Add missing files to previous commit (Allow Python notification of new object-file...
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
7b6bb8da 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 66 big-endian IA-64 Quad-Precision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
c378eb4e 148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
fe10a582
DM
224/* Check whether TYPE is "Complex Floating". */
225
226static int
227sparc_complex_floating_p (const struct type *type)
228{
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_COMPLEX:
232 {
233 int len = TYPE_LENGTH (type);
234 return (len == 8 || len == 16 || len == 32);
235 }
236 default:
237 break;
238 }
239
240 return 0;
241}
242
0497f5b0
JB
243/* Check whether TYPE is "Structure or Union".
244
245 In terms of Ada subprogram calls, arrays are treated the same as
246 struct and union types. So this function also returns non-zero
247 for array types. */
c906108c 248
386c036b
MK
249static int
250sparc_structure_or_union_p (const struct type *type)
251{
252 switch (TYPE_CODE (type))
253 {
254 case TYPE_CODE_STRUCT:
255 case TYPE_CODE_UNION:
0497f5b0 256 case TYPE_CODE_ARRAY:
386c036b
MK
257 return 1;
258 default:
259 break;
c906108c 260 }
386c036b
MK
261
262 return 0;
c906108c 263}
386c036b
MK
264
265/* Register information. */
266
267static const char *sparc32_register_names[] =
5af923b0 268{
386c036b
MK
269 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
270 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
271 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
272 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
273
274 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
275 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
276 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
277 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
278
279 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
280};
281
386c036b
MK
282/* Total number of registers. */
283#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 284
386c036b
MK
285/* We provide the aliases %d0..%d30 for the floating registers as
286 "psuedo" registers. */
287
288static const char *sparc32_pseudo_register_names[] =
289{
290 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
291 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
292};
293
294/* Total number of pseudo registers. */
295#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
296
297/* Return the name of register REGNUM. */
298
299static const char *
d93859e2 300sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
301{
302 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
303 return sparc32_register_names[regnum];
304
305 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
306 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
307
308 return NULL;
309}
2d457077 310\f
209bd28e 311/* Construct types for ISA-specific registers. */
2d457077 312
209bd28e
UW
313static struct type *
314sparc_psr_type (struct gdbarch *gdbarch)
315{
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 317
209bd28e
UW
318 if (!tdep->sparc_psr_type)
319 {
320 struct type *type;
2d457077 321
e9bb382b 322 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
323 append_flags_type_flag (type, 5, "ET");
324 append_flags_type_flag (type, 6, "PS");
325 append_flags_type_flag (type, 7, "S");
326 append_flags_type_flag (type, 12, "EF");
327 append_flags_type_flag (type, 13, "EC");
2d457077 328
209bd28e
UW
329 tdep->sparc_psr_type = type;
330 }
331
332 return tdep->sparc_psr_type;
333}
334
335static struct type *
336sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 337{
209bd28e
UW
338 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
339
340 if (!tdep->sparc_fsr_type)
341 {
342 struct type *type;
343
e9bb382b 344 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
345 append_flags_type_flag (type, 0, "NXA");
346 append_flags_type_flag (type, 1, "DZA");
347 append_flags_type_flag (type, 2, "UFA");
348 append_flags_type_flag (type, 3, "OFA");
349 append_flags_type_flag (type, 4, "NVA");
350 append_flags_type_flag (type, 5, "NXC");
351 append_flags_type_flag (type, 6, "DZC");
352 append_flags_type_flag (type, 7, "UFC");
353 append_flags_type_flag (type, 8, "OFC");
354 append_flags_type_flag (type, 9, "NVC");
355 append_flags_type_flag (type, 22, "NS");
356 append_flags_type_flag (type, 23, "NXM");
357 append_flags_type_flag (type, 24, "DZM");
358 append_flags_type_flag (type, 25, "UFM");
359 append_flags_type_flag (type, 26, "OFM");
360 append_flags_type_flag (type, 27, "NVM");
361
362 tdep->sparc_fsr_type = type;
363 }
364
365 return tdep->sparc_fsr_type;
2d457077 366}
386c036b
MK
367
368/* Return the GDB type object for the "standard" data type of data in
c378eb4e 369 register REGNUM. */
386c036b
MK
370
371static struct type *
372sparc32_register_type (struct gdbarch *gdbarch, int regnum)
373{
374 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 375 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
376
377 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 378 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
379
380 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 381 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
382
383 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 384 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 385
2d457077 386 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 387 return sparc_psr_type (gdbarch);
2d457077
MK
388
389 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 390 return sparc_fsr_type (gdbarch);
2d457077 391
df4df182 392 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
393}
394
05d1431c 395static enum register_status
386c036b
MK
396sparc32_pseudo_register_read (struct gdbarch *gdbarch,
397 struct regcache *regcache,
e1613aba 398 int regnum, gdb_byte *buf)
386c036b 399{
05d1431c
PA
400 enum register_status status;
401
386c036b
MK
402 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
403
404 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
405 status = regcache_raw_read (regcache, regnum, buf);
406 if (status == REG_VALID)
407 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
408 return status;
386c036b
MK
409}
410
411static void
412sparc32_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
e1613aba 414 int regnum, const gdb_byte *buf)
386c036b
MK
415{
416 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
417
418 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
419 regcache_raw_write (regcache, regnum, buf);
e1613aba 420 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
421}
422\f
423
49a45ecf
JB
424static CORE_ADDR
425sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
426{
427 /* The ABI requires double-word alignment. */
428 return address & ~0x7;
429}
430
386c036b
MK
431static CORE_ADDR
432sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 433 CORE_ADDR funcaddr,
386c036b
MK
434 struct value **args, int nargs,
435 struct type *value_type,
e4fd649a
UW
436 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
437 struct regcache *regcache)
c906108c 438{
e17a4113
UW
439 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
440
386c036b
MK
441 *bp_addr = sp - 4;
442 *real_pc = funcaddr;
443
d80b854b 444 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 445 {
e1613aba 446 gdb_byte buf[4];
386c036b
MK
447
448 /* This is an UNIMP instruction. */
e17a4113
UW
449 store_unsigned_integer (buf, 4, byte_order,
450 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
451 write_memory (sp - 8, buf, 4);
452 return sp - 8;
c906108c
SS
453 }
454
386c036b
MK
455 return sp - 4;
456}
