1098 if (nnpc != 0)
1099 target_insert_breakpoint (nnpc, nnpc_save);
c906108c 1100
386c036b 1101 /* Assert that we have set at least one breakpoint, and that
8c3900e4
DJ
1102 they're not set at the same spot - unless we're going
1103 from here straight to NULL, i.e. a call or jump to 0. */
1104 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1105 gdb_assert (nnpc != npc || orig_npc == 0);
60054393 1106 }
386c036b 1107 else
c906108c 1108 {
386c036b
MK
1109 if (npc != 0)
1110 target_remove_breakpoint (npc, npc_save);
1111 if (nnpc != 0)
1112 target_remove_breakpoint (nnpc, nnpc_save);
c906108c 1113 }
386c036b
MK
1114}
1115
1116static void
1117sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1118{
1119 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1120
1121 write_register_pid (tdep->pc_regnum, pc, ptid);
1122 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1123}
1124\f
1125/* Unglobalize NAME. */
1126
1127char *
1128sparc_stabs_unglobalize_name (char *name)
1129{
1130 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1131 SunPRO) convert file static variables into global values, a
1132 process known as globalization. In order to do this, the
1133 compiler will create a unique prefix and prepend it to each file
1134 static variable. For static variables within a function, this
1135 globalization prefix is followed by the function name (nested
1136 static variables within a function are supposed to generate a
1137 warning message, and are left alone). The procedure is
1138 documented in the Stabs Interface Manual, which is distrubuted
1139 with the compilers, although version 4.0 of the manual seems to
1140 be incorrect in some places, at least for SPARC. The
1141 globalization prefix is encoded into an N_OPT stab, with the form
1142 "G=<prefix>". The globalization prefix always seems to start
1143 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1144 simply strip everything up until the last dot. */
c906108c 1145
386c036b 1146 if (name[0] == '$')
c906108c 1147 {
386c036b
MK
1148 char *p = strrchr (name, '.');
1149 if (p)
1150 return p + 1;
c906108c 1151 }
c906108c 1152
386c036b
MK
1153 return name;
1154}
1155\f
5af923b0 1156
a54124c5
MK
1157/* Return the appropriate register set for the core section identified
1158 by SECT_NAME and SECT_SIZE. */
1159
1160const struct regset *
1161sparc_regset_from_core_section (struct gdbarch *gdbarch,
1162 const char *sect_name, size_t sect_size)
1163{
1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1165
c558d81a 1166 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1167 return tdep->gregset;
1168
c558d81a 1169 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1170 return tdep->fpregset;
1171
1172 return NULL;
1173}
1174\f
1175
386c036b
MK
1176static struct gdbarch *
1177sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1178{
1179 struct gdbarch_tdep *tdep;
1180 struct gdbarch *gdbarch;
c906108c 1181
386c036b
MK
1182 /* If there is already a candidate, use it. */
1183 arches = gdbarch_list_lookup_by_info (arches, &info);
1184 if (arches != NULL)
1185 return arches->gdbarch;
c906108c 1186
386c036b
MK
1187 /* Allocate space for the new architecture. */
1188 tdep = XMALLOC (struct gdbarch_tdep);
1189 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1190
386c036b
MK
1191 tdep->pc_regnum = SPARC32_PC_REGNUM;
1192 tdep->npc_regnum = SPARC32_NPC_REGNUM;
a54124c5 1193 tdep->gregset = NULL;
c558d81a 1194 tdep->sizeof_gregset = 0;
a54124c5 1195 tdep->fpregset = NULL;
c558d81a 1196 tdep->sizeof_fpregset = 0;
386c036b
MK
1197 tdep->plt_entry_size = 0;
1198
1199 set_gdbarch_long_double_bit (gdbarch, 128);
1200 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1201
1202 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1203 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1204 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1205 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1206 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1207 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1208
1209 /* Register numbers of various important registers. */
1210 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1211 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1212 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1213
1214 /* Call dummy code. */
1215 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1216 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1217 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1218
b9d4c5ed 1219 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1220 set_gdbarch_stabs_argument_has_addr
1221 (gdbarch, sparc32_stabs_argument_has_addr);
1222
1223 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1224
1225 /* Stack grows downward. */
1226 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1227
386c036b 1228 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1229
386c036b 1230 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1231
386c036b 1232 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1233
386c036b
MK
1234 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1235 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1236
