* elf-bfd.h (elf_string_from_elf_strtab): Delete macro.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
386c036b 3 Copyright 2003, 2004 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
c906108c 22#include "defs.h"
5af923b0 23#include "arch-utils.h"
386c036b
MK
24#include "dis-asm.h"
25#include "floatformat.h"
c906108c 26#include "frame.h"
386c036b
MK
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "gdbcore.h"
30#include "gdbtypes.h"
c906108c 31#include "inferior.h"
386c036b
MK
32#include "symtab.h"
33#include "objfiles.h"
34#include "osabi.h"
35#include "regcache.h"
c906108c
SS
36#include "target.h"
37#include "value.h"
c906108c 38
43bd9a9e 39#include "gdb_assert.h"
386c036b 40#include "gdb_string.h"
c906108c 41
386c036b 42#include "sparc-tdep.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67#define floatformat_sparc_quad floatformat_ia64_quad_big
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
c906108c 84#define X_I(i) (((i) >> 13) & 1)
c906108c 85/* Sign extension macros. */
c906108c 86#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 87#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 88#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 89
386c036b
MK
90/* Fetch the instruction at PC. Instructions are always big-endian
91 even if the processor operates in little-endian mode. */
92
93unsigned long
94sparc_fetch_instruction (CORE_ADDR pc)
c906108c 95{
386c036b
MK
96 unsigned char buf[4];
97 unsigned long insn;
98 int i;
99
690668cc
MK
100 /* If we can't read the instruction at PC, return zero. */
101 if (target_read_memory (pc, buf, sizeof (buf)))
102 return 0;
c906108c 103
386c036b
MK
104 insn = 0;
105 for (i = 0; i < sizeof (buf); i++)
106 insn = (insn << 8) | buf[i];
107 return insn;
108}
42cdca6c
MK
109\f
110
5465445a
JB
111/* Return non-zero if the instruction corresponding to PC is an "unimp"
112 instruction. */
113
114static int
115sparc_is_unimp_insn (CORE_ADDR pc)
116{
117 const unsigned long insn = sparc_fetch_instruction (pc);
118
119 return ((insn & 0xc1c00000) == 0);
120}
121
42cdca6c
MK
122/* OpenBSD/sparc includes StackGhost, which according to the author's
123 website http://stackghost.cerias.purdue.edu "... transparently and
124 automatically protects applications' stack frames; more
125 specifically, it guards the return pointers. The protection
126 mechanisms require no application source or binary modification and
127 imposes only a negligible performance penalty."
128
129 The same website provides the following description of how
130 StackGhost works:
131
132 "StackGhost interfaces with the kernel trap handler that would
133 normally write out registers to the stack and the handler that
134 would read them back in. By XORing a cookie into the
135 return-address saved in the user stack when it is actually written
136 to the stack, and then XOR it out when the return-address is pulled
137 from the stack, StackGhost can cause attacker corrupted return
138 pointers to behave in a manner the attacker cannot predict.
139 StackGhost can also use several unused bits in the return pointer
140 to detect a smashed return pointer and abort the process."
141
142 For GDB this means that whenever we're reading %i7 from a stack
143 frame's window save area, we'll have to XOR the cookie.
144
145 More information on StackGuard can be found on in:
146
147 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
148 Stack Protection." 2001. Published in USENIX Security Symposium
149 '01. */
150
151/* Fetch StackGhost Per-Process XOR cookie. */
152
153ULONGEST
154sparc_fetch_wcookie (void)
155{
baf92889
MK
156 struct target_ops *ops = &current_target;
157 char buf[8];
158 int len;
159
160 len = target_read_partial (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
161 if (len == -1)
162 return 0;
42cdca6c 163
baf92889
MK
164 /* We should have either an 32-bit or an 64-bit cookie. */
165 gdb_assert (len == 4 || len == 8);
166
167 return extract_unsigned_integer (buf, len);
168}
386c036b 169\f
baf92889 170
386c036b 171/* Return the contents if register REGNUM as an address. */
c906108c 172
386c036b
MK
173static CORE_ADDR
174sparc_address_from_register (int regnum)
175{
176 ULONGEST addr;
c906108c 177
386c036b
MK
178 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
179 return addr;
180}
181\f
c906108c 182
386c036b
MK
183/* The functions on this page are intended to be used to classify
184 function arguments. */
c906108c 185
386c036b 186/* Check whether TYPE is "Integral or Pointer". */
c906108c 187
386c036b
MK
188static int
189sparc_integral_or_pointer_p (const struct type *type)
c906108c 190{
80ad1639
MK
191 int len = TYPE_LENGTH (type);
192
386c036b 193 switch (TYPE_CODE (type))
c906108c 194 {
386c036b
MK
195 case TYPE_CODE_INT:
196 case TYPE_CODE_BOOL:
197 case TYPE_CODE_CHAR:
198 case TYPE_CODE_ENUM:
199 case TYPE_CODE_RANGE:
80ad1639
MK
200 /* We have byte, half-word, word and extended-word/doubleword
201 integral types. The doubleword is an extension to the
202 original 32-bit ABI by the SCD 2.4.x. */
203 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
204 case TYPE_CODE_PTR:
205 case TYPE_CODE_REF:
80ad1639
MK
206 /* Allow either 32-bit or 64-bit pointers. */
207 return (len == 4 || len == 8);
386c036b
MK
208 default:
209 break;
210 }
c906108c 211
386c036b
MK
212 return 0;
213}
c906108c 214
386c036b 215/* Check whether TYPE is "Floating". */
c906108c 216
386c036b
MK
217static int
218sparc_floating_p (const struct type *type)
219{
220 switch (TYPE_CODE (type))
c906108c 221 {
386c036b
MK
222 case TYPE_CODE_FLT:
223 {
224 int len = TYPE_LENGTH (type);
225 return (len == 4 || len == 8 || len == 16);
226 }
227 default:
228 break;
229 }
230
231 return 0;
232}
c906108c 233
386c036b 234/* Check whether TYPE is "Structure or Union". */