457
458static CORE_ADDR
459sparc32_store_arguments (struct regcache *regcache, int nargs,
460 struct value **args, CORE_ADDR sp,
461 int struct_return, CORE_ADDR struct_addr)
462{
df4df182 463 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
465 /* Number of words in the "parameter array". */
466 int num_elements = 0;
467 int element = 0;
468 int i;
469
470 for (i = 0; i < nargs; i++)
c906108c 471 {
4991999e 472 struct type *type = value_type (args[i]);
386c036b
MK
473 int len = TYPE_LENGTH (type);
474
475 if (sparc_structure_or_union_p (type)
fe10a582
DM
476 || (sparc_floating_p (type) && len == 16)
477 || sparc_complex_floating_p (type))
c906108c 478 {
386c036b
MK
479 /* Structure, Union and Quad-Precision Arguments. */
480 sp -= len;
481
482 /* Use doubleword alignment for these values. That's always
483 correct, and wasting a few bytes shouldn't be a problem. */
484 sp &= ~0x7;
485
0fd88904 486 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
487 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
488 num_elements++;
489 }
490 else if (sparc_floating_p (type))
491 {
492 /* Floating arguments. */
493 gdb_assert (len == 4 || len == 8);
494 num_elements += (len / 4);
c906108c 495 }
c5aa993b
JM
496 else
497 {
386c036b
MK
498 /* Integral and pointer arguments. */
499 gdb_assert (sparc_integral_or_pointer_p (type));
500
501 if (len < 4)
df4df182
UW
502 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
503 args[i]);
386c036b 504 num_elements += ((len + 3) / 4);
c5aa993b 505 }
c906108c 506 }
c906108c 507
386c036b
MK
508 /* Always allocate at least six words. */
509 sp -= max (6, num_elements) * 4;
c906108c 510
386c036b
MK
511 /* The psABI says that "Software convention requires space for the
512 struct/union return value pointer, even if the word is unused." */
513 sp -= 4;
c906108c 514
386c036b
MK
515 /* The psABI says that "Although software convention and the
516 operating system require every stack frame to be doubleword
517 aligned." */
518 sp &= ~0x7;
c906108c 519
386c036b 520 for (i = 0; i < nargs; i++)
c906108c 521 {
0fd88904 522 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 523 struct type *type = value_type (args[i]);
386c036b 524 int len = TYPE_LENGTH (type);
c906108c 525
386c036b 526 gdb_assert (len == 4 || len == 8);
c906108c 527
386c036b
MK
528 if (element < 6)
529 {
530 int regnum = SPARC_O0_REGNUM + element;
c906108c 531
386c036b
MK
532 regcache_cooked_write (regcache, regnum, valbuf);
533 if (len > 4 && element < 5)
534 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
535 }
5af923b0 536
386c036b
MK
537 /* Always store the argument in memory. */
538 write_memory (sp + 4 + element * 4, valbuf, len);
539 element += len / 4;
540 }
c906108c 541
386c036b 542 gdb_assert (element == num_elements);
c906108c 543
386c036b 544 if (struct_return)
c906108c 545 {
e1613aba 546 gdb_byte buf[4];
c906108c 547
e17a4113 548 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
549 write_memory (sp, buf, 4);
550 }
c906108c 551
386c036b 552 return sp;
c906108c
SS
553}
554
386c036b 555static CORE_ADDR
7d9b040b 556sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
557 struct regcache *regcache, CORE_ADDR bp_addr,
558 int nargs, struct value **args, CORE_ADDR sp,
559 int struct_return, CORE_ADDR struct_addr)
c906108c 560{
386c036b
MK
561 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
562
563 /* Set return address. */
564 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
565
566 /* Set up function arguments. */
567 sp = sparc32_store_arguments (regcache, nargs, args, sp,
568 struct_return, struct_addr);
569
570 /* Allocate the 16-word window save area. */
571 sp -= 16 * 4;
c906108c 572
386c036b
MK
573 /* Stack should be doubleword aligned at this point. */
574 gdb_assert (sp % 8 == 0);
c906108c 575
386c036b
MK
576 /* Finally, update the stack pointer. */
577 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
578
579 return sp;
580}
581\f
c906108c 582
386c036b
MK
583/* Use the program counter to determine the contents and size of a
584 breakpoint instruction. Return a pointer to a string of bytes that
585 encode a breakpoint instruction, store the length of the string in
586 *LEN and optionally adjust *PC to point to the correct memory
587 location for inserting the breakpoint. */
588
e1613aba 589static const gdb_byte *
67d57894 590sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 591{
864a1a37 592 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 593
386c036b
MK
594 *len = sizeof (break_insn);
595 return break_insn;
c906108c 596}
386c036b 597\f
c906108c 598
386c036b 599/* Allocate and initialize a frame cache. */
c906108c 600
386c036b
MK
601static struct sparc_frame_cache *
602sparc_alloc_frame_cache (void)
603{
604 struct sparc_frame_cache *cache;
605 int i;
c906108c 606
386c036b 607 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 608
386c036b
MK
609 /* Base address. */
610 cache->base = 0;
611 cache->pc = 0;
c906108c 612
386c036b
MK
613 /* Frameless until proven otherwise. */
614 cache->frameless_p = 1;
369c397b
JB
615 cache->frame_offset = 0;
616 cache->saved_regs_mask = 0;
617 cache->copied_regs_mask = 0;
386c036b
MK
618 cache->struct_return_p = 0;
619
620 return cache;
621}
622
b0b92586
JB
623/* GCC generates several well-known sequences of instructions at the begining
624 of each function prologue when compiling with -fstack-check. If one of
625 such sequences starts at START_PC, then return the address of the
626 instruction immediately past this sequence. Otherwise, return START_PC. */
627
628static CORE_ADDR
629sparc_skip_stack_check (const CORE_ADDR start_pc)
630{
631 CORE_ADDR pc = start_pc;
632 unsigned long insn;
633 int offset_stack_checking_sequence = 0;
2067c8d4 634 int probing_loop = 0;
b0b92586
JB
635
636 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 637 instructions, plus an optional one in the case of a probing loop:
b0b92586 638
2067c8d4
JG
639 sethi <some immediate>, %g1
640 sub %sp, %g1, %g1
641
642 or:
643
644 sethi <some immediate>, %g1
645 sethi <some immediate>, %g4
646 sub %sp, %g1, %g1
647
648 or:
649
650 sethi <some immediate>, %g1
651 sub %sp, %g1, %g1
652 sethi <some immediate>, %g4
653
654 If the optional instruction is found (setting g4), assume that a
655 probing loop will follow. */
656
657 /* sethi <some immediate>, %g1 */
b0b92586
JB
658 insn = sparc_fetch_instruction (pc);
659 pc = pc + 4;
660 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
661 return start_pc;
662
2067c8d4 663 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
664 insn = sparc_fetch_instruction (pc);
665 pc = pc + 4;
2067c8d4
JG
666 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
667 {
668 probing_loop = 1;
669 insn = sparc_fetch_instruction (pc);
670 pc = pc + 4;
671 }
672
673 /* sub %sp, %g1, %g1 */
b0b92586
JB
674 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
675 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
676 return start_pc;
677
678 insn = sparc_fetch_instruction (pc);
679 pc = pc + 4;
680
2067c8d4
JG
681 /* optional: sethi <some immediate>, %g4 */
682 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
683 {
684 probing_loop = 1;
685 insn = sparc_fetch_instruction (pc);
686 pc = pc + 4;
687 }
688
b0b92586
JB
689 /* First possible sequence:
690 [first two instructions above]
691 clr [%g1 - some immediate] */
692
693 /* clr [%g1 - some immediate] */
694 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
695 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
696 {
697 /* Valid stack-check sequence, return the new PC. */
698 return pc;
699 }
700
701 /* Second possible sequence: A small number of probes.
