gdb/
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
4c38e0a4 3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
9b254dd1 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c 21#include "defs.h"
5af923b0 22#include "arch-utils.h"
386c036b 23#include "dis-asm.h"
f5a9b87d 24#include "dwarf2-frame.h"
386c036b 25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
8defab1a 102 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
e17a4113 155sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 156{
e17a4113 157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 158 struct target_ops *ops = &current_target;
e1613aba 159 gdb_byte buf[8];
baf92889
MK
160 int len;
161
13547ab6 162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
163 if (len == -1)
164 return 0;
42cdca6c 165
baf92889
MK
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
e17a4113 169 return extract_unsigned_integer (buf, len, byte_order);
baf92889 170}
386c036b 171\f
baf92889 172
386c036b
MK
173/* The functions on this page are intended to be used to classify
174 function arguments. */
c906108c 175
386c036b 176/* Check whether TYPE is "Integral or Pointer". */
c906108c 177
386c036b
MK
178static int
179sparc_integral_or_pointer_p (const struct type *type)
c906108c 180{
80ad1639
MK
181 int len = TYPE_LENGTH (type);
182
386c036b 183 switch (TYPE_CODE (type))
c906108c 184 {
386c036b
MK
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
80ad1639
MK
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
80ad1639
MK
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
386c036b
MK
198 default:
199 break;
200 }
c906108c 201
386c036b
MK
202 return 0;
203}
c906108c 204
386c036b 205/* Check whether TYPE is "Floating". */
c906108c 206
386c036b
MK
207static int
208sparc_floating_p (const struct type *type)
209{
210 switch (TYPE_CODE (type))
c906108c 211 {
386c036b
MK
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222}
c906108c 223
0497f5b0
JB
224/* Check whether TYPE is "Structure or Union".
225
226 In terms of Ada subprogram calls, arrays are treated the same as
227 struct and union types. So this function also returns non-zero
228 for array types. */
c906108c 229
386c036b
MK
230static int
231sparc_structure_or_union_p (const struct type *type)
232{
233 switch (TYPE_CODE (type))
234 {
235 case TYPE_CODE_STRUCT:
236 case TYPE_CODE_UNION:
0497f5b0 237 case TYPE_CODE_ARRAY:
386c036b
MK
238 return 1;
239 default:
240 break;
c906108c 241 }
386c036b
MK
242
243 return 0;
c906108c 244}
386c036b
MK
245
246/* Register information. */
247
248static const char *sparc32_register_names[] =
5af923b0 249{
386c036b
MK
250 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
251 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
252 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
253 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
254
255 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
256 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
257 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
258 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
259
260 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
261};
262
386c036b
MK
263/* Total number of registers. */
264#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 265
386c036b
MK
266/* We provide the aliases %d0..%d30 for the floating registers as
267 "psuedo" registers. */
268
269static const char *sparc32_pseudo_register_names[] =
270{
271 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
272 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
273};
274
275/* Total number of pseudo registers. */
276#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
277
278/* Return the name of register REGNUM. */
279
280static const char *
d93859e2 281sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
282{
283 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
284 return sparc32_register_names[regnum];
285
286 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
287 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
288
289 return NULL;
290}
2d457077 291\f
209bd28e 292/* Construct types for ISA-specific registers. */
2d457077 293
209bd28e
UW
294static struct type *
295sparc_psr_type (struct gdbarch *gdbarch)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 298
209bd28e
UW
299 if (!tdep->sparc_psr_type)
300 {
301 struct type *type;
2d457077 302
e9bb382b 303 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
304 append_flags_type_flag (type, 5, "ET");
305 append_flags_type_flag (type, 6, "PS");
306 append_flags_type_flag (type, 7, "S");
307 append_flags_type_flag (type, 12, "EF");
308 append_flags_type_flag (type, 13, "EC");
2d457077 309
209bd28e
UW
310 tdep->sparc_psr_type = type;
311 }
312
313 return tdep->sparc_psr_type;
314}
315
316static struct type *
317sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 318{
209bd28e
UW
319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
320
321 if (!tdep->sparc_fsr_type)
322 {
323 struct type *type;
324
e9bb382b 325 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
326 append_flags_type_flag (type, 0, "NXA");
327 append_flags_type_flag (type, 1, "DZA");
328 append_flags_type_flag (type, 2, "UFA");
329 append_flags_type_flag (type, 3, "OFA");
330 append_flags_type_flag (type, 4, "NVA");
331 append_flags_type_flag (type, 5, "NXC");
332 append_flags_type_flag (type, 6, "DZC");
333 append_flags_type_flag (type, 7, "UFC");
334 append_flags_type_flag (type, 8, "OFC");
335 append_flags_type_flag (type, 9, "NVC");
336 append_flags_type_flag (type, 22, "NS");
337 append_flags_type_flag (type, 23, "NXM");
338 append_flags_type_flag (type, 24, "DZM");
339 append_flags_type_flag (type, 25, "UFM");
340 append_flags_type_flag (type, 26, "OFM");
341 append_flags_type_flag (type, 27, "NVM");
342
343 tdep->sparc_fsr_type = type;
344 }
345
346 return tdep->sparc_fsr_type;
2d457077 347}
386c036b
MK
348
349/* Return the GDB type object for the "standard" data type of data in
350 register REGNUM. */
351
352static struct type *
353sparc32_register_type (struct gdbarch *gdbarch, int regnum)
354{
355 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 356 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
357
358 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 359 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
360
361 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 362 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
363
364 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 365 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 366