c906108c 235
386c036b
MK
236static int
237sparc_structure_or_union_p (const struct type *type)
238{
239 switch (TYPE_CODE (type))
240 {
241 case TYPE_CODE_STRUCT:
242 case TYPE_CODE_UNION:
243 return 1;
244 default:
245 break;
c906108c 246 }
386c036b
MK
247
248 return 0;
c906108c 249}
386c036b
MK
250
251/* Register information. */
252
253static const char *sparc32_register_names[] =
5af923b0 254{
386c036b
MK
255 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
256 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
257 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
258 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
259
260 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
261 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
262 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
263 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
264
265 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
266};
267
386c036b
MK
268/* Total number of registers. */
269#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 270
386c036b
MK
271/* We provide the aliases %d0..%d30 for the floating registers as
272 "psuedo" registers. */
273
274static const char *sparc32_pseudo_register_names[] =
275{
276 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
277 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
278};
279
280/* Total number of pseudo registers. */
281#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
282
283/* Return the name of register REGNUM. */
284
285static const char *
286sparc32_register_name (int regnum)
287{
288 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
289 return sparc32_register_names[regnum];
290
291 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
292 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
293
294 return NULL;
295}
296
297/* Return the GDB type object for the "standard" data type of data in
298 register REGNUM. */
299
300static struct type *
301sparc32_register_type (struct gdbarch *gdbarch, int regnum)
302{
303 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
304 return builtin_type_float;
305
306 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
307 return builtin_type_double;
308
309 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
310 return builtin_type_void_data_ptr;
311
312 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
313 return builtin_type_void_func_ptr;
314
315 return builtin_type_int32;
316}
317
318static void
319sparc32_pseudo_register_read (struct gdbarch *gdbarch,
320 struct regcache *regcache,
321 int regnum, void *buf)
322{
323 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
324
325 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
326 regcache_raw_read (regcache, regnum, buf);
327 regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
328}
329
330static void
331sparc32_pseudo_register_write (struct gdbarch *gdbarch,
332 struct regcache *regcache,
333 int regnum, const void *buf)
334{
335 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
336
337 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
338 regcache_raw_write (regcache, regnum, buf);
339 regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
340}
341\f
342
343static CORE_ADDR
344sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
345 CORE_ADDR funcaddr, int using_gcc,
346 struct value **args, int nargs,
347 struct type *value_type,
348 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
c906108c 349{
386c036b
MK
350 *bp_addr = sp - 4;
351 *real_pc = funcaddr;
352
353 if (using_struct_return (value_type, using_gcc))
c906108c 354 {
386c036b
MK
355 char buf[4];
356
357 /* This is an UNIMP instruction. */
358 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
359 write_memory (sp - 8, buf, 4);
360 return sp - 8;
c906108c
SS
361 }
362
386c036b
MK
363 return sp - 4;
364}
365
366static CORE_ADDR
367sparc32_store_arguments (struct regcache *regcache, int nargs,
368 struct value **args, CORE_ADDR sp,
369 int struct_return, CORE_ADDR struct_addr)
370{
371 /* Number of words in the "parameter array". */
372 int num_elements = 0;
373 int element = 0;
374 int i;
375
376 for (i = 0; i < nargs; i++)
c906108c 377 {
4991999e 378 struct type *type = value_type (args[i]);
386c036b
MK
379 int len = TYPE_LENGTH (type);
380
381 if (sparc_structure_or_union_p (type)
382 || (sparc_floating_p (type) && len == 16))
c906108c 383 {
386c036b
MK
384 /* Structure, Union and Quad-Precision Arguments. */
385 sp -= len;
386
387 /* Use doubleword alignment for these values. That's always
388 correct, and wasting a few bytes shouldn't be a problem. */
389 sp &= ~0x7;
390
391 write_memory (sp, VALUE_CONTENTS (args[i]), len);
392 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
393 num_elements++;
394 }
395 else if (sparc_floating_p (type))
396 {
397 /* Floating arguments. */
398 gdb_assert (len == 4 || len == 8);
399 num_elements += (len / 4);
c906108c 400 }
c5aa993b
JM
401 else
402 {
386c036b
MK
403 /* Integral and pointer arguments. */
404 gdb_assert (sparc_integral_or_pointer_p (type));
405
406 if (len < 4)
407 args[i] = value_cast (builtin_type_int32, args[i]);
408 num_elements += ((len + 3) / 4);
c5aa993b 409 }
c906108c 410 }
c906108c 411
386c036b
MK
412 /* Always allocate at least six words. */
413 sp -= max (6, num_elements) * 4;
c906108c 414
386c036b
MK
415 /* The psABI says that "Software convention requires space for the
416 struct/union return value pointer, even if the word is unused." */
417 sp -= 4;
c906108c 418
386c036b
MK
419 /* The psABI says that "Although software convention and the
420 operating system require every stack frame to be doubleword
421 aligned." */
422 sp &= ~0x7;
c906108c 423
386c036b 424 for (i = 0; i < nargs; i++)
c906108c 425 {