702 [first two instructions above]
703 clr [%g1]
704 add %g1, -<some immediate>, %g1
705 clr [%g1]
706 [repeat the two instructions above any (small) number of times]
707 clr [%g1 - some immediate] */
708
709 /* clr [%g1] */
710 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
711 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
712 {
713 while (1)
714 {
715 /* add %g1, -<some immediate>, %g1 */
716 insn = sparc_fetch_instruction (pc);
717 pc = pc + 4;
718 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
719 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
720 break;
721
722 /* clr [%g1] */
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
726 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
727 return start_pc;
728 }
729
730 /* clr [%g1 - some immediate] */
731 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
732 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
733 return start_pc;
734
735 /* We found a valid stack-check sequence, return the new PC. */
736 return pc;
737 }
738
739 /* Third sequence: A probing loop.
2067c8d4 740 [first three instructions above]
b0b92586
JB
741 sub %g1, %g4, %g4
742 cmp %g1, %g4
743 be <disp>
744 add %g1, -<some immediate>, %g1
745 ba <disp>
746 clr [%g1]
2067c8d4
JG
747
748 And an optional last probe for the remainder:
749
b0b92586
JB
750 clr [%g4 - some immediate] */
751
2067c8d4 752 if (probing_loop)
b0b92586
JB
753 {
754 /* sub %g1, %g4, %g4 */
b0b92586
JB
755 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
756 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
757 return start_pc;
758
759 /* cmp %g1, %g4 */
760 insn = sparc_fetch_instruction (pc);
761 pc = pc + 4;
762 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
763 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
764 return start_pc;
765
766 /* be <disp> */
767 insn = sparc_fetch_instruction (pc);
768 pc = pc + 4;
769 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
770 return start_pc;
771
772 /* add %g1, -<some immediate>, %g1 */
773 insn = sparc_fetch_instruction (pc);
774 pc = pc + 4;
775 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
776 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
777 return start_pc;
778
779 /* ba <disp> */
780 insn = sparc_fetch_instruction (pc);
781 pc = pc + 4;
782 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
783 return start_pc;
784
2067c8d4 785 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
786 insn = sparc_fetch_instruction (pc);
787 pc = pc + 4;
2067c8d4
JG
788 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
789 && X_RD (insn) == 0 && X_RS1 (insn) == 1
790 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
791 return start_pc;
792
2067c8d4
JG
793 /* We found a valid stack-check sequence, return the new PC. */
794
795 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
796 insn = sparc_fetch_instruction (pc);
797 pc = pc + 4;
798 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
799 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
800 return pc - 4;
801 else
802 return pc;
b0b92586
JB
803 }
804
805 /* No stack check code in our prologue, return the start_pc. */
806 return start_pc;
807}
808
369c397b
JB
809/* Record the effect of a SAVE instruction on CACHE. */
810
811void
812sparc_record_save_insn (struct sparc_frame_cache *cache)
813{
814 /* The frame is set up. */
815 cache->frameless_p = 0;
816
817 /* The frame pointer contains the CFA. */
818 cache->frame_offset = 0;
819
820 /* The `local' and `in' registers are all saved. */
821 cache->saved_regs_mask = 0xffff;
822
823 /* The `out' registers are all renamed. */
824 cache->copied_regs_mask = 0xff;
825}
826
827/* Do a full analysis of the prologue at PC and update CACHE accordingly.
828 Bail out early if CURRENT_PC is reached. Return the address where
829 the analysis stopped.