2d457077 367 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 368 return sparc_psr_type (gdbarch);
2d457077
MK
369
370 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 371 return sparc_fsr_type (gdbarch);
2d457077 372
df4df182 373 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
374}
375
376static void
377sparc32_pseudo_register_read (struct gdbarch *gdbarch,
378 struct regcache *regcache,
e1613aba 379 int regnum, gdb_byte *buf)
386c036b
MK
380{
381 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
382
383 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
384 regcache_raw_read (regcache, regnum, buf);
e1613aba 385 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
386}
387
388static void
389sparc32_pseudo_register_write (struct gdbarch *gdbarch,
390 struct regcache *regcache,
e1613aba 391 int regnum, const gdb_byte *buf)
386c036b
MK
392{
393 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
394
395 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
396 regcache_raw_write (regcache, regnum, buf);
e1613aba 397 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
398}
399\f
400
49a45ecf
JB
401static CORE_ADDR
402sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
403{
404 /* The ABI requires double-word alignment. */
405 return address & ~0x7;
406}
407
386c036b
MK
408static CORE_ADDR
409sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 410 CORE_ADDR funcaddr,
386c036b
MK
411 struct value **args, int nargs,
412 struct type *value_type,
e4fd649a
UW
413 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
414 struct regcache *regcache)
c906108c 415{
e17a4113
UW
416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
417
386c036b
MK
418 *bp_addr = sp - 4;
419 *real_pc = funcaddr;
420
d80b854b 421 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 422 {
e1613aba 423 gdb_byte buf[4];
386c036b
MK
424
425 /* This is an UNIMP instruction. */
e17a4113
UW
426 store_unsigned_integer (buf, 4, byte_order,
427 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
428 write_memory (sp - 8, buf, 4);
429 return sp - 8;
c906108c
SS
430 }
431
386c036b
MK
432 return sp - 4;
433}
434
435static CORE_ADDR
436sparc32_store_arguments (struct regcache *regcache, int nargs,
437 struct value **args, CORE_ADDR sp,
438 int struct_return, CORE_ADDR struct_addr)
439{
df4df182 440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 441 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
442 /* Number of words in the "parameter array". */
443 int num_elements = 0;
444 int element = 0;
445 int i;
446
447 for (i = 0; i < nargs; i++)
c906108c 448 {
4991999e 449 struct type *type = value_type (args[i]);
386c036b
MK
450 int len = TYPE_LENGTH (type);
451
452 if (sparc_structure_or_union_p (type)
453 || (sparc_floating_p (type) && len == 16))
c906108c 454 {
386c036b
MK
455 /* Structure, Union and Quad-Precision Arguments. */
456 sp -= len;
457
458 /* Use doubleword alignment for these values. That's always
459 correct, and wasting a few bytes shouldn't be a problem. */
460 sp &= ~0x7;
461
0fd88904 462 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
463 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
464 num_elements++;
465 }
466 else if (sparc_floating_p (type))
467 {
468 /* Floating arguments. */
469 gdb_assert (len == 4 || len == 8);
470 num_elements += (len / 4);
c906108c 471 }
c5aa993b
JM
472 else
473 {
386c036b
MK
474 /* Integral and pointer arguments. */
475 gdb_assert (sparc_integral_or_pointer_p (type));
476
477 if (len < 4)
df4df182
UW
478 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
479 args[i]);
386c036b 480 num_elements += ((len + 3) / 4);
c5aa993b 481 }
c906108c 482 }
c906108c 483
386c036b
MK
484 /* Always allocate at least six words. */
485 sp -= max (6, num_elements) * 4;
c906108c 486
386c036b
MK
487 /* The psABI says that "Software convention requires space for the
488 struct/union return value pointer, even if the word is unused." */
489 sp -= 4;
c906108c 490
386c036b
MK
491 /* The psABI says that "Although software convention and the
492 operating system require every stack frame to be doubleword
493 aligned." */
494 sp &= ~0x7;
c906108c 495
386c036b 496 for (i = 0; i < nargs; i++)
c906108c 497 {
0fd88904 498 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 499 struct type *type = value_type (args[i]);
386c036b 500 int len = TYPE_LENGTH (type);
c906108c 501
386c036b 502 gdb_assert (len == 4 || len == 8);
c906108c 503
386c036b
MK
504 if (element < 6)
505 {
506 int regnum = SPARC_O0_REGNUM + element;
c906108c 507
386c036b
MK
508 regcache_cooked_write (regcache, regnum, valbuf);
509 if (len > 4 && element < 5)
510 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
511 }
5af923b0 512
386c036b
MK
513 /* Always store the argument in memory. */
514 write_memory (sp + 4 + element * 4, valbuf, len);
515 element += len / 4;
516 }
c906108c 517
386c036b 518 gdb_assert (element == num_elements);
c906108c 519
386c036b 520 if (struct_return)
c906108c 521 {
e1613aba 522 gdb_byte buf[4];
c906108c 523
e17a4113 524 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
525 write_memory (sp, buf, 4);
526 }
c906108c 527
386c036b 528 return sp;
c906108c
SS
529}
530
386c036b 531static CORE_ADDR
7d9b040b 532sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
533 struct regcache *regcache, CORE_ADDR bp_addr,
534 int nargs, struct value **args, CORE_ADDR sp,
535 int struct_return, CORE_ADDR struct_addr)
c906108c 536{
386c036b
MK
537 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
538
539 /* Set return address. */
540 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
541
542 /* Set up function arguments. */
543 sp = sparc32_store_arguments (regcache, nargs, args, sp,
544 struct_return, struct_addr);
545
546 /* Allocate the 16-word window save area. */
547 sp -= 16 * 4;
c906108c 548
386c036b
MK
549 /* Stack should be doubleword aligned at this point. */
550 gdb_assert (sp % 8 == 0);
c906108c 551
386c036b
MK
552 /* Finally, update the stack pointer. */
553 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
554
555 return sp;
556}
557\f
c906108c 558
386c036b
MK
559/* Use the program counter to determine the contents and size of a
560 breakpoint instruction. Return a pointer to a string of bytes that
561 encode a breakpoint instruction, store the length of the string in
562 *LEN and optionally adjust *PC to point to the correct memory
563 location for inserting the breakpoint. */
564
e1613aba 565static const gdb_byte *
67d57894 566sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 567{