386c036b 426 char *valbuf = VALUE_CONTENTS (args[i]);
4991999e 427 struct type *type = value_type (args[i]);
386c036b 428 int len = TYPE_LENGTH (type);
c906108c 429
386c036b 430 gdb_assert (len == 4 || len == 8);
c906108c 431
386c036b
MK
432 if (element < 6)
433 {
434 int regnum = SPARC_O0_REGNUM + element;
c906108c 435
386c036b
MK
436 regcache_cooked_write (regcache, regnum, valbuf);
437 if (len > 4 && element < 5)
438 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
439 }
5af923b0 440
386c036b
MK
441 /* Always store the argument in memory. */
442 write_memory (sp + 4 + element * 4, valbuf, len);
443 element += len / 4;
444 }
c906108c 445
386c036b 446 gdb_assert (element == num_elements);
c906108c 447
386c036b 448 if (struct_return)
c906108c 449 {
386c036b 450 char buf[4];
c906108c 451
386c036b
MK
452 store_unsigned_integer (buf, 4, struct_addr);
453 write_memory (sp, buf, 4);
454 }
c906108c 455
386c036b 456 return sp;
c906108c
SS
457}
458
386c036b 459static CORE_ADDR
7d9b040b 460sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
461 struct regcache *regcache, CORE_ADDR bp_addr,
462 int nargs, struct value **args, CORE_ADDR sp,
463 int struct_return, CORE_ADDR struct_addr)
c906108c 464{
386c036b
MK
465 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
466
467 /* Set return address. */
468 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
469
470 /* Set up function arguments. */
471 sp = sparc32_store_arguments (regcache, nargs, args, sp,
472 struct_return, struct_addr);
473
474 /* Allocate the 16-word window save area. */
475 sp -= 16 * 4;
c906108c 476
386c036b
MK
477 /* Stack should be doubleword aligned at this point. */
478 gdb_assert (sp % 8 == 0);
c906108c 479
386c036b
MK
480 /* Finally, update the stack pointer. */
481 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
482
483 return sp;
484}
485\f
c906108c 486
386c036b
MK
487/* Use the program counter to determine the contents and size of a
488 breakpoint instruction. Return a pointer to a string of bytes that
489 encode a breakpoint instruction, store the length of the string in
490 *LEN and optionally adjust *PC to point to the correct memory
491 location for inserting the breakpoint. */
492
493static const unsigned char *
494sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
495{
496 static unsigned char break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 497
386c036b
MK
498 *len = sizeof (break_insn);
499 return break_insn;
c906108c 500}
386c036b 501\f
c906108c 502
386c036b 503/* Allocate and initialize a frame cache. */
c906108c 504
386c036b
MK
505static struct sparc_frame_cache *
506sparc_alloc_frame_cache (void)
507{
508 struct sparc_frame_cache *cache;
509 int i;
c906108c 510
386c036b 511 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 512
386c036b
MK
513 /* Base address. */
514 cache->base = 0;
515 cache->pc = 0;
c906108c 516
386c036b
MK
517 /* Frameless until proven otherwise. */
518 cache->frameless_p = 1;
519
520 cache->struct_return_p = 0;
521
522 return cache;
523}
524
525CORE_ADDR
526sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
527 struct sparc_frame_cache *cache)
c906108c 528{
386c036b
MK
529 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
530 unsigned long insn;
531 int offset = 0;
c906108c 532 int dest = -1;
c906108c 533
386c036b
MK
534 if (current_pc <= pc)
535 return current_pc;
536
537 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
538 SPARC the linker usually defines a symbol (typically
539 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
540 This symbol makes us end up here with PC pointing at the start of
541 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
542 would do our normal prologue analysis, we would probably conclude
543 that we've got a frame when in reality we don't, since the
544 dynamic linker patches up the first PLT with some code that
545 starts with a SAVE instruction. Patch up PC such that it points
546 at the start of our PLT entry. */
547 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
548 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 549
386c036b
MK
550 insn = sparc_fetch_instruction (pc);
551
552 /* Recognize a SETHI insn and record its destination. */
553 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
554 {
555 dest = X_RD (insn);
386c036b
MK
556 offset += 4;
557
558 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
559 }
560
386c036b
MK
561 /* Allow for an arithmetic operation on DEST or %g1. */
562 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
563 && (X_RD (insn) == 1 || X_RD (insn) == dest))
564 {
386c036b 565 offset += 4;
c906108c 566
386c036b 567 insn = sparc_fetch_instruction (pc + 8);
c906108c 568 }
c906108c 569
386c036b
MK
570 /* Check for the SAVE instruction that sets up the frame. */
571 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 572 {
386c036b
MK
573 cache->frameless_p = 0;
574 return pc + offset + 4;
c906108c
SS
575 }
576
577 return pc;
578}
579
386c036b
MK
580static CORE_ADDR
581sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
582{
583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
584 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
585}
586
587/* Return PC of first real instruction of the function starting at
588 START_PC. */
f510d44e 589
386c036b
MK
590static CORE_ADDR
591sparc32_skip_prologue (CORE_ADDR start_pc)
c906108c 592{
f510d44e
DM
593 struct symtab_and_line sal;
594 CORE_ADDR func_start, func_end;
386c036b 595 struct sparc_frame_cache cache;
f510d44e
DM
596
597 /* This is the preferred method, find the end of the prologue by
598 using the debugging information. */
599 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
600 {
601 sal = find_pc_line (func_start, 0);
602
603 if (sal.end < func_end
604 && start_pc <= sal.end)