830
831 We handle both the traditional register window model and the single
832 register window (aka flat) model. */
833
386c036b 834CORE_ADDR
be8626e0
MD
835sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
836 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 837{
be8626e0 838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
839 unsigned long insn;
840 int offset = 0;
c906108c 841 int dest = -1;
c906108c 842
b0b92586
JB
843 pc = sparc_skip_stack_check (pc);
844
386c036b
MK
845 if (current_pc <= pc)
846 return current_pc;
847
848 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
849 SPARC the linker usually defines a symbol (typically
850 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
851 This symbol makes us end up here with PC pointing at the start of
852 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
853 would do our normal prologue analysis, we would probably conclude
854 that we've got a frame when in reality we don't, since the
855 dynamic linker patches up the first PLT with some code that
856 starts with a SAVE instruction. Patch up PC such that it points
857 at the start of our PLT entry. */
858 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
859 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 860
386c036b
MK
861 insn = sparc_fetch_instruction (pc);
862
369c397b
JB
863 /* Recognize store insns and record their sources. */
864 while (X_OP (insn) == 3
865 && (X_OP3 (insn) == 0x4 /* stw */
866 || X_OP3 (insn) == 0x7 /* std */
867 || X_OP3 (insn) == 0xe) /* stx */
868 && X_RS1 (insn) == SPARC_SP_REGNUM)
869 {
870 int regnum = X_RD (insn);
871
872 /* Recognize stores into the corresponding stack slots. */
873 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
874 && ((X_I (insn)
875 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
876 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
877 : (regnum - SPARC_L0_REGNUM) * 4))
878 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
879 {
880 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
881 if (X_OP3 (insn) == 0x7)
882 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
883 }
884
885 offset += 4;
886
887 insn = sparc_fetch_instruction (pc + offset);
888 }
889
386c036b
MK
890 /* Recognize a SETHI insn and record its destination. */
891 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
892 {
893 dest = X_RD (insn);
386c036b
MK
894 offset += 4;
895
369c397b 896 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
897 }
898
386c036b
MK
899 /* Allow for an arithmetic operation on DEST or %g1. */
900 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
901 && (X_RD (insn) == 1 || X_RD (insn) == dest))
902 {
386c036b 903 offset += 4;
c906108c 904
369c397b 905 insn = sparc_fetch_instruction (pc + offset);
c906108c 906 }
c906108c 907
386c036b
MK
908 /* Check for the SAVE instruction that sets up the frame. */
909 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 910 {
369c397b
JB
911 sparc_record_save_insn (cache);
912 offset += 4;
913 return pc + offset;
914 }
915
916 /* Check for an arithmetic operation on %sp. */
917 if (X_OP (insn) == 2
918 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
919 && X_RS1 (insn) == SPARC_SP_REGNUM
920 && X_RD (insn) == SPARC_SP_REGNUM)
921 {
922 if (X_I (insn))
923 {
924 cache->frame_offset = X_SIMM13 (insn);
925 if (X_OP3 (insn) == 0)
926 cache->frame_offset = -cache->frame_offset;
927 }
928 offset += 4;
929
930 insn = sparc_fetch_instruction (pc + offset);
931
932 /* Check for an arithmetic operation that sets up the frame. */
933 if (X_OP (insn) == 2
934 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
935 && X_RS1 (insn) == SPARC_SP_REGNUM
936 && X_RD (insn) == SPARC_FP_REGNUM)
937 {
938 cache->frameless_p = 0;
939 cache->frame_offset = 0;
940 /* We could check that the amount subtracted to %sp above is the
941 same as the one added here, but this seems superfluous. */
942 cache->copied_regs_mask |= 0x40;
943 offset += 4;
944
945 insn = sparc_fetch_instruction (pc + offset);
946 }
947
948 /* Check for a move (or) operation that copies the return register. */
949 if (X_OP (insn) == 2
950 && X_OP3 (insn) == 0x2
951 && !X_I (insn)
952 && X_RS1 (insn) == SPARC_G0_REGNUM
953 && X_RS2 (insn) == SPARC_O7_REGNUM
954 && X_RD (insn) == SPARC_I7_REGNUM)
955 {
956 cache->copied_regs_mask |= 0x80;
957 offset += 4;
958 }
959
960 return pc + offset;
c906108c
SS
961 }
962
963 return pc;
964}
965
386c036b 966static CORE_ADDR
236369e7 967sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
968{
969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 970 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
971}
972
973/* Return PC of first real instruction of the function starting at
974 START_PC. */
f510d44e 975
386c036b 976static CORE_ADDR
6093d2eb 977sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 978{
f510d44e
DM
979 struct symtab_and_line sal;
980 CORE_ADDR func_start, func_end;
386c036b 981 struct sparc_frame_cache cache;
f510d44e
DM
982
983 /* This is the preferred method, find the end of the prologue by
984 using the debugging information. */
985 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
986 {
987 sal = find_pc_line (func_start, 0);
988
989 if (sal.end < func_end
990 && start_pc <= sal.end)
991 return sal.end;
992 }
993
be8626e0 994 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
995
996 /* The psABI says that "Although the first 6 words of arguments
997 reside in registers, the standard stack frame reserves space for
998 them.". It also suggests that a function may use that space to
999 "write incoming arguments 0 to 5" into that space, and that's
1000 indeed what GCC seems to be doing. In that case GCC will
1001 generate debug information that points to the stack slots instead
1002 of the registers, so we should consider the instructions that
369c397b 1003 write out these incoming arguments onto the stack. */
075ccec8 1004
369c397b 1005 while (1)
075ccec8
MK
1006 {
1007 unsigned long insn = sparc_fetch_instruction (start_pc);
1008
369c397b
JB
1009 /* Recognize instructions that store incoming arguments into the
1010 corresponding stack slots. */
1011 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1012 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1013 {
369c397b
JB
1014 int regnum = X_RD (insn);
1015
1016 /* Case of arguments still in %o[0..5]. */
1017 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1018 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1019 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1020 {
1021 start_pc += 4;
1022 continue;
1023 }
1024
1025 /* Case of arguments copied into %i[0..5]. */
1026 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1027 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1028 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1029 {
1030 start_pc += 4;
1031 continue;
1032 }
075ccec8
MK
1033 }
1034
1035 break;
1036 }
1037
1038 return start_pc;
c906108c
SS
1039}
1040
386c036b 1041/* Normal frames. */
9319a2fe 1042
386c036b 1043struct sparc_frame_cache *
236369e7 1044sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1045{
386c036b 1046 struct sparc_frame_cache *cache;
9319a2fe 1047
386c036b
MK
1048 if (*this_cache)
1049 return *this_cache;
c906108c 1050
386c036b
MK
1051 cache = sparc_alloc_frame_cache ();
1052 *this_cache = cache;
c906108c 1053
236369e7 1054 cache->pc = get_frame_func (this_frame);
386c036b 1055 if (cache->pc != 0)
236369e7
JB
1056 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1057 get_frame_pc (this_frame), cache);
386c036b
MK
1058