864a1a37 568 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 569
386c036b
MK
570 *len = sizeof (break_insn);
571 return break_insn;
c906108c 572}
386c036b 573\f
c906108c 574
386c036b 575/* Allocate and initialize a frame cache. */
c906108c 576
386c036b
MK
577static struct sparc_frame_cache *
578sparc_alloc_frame_cache (void)
579{
580 struct sparc_frame_cache *cache;
581 int i;
c906108c 582
386c036b 583 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 584
386c036b
MK
585 /* Base address. */
586 cache->base = 0;
587 cache->pc = 0;
c906108c 588
386c036b
MK
589 /* Frameless until proven otherwise. */
590 cache->frameless_p = 1;
591
592 cache->struct_return_p = 0;
593
594 return cache;
595}
596
b0b92586
JB
597/* GCC generates several well-known sequences of instructions at the begining
598 of each function prologue when compiling with -fstack-check. If one of
599 such sequences starts at START_PC, then return the address of the
600 instruction immediately past this sequence. Otherwise, return START_PC. */
601
602static CORE_ADDR
603sparc_skip_stack_check (const CORE_ADDR start_pc)
604{
605 CORE_ADDR pc = start_pc;
606 unsigned long insn;
607 int offset_stack_checking_sequence = 0;
608
609 /* With GCC, all stack checking sequences begin with the same two
610 instructions. */
611
612 /* sethi <some immediate>,%g1 */
613 insn = sparc_fetch_instruction (pc);
614 pc = pc + 4;
615 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
616 return start_pc;
617
618 /* sub %sp, %g1, %g1 */
619 insn = sparc_fetch_instruction (pc);
620 pc = pc + 4;
621 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
622 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
623 return start_pc;
624
625 insn = sparc_fetch_instruction (pc);
626 pc = pc + 4;
627
628 /* First possible sequence:
629 [first two instructions above]
630 clr [%g1 - some immediate] */
631
632 /* clr [%g1 - some immediate] */
633 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
634 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
635 {
636 /* Valid stack-check sequence, return the new PC. */
637 return pc;
638 }
639
640 /* Second possible sequence: A small number of probes.
641 [first two instructions above]
642 clr [%g1]
643 add %g1, -<some immediate>, %g1
644 clr [%g1]
645 [repeat the two instructions above any (small) number of times]
646 clr [%g1 - some immediate] */
647
648 /* clr [%g1] */
649 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
650 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
651 {
652 while (1)
653 {
654 /* add %g1, -<some immediate>, %g1 */
655 insn = sparc_fetch_instruction (pc);
656 pc = pc + 4;
657 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
658 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
659 break;
660
661 /* clr [%g1] */
662 insn = sparc_fetch_instruction (pc);
663 pc = pc + 4;
664 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
665 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
666 return start_pc;
667 }
668
669 /* clr [%g1 - some immediate] */
670 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
671 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
672 return start_pc;
673
674 /* We found a valid stack-check sequence, return the new PC. */
675 return pc;
676 }
677
678 /* Third sequence: A probing loop.
679 [first two instructions above]
680 sethi <some immediate>, %g4
681 sub %g1, %g4, %g4
682 cmp %g1, %g4
683 be <disp>
684 add %g1, -<some immediate>, %g1
685 ba <disp>
686 clr [%g1]
687 clr [%g4 - some immediate] */
688
689 /* sethi <some immediate>, %g4 */
690 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
691 {
692 /* sub %g1, %g4, %g4 */
693 insn = sparc_fetch_instruction (pc);
694 pc = pc + 4;
695 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
696 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
697 return start_pc;
698
699 /* cmp %g1, %g4 */
700 insn = sparc_fetch_instruction (pc);
701 pc = pc + 4;
702 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
703 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
704 return start_pc;
705
706 /* be <disp> */
707 insn = sparc_fetch_instruction (pc);
708 pc = pc + 4;
709 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
710 return start_pc;
711
712 /* add %g1, -<some immediate>, %g1 */
713 insn = sparc_fetch_instruction (pc);
714 pc = pc + 4;
715 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
716 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
717 return start_pc;
718
719 /* ba <disp> */
720 insn = sparc_fetch_instruction (pc);
721 pc = pc + 4;
722 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
723 return start_pc;
724
725 /* clr [%g1] */
726 insn = sparc_fetch_instruction (pc);
727 pc = pc + 4;
728 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
729 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
730 return start_pc;
731
732 /* clr [%g4 - some immediate] */
733 insn = sparc_fetch_instruction (pc);
734 pc = pc + 4;
735 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
736 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
737 return start_pc;
738
739 /* We found a valid stack-check sequence, return the new PC. */
740 return pc;
741 }
742
743 /* No stack check code in our prologue, return the start_pc. */
744 return start_pc;
745}
746
386c036b 747CORE_ADDR
be8626e0
MD
748sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
749 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 750{
be8626e0 751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
752 unsigned long insn;
753 int offset = 0;
c906108c 754 int dest = -1;
c906108c 755
b0b92586
JB
756 pc = sparc_skip_stack_check (pc);
757
386c036b
MK
758 if (current_pc <= pc)
759 return current_pc;
760
761 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
762 SPARC the linker usually defines a symbol (typically
763 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
764 This symbol makes us end up here with PC pointing at the start of
765 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
766 would do our normal prologue analysis, we would probably conclude
767 that we've got a frame when in reality we don't, since the
768 dynamic linker patches up the first PLT with some code that
769 starts with a SAVE instruction. Patch up PC such that it points
770 at the start of our PLT entry. */
771 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
772 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 773
386c036b
MK
774 insn = sparc_fetch_instruction (pc);
775