605 return sal.end;
606 }
607
075ccec8
MK
608 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
609
610 /* The psABI says that "Although the first 6 words of arguments
611 reside in registers, the standard stack frame reserves space for
612 them.". It also suggests that a function may use that space to
613 "write incoming arguments 0 to 5" into that space, and that's
614 indeed what GCC seems to be doing. In that case GCC will
615 generate debug information that points to the stack slots instead
616 of the registers, so we should consider the instructions that
617 write out these incoming arguments onto the stack. Of course we
618 only need to do this if we have a stack frame. */
619
620 while (!cache.frameless_p)
621 {
622 unsigned long insn = sparc_fetch_instruction (start_pc);
623
624 /* Recognize instructions that store incoming arguments in
625 %i0...%i5 into the corresponding stack slot. */
626 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
627 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
628 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
629 {
630 start_pc += 4;
631 continue;
632 }
633
634 break;
635 }
636
637 return start_pc;
c906108c
SS
638}
639
386c036b 640/* Normal frames. */
9319a2fe 641
386c036b
MK
642struct sparc_frame_cache *
643sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
9319a2fe 644{
386c036b 645 struct sparc_frame_cache *cache;
9319a2fe 646
386c036b
MK
647 if (*this_cache)
648 return *this_cache;
c906108c 649
386c036b
MK
650 cache = sparc_alloc_frame_cache ();
651 *this_cache = cache;
c906108c 652
386c036b
MK
653 cache->pc = frame_func_unwind (next_frame);
654 if (cache->pc != 0)
c906108c 655 {
386c036b
MK
656 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
657 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
c906108c 658 }
386c036b
MK
659
660 if (cache->frameless_p)
c906108c 661 {
cbeae229
MK
662 /* This function is frameless, so %fp (%i6) holds the frame
663 pointer for our calling frame. Use %sp (%o6) as this frame's
664 base address. */
665 cache->base =
666 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
667 }
668 else
669 {
670 /* For normal frames, %fp (%i6) holds the frame pointer, the
671 base address for the current stack frame. */
672 cache->base =
673 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
c906108c 674 }
c906108c 675
386c036b 676 return cache;
c906108c 677}
c906108c 678
386c036b
MK
679struct sparc_frame_cache *
680sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 681{
386c036b
MK
682 struct sparc_frame_cache *cache;
683 struct symbol *sym;
c906108c 684
386c036b
MK
685 if (*this_cache)
686 return *this_cache;
c906108c 687
386c036b 688 cache = sparc_frame_cache (next_frame, this_cache);
c906108c 689
386c036b
MK
690 sym = find_pc_function (cache->pc);
691 if (sym)
c906108c 692 {
386c036b
MK
693 struct type *type = check_typedef (SYMBOL_TYPE (sym));
694 enum type_code code = TYPE_CODE (type);
695
696 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
697 {
698 type = check_typedef (TYPE_TARGET_TYPE (type));
699 if (sparc_structure_or_union_p (type)
700 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
701 cache->struct_return_p = 1;
702 }
c906108c 703 }
5465445a
JB
704 else
705 {
706 /* There is no debugging information for this function to
707 help us determine whether this function returns a struct
708 or not. So we rely on another heuristic which is to check
709 the instruction at the return address and see if this is
710 an "unimp" instruction. If it is, then it is a struct-return
711 function. */
712 CORE_ADDR pc;
713 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
714
715 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
716 if (sparc_is_unimp_insn (pc))
717 cache->struct_return_p = 1;
718 }
c906108c 719
386c036b
MK
720 return cache;
721}
722
723static void
724sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
725 struct frame_id *this_id)
726{
727 struct sparc_frame_cache *cache =
728 sparc32_frame_cache (next_frame, this_cache);
729
730 /* This marks the outermost frame. */
731 if (cache->base == 0)
732 return;
733
734 (*this_id) = frame_id_build (cache->base, cache->pc);
735}
c906108c 736
386c036b
MK
737static void
738sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
739 int regnum, int *optimizedp,
740 enum lval_type *lvalp, CORE_ADDR *addrp,
741 int *realnump, void *valuep)
742{
743 struct sparc_frame_cache *cache =
744 sparc32_frame_cache (next_frame, this_cache);
c906108c 745
386c036b 746 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 747 {
386c036b
MK
748 *optimizedp = 0;
749 *lvalp = not_lval;
750 *addrp = 0;
751 *realnump = -1;
752 if (valuep)
c906108c 753 {
386c036b
MK
754 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
755
756 /* If this functions has a Structure, Union or
757 Quad-Precision return value, we have to skip the UNIMP
758 instruction that encodes the size of the structure. */
759 if (cache->struct_return_p)
760 pc += 4;
761
762 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
763 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
764 store_unsigned_integer (valuep, 4, pc);
c906108c 765 }
c906108c
SS
766 return;
767 }
768
42cdca6c
MK
769 /* Handle StackGhost. */
770 {
771 ULONGEST wcookie = sparc_fetch_wcookie ();
772
773 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
774 {
775 *optimizedp = 0;
776 *lvalp = not_lval;
777 *addrp = 0;
778 *realnump = -1;
779 if (valuep)
780 {
781 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
7d34766b 782 ULONGEST i7;
42cdca6c
MK
783
784 /* Read the value in from memory. */
7d34766b
MK
785 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
786 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
42cdca6c
MK
787 }
788 return;
789 }
790 }
791
386c036b
MK