1059 if (cache->frameless_p)
c906108c 1060 {
cbeae229
MK
1061 /* This function is frameless, so %fp (%i6) holds the frame
1062 pointer for our calling frame. Use %sp (%o6) as this frame's
1063 base address. */
1064 cache->base =
236369e7 1065 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1066 }
1067 else
1068 {
1069 /* For normal frames, %fp (%i6) holds the frame pointer, the
1070 base address for the current stack frame. */
1071 cache->base =
236369e7 1072 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1073 }
c906108c 1074
369c397b
JB
1075 cache->base += cache->frame_offset;
1076
5b2d44a0
MK
1077 if (cache->base & 1)
1078 cache->base += BIAS;
1079
386c036b 1080 return cache;
c906108c 1081}
c906108c 1082
aff37fc1
DM
1083static int
1084sparc32_struct_return_from_sym (struct symbol *sym)
1085{
1086 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1087 enum type_code code = TYPE_CODE (type);
1088
1089 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1090 {
1091 type = check_typedef (TYPE_TARGET_TYPE (type));
1092 if (sparc_structure_or_union_p (type)
1093 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1094 return 1;
1095 }
1096
1097 return 0;
1098}
1099
386c036b 1100struct sparc_frame_cache *
236369e7 1101sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1102{
386c036b
MK
1103 struct sparc_frame_cache *cache;
1104 struct symbol *sym;
c906108c 1105
386c036b
MK
1106 if (*this_cache)
1107 return *this_cache;
c906108c 1108
236369e7 1109 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1110
386c036b
MK
1111 sym = find_pc_function (cache->pc);
1112 if (sym)
c906108c 1113 {
aff37fc1 1114 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1115 }
5465445a
JB
1116 else
1117 {
1118 /* There is no debugging information for this function to
1119 help us determine whether this function returns a struct
1120 or not. So we rely on another heuristic which is to check
1121 the instruction at the return address and see if this is
1122 an "unimp" instruction. If it is, then it is a struct-return
1123 function. */
1124 CORE_ADDR pc;
369c397b
JB
1125 int regnum =
1126 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1127
236369e7 1128 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1129 if (sparc_is_unimp_insn (pc))
1130 cache->struct_return_p = 1;
1131 }
c906108c 1132
386c036b
MK
1133 return cache;
1134}
1135
1136static void
236369e7 1137sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1138 struct frame_id *this_id)
1139{
1140 struct sparc_frame_cache *cache =
236369e7 1141 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1142
1143 /* This marks the outermost frame. */
1144 if (cache->base == 0)
1145 return;
1146
1147 (*this_id) = frame_id_build (cache->base, cache->pc);
1148}
c906108c 1149
236369e7
JB
1150static struct value *
1151sparc32_frame_prev_register (struct frame_info *this_frame,
1152 void **this_cache, int regnum)
386c036b 1153{
e17a4113 1154 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1155 struct sparc_frame_cache *cache =
236369e7 1156 sparc32_frame_cache (this_frame, this_cache);
c906108c 1157
386c036b 1158 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1159 {
236369e7 1160 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1161
236369e7
JB
1162 /* If this functions has a Structure, Union or Quad-Precision
1163 return value, we have to skip the UNIMP instruction that encodes
1164 the size of the structure. */
1165 if (cache->struct_return_p)
1166 pc += 4;
386c036b 1167
369c397b
JB
1168 regnum =
1169 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1170 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1171 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1172 }
1173
42cdca6c
MK
1174 /* Handle StackGhost. */
1175 {
e17a4113 1176 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1177
1178 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1179 {
236369e7
JB
1180 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1181 ULONGEST i7;
1182
1183 /* Read the value in from memory. */
1184 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1185 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1186 }
1187 }
1188
369c397b 1189 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1190 in the register save area. */
369c397b
JB
1191 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1192 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1193 {
236369e7 1194 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1195
236369e7 1196 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1197 }
c906108c 1198
369c397b
JB
1199 /* The previous frame's `out' registers may be accessible as the current
1200 frame's `in' registers. */
1201 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1202 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1203 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1204
236369e7 1205 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1206}
c906108c 1207
386c036b
MK
1208static const struct frame_unwind sparc32_frame_unwind =
1209{
1210 NORMAL_FRAME,
8fbca658 1211 default_frame_unwind_stop_reason,
386c036b 1212 sparc32_frame_this_id,
236369e7
JB
1213 sparc32_frame_prev_register,
1214 NULL,
1215 default_frame_sniffer
386c036b 1216};
386c036b 1217\f
c906108c 1218
386c036b 1219static CORE_ADDR
236369e7 1220sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1221{
1222 struct sparc_frame_cache *cache =
236369e7 1223 sparc32_frame_cache (this_frame, this_cache);
c906108c 1224
386c036b
MK
1225 return cache->base;
1226}
c906108c 1227
386c036b
MK
1228static const struct frame_base sparc32_frame_base =
1229{
1230 &sparc32_frame_unwind,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address,
1233 sparc32_frame_base_address
1234};
c906108c 1235
386c036b 1236static struct frame_id
236369e7 1237sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1238{
1239 CORE_ADDR sp;
5af923b0 1240
236369e7 1241 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1242 if (sp & 1)
1243 sp += BIAS;
236369e7 1244 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1245}
1246\f
c906108c 1247
3923a2b2
MK
1248/* Extract a function return value of TYPE from REGCACHE, and copy
1249 that into VALBUF. */
5af923b0 1250
386c036b
MK
1251static void
1252sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1253 gdb_byte *valbuf)
386c036b
MK
1254{
1255 int len = TYPE_LENGTH (type);
fe10a582 1256 gdb_byte buf[32];
c906108c 1257
386c036b
MK
1258 gdb_assert (!sparc_structure_or_union_p (type));
1259 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1260
fe10a582 1261 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1262 {
386c036b
MK
1263 /* Floating return values. */
1264 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1265 if (len > 4)
1266 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1267 if (len > 8)
1268 {
1269 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1270 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1271 }
1272 if (len > 16)
1273 {
1274 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1275 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1276 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1277 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1278 }
386c036b 1279 memcpy (valbuf, buf, len);
5af923b0
MS
1280 }
1281 else
1282 {
386c036b
MK
1283 /* Integral and pointer return values. */
1284 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1285
386c036b
MK
1286 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1287 if (len > 4)
1288 {
1289 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1290 gdb_assert (len == 8);