386c036b 1237 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
c906108c 1238
386c036b 1239 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1240
386c036b
MK
1241 frame_base_set_default (gdbarch, &sparc32_frame_base);
1242
1243 /* Hook in ABI-specific overrides, if they have been registered. */
1244 gdbarch_init_osabi (info, gdbarch);
c906108c 1245
386c036b 1246 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
c906108c 1247
a54124c5 1248 /* If we have register sets, enable the generic core file support. */
4c72d57a 1249 if (tdep->gregset)
a54124c5
MK
1250 set_gdbarch_regset_from_core_section (gdbarch,
1251 sparc_regset_from_core_section);
1252
386c036b
MK
1253 return gdbarch;
1254}
1255\f
1256/* Helper functions for dealing with register windows. */
1257
1258void
1259sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1260{
386c036b 1261 int offset = 0;
e1613aba 1262 gdb_byte buf[8];
386c036b
MK
1263 int i;
1264
1265 if (sp & 1)
1266 {
1267 /* Registers are 64-bit. */
1268 sp += BIAS;
c906108c 1269
386c036b
MK
1270 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1271 {
1272 if (regnum == i || regnum == -1)
1273 {
1274 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1275
1276 /* Handle StackGhost. */
1277 if (i == SPARC_I7_REGNUM)
1278 {
1279 ULONGEST wcookie = sparc_fetch_wcookie ();
1280 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1281
1282 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1283 }
1284
386c036b
MK
1285 regcache_raw_supply (regcache, i, buf);
1286 }
1287 }
1288 }
1289 else
c906108c 1290 {
386c036b
MK
1291 /* Registers are 32-bit. Toss any sign-extension of the stack
1292 pointer. */
1293 sp &= 0xffffffffUL;
c906108c 1294
386c036b
MK
1295 /* Clear out the top half of the temporary buffer, and put the
1296 register value in the bottom half if we're in 64-bit mode. */
1297 if (gdbarch_ptr_bit (current_gdbarch) == 64)
c906108c 1298 {
386c036b
MK
1299 memset (buf, 0, 4);
1300 offset = 4;
1301 }
c906108c 1302
386c036b
MK
1303 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1304 {
1305 if (regnum == i || regnum == -1)
1306 {
1307 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1308 buf + offset, 4);
42cdca6c
MK
1309
1310 /* Handle StackGhost. */
1311 if (i == SPARC_I7_REGNUM)
1312 {
1313 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1314 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1315
7d34766b 1316 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1317 }
1318
386c036b
MK
1319 regcache_raw_supply (regcache, i, buf);
1320 }
c906108c
SS
1321 }
1322 }
c906108c 1323}
c906108c
SS
1324
1325void
386c036b
MK
1326sparc_collect_rwindow (const struct regcache *regcache,
1327 CORE_ADDR sp, int regnum)
c906108c 1328{
386c036b 1329 int offset = 0;
e1613aba 1330 gdb_byte buf[8];
386c036b 1331 int i;
5af923b0 1332
386c036b 1333 if (sp & 1)
5af923b0 1334 {
386c036b
MK
1335 /* Registers are 64-bit. */
1336 sp += BIAS;
c906108c 1337
386c036b
MK
1338 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1339 {
1340 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1341 {
1342 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1343
1344 /* Handle StackGhost. */
1345 if (i == SPARC_I7_REGNUM)
1346 {
1347 ULONGEST wcookie = sparc_fetch_wcookie ();
1348 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1349
1350 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1351 }
1352
386c036b
MK
1353 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1354 }
1355 }
5af923b0
MS
1356 }
1357 else
1358 {
386c036b
MK
1359 /* Registers are 32-bit. Toss any sign-extension of the stack
1360 pointer. */
1361 sp &= 0xffffffffUL;
1362
1363 /* Only use the bottom half if we're in 64-bit mode. */
1364 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1365 offset = 4;
1366
1367 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1368 {
1369 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1370 {
1371 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1372
1373 /* Handle StackGhost. */
1374 if (i == SPARC_I7_REGNUM)
1375 {
1376 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1377 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1378
7d34766b 1379 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1380 }
1381
386c036b
MK
1382 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1383 buf + offset, 4);
1384 }
1385 }
5af923b0 1386 }
c906108c
SS
1387}
1388
386c036b
MK
1389/* Helper functions for dealing with register sets. */
1390
c906108c 1391void
386c036b
MK
1392sparc32_supply_gregset (const struct sparc_gregset *gregset,
1393 struct regcache *regcache,
1394 int regnum, const void *gregs)
c906108c 1395{
e1613aba 1396 const gdb_byte *regs = gregs;
386c036b 1397 int i;
5af923b0 1398
386c036b
MK
1399 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1400 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1401 regs + gregset->r_psr_offset);
c906108c 1402
386c036b
MK
1403 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1404 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1405 regs + gregset->r_pc_offset);
5af923b0 1406
386c036b
MK