776 /* Recognize a SETHI insn and record its destination. */
777 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
778 {
779 dest = X_RD (insn);
386c036b
MK
780 offset += 4;
781
782 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
783 }
784
386c036b
MK
785 /* Allow for an arithmetic operation on DEST or %g1. */
786 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
787 && (X_RD (insn) == 1 || X_RD (insn) == dest))
788 {
386c036b 789 offset += 4;
c906108c 790
386c036b 791 insn = sparc_fetch_instruction (pc + 8);
c906108c 792 }
c906108c 793
386c036b
MK
794 /* Check for the SAVE instruction that sets up the frame. */
795 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 796 {
386c036b
MK
797 cache->frameless_p = 0;
798 return pc + offset + 4;
c906108c
SS
799 }
800
801 return pc;
802}
803
386c036b 804static CORE_ADDR
236369e7 805sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
806{
807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 808 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
809}
810
811/* Return PC of first real instruction of the function starting at
812 START_PC. */
f510d44e 813
386c036b 814static CORE_ADDR
6093d2eb 815sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 816{
f510d44e
DM
817 struct symtab_and_line sal;
818 CORE_ADDR func_start, func_end;
386c036b 819 struct sparc_frame_cache cache;
f510d44e
DM
820
821 /* This is the preferred method, find the end of the prologue by
822 using the debugging information. */
823 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
824 {
825 sal = find_pc_line (func_start, 0);
826
827 if (sal.end < func_end
828 && start_pc <= sal.end)
829 return sal.end;
830 }
831
be8626e0 832 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
833
834 /* The psABI says that "Although the first 6 words of arguments
835 reside in registers, the standard stack frame reserves space for
836 them.". It also suggests that a function may use that space to
837 "write incoming arguments 0 to 5" into that space, and that's
838 indeed what GCC seems to be doing. In that case GCC will
839 generate debug information that points to the stack slots instead
840 of the registers, so we should consider the instructions that
841 write out these incoming arguments onto the stack. Of course we
842 only need to do this if we have a stack frame. */
843
844 while (!cache.frameless_p)
845 {
846 unsigned long insn = sparc_fetch_instruction (start_pc);
847
848 /* Recognize instructions that store incoming arguments in
849 %i0...%i5 into the corresponding stack slot. */
850 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
851 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
852 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
853 {
854 start_pc += 4;
855 continue;
856 }
857
858 break;
859 }
860
861 return start_pc;
c906108c
SS
862}
863
386c036b 864/* Normal frames. */
9319a2fe 865
386c036b 866struct sparc_frame_cache *
236369e7 867sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 868{
386c036b 869 struct sparc_frame_cache *cache;
9319a2fe 870
386c036b
MK
871 if (*this_cache)
872 return *this_cache;
c906108c 873
386c036b
MK
874 cache = sparc_alloc_frame_cache ();
875 *this_cache = cache;
c906108c 876
236369e7 877 cache->pc = get_frame_func (this_frame);
386c036b 878 if (cache->pc != 0)
236369e7
JB
879 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
880 get_frame_pc (this_frame), cache);
386c036b
MK
881
882 if (cache->frameless_p)
c906108c 883 {
cbeae229
MK
884 /* This function is frameless, so %fp (%i6) holds the frame
885 pointer for our calling frame. Use %sp (%o6) as this frame's
886 base address. */
887 cache->base =
236369e7 888 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
889 }
890 else
891 {
892 /* For normal frames, %fp (%i6) holds the frame pointer, the
893 base address for the current stack frame. */
894 cache->base =
236369e7 895 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 896 }
c906108c 897
5b2d44a0
MK
898 if (cache->base & 1)
899 cache->base += BIAS;
900
386c036b 901 return cache;
c906108c 902}
c906108c 903
aff37fc1
DM
904static int
905sparc32_struct_return_from_sym (struct symbol *sym)
906{
907 struct type *type = check_typedef (SYMBOL_TYPE (sym));
908 enum type_code code = TYPE_CODE (type);
909
910 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
911 {
912 type = check_typedef (TYPE_TARGET_TYPE (type));
913 if (sparc_structure_or_union_p (type)
914 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
915 return 1;
916 }
917
918 return 0;
919}
920
386c036b 921struct sparc_frame_cache *
236369e7 922sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 923{
386c036b
MK
924 struct sparc_frame_cache *cache;
925 struct symbol *sym;
c906108c 926
386c036b
MK
927 if (*this_cache)
928 return *this_cache;
c906108c 929
236369e7 930 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 931
386c036b
MK
932 sym = find_pc_function (cache->pc);
933 if (sym)
c906108c 934 {
aff37fc1 935 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 936 }
5465445a
JB
937 else
938 {
939 /* There is no debugging information for this function to
940 help us determine whether this function returns a struct
941 or not. So we rely on another heuristic which is to check
942 the instruction at the return address and see if this is
943 an "unimp" instruction. If it is, then it is a struct-return
944 function. */
945 CORE_ADDR pc;
946 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
947
236369e7 948 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
949 if (sparc_is_unimp_insn (pc))
950 cache->struct_return_p = 1;
951 }
c906108c 952
386c036b
MK
953 return cache;
954}
955
956static void
236369e7 957sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
958 struct frame_id *this_id)
959{
960 struct sparc_frame_cache *cache =
236369e7 961 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
962
963 /* This marks the outermost frame. */
964 if (cache->base == 0)
965 return;
966
967 (*this_id) = frame_id_build (cache->base, cache->pc);
968}
c906108c 969
236369e7
JB
970static struct value *
971sparc32_frame_prev_register (struct frame_info *this_frame,
972 void **this_cache, int regnum)
386c036b 973{
e17a4113 974 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 975 struct sparc_frame_cache *cache =
236369e7 976 sparc32_frame_cache (this_frame, this_cache);
c906108c 977
386c036b 978 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 979 {
236369e7 980 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 981
236369e7
JB
982 /* If this functions has a Structure, Union or Quad-Precision