1291 memcpy (valbuf, buf, 8);
1292 }
1293 else
1294 {
1295 /* Just stripping off any unused bytes should preserve the
1296 signed-ness just fine. */
1297 memcpy (valbuf, buf + 4 - len, len);
1298 }
1299 }
1300}
c906108c 1301
3923a2b2
MK
1302/* Store the function return value of type TYPE from VALBUF into
1303 REGCACHE. */
c906108c 1304
386c036b
MK
1305static void
1306sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1307 const gdb_byte *valbuf)
386c036b
MK
1308{
1309 int len = TYPE_LENGTH (type);
e1613aba 1310 gdb_byte buf[8];
c906108c 1311
386c036b
MK
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1314 gdb_assert (len <= 8);
c906108c 1315
fe10a582 1316 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1317 {
1318 /* Floating return values. */
1319 memcpy (buf, valbuf, len);
1320 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1321 if (len > 4)
1322 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1323 if (len > 8)
1324 {
1325 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1327 }
1328 if (len > 16)
1329 {
1330 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1334 }
386c036b
MK
1335 }
1336 else
c906108c 1337 {
386c036b
MK
1338 /* Integral and pointer return values. */
1339 gdb_assert (sparc_integral_or_pointer_p (type));
1340
1341 if (len > 4)
2757dd86 1342 {
386c036b
MK
1343 gdb_assert (len == 8);
1344 memcpy (buf, valbuf, 8);
1345 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1346 }
1347 else
1348 {
386c036b
MK
1349 /* ??? Do we need to do any sign-extension here? */
1350 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1351 }
386c036b 1352 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1353 }
1354}
1355
b9d4c5ed 1356static enum return_value_convention
c055b101
CV
1357sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1358 struct type *type, struct regcache *regcache,
1359 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1360{
e17a4113
UW
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362
0a8f48b9
MK
1363 /* The psABI says that "...every stack frame reserves the word at
1364 %fp+64. If a function returns a structure, union, or
1365 quad-precision value, this word should hold the address of the
1366 object into which the return value should be copied." This
1367 guarantees that we can always find the return value, not just
1368 before the function returns. */
1369
b9d4c5ed
MK
1370 if (sparc_structure_or_union_p (type)
1371 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1372 {
1373 if (readbuf)
1374 {
1375 ULONGEST sp;
1376 CORE_ADDR addr;
1377
1378 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1379 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1380 read_memory (addr, readbuf, TYPE_LENGTH (type));
1381 }
1382
1383 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1384 }
b9d4c5ed
MK
1385
1386 if (readbuf)
1387 sparc32_extract_return_value (type, regcache, readbuf);
1388 if (writebuf)
1389 sparc32_store_return_value (type, regcache, writebuf);
1390
1391 return RETURN_VALUE_REGISTER_CONVENTION;
1392}
1393
386c036b
MK
1394static int
1395sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1396{
386c036b 1397 return (sparc_structure_or_union_p (type)
fe10a582
DM
1398 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1399 || sparc_complex_floating_p (type));
386c036b 1400}
c906108c 1401
aff37fc1 1402static int
4a4e5149 1403sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1404{
236369e7 1405 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1406 struct symbol *sym = find_pc_function (pc);
1407
1408 if (sym)
1409 return sparc32_struct_return_from_sym (sym);
1410 return 0;
1411}
1412
f5a9b87d
DM
1413static void
1414sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1415 struct dwarf2_frame_state_reg *reg,
4a4e5149 1416 struct frame_info *this_frame)
f5a9b87d 1417{
aff37fc1
DM
1418 int off;
1419
f5a9b87d
DM
1420 switch (regnum)
1421 {
1422 case SPARC_G0_REGNUM:
1423 /* Since %g0 is always zero, there is no point in saving it, and
1424 people will be inclined omit it from the CFI. Make sure we
1425 don't warn about that. */
1426 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1427 break;
1428 case SPARC_SP_REGNUM:
1429 reg->how = DWARF2_FRAME_REG_CFA;
1430 break;
1431 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1432 case SPARC32_NPC_REGNUM:
1433 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1434 off = 8;
4a4e5149 1435 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1436 off += 4;
1437 if (regnum == SPARC32_NPC_REGNUM)
1438 off += 4;
1439 reg->loc.offset = off;
f5a9b87d
DM
1440 break;
1441 }
1442}
1443
386c036b
MK
1444\f
1445/* The SPARC Architecture doesn't have hardware single-step support,
1446 and most operating systems don't implement it either, so we provide
1447 software single-step mechanism. */
c906108c 1448
386c036b 1449static CORE_ADDR
0b1b3e42 1450sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1451 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1452{
1453 unsigned long insn = sparc_fetch_instruction (pc);
1454 int conditional_p = X_COND (insn) & 0x7;
1455 int branch_p = 0;
1456 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1457
386c036b 1458 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1459 {
386c036b
MK
1460 /* Branch on Integer Register with Prediction (BPr). */
1461 branch_p = 1;
1462 conditional_p = 1;
c906108c 1463 }
386c036b 1464 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1465 {
386c036b
MK
1466 /* Branch on Floating-Point Condition Codes (FBfcc). */
1467 branch_p = 1;
1468 offset = 4 * X_DISP22 (insn);
c906108c 1469 }
386c036b
MK
1470 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1471 {
1472 /* Branch on Floating-Point Condition Codes with Prediction
1473 (FBPfcc). */
1474 branch_p = 1;
1475 offset = 4 * X_DISP19 (insn);
1476 }
1477 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1478 {
1479 /* Branch on Integer Condition Codes (Bicc). */
1480 branch_p = 1;
1481 offset = 4 * X_DISP22 (insn);
1482 }
1483 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1484 {
386c036b
MK
1485 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1486 branch_p = 1;
1487 offset = 4 * X_DISP19 (insn);
c906108c 1488 }
c893be75
MK
1489 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1490 {
1491 /* Trap instruction (TRAP). */
0b1b3e42 1492 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1493 }
386c036b
MK
1494
1495 /* FIXME: Handle DONE and RETRY instructions. */
1496
386c036b 1497 if (branch_p)
c906108c 1498 {
386c036b 1499 if (conditional_p)
c906108c 1500 {
386c036b
MK
1501 /* For conditional branches, return nPC + 4 iff the annul
1502 bit is 1. */
1503 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1504 }
1505 else
1506 {
386c036b
MK
1507 /* For unconditional branches, return the target if its
1508 specified condition is "always" and return nPC + 4 if the
1509 condition is "never". If the annul bit is 1, set *NPC to
1510 zero. */
1511 if (X_COND (insn) == 0x0)
1512 pc = *npc, offset = 4;
1513 if (X_A (insn))
1514 *npc = 0;
1515
1516 gdb_assert (offset != 0);
1517 return pc + offset;
c906108c
SS
1518 }
1519 }
386c036b
MK
1520
1521 return 0;
c906108c
SS
1522}
1523
c893be75 1524static CORE_ADDR
0b1b3e42 1525sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1526{
1527 return 0;
1528}
1529
e6590a1b 1530int
0b1b3e42 1531sparc_software_single_step (struct frame_info *frame)
386c036b 1532{
0b1b3e42 1533 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1534 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1535 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1536 CORE_ADDR npc, nnpc;