792 /* The previous frame's `local' and `in' registers have been saved
793 in the register save area. */
794 if (!cache->frameless_p
795 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 796 {
386c036b
MK
797 *optimizedp = 0;
798 *lvalp = lval_memory;
799 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
800 *realnump = -1;
801 if (valuep)
c906108c 802 {
386c036b
MK
803 struct gdbarch *gdbarch = get_frame_arch (next_frame);
804
805 /* Read the value in from memory. */
806 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
c906108c 807 }
386c036b
MK
808 return;
809 }
c906108c 810
386c036b
MK
811 /* The previous frame's `out' registers are accessable as the
812 current frame's `in' registers. */
813 if (!cache->frameless_p
814 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
815 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 816
00b25ff3
AC
817 *optimizedp = 0;
818 *lvalp = lval_register;
819 *addrp = 0;
820 *realnump = regnum;
821 if (valuep)
822 frame_unwind_register (next_frame, (*realnump), valuep);
386c036b 823}
c906108c 824
386c036b
MK
825static const struct frame_unwind sparc32_frame_unwind =
826{
827 NORMAL_FRAME,
828 sparc32_frame_this_id,
829 sparc32_frame_prev_register
830};
831
832static const struct frame_unwind *
833sparc32_frame_sniffer (struct frame_info *next_frame)
834{
835 return &sparc32_frame_unwind;
c906108c 836}
386c036b 837\f
c906108c 838
386c036b
MK
839static CORE_ADDR
840sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
841{
842 struct sparc_frame_cache *cache =
843 sparc32_frame_cache (next_frame, this_cache);
c906108c 844
386c036b
MK
845 return cache->base;
846}
c906108c 847
386c036b
MK
848static const struct frame_base sparc32_frame_base =
849{
850 &sparc32_frame_unwind,
851 sparc32_frame_base_address,
852 sparc32_frame_base_address,
853 sparc32_frame_base_address
854};
c906108c 855
386c036b
MK
856static struct frame_id
857sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
858{
859 CORE_ADDR sp;
5af923b0 860
386c036b
MK
861 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
862 return frame_id_build (sp, frame_pc_unwind (next_frame));
863}
864\f
c906108c 865
386c036b
MK
866/* Extract from an array REGBUF containing the (raw) register state, a
867 function return value of TYPE, and copy that into VALBUF. */
5af923b0 868
386c036b
MK
869static void
870sparc32_extract_return_value (struct type *type, struct regcache *regcache,
871 void *valbuf)
872{
873 int len = TYPE_LENGTH (type);
874 char buf[8];
c906108c 875
386c036b
MK
876 gdb_assert (!sparc_structure_or_union_p (type));
877 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 878
386c036b 879 if (sparc_floating_p (type))
5af923b0 880 {
386c036b
MK
881 /* Floating return values. */
882 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
883 if (len > 4)
884 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
885 memcpy (valbuf, buf, len);
5af923b0
MS
886 }
887 else
888 {
386c036b
MK
889 /* Integral and pointer return values. */
890 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 891
386c036b
MK
892 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
893 if (len > 4)
894 {
895 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
896 gdb_assert (len == 8);
897 memcpy (valbuf, buf, 8);
898 }
899 else
900 {
901 /* Just stripping off any unused bytes should preserve the
902 signed-ness just fine. */
903 memcpy (valbuf, buf + 4 - len, len);
904 }
905 }
906}
c906108c 907
386c036b
MK
908/* Write into the appropriate registers a function return value stored
909 in VALBUF of type TYPE. */
c906108c 910
386c036b
MK
911static void
912sparc32_store_return_value (struct type *type, struct regcache *regcache,
913 const void *valbuf)
914{
915 int len = TYPE_LENGTH (type);
916 char buf[8];
c906108c 917
386c036b
MK
918 gdb_assert (!sparc_structure_or_union_p (type));
919 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 920
386c036b
MK
921 if (sparc_floating_p (type))
922 {
923 /* Floating return values. */
924 memcpy (buf, valbuf, len);
925 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
926 if (len > 4)
927 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
928 }
929 else
c906108c 930 {
386c036b
MK
931 /* Integral and pointer return values. */
932 gdb_assert (sparc_integral_or_pointer_p (type));
933
934 if (len > 4)
2757dd86 935 {
386c036b
MK
936 gdb_assert (len == 8);
937 memcpy (buf, valbuf, 8);
938 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
939 }
940 else
941 {
386c036b
MK
942 /* ??? Do we need to do any sign-extension here? */
943 memcpy (buf + 4 - len, valbuf, len);
2757dd86 944 }
386c036b 945 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
946 }
947}
948
b9d4c5ed
MK
949static enum return_value_convention
950sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
951 struct regcache *regcache, void *readbuf,
952 const void *writebuf)
953{
954 if (sparc_structure_or_union_p (type)
955 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
956 return RETURN_VALUE_STRUCT_CONVENTION;
957
958 if (readbuf)
959 sparc32_extract_return_value (type, regcache, readbuf);
960 if (writebuf)
961 sparc32_store_return_value (type, regcache, writebuf);
962
963 return RETURN_VALUE_REGISTER_CONVENTION;
964}
965
931aecf5
AC
966#if 0
967/* NOTE: cagney/2004-01-17: For the moment disable this method. The
968 architecture and CORE-gdb will need new code (and a replacement for
74055713
AC
969 DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS) before this can be made to
970 work robustly. Here is a possible function signature: */
931aecf5
AC
971/* NOTE: cagney/2004-01-17: So far only the 32-bit SPARC ABI has been
972 identifed as having a way to robustly recover the address of a
973 struct-convention return-value (after the function has returned).