983 return value, we have to skip the UNIMP instruction that encodes
984 the size of the structure. */
985 if (cache->struct_return_p)
986 pc += 4;
386c036b 987
236369e7
JB
988 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
989 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
990 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
991 }
992
42cdca6c
MK
993 /* Handle StackGhost. */
994 {
e17a4113 995 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
996
997 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
998 {
236369e7
JB
999 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1000 ULONGEST i7;
1001
1002 /* Read the value in from memory. */
1003 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1004 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1005 }
1006 }
1007
386c036b
MK
1008 /* The previous frame's `local' and `in' registers have been saved
1009 in the register save area. */
1010 if (!cache->frameless_p
1011 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 1012 {
236369e7 1013 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1014
236369e7 1015 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1016 }
c906108c 1017
236369e7 1018 /* The previous frame's `out' registers are accessible as the
386c036b
MK
1019 current frame's `in' registers. */
1020 if (!cache->frameless_p
1021 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1022 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1023
236369e7 1024 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1025}
c906108c 1026
386c036b
MK
1027static const struct frame_unwind sparc32_frame_unwind =
1028{
1029 NORMAL_FRAME,
1030 sparc32_frame_this_id,
236369e7
JB
1031 sparc32_frame_prev_register,
1032 NULL,
1033 default_frame_sniffer
386c036b 1034};
386c036b 1035\f
c906108c 1036
386c036b 1037static CORE_ADDR
236369e7 1038sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1039{
1040 struct sparc_frame_cache *cache =
236369e7 1041 sparc32_frame_cache (this_frame, this_cache);
c906108c 1042
386c036b
MK
1043 return cache->base;
1044}
c906108c 1045
386c036b
MK
1046static const struct frame_base sparc32_frame_base =
1047{
1048 &sparc32_frame_unwind,
1049 sparc32_frame_base_address,
1050 sparc32_frame_base_address,
1051 sparc32_frame_base_address
1052};
c906108c 1053
386c036b 1054static struct frame_id
236369e7 1055sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1056{
1057 CORE_ADDR sp;
5af923b0 1058
236369e7 1059 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1060 if (sp & 1)
1061 sp += BIAS;
236369e7 1062 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1063}
1064\f
c906108c 1065
3923a2b2
MK
1066/* Extract a function return value of TYPE from REGCACHE, and copy
1067 that into VALBUF. */
5af923b0 1068
386c036b
MK
1069static void
1070sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1071 gdb_byte *valbuf)
386c036b
MK
1072{
1073 int len = TYPE_LENGTH (type);
e1613aba 1074 gdb_byte buf[8];
c906108c 1075
386c036b
MK
1076 gdb_assert (!sparc_structure_or_union_p (type));
1077 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1078
386c036b 1079 if (sparc_floating_p (type))
5af923b0 1080 {
386c036b
MK
1081 /* Floating return values. */
1082 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1083 if (len > 4)
1084 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1085 memcpy (valbuf, buf, len);
5af923b0
MS
1086 }
1087 else
1088 {
386c036b
MK
1089 /* Integral and pointer return values. */
1090 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1091
386c036b
MK
1092 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1093 if (len > 4)
1094 {
1095 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1096 gdb_assert (len == 8);
1097 memcpy (valbuf, buf, 8);
1098 }
1099 else
1100 {
1101 /* Just stripping off any unused bytes should preserve the
1102 signed-ness just fine. */
1103 memcpy (valbuf, buf + 4 - len, len);
1104 }
1105 }
1106}
c906108c 1107
3923a2b2
MK
1108/* Store the function return value of type TYPE from VALBUF into
1109 REGCACHE. */
c906108c 1110
386c036b
MK
1111static void
1112sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1113 const gdb_byte *valbuf)
386c036b
MK
1114{
1115 int len = TYPE_LENGTH (type);
e1613aba 1116 gdb_byte buf[8];
c906108c 1117
386c036b
MK
1118 gdb_assert (!sparc_structure_or_union_p (type));
1119 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1120 gdb_assert (len <= 8);
c906108c 1121
386c036b
MK
1122 if (sparc_floating_p (type))
1123 {
1124 /* Floating return values. */
1125 memcpy (buf, valbuf, len);
1126 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1127 if (len > 4)
1128 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1129 }
1130 else
c906108c 1131 {
386c036b
MK
1132 /* Integral and pointer return values. */
1133 gdb_assert (sparc_integral_or_pointer_p (type));
1134
1135 if (len > 4)
2757dd86 1136 {
386c036b
MK
1137 gdb_assert (len == 8);
1138 memcpy (buf, valbuf, 8);
1139 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1140 }
1141 else
1142 {
386c036b
MK
1143 /* ??? Do we need to do any sign-extension here? */
1144 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1145 }
386c036b 1146 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1147 }
1148}
1149
b9d4c5ed 1150static enum return_value_convention
c055b101
CV
1151sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1152 struct type *type, struct regcache *regcache,
1153 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1154{
e17a4113
UW
1155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1156
0a8f48b9
MK
1157 /* The psABI says that "...every stack frame reserves the word at
1158 %fp+64. If a function returns a structure, union, or
1159 quad-precision value, this word should hold the address of the
1160 object into which the return value should be copied." This
1161 guarantees that we can always find the return value, not just
1162 before the function returns. */
1163
b9d4c5ed
MK
1164 if (sparc_structure_or_union_p (type)
1165 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1166 {
1167 if (readbuf)
1168 {
1169 ULONGEST sp;
1170 CORE_ADDR addr;
1171
1172 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1173 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1174 read_memory (addr, readbuf, TYPE_LENGTH (type));
1175 }
1176
1177 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1178 }
b9d4c5ed
MK
1179
1180 if (readbuf)
1181 sparc32_extract_return_value (type, regcache, readbuf);
1182 if (writebuf)
1183 sparc32_store_return_value (type, regcache, writebuf);