c906108c 1537
e0cd558a 1538 CORE_ADDR pc, orig_npc;
c906108c 1539
0b1b3e42
UW
1540 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1541 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1542
e0cd558a 1543 /* Analyze the instruction at PC. */
0b1b3e42 1544 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1545 if (npc != 0)
6c95b8df 1546 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1547
e0cd558a 1548 if (nnpc != 0)
6c95b8df 1549 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1550
e0cd558a
UW
1551 /* Assert that we have set at least one breakpoint, and that
1552 they're not set at the same spot - unless we're going
1553 from here straight to NULL, i.e. a call or jump to 0. */
1554 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1555 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1556
1557 return 1;
386c036b
MK
1558}
1559
1560static void
61a1198a 1561sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1562{
61a1198a 1563 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1564
61a1198a
UW
1565 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1566 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1567}
1568\f
5af923b0 1569
a54124c5
MK
1570/* Return the appropriate register set for the core section identified
1571 by SECT_NAME and SECT_SIZE. */
1572
63807e1d 1573static const struct regset *
a54124c5
MK
1574sparc_regset_from_core_section (struct gdbarch *gdbarch,
1575 const char *sect_name, size_t sect_size)
1576{
1577 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1578
c558d81a 1579 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1580 return tdep->gregset;
1581
c558d81a 1582 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1583 return tdep->fpregset;
1584
1585 return NULL;
1586}
1587\f
1588
386c036b
MK
1589static struct gdbarch *
1590sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1591{
1592 struct gdbarch_tdep *tdep;
1593 struct gdbarch *gdbarch;
c906108c 1594
386c036b
MK
1595 /* If there is already a candidate, use it. */
1596 arches = gdbarch_list_lookup_by_info (arches, &info);
1597 if (arches != NULL)
1598 return arches->gdbarch;
c906108c 1599
386c036b 1600 /* Allocate space for the new architecture. */
1390fcc2 1601 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1602 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1603
386c036b
MK
1604 tdep->pc_regnum = SPARC32_PC_REGNUM;
1605 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1606 tdep->step_trap = sparc_step_trap;
386c036b
MK
1607
1608 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1609 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1610
1611 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1612 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1613 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1614 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1615 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1616 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1617
1618 /* Register numbers of various important registers. */
1619 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1620 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1621 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1622
1623 /* Call dummy code. */
49a45ecf 1624 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1625 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1626 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1627 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1628
b9d4c5ed 1629 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1630 set_gdbarch_stabs_argument_has_addr
1631 (gdbarch, sparc32_stabs_argument_has_addr);
1632
1633 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1634
1635 /* Stack grows downward. */
1636 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1637
386c036b 1638 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1639
386c036b 1640 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1641
386c036b 1642 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1643
386c036b
MK
1644 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1645 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1646
236369e7 1647 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1648
386c036b 1649 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1650
386c036b
MK
1651 frame_base_set_default (gdbarch, &sparc32_frame_base);
1652
f5a9b87d
DM
1653 /* Hook in the DWARF CFI frame unwinder. */
1654 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1655 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1656 StackGhost issues have been resolved. */
1657
b2a0b9b2
DM
1658 /* Hook in ABI-specific overrides, if they have been registered. */
1659 gdbarch_init_osabi (info, gdbarch);
1660
236369e7 1661 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1662
a54124c5 1663 /* If we have register sets, enable the generic core file support. */
4c72d57a 1664 if (tdep->gregset)
a54124c5
MK
1665 set_gdbarch_regset_from_core_section (gdbarch,
1666 sparc_regset_from_core_section);
1667
386c036b
MK
1668 return gdbarch;
1669}
1670\f
1671/* Helper functions for dealing with register windows. */
1672
1673void
1674sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1675{
e17a4113
UW
1676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1678 int offset = 0;
e1613aba 1679 gdb_byte buf[8];
386c036b
MK
1680 int i;
1681
1682 if (sp & 1)
1683 {
1684 /* Registers are 64-bit. */
1685 sp += BIAS;
c906108c 1686
386c036b
MK
1687 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1688 {
1689 if (regnum == i || regnum == -1)
1690 {
1691 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1692
1693 /* Handle StackGhost. */
1694 if (i == SPARC_I7_REGNUM)
1695 {
e17a4113
UW
1696 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1697 ULONGEST i7;
f700a364 1698
e17a4113
UW
1699 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1700 store_unsigned_integer (buf + offset, 8, byte_order,
1701 i7 ^ wcookie);
f700a364
MK
1702 }
1703
386c036b
MK
1704 regcache_raw_supply (regcache, i, buf);
1705 }
1706 }
1707 }
1708 else
c906108c 1709 {
386c036b
MK
1710 /* Registers are 32-bit. Toss any sign-extension of the stack
1711 pointer. */
1712 sp &= 0xffffffffUL;
c906108c 1713
386c036b
MK
1714 /* Clear out the top half of the temporary buffer, and put the
1715 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1716 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1717 {
386c036b
MK
1718 memset (buf, 0, 4);
1719 offset = 4;
1720 }
c906108c 1721
386c036b
MK
1722 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1723 {
1724 if (regnum == i || regnum == -1)
1725 {
1726 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1727 buf + offset, 4);
42cdca6c
MK
1728
1729 /* Handle StackGhost. */
1730 if (i == SPARC_I7_REGNUM)
1731 {
e17a4113
UW
1732 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1733 ULONGEST i7;
42cdca6c 1734
e17a4113
UW
1735 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1736 store_unsigned_integer (buf + offset, 4, byte_order,
1737 i7 ^ wcookie);
42cdca6c
MK
1738 }
1739
386c036b
MK
1740 regcache_raw_supply (regcache, i, buf);
1741 }
c906108c
SS
1742 }
1743 }
c906108c 1744}
c906108c
SS
1745
1746void
386c036b
MK
1747sparc_collect_rwindow (const struct regcache *regcache,
1748 CORE_ADDR sp, int regnum)
c906108c 1749{
e17a4113
UW
1750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1751 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1752 int offset = 0;
e1613aba 1753 gdb_byte buf[8];
386c036b 1754 int i;
5af923b0 1755