1407 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1408 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1409 regs + gregset->r_npc_offset);
5af923b0 1410
386c036b
MK
1411 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1412 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1413 regs + gregset->r_y_offset);
5af923b0 1414
386c036b
MK
1415 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1416 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1417
386c036b 1418 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1419 {
386c036b
MK
1420 int offset = gregset->r_g1_offset;
1421
1422 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1423 {
1424 if (regnum == i || regnum == -1)
1425 regcache_raw_supply (regcache, i, regs + offset);
1426 offset += 4;
1427 }
c906108c 1428 }
386c036b
MK
1429
1430 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1431 {
386c036b
MK
1432 /* Not all of the register set variants include Locals and
1433 Inputs. For those that don't, we read them off the stack. */
1434 if (gregset->r_l0_offset == -1)
1435 {
1436 ULONGEST sp;
1437
1438 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1439 sparc_supply_rwindow (regcache, sp, regnum);
1440 }
1441 else
1442 {
1443 int offset = gregset->r_l0_offset;
1444
1445 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1446 {
1447 if (regnum == i || regnum == -1)
1448 regcache_raw_supply (regcache, i, regs + offset);
1449 offset += 4;
1450 }
1451 }
c906108c
SS
1452 }
1453}
1454
c5aa993b 1455void
386c036b
MK
1456sparc32_collect_gregset (const struct sparc_gregset *gregset,
1457 const struct regcache *regcache,
1458 int regnum, void *gregs)
c906108c 1459{
e1613aba 1460 gdb_byte *regs = gregs;
386c036b 1461 int i;
c5aa993b 1462
386c036b
MK
1463 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1464 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1465 regs + gregset->r_psr_offset);
60054393 1466
386c036b
MK
1467 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1468 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1469 regs + gregset->r_pc_offset);
1470
1471 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1472 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1473 regs + gregset->r_npc_offset);
5af923b0 1474
386c036b
MK
1475 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1476 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1477 regs + gregset->r_y_offset);
1478
1479 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1480 {
386c036b
MK
1481 int offset = gregset->r_g1_offset;
1482
1483 /* %g0 is always zero. */
1484 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1485 {
1486 if (regnum == i || regnum == -1)
1487 regcache_raw_collect (regcache, i, regs + offset);
1488 offset += 4;
1489 }
5af923b0 1490 }
386c036b
MK
1491
1492 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1493 {
386c036b
MK
1494 /* Not all of the register set variants include Locals and
1495 Inputs. For those that don't, we read them off the stack. */
1496 if (gregset->r_l0_offset != -1)
1497 {
1498 int offset = gregset->r_l0_offset;
1499
1500 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1501 {
1502 if (regnum == i || regnum == -1)
1503 regcache_raw_collect (regcache, i, regs + offset);
1504 offset += 4;
1505 }
1506 }
5af923b0 1507 }
c906108c
SS
1508}
1509
c906108c 1510void
386c036b
MK
1511sparc32_supply_fpregset (struct regcache *regcache,
1512 int regnum, const void *fpregs)
c906108c 1513{
e1613aba 1514 const gdb_byte *regs = fpregs;
386c036b 1515 int i;
60054393 1516
386c036b 1517 for (i = 0; i < 32; i++)
c906108c 1518 {
386c036b
MK
1519 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1520 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1521 }
5af923b0 1522
386c036b
MK
1523 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1524 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1525}
1526
386c036b
MK
1527void
1528sparc32_collect_fpregset (const struct regcache *regcache,
1529 int regnum, void *fpregs)
c906108c 1530{
e1613aba 1531 gdb_byte *regs = fpregs;
386c036b 1532 int i;
c906108c 1533
386c036b
MK
1534 for (i = 0; i < 32; i++)
1535 {
1536 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1537 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1538 }
c906108c 1539
386c036b
MK
1540 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1541 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1542}
c906108c 1543\f
c906108c 1544
386c036b 1545/* SunOS 4. */
c906108c 1546
386c036b
MK
1547/* From <machine/reg.h>. */
1548const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1549{
386c036b
MK
1550 0 * 4, /* %psr */
1551 1 * 4, /* %pc */
1552 2 * 4, /* %npc */
1553 3 * 4, /* %y */
1554 -1, /* %wim */
1555 -1, /* %tbr */
1556 4 * 4, /* %g1 */
1557 -1 /* %l0 */
1558};
1559\f
c906108c 1560
386c036b
MK
1561/* Provide a prototype to silence -Wmissing-prototypes. */
1562void _initialize_sparc_tdep (void);
c906108c
SS
1563
1564void
386c036b 1565_initialize_sparc_tdep (void)
c906108c 1566{
386c036b 1567 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1568}
This page took 0.700743 seconds and 4 git commands to generate.