1184
1185 return RETURN_VALUE_REGISTER_CONVENTION;
1186}
1187
386c036b
MK
1188static int
1189sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1190{
386c036b
MK
1191 return (sparc_structure_or_union_p (type)
1192 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1193}
c906108c 1194
aff37fc1 1195static int
4a4e5149 1196sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1197{
236369e7 1198 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1199 struct symbol *sym = find_pc_function (pc);
1200
1201 if (sym)
1202 return sparc32_struct_return_from_sym (sym);
1203 return 0;
1204}
1205
f5a9b87d
DM
1206static void
1207sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1208 struct dwarf2_frame_state_reg *reg,
4a4e5149 1209 struct frame_info *this_frame)
f5a9b87d 1210{
aff37fc1
DM
1211 int off;
1212
f5a9b87d
DM
1213 switch (regnum)
1214 {
1215 case SPARC_G0_REGNUM:
1216 /* Since %g0 is always zero, there is no point in saving it, and
1217 people will be inclined omit it from the CFI. Make sure we
1218 don't warn about that. */
1219 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1220 break;
1221 case SPARC_SP_REGNUM:
1222 reg->how = DWARF2_FRAME_REG_CFA;
1223 break;
1224 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1225 case SPARC32_NPC_REGNUM:
1226 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1227 off = 8;
4a4e5149 1228 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1229 off += 4;
1230 if (regnum == SPARC32_NPC_REGNUM)
1231 off += 4;
1232 reg->loc.offset = off;
f5a9b87d
DM
1233 break;
1234 }
1235}
1236
386c036b
MK
1237\f
1238/* The SPARC Architecture doesn't have hardware single-step support,
1239 and most operating systems don't implement it either, so we provide
1240 software single-step mechanism. */
c906108c 1241
386c036b 1242static CORE_ADDR
0b1b3e42 1243sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1244 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1245{
1246 unsigned long insn = sparc_fetch_instruction (pc);
1247 int conditional_p = X_COND (insn) & 0x7;
1248 int branch_p = 0;
1249 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1250
386c036b 1251 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1252 {
386c036b
MK
1253 /* Branch on Integer Register with Prediction (BPr). */
1254 branch_p = 1;
1255 conditional_p = 1;
c906108c 1256 }
386c036b 1257 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1258 {
386c036b
MK
1259 /* Branch on Floating-Point Condition Codes (FBfcc). */
1260 branch_p = 1;
1261 offset = 4 * X_DISP22 (insn);
c906108c 1262 }
386c036b
MK
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1264 {
1265 /* Branch on Floating-Point Condition Codes with Prediction
1266 (FBPfcc). */
1267 branch_p = 1;
1268 offset = 4 * X_DISP19 (insn);
1269 }
1270 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1271 {
1272 /* Branch on Integer Condition Codes (Bicc). */
1273 branch_p = 1;
1274 offset = 4 * X_DISP22 (insn);
1275 }
1276 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1277 {
386c036b
MK
1278 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1279 branch_p = 1;
1280 offset = 4 * X_DISP19 (insn);
c906108c 1281 }
c893be75
MK
1282 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1283 {
1284 /* Trap instruction (TRAP). */
0b1b3e42 1285 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1286 }
386c036b
MK
1287
1288 /* FIXME: Handle DONE and RETRY instructions. */
1289
386c036b 1290 if (branch_p)
c906108c 1291 {
386c036b 1292 if (conditional_p)
c906108c 1293 {
386c036b
MK
1294 /* For conditional branches, return nPC + 4 iff the annul
1295 bit is 1. */
1296 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1297 }
1298 else
1299 {
386c036b
MK
1300 /* For unconditional branches, return the target if its
1301 specified condition is "always" and return nPC + 4 if the
1302 condition is "never". If the annul bit is 1, set *NPC to
1303 zero. */
1304 if (X_COND (insn) == 0x0)
1305 pc = *npc, offset = 4;
1306 if (X_A (insn))
1307 *npc = 0;
1308
1309 gdb_assert (offset != 0);
1310 return pc + offset;
c906108c
SS
1311 }
1312 }
386c036b
MK
1313
1314 return 0;
c906108c
SS
1315}
1316
c893be75 1317static CORE_ADDR
0b1b3e42 1318sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1319{
1320 return 0;
1321}
1322
e6590a1b 1323int
0b1b3e42 1324sparc_software_single_step (struct frame_info *frame)
386c036b 1325{
0b1b3e42 1326 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1327 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1328 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1329 CORE_ADDR npc, nnpc;
c906108c 1330
e0cd558a 1331 CORE_ADDR pc, orig_npc;
c906108c 1332
0b1b3e42
UW
1333 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1334 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1335
e0cd558a 1336 /* Analyze the instruction at PC. */
0b1b3e42 1337 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1338 if (npc != 0)
6c95b8df 1339 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1340
e0cd558a 1341 if (nnpc != 0)
6c95b8df 1342 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1343
e0cd558a
UW
1344 /* Assert that we have set at least one breakpoint, and that
1345 they're not set at the same spot - unless we're going
1346 from here straight to NULL, i.e. a call or jump to 0. */
1347 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1348 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1349
1350 return 1;
386c036b
MK
1351}
1352
1353static void
61a1198a 1354sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1355{
61a1198a 1356 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1357
61a1198a
UW
1358 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1359 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1360}
1361\f
5af923b0 1362
a54124c5
MK
1363/* Return the appropriate register set for the core section identified
1364 by SECT_NAME and SECT_SIZE. */
1365
63807e1d 1366static const struct regset *
a54124c5
MK
1367sparc_regset_from_core_section (struct gdbarch *gdbarch,
1368 const char *sect_name, size_t sect_size)
1369{
1370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1371
c558d81a 1372 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1373 return tdep->gregset;
1374
c558d81a 1375 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1376 return tdep->fpregset;
1377
1378 return NULL;
1379}
1380\f
1381
386c036b
MK
1382static struct gdbarch *
1383sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1384{
1385 struct gdbarch_tdep *tdep;
1386 struct gdbarch *gdbarch;
c906108c 1387
386c036b
MK
