Simplify dwarf2-frame.c:read_addr_from_reg.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
28e7fd62 3 Copyright (C) 2003-2013 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c 20#include "defs.h"
5af923b0 21#include "arch-utils.h"
386c036b 22#include "dis-asm.h"
f5a9b87d 23#include "dwarf2-frame.h"
386c036b 24#include "floatformat.h"
c906108c 25#include "frame.h"
386c036b
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
c906108c 30#include "inferior.h"
386c036b
MK
31#include "symtab.h"
32#include "objfiles.h"
33#include "osabi.h"
34#include "regcache.h"
c906108c
SS
35#include "target.h"
36#include "value.h"
c906108c 37
43bd9a9e 38#include "gdb_assert.h"
386c036b 39#include "gdb_string.h"
c906108c 40
386c036b 41#include "sparc-tdep.h"
e6f9c00b 42#include "sparc-ravenscar-thread.h"
c906108c 43
a54124c5
MK
44struct regset;
45
9eb42ed1
MK
46/* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 49 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 50 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
51
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
59
60/* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
64
65/* The SPARC Floating-Point Quad-Precision format is similar to
7a58cce8 66 big-endian IA-64 Quad-Precision format. */
8da61cc4 67#define floatformats_sparc_quad floatformats_ia64_quad
386c036b
MK
68
69/* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72#undef BIAS
73#define BIAS 2047
74
75/* Macros to extract fields from SPARC instructions. */
c906108c
SS
76#define X_OP(i) (((i) >> 30) & 0x3)
77#define X_RD(i) (((i) >> 25) & 0x1f)
78#define X_A(i) (((i) >> 29) & 1)
79#define X_COND(i) (((i) >> 25) & 0xf)
80#define X_OP2(i) (((i) >> 22) & 0x7)
81#define X_IMM22(i) ((i) & 0x3fffff)
82#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 83#define X_RS1(i) (((i) >> 14) & 0x1f)
b0b92586 84#define X_RS2(i) ((i) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
8d1b3521 89#define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
075ccec8 90#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 91
386c036b
MK
92/* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95unsigned long
96sparc_fetch_instruction (CORE_ADDR pc)
c906108c 97{
e1613aba 98 gdb_byte buf[4];
386c036b
MK
99 unsigned long insn;
100 int i;
101
690668cc 102 /* If we can't read the instruction at PC, return zero. */
8defab1a 103 if (target_read_memory (pc, buf, sizeof (buf)))
690668cc 104 return 0;
c906108c 105
386c036b
MK
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110}
42cdca6c
MK
111\f
112
5465445a
JB
113/* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116static int
117sparc_is_unimp_insn (CORE_ADDR pc)
118{
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122}
123
42cdca6c
MK
124/* OpenBSD/sparc includes StackGhost, which according to the author's
125 website http://stackghost.cerias.purdue.edu "... transparently and
126 automatically protects applications' stack frames; more
127 specifically, it guards the return pointers. The protection
128 mechanisms require no application source or binary modification and
129 imposes only a negligible performance penalty."
130
131 The same website provides the following description of how
132 StackGhost works:
133
134 "StackGhost interfaces with the kernel trap handler that would
135 normally write out registers to the stack and the handler that
136 would read them back in. By XORing a cookie into the
137 return-address saved in the user stack when it is actually written
138 to the stack, and then XOR it out when the return-address is pulled
139 from the stack, StackGhost can cause attacker corrupted return
140 pointers to behave in a manner the attacker cannot predict.
141 StackGhost can also use several unused bits in the return pointer
142 to detect a smashed return pointer and abort the process."
143
144 For GDB this means that whenever we're reading %i7 from a stack
145 frame's window save area, we'll have to XOR the cookie.