974 For all other ABIs so far examined, the calling convention makes no
975 guarenteed that the register containing the return-value will be
976 preserved and hence that the return-value's address can be
977 recovered. */
386c036b
MK
978/* Extract from REGCACHE, which contains the (raw) register state, the
979 address in which a function should return its structure value, as a
980 CORE_ADDR. */
c906108c 981
386c036b 982static CORE_ADDR
ca9d58e9 983sparc32_extract_struct_value_address (struct regcache *regcache)
386c036b 984{
9515395e 985 ULONGEST sp;
c906108c 986
9515395e
MK
987 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
988 return read_memory_unsigned_integer (sp + 64, 4);
386c036b 989}
931aecf5 990#endif
c906108c 991
386c036b
MK
992static int
993sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 994{
386c036b
MK
995 return (sparc_structure_or_union_p (type)
996 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
997}
c906108c 998
386c036b
MK
999\f
1000/* The SPARC Architecture doesn't have hardware single-step support,
1001 and most operating systems don't implement it either, so we provide
1002 software single-step mechanism. */
c906108c 1003
386c036b
MK
1004static CORE_ADDR
1005sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc)
1006{
1007 unsigned long insn = sparc_fetch_instruction (pc);
1008 int conditional_p = X_COND (insn) & 0x7;
1009 int branch_p = 0;
1010 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1011
386c036b 1012 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1013 {
386c036b
MK
1014 /* Branch on Integer Register with Prediction (BPr). */
1015 branch_p = 1;
1016 conditional_p = 1;
c906108c 1017 }
386c036b 1018 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1019 {
386c036b
MK
1020 /* Branch on Floating-Point Condition Codes (FBfcc). */
1021 branch_p = 1;
1022 offset = 4 * X_DISP22 (insn);
c906108c 1023 }
386c036b
MK
1024 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1025 {
1026 /* Branch on Floating-Point Condition Codes with Prediction
1027 (FBPfcc). */
1028 branch_p = 1;
1029 offset = 4 * X_DISP19 (insn);
1030 }
1031 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1032 {
1033 /* Branch on Integer Condition Codes (Bicc). */
1034 branch_p = 1;
1035 offset = 4 * X_DISP22 (insn);
1036 }
1037 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1038 {
386c036b
MK
1039 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1040 branch_p = 1;
1041 offset = 4 * X_DISP19 (insn);
c906108c 1042 }
386c036b
MK
1043
1044 /* FIXME: Handle DONE and RETRY instructions. */
1045
1046 /* FIXME: Handle the Trap instruction. */
1047
1048 if (branch_p)
c906108c 1049 {
386c036b 1050 if (conditional_p)
c906108c 1051 {
386c036b
MK
1052 /* For conditional branches, return nPC + 4 iff the annul
1053 bit is 1. */
1054 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1055 }
1056 else
1057 {
386c036b
MK
1058 /* For unconditional branches, return the target if its
1059 specified condition is "always" and return nPC + 4 if the
1060 condition is "never". If the annul bit is 1, set *NPC to
1061 zero. */
1062 if (X_COND (insn) == 0x0)
1063 pc = *npc, offset = 4;
1064 if (X_A (insn))
1065 *npc = 0;
1066
1067 gdb_assert (offset != 0);
1068 return pc + offset;
c906108c
SS
1069 }
1070 }
386c036b
MK
1071
1072 return 0;
c906108c
SS
1073}
1074
386c036b
MK
1075void
1076sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1077{
1078 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1079 static CORE_ADDR npc, nnpc;
1080 static char npc_save[4], nnpc_save[4];
c906108c 1081
386c036b
MK
1082 if (insert_breakpoints_p)
1083 {
8c3900e4 1084 CORE_ADDR pc, orig_npc;
c906108c 1085
386c036b 1086 pc = sparc_address_from_register (tdep->pc_regnum);
8c3900e4 1087 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
c906108c 1088
386c036b
MK
1089 /* Analyze the instruction at PC. */
1090 nnpc = sparc_analyze_control_transfer (pc, &npc);
1091 if (npc != 0)
1092 target_insert_breakpoint (npc, npc_save);
1093 if (nnpc != 0)
1094 target_insert_breakpoint (nnpc, nnpc_save);
c906108c 1095
386c036b 1096 /* Assert that we have set at least one breakpoint, and that
8c3900e4
DJ
1097 they're not set at the same spot - unless we're going
1098 from here straight to NULL, i.e. a call or jump to 0. */
1099 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1100 gdb_assert (nnpc != npc || orig_npc == 0);
60054393 1101 }
386c036b 1102 else
c906108c 1103 {
386c036b
MK
1104 if (npc != 0)
1105 target_remove_breakpoint (npc, npc_save);
1106 if (nnpc != 0)
1107 target_remove_breakpoint (nnpc, nnpc_save);
c906108c 1108 }
386c036b
MK
1109}
1110
1111static void
1112sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1113{
1114 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1115
1116 write_register_pid (tdep->pc_regnum, pc, ptid);
1117 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1118}
1119\f
1120/* Unglobalize NAME. */
1121
1122char *
1123sparc_stabs_unglobalize_name (char *name)
1124{
1125 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1126 SunPRO) convert file static variables into global values, a
1127 process known as globalization. In order to do this, the
1128 compiler will create a unique prefix and prepend it to each file
1129 static variable. For static variables within a function, this
1130 globalization prefix is followed by the function name (nested
1131 static variables within a function are supposed to generate a
1132 warning message, and are left alone). The procedure is
1133 documented in the Stabs Interface Manual, which is distrubuted
1134 with the compilers, although version 4.0 of the manual seems to
1135 be incorrect in some places, at least for SPARC. The
1136 globalization prefix is encoded into an N_OPT stab, with the form
1137 "G=<prefix>". The globalization prefix always seems to start
1138 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1139 simply strip everything up until the last dot. */
c906108c 1140
386c036b 1141 if (name[0] == '$')
c906108c 1142 {
386c036b
MK
1143 char *p = strrchr (name, '.');
1144 if (p)
1145 return p + 1;
c906108c 1146 }
c906108c 1147
386c036b
MK
1148 return name;
1149}
1150\f
5af923b0 1151
a54124c5
MK
1152/* Return the appropriate register set for the core section identified