1388 /* If there is already a candidate, use it. */
1389 arches = gdbarch_list_lookup_by_info (arches, &info);
1390 if (arches != NULL)
1391 return arches->gdbarch;
c906108c 1392
386c036b 1393 /* Allocate space for the new architecture. */
1390fcc2 1394 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1395 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1396
386c036b
MK
1397 tdep->pc_regnum = SPARC32_PC_REGNUM;
1398 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1399 tdep->step_trap = sparc_step_trap;
386c036b
MK
1400
1401 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1402 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1403
1404 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1405 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1406 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1407 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1408 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1409 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1410
1411 /* Register numbers of various important registers. */
1412 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1413 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1414 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1415
1416 /* Call dummy code. */
49a45ecf 1417 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1418 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1419 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1420 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1421
b9d4c5ed 1422 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1423 set_gdbarch_stabs_argument_has_addr
1424 (gdbarch, sparc32_stabs_argument_has_addr);
1425
1426 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1427
1428 /* Stack grows downward. */
1429 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1430
386c036b 1431 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1432
386c036b 1433 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1434
386c036b 1435 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1436
386c036b
MK
1437 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1438 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1439
236369e7 1440 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1441
386c036b 1442 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1443
386c036b
MK
1444 frame_base_set_default (gdbarch, &sparc32_frame_base);
1445
f5a9b87d
DM
1446 /* Hook in the DWARF CFI frame unwinder. */
1447 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1448 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1449 StackGhost issues have been resolved. */
1450
b2a0b9b2
DM
1451 /* Hook in ABI-specific overrides, if they have been registered. */
1452 gdbarch_init_osabi (info, gdbarch);
1453
236369e7 1454 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1455
a54124c5 1456 /* If we have register sets, enable the generic core file support. */
4c72d57a 1457 if (tdep->gregset)
a54124c5
MK
1458 set_gdbarch_regset_from_core_section (gdbarch,
1459 sparc_regset_from_core_section);
1460
386c036b
MK
1461 return gdbarch;
1462}
1463\f
1464/* Helper functions for dealing with register windows. */
1465
1466void
1467sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1468{
e17a4113
UW
1469 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1470 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1471 int offset = 0;
e1613aba 1472 gdb_byte buf[8];
386c036b
MK
1473 int i;
1474
1475 if (sp & 1)
1476 {
1477 /* Registers are 64-bit. */
1478 sp += BIAS;
c906108c 1479
386c036b
MK
1480 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1481 {
1482 if (regnum == i || regnum == -1)
1483 {
1484 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1485
1486 /* Handle StackGhost. */
1487 if (i == SPARC_I7_REGNUM)
1488 {
e17a4113
UW
1489 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1490 ULONGEST i7;
f700a364 1491
e17a4113
UW
1492 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1493 store_unsigned_integer (buf + offset, 8, byte_order,
1494 i7 ^ wcookie);
f700a364
MK
1495 }
1496
386c036b
MK
1497 regcache_raw_supply (regcache, i, buf);
1498 }
1499 }
1500 }
1501 else
c906108c 1502 {
386c036b
MK
1503 /* Registers are 32-bit. Toss any sign-extension of the stack
1504 pointer. */
1505 sp &= 0xffffffffUL;
c906108c 1506
386c036b
MK
1507 /* Clear out the top half of the temporary buffer, and put the
1508 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1509 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1510 {
386c036b
MK
1511 memset (buf, 0, 4);
1512 offset = 4;
1513 }
c906108c 1514
386c036b
MK
1515 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1516 {
1517 if (regnum == i || regnum == -1)
1518 {
1519 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1520 buf + offset, 4);
42cdca6c
MK
1521
1522 /* Handle StackGhost. */
1523 if (i == SPARC_I7_REGNUM)
1524 {
e17a4113
UW
1525 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1526 ULONGEST i7;
42cdca6c 1527
e17a4113
UW
1528 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1529 store_unsigned_integer (buf + offset, 4, byte_order,
1530 i7 ^ wcookie);
42cdca6c
MK
1531 }
1532
386c036b
MK
1533 regcache_raw_supply (regcache, i, buf);
1534 }
c906108c
SS
1535 }
1536 }
c906108c 1537}
c906108c
SS
1538
1539void
386c036b
MK
1540sparc_collect_rwindow (const struct regcache *regcache,
1541 CORE_ADDR sp, int regnum)
c906108c 1542{
e17a4113
UW
1543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1545 int offset = 0;
e1613aba 1546 gdb_byte buf[8];
386c036b 1547 int i;
5af923b0 1548
386c036b 1549 if (sp & 1)
5af923b0 1550 {
386c036b
MK
1551 /* Registers are 64-bit. */
1552 sp += BIAS;
c906108c 1553
386c036b
MK
1554 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1555 {
1556 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1557 {
1558 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1559
1560 /* Handle StackGhost. */
1561 if (i == SPARC_I7_REGNUM)
1562 {
e17a4113
UW
1563 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1564 ULONGEST i7;
f700a364 1565
e17a4113
UW
1566 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1567 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1568 }
1569
386c036b
MK
1570 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1571 }
1572 }
5af923b0
MS
1573 }
1574 else
1575 {
386c036b
MK
1576 /* Registers are 32-bit. Toss any sign-extension of the stack
1577 pointer. */
1578 sp &= 0xffffffffUL;
1579
1580 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1581 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1582 offset = 4;