386c036b 1756 if (sp & 1)
5af923b0 1757 {
386c036b
MK
1758 /* Registers are 64-bit. */
1759 sp += BIAS;
c906108c 1760
386c036b
MK
1761 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1762 {
1763 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1764 {
1765 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1766
1767 /* Handle StackGhost. */
1768 if (i == SPARC_I7_REGNUM)
1769 {
e17a4113
UW
1770 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1771 ULONGEST i7;
f700a364 1772
e17a4113
UW
1773 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1774 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1775 }
1776
386c036b
MK
1777 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1778 }
1779 }
5af923b0
MS
1780 }
1781 else
1782 {
386c036b
MK
1783 /* Registers are 32-bit. Toss any sign-extension of the stack
1784 pointer. */
1785 sp &= 0xffffffffUL;
1786
1787 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1788 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1789 offset = 4;
1790
1791 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1792 {
1793 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1794 {
1795 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1796
1797 /* Handle StackGhost. */
1798 if (i == SPARC_I7_REGNUM)
1799 {
e17a4113
UW
1800 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1801 ULONGEST i7;
42cdca6c 1802
e17a4113
UW
1803 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1804 store_unsigned_integer (buf + offset, 4, byte_order,
1805 i7 ^ wcookie);
42cdca6c
MK
1806 }
1807
386c036b
MK
1808 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1809 buf + offset, 4);
1810 }
1811 }
5af923b0 1812 }
c906108c
SS
1813}
1814
386c036b
MK
1815/* Helper functions for dealing with register sets. */
1816
c906108c 1817void
386c036b
MK
1818sparc32_supply_gregset (const struct sparc_gregset *gregset,
1819 struct regcache *regcache,
1820 int regnum, const void *gregs)
c906108c 1821{
e1613aba 1822 const gdb_byte *regs = gregs;
22e74ef9 1823 gdb_byte zero[4] = { 0 };
386c036b 1824 int i;
5af923b0 1825
386c036b
MK
1826 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1827 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1828 regs + gregset->r_psr_offset);
c906108c 1829
386c036b
MK
1830 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1831 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1832 regs + gregset->r_pc_offset);
5af923b0 1833
386c036b
MK
1834 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1835 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1836 regs + gregset->r_npc_offset);
5af923b0 1837
386c036b
MK
1838 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1839 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1840 regs + gregset->r_y_offset);
5af923b0 1841
386c036b 1842 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1843 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1844
386c036b 1845 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1846 {
386c036b
MK
1847 int offset = gregset->r_g1_offset;
1848
1849 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1850 {
1851 if (regnum == i || regnum == -1)
1852 regcache_raw_supply (regcache, i, regs + offset);
1853 offset += 4;
1854 }
c906108c 1855 }
386c036b
MK
1856
1857 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1858 {
386c036b
MK
1859 /* Not all of the register set variants include Locals and
1860 Inputs. For those that don't, we read them off the stack. */
1861 if (gregset->r_l0_offset == -1)
1862 {
1863 ULONGEST sp;
1864
1865 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1866 sparc_supply_rwindow (regcache, sp, regnum);
1867 }
1868 else
1869 {
1870 int offset = gregset->r_l0_offset;
1871
1872 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1873 {
1874 if (regnum == i || regnum == -1)
1875 regcache_raw_supply (regcache, i, regs + offset);
1876 offset += 4;
1877 }
1878 }
c906108c
SS
1879 }
1880}
1881
c5aa993b 1882void
386c036b
MK
1883sparc32_collect_gregset (const struct sparc_gregset *gregset,
1884 const struct regcache *regcache,
1885 int regnum, void *gregs)
c906108c 1886{
e1613aba 1887 gdb_byte *regs = gregs;
386c036b 1888 int i;
c5aa993b 1889
386c036b
MK
1890 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1891 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1892 regs + gregset->r_psr_offset);
60054393 1893
386c036b
MK
1894 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1895 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1896 regs + gregset->r_pc_offset);
1897
1898 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1899 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1900 regs + gregset->r_npc_offset);
5af923b0 1901
386c036b
MK
1902 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1903 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1904 regs + gregset->r_y_offset);
1905
1906 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1907 {
386c036b
MK
1908 int offset = gregset->r_g1_offset;
1909
1910 /* %g0 is always zero. */
1911 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1912 {
1913 if (regnum == i || regnum == -1)
1914 regcache_raw_collect (regcache, i, regs + offset);
1915 offset += 4;
1916 }
5af923b0 1917 }
386c036b
MK
1918
1919 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1920 {
386c036b
MK
1921 /* Not all of the register set variants include Locals and
1922 Inputs. For those that don't, we read them off the stack. */
1923 if (gregset->r_l0_offset != -1)
1924 {
1925 int offset = gregset->r_l0_offset;
1926
1927 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1928 {
1929 if (regnum == i || regnum == -1)
1930 regcache_raw_collect (regcache, i, regs + offset);
1931 offset += 4;
1932 }
1933 }
5af923b0 1934 }
c906108c
SS
1935}
1936
c906108c 1937void
386c036b
MK
1938sparc32_supply_fpregset (struct regcache *regcache,
1939 int regnum, const void *fpregs)
c906108c 1940{
e1613aba 1941 const gdb_byte *regs = fpregs;
386c036b 1942 int i;
60054393 1943
386c036b 1944 for (i = 0; i < 32; i++)
c906108c 1945 {
386c036b
MK
1946 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1947 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1948 }
5af923b0 1949
386c036b
MK
1950 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1951 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1952}
1953
386c036b
MK
1954void
1955sparc32_collect_fpregset (const struct regcache *regcache,
1956 int regnum, void *fpregs)
c906108c 1957{
e1613aba 1958 gdb_byte *regs = fpregs;
386c036b 1959 int i;
c906108c 1960
386c036b
MK
1961 for (i = 0; i < 32; i++)
1962 {
1963 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1964 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1965 }
c906108c 1966
386c036b
MK
1967 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1968 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1969}
c906108c 1970\f
c906108c 1971
386c036b 1972/* SunOS 4. */
c906108c 1973
386c036b
MK
1974/* From <machine/reg.h>. */
1975const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1976{
386c036b
MK
1977 0 * 4, /* %psr */
1978 1 * 4, /* %pc */
1979 2 * 4, /* %npc */
1980 3 * 4, /* %y */
1981 -1, /* %wim */
1982 -1, /* %tbr */
1983 4 * 4, /* %g1 */
1984 -1 /* %l0 */
1985};
1986\f
c906108c 1987
386c036b
MK
1988/* Provide a prototype to silence -Wmissing-prototypes. */
1989void _initialize_sparc_tdep (void);
c906108c
SS
1990
1991void
386c036b 1992_initialize_sparc_tdep (void)
c906108c 1993{
386c036b 1994 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1995}
This page took 2.352682 seconds and 4 git commands to generate.