1153 by SECT_NAME and SECT_SIZE. */
1154
1155const struct regset *
1156sparc_regset_from_core_section (struct gdbarch *gdbarch,
1157 const char *sect_name, size_t sect_size)
1158{
1159 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1160
c558d81a 1161 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1162 return tdep->gregset;
1163
c558d81a 1164 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1165 return tdep->fpregset;
1166
1167 return NULL;
1168}
1169\f
1170
386c036b
MK
1171static struct gdbarch *
1172sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1173{
1174 struct gdbarch_tdep *tdep;
1175 struct gdbarch *gdbarch;
c906108c 1176
386c036b
MK
1177 /* If there is already a candidate, use it. */
1178 arches = gdbarch_list_lookup_by_info (arches, &info);
1179 if (arches != NULL)
1180 return arches->gdbarch;
c906108c 1181
386c036b
MK
1182 /* Allocate space for the new architecture. */
1183 tdep = XMALLOC (struct gdbarch_tdep);
1184 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1185
386c036b
MK
1186 tdep->pc_regnum = SPARC32_PC_REGNUM;
1187 tdep->npc_regnum = SPARC32_NPC_REGNUM;
a54124c5 1188 tdep->gregset = NULL;
c558d81a 1189 tdep->sizeof_gregset = 0;
a54124c5 1190 tdep->fpregset = NULL;
c558d81a 1191 tdep->sizeof_fpregset = 0;
386c036b
MK
1192 tdep->plt_entry_size = 0;
1193
1194 set_gdbarch_long_double_bit (gdbarch, 128);
1195 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1196
1197 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1198 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1199 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1200 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1201 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1202 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1203
1204 /* Register numbers of various important registers. */
1205 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1206 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1207 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1208
1209 /* Call dummy code. */
1210 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1211 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1212 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1213
b9d4c5ed 1214 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1215 set_gdbarch_stabs_argument_has_addr
1216 (gdbarch, sparc32_stabs_argument_has_addr);
1217
1218 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1219
1220 /* Stack grows downward. */
1221 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1222
386c036b 1223 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1224
386c036b 1225 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1226
386c036b 1227 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1228
386c036b
MK
1229 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1230 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1231
386c036b 1232 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
c906108c 1233
386c036b 1234 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1235
386c036b
MK
1236 frame_base_set_default (gdbarch, &sparc32_frame_base);
1237
1238 /* Hook in ABI-specific overrides, if they have been registered. */
1239 gdbarch_init_osabi (info, gdbarch);
c906108c 1240
386c036b 1241 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
c906108c 1242
a54124c5 1243 /* If we have register sets, enable the generic core file support. */
4c72d57a 1244 if (tdep->gregset)
a54124c5
MK
1245 set_gdbarch_regset_from_core_section (gdbarch,
1246 sparc_regset_from_core_section);
1247
386c036b
MK
1248 return gdbarch;
1249}
1250\f
1251/* Helper functions for dealing with register windows. */
1252
1253void
1254sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1255{
386c036b
MK
1256 int offset = 0;
1257 char buf[8];
1258 int i;
1259
1260 if (sp & 1)
1261 {
1262 /* Registers are 64-bit. */
1263 sp += BIAS;
c906108c 1264
386c036b
MK
1265 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1266 {
1267 if (regnum == i || regnum == -1)
1268 {
1269 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1270 regcache_raw_supply (regcache, i, buf);
1271 }
1272 }
1273 }
1274 else
c906108c 1275 {
386c036b
MK
1276 /* Registers are 32-bit. Toss any sign-extension of the stack
1277 pointer. */
1278 sp &= 0xffffffffUL;
c906108c 1279
386c036b
MK
1280 /* Clear out the top half of the temporary buffer, and put the
1281 register value in the bottom half if we're in 64-bit mode. */
1282 if (gdbarch_ptr_bit (current_gdbarch) == 64)
c906108c 1283 {
386c036b
MK
1284 memset (buf, 0, 4);
1285 offset = 4;
1286 }
c906108c 1287
386c036b
MK
1288 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1289 {
1290 if (regnum == i || regnum == -1)
1291 {
1292 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1293 buf + offset, 4);
42cdca6c
MK
1294
1295 /* Handle StackGhost. */
1296 if (i == SPARC_I7_REGNUM)
1297 {
1298 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1299 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1300
7d34766b 1301 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1302 }
1303
386c036b
MK
1304 regcache_raw_supply (regcache, i, buf);
1305 }
c906108c
SS
1306 }
1307 }
c906108c 1308}
c906108c
SS
1309
1310void
386c036b
MK
1311sparc_collect_rwindow (const struct regcache *regcache,
1312 CORE_ADDR sp, int regnum)
c906108c 1313{
386c036b
MK
1314 int offset = 0;
1315 char buf[8];
1316 int i;
5af923b0 1317
386c036b 1318 if (sp & 1)
5af923b0 1319 {
386c036b
MK
1320 /* Registers are 64-bit. */
1321 sp += BIAS;
c906108c 1322
386c036b
MK
1323 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1324 {
1325 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1326 {
1327 regcache_raw_collect (regcache, i, buf);
1328 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1329 }
1330 }
5af923b0
MS
1331 }
1332 else
1333 {
386c036b
MK
1334 /* Registers are 32-bit. Toss any sign-extension of the stack
1335 pointer. */
1336 sp &= 0xffffffffUL;
1337
1338 /* Only use the bottom half if we're in 64-bit mode. */
1339 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1340 offset = 4;
1341
1342 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1343 {
1344 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1345 {