1583
1584 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1585 {
1586 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1587 {
1588 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1589
1590 /* Handle StackGhost. */
1591 if (i == SPARC_I7_REGNUM)
1592 {
e17a4113
UW
1593 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1594 ULONGEST i7;
42cdca6c 1595
e17a4113
UW
1596 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1597 store_unsigned_integer (buf + offset, 4, byte_order,
1598 i7 ^ wcookie);
42cdca6c
MK
1599 }
1600
386c036b
MK
1601 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1602 buf + offset, 4);
1603 }
1604 }
5af923b0 1605 }
c906108c
SS
1606}
1607
386c036b
MK
1608/* Helper functions for dealing with register sets. */
1609
c906108c 1610void
386c036b
MK
1611sparc32_supply_gregset (const struct sparc_gregset *gregset,
1612 struct regcache *regcache,
1613 int regnum, const void *gregs)
c906108c 1614{
e1613aba 1615 const gdb_byte *regs = gregs;
386c036b 1616 int i;
5af923b0 1617
386c036b
MK
1618 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1619 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1620 regs + gregset->r_psr_offset);
c906108c 1621
386c036b
MK
1622 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1623 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1624 regs + gregset->r_pc_offset);
5af923b0 1625
386c036b
MK
1626 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1627 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1628 regs + gregset->r_npc_offset);
5af923b0 1629
386c036b
MK
1630 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1631 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1632 regs + gregset->r_y_offset);
5af923b0 1633
386c036b
MK
1634 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1635 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1636
386c036b 1637 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1638 {
386c036b
MK
1639 int offset = gregset->r_g1_offset;
1640
1641 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1642 {
1643 if (regnum == i || regnum == -1)
1644 regcache_raw_supply (regcache, i, regs + offset);
1645 offset += 4;
1646 }
c906108c 1647 }
386c036b
MK
1648
1649 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1650 {
386c036b
MK
1651 /* Not all of the register set variants include Locals and
1652 Inputs. For those that don't, we read them off the stack. */
1653 if (gregset->r_l0_offset == -1)
1654 {
1655 ULONGEST sp;
1656
1657 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1658 sparc_supply_rwindow (regcache, sp, regnum);
1659 }
1660 else
1661 {
1662 int offset = gregset->r_l0_offset;
1663
1664 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1665 {
1666 if (regnum == i || regnum == -1)
1667 regcache_raw_supply (regcache, i, regs + offset);
1668 offset += 4;
1669 }
1670 }
c906108c
SS
1671 }
1672}
1673
c5aa993b 1674void
386c036b
MK
1675sparc32_collect_gregset (const struct sparc_gregset *gregset,
1676 const struct regcache *regcache,
1677 int regnum, void *gregs)
c906108c 1678{
e1613aba 1679 gdb_byte *regs = gregs;
386c036b 1680 int i;
c5aa993b 1681
386c036b
MK
1682 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1683 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1684 regs + gregset->r_psr_offset);
60054393 1685
386c036b
MK
1686 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1687 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1688 regs + gregset->r_pc_offset);
1689
1690 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1691 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1692 regs + gregset->r_npc_offset);
5af923b0 1693
386c036b
MK
1694 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1695 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1696 regs + gregset->r_y_offset);
1697
1698 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1699 {
386c036b
MK
1700 int offset = gregset->r_g1_offset;
1701
1702 /* %g0 is always zero. */
1703 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1704 {
1705 if (regnum == i || regnum == -1)
1706 regcache_raw_collect (regcache, i, regs + offset);
1707 offset += 4;
1708 }
5af923b0 1709 }
386c036b
MK
1710
1711 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1712 {
386c036b
MK
1713 /* Not all of the register set variants include Locals and
1714 Inputs. For those that don't, we read them off the stack. */
1715 if (gregset->r_l0_offset != -1)
1716 {
1717 int offset = gregset->r_l0_offset;
1718
1719 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1720 {
1721 if (regnum == i || regnum == -1)
1722 regcache_raw_collect (regcache, i, regs + offset);
1723 offset += 4;
1724 }
1725 }
5af923b0 1726 }
c906108c
SS
1727}
1728
c906108c 1729void
386c036b
MK
1730sparc32_supply_fpregset (struct regcache *regcache,
1731 int regnum, const void *fpregs)
c906108c 1732{
e1613aba 1733 const gdb_byte *regs = fpregs;
386c036b 1734 int i;
60054393 1735
386c036b 1736 for (i = 0; i < 32; i++)
c906108c 1737 {
386c036b
MK
1738 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1739 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1740 }
5af923b0 1741
386c036b
MK
1742 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1743 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1744}
1745
386c036b
MK
1746void
1747sparc32_collect_fpregset (const struct regcache *regcache,
1748 int regnum, void *fpregs)
c906108c 1749{
e1613aba 1750 gdb_byte *regs = fpregs;
386c036b 1751 int i;
c906108c 1752
386c036b
MK
1753 for (i = 0; i < 32; i++)
1754 {
1755 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1756 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1757 }
c906108c 1758
386c036b
MK
1759 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1760 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1761}
c906108c 1762\f
c906108c 1763
386c036b 1764/* SunOS 4. */
c906108c 1765
386c036b
MK
1766/* From <machine/reg.h>. */
1767const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1768{
386c036b
MK
1769 0 * 4, /* %psr */
1770 1 * 4, /* %pc */
1771 2 * 4, /* %npc */
1772 3 * 4, /* %y */
1773 -1, /* %wim */
1774 -1, /* %tbr */
1775 4 * 4, /* %g1 */
1776 -1 /* %l0 */
1777};
1778\f
c906108c 1779
386c036b
MK
1780/* Provide a prototype to silence -Wmissing-prototypes. */
1781void _initialize_sparc_tdep (void);
c906108c
SS
1782
1783void
386c036b 1784_initialize_sparc_tdep (void)
c906108c 1785{
386c036b 1786 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1787}
This page took 1.181426 seconds and 4 git commands to generate.