1346 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1347
1348 /* Handle StackGhost. */
1349 if (i == SPARC_I7_REGNUM)
1350 {
1351 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1352 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1353
7d34766b 1354 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1355 }
1356
386c036b
MK
1357 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1358 buf + offset, 4);
1359 }
1360 }
5af923b0 1361 }
c906108c
SS
1362}
1363
386c036b
MK
1364/* Helper functions for dealing with register sets. */
1365
c906108c 1366void
386c036b
MK
1367sparc32_supply_gregset (const struct sparc_gregset *gregset,
1368 struct regcache *regcache,
1369 int regnum, const void *gregs)
c906108c 1370{
386c036b
MK
1371 const char *regs = gregs;
1372 int i;
5af923b0 1373
386c036b
MK
1374 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1375 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1376 regs + gregset->r_psr_offset);
c906108c 1377
386c036b
MK
1378 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1379 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1380 regs + gregset->r_pc_offset);
5af923b0 1381
386c036b
MK
1382 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1383 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1384 regs + gregset->r_npc_offset);
5af923b0 1385
386c036b
MK
1386 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1387 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1388 regs + gregset->r_y_offset);
5af923b0 1389
386c036b
MK
1390 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1391 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1392
386c036b 1393 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1394 {
386c036b
MK
1395 int offset = gregset->r_g1_offset;
1396
1397 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1398 {
1399 if (regnum == i || regnum == -1)
1400 regcache_raw_supply (regcache, i, regs + offset);
1401 offset += 4;
1402 }
c906108c 1403 }
386c036b
MK
1404
1405 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1406 {
386c036b
MK
1407 /* Not all of the register set variants include Locals and
1408 Inputs. For those that don't, we read them off the stack. */
1409 if (gregset->r_l0_offset == -1)
1410 {
1411 ULONGEST sp;
1412
1413 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1414 sparc_supply_rwindow (regcache, sp, regnum);
1415 }
1416 else
1417 {
1418 int offset = gregset->r_l0_offset;
1419
1420 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1421 {
1422 if (regnum == i || regnum == -1)
1423 regcache_raw_supply (regcache, i, regs + offset);
1424 offset += 4;
1425 }
1426 }
c906108c
SS
1427 }
1428}
1429
c5aa993b 1430void
386c036b
MK
1431sparc32_collect_gregset (const struct sparc_gregset *gregset,
1432 const struct regcache *regcache,
1433 int regnum, void *gregs)
c906108c 1434{
386c036b
MK
1435 char *regs = gregs;
1436 int i;
c5aa993b 1437
386c036b
MK
1438 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1439 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1440 regs + gregset->r_psr_offset);
60054393 1441
386c036b
MK
1442 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1443 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1444 regs + gregset->r_pc_offset);
1445
1446 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1447 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1448 regs + gregset->r_npc_offset);
5af923b0 1449
386c036b
MK
1450 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1451 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1452 regs + gregset->r_y_offset);
1453
1454 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1455 {
386c036b
MK
1456 int offset = gregset->r_g1_offset;
1457
1458 /* %g0 is always zero. */
1459 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1460 {
1461 if (regnum == i || regnum == -1)
1462 regcache_raw_collect (regcache, i, regs + offset);
1463 offset += 4;
1464 }
5af923b0 1465 }
386c036b
MK
1466
1467 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1468 {
386c036b
MK
1469 /* Not all of the register set variants include Locals and
1470 Inputs. For those that don't, we read them off the stack. */
1471 if (gregset->r_l0_offset != -1)
1472 {
1473 int offset = gregset->r_l0_offset;
1474
1475 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1476 {
1477 if (regnum == i || regnum == -1)
1478 regcache_raw_collect (regcache, i, regs + offset);
1479 offset += 4;
1480 }
1481 }
5af923b0 1482 }
c906108c
SS
1483}
1484
c906108c 1485void
386c036b
MK
1486sparc32_supply_fpregset (struct regcache *regcache,
1487 int regnum, const void *fpregs)
c906108c 1488{
386c036b
MK
1489 const char *regs = fpregs;
1490 int i;
60054393 1491
386c036b 1492 for (i = 0; i < 32; i++)
c906108c 1493 {
386c036b
MK
1494 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1495 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1496 }
5af923b0 1497
386c036b
MK
1498 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1499 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1500}
1501
386c036b
MK
1502void
1503sparc32_collect_fpregset (const struct regcache *regcache,
1504 int regnum, void *fpregs)
c906108c 1505{
386c036b
MK
1506 char *regs = fpregs;
1507 int i;
c906108c 1508
386c036b
MK
1509 for (i = 0; i < 32; i++)
1510 {
1511 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1512 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1513 }
c906108c 1514
386c036b
MK
1515 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1516 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1517}
c906108c 1518\f
c906108c 1519
386c036b 1520/* SunOS 4. */
c906108c 1521
386c036b
MK
1522/* From <machine/reg.h>. */
1523const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1524{
386c036b
MK
1525 0 * 4, /* %psr */
1526 1 * 4, /* %pc */
1527 2 * 4, /* %npc */
1528 3 * 4, /* %y */
1529 -1, /* %wim */
1530 -1, /* %tbr */
1531 4 * 4, /* %g1 */
1532 -1 /* %l0 */
1533};
1534\f
c906108c 1535
386c036b
MK
1536/* Provide a prototype to silence -Wmissing-prototypes. */
1537void _initialize_sparc_tdep (void);
c906108c
SS
1538
1539void
386c036b 1540_initialize_sparc_tdep (void)
c906108c 1541{
386c036b 1542 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 1543}
This page took 0.630634 seconds and 4 git commands to generate.