146
147 More information on StackGuard can be found on in:
148
c378eb4e 149 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
42cdca6c
MK
150 Stack Protection." 2001. Published in USENIX Security Symposium
151 '01. */
152
153/* Fetch StackGhost Per-Process XOR cookie. */
154
155ULONGEST
e17a4113 156sparc_fetch_wcookie (struct gdbarch *gdbarch)
42cdca6c 157{
e17a4113 158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
baf92889 159 struct target_ops *ops = &current_target;
e1613aba 160 gdb_byte buf[8];
baf92889
MK
161 int len;
162
13547ab6 163 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
164 if (len == -1)
165 return 0;
42cdca6c 166
baf92889
MK
167 /* We should have either an 32-bit or an 64-bit cookie. */
168 gdb_assert (len == 4 || len == 8);
169
e17a4113 170 return extract_unsigned_integer (buf, len, byte_order);
baf92889 171}
386c036b 172\f
baf92889 173
386c036b
MK
174/* The functions on this page are intended to be used to classify
175 function arguments. */
c906108c 176
386c036b 177/* Check whether TYPE is "Integral or Pointer". */
c906108c 178
386c036b
MK
179static int
180sparc_integral_or_pointer_p (const struct type *type)
c906108c 181{
80ad1639
MK
182 int len = TYPE_LENGTH (type);
183
386c036b 184 switch (TYPE_CODE (type))
c906108c 185 {
386c036b
MK
186 case TYPE_CODE_INT:
187 case TYPE_CODE_BOOL:
188 case TYPE_CODE_CHAR:
189 case TYPE_CODE_ENUM:
190 case TYPE_CODE_RANGE:
80ad1639
MK
191 /* We have byte, half-word, word and extended-word/doubleword
192 integral types. The doubleword is an extension to the
193 original 32-bit ABI by the SCD 2.4.x. */
194 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
195 case TYPE_CODE_PTR:
196 case TYPE_CODE_REF:
80ad1639
MK
197 /* Allow either 32-bit or 64-bit pointers. */
198 return (len == 4 || len == 8);
386c036b
MK
199 default:
200 break;
201 }
c906108c 202
386c036b
MK
203 return 0;
204}
c906108c 205
386c036b 206/* Check whether TYPE is "Floating". */
c906108c 207
386c036b
MK
208static int
209sparc_floating_p (const struct type *type)
210{
211 switch (TYPE_CODE (type))
c906108c 212 {
386c036b
MK
213 case TYPE_CODE_FLT:
214 {
215 int len = TYPE_LENGTH (type);
216 return (len == 4 || len == 8 || len == 16);
217 }
218 default:
219 break;
220 }
221
222 return 0;
223}
c906108c 224
fe10a582
DM
225/* Check whether TYPE is "Complex Floating". */
226
227static int
228sparc_complex_floating_p (const struct type *type)
229{
230 switch (TYPE_CODE (type))
231 {
232 case TYPE_CODE_COMPLEX:
233 {
234 int len = TYPE_LENGTH (type);
235 return (len == 8 || len == 16 || len == 32);
236 }
237 default:
238 break;
239 }
240
241 return 0;
242}
243
0497f5b0
JB
244/* Check whether TYPE is "Structure or Union".
245
246 In terms of Ada subprogram calls, arrays are treated the same as
247 struct and union types. So this function also returns non-zero
248 for array types. */
c906108c 249
386c036b
MK
250static int
251sparc_structure_or_union_p (const struct type *type)
252{
253 switch (TYPE_CODE (type))
254 {
255 case TYPE_CODE_STRUCT:
256 case TYPE_CODE_UNION:
0497f5b0 257 case TYPE_CODE_ARRAY:
386c036b
MK
258 return 1;
259 default:
260 break;
c906108c 261 }
386c036b
MK
262
263 return 0;
c906108c 264}
386c036b
MK
265
266/* Register information. */
267
268static const char *sparc32_register_names[] =
5af923b0 269{
386c036b
MK
270 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
271 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
272 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
273 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
274
275 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
276 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
277 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
278 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
279
280 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
281};
282
386c036b
MK
283/* Total number of registers. */
284#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 285
386c036b
MK
286/* We provide the aliases %d0..%d30 for the floating registers as
287 "psuedo" registers. */
288
289static const char *sparc32_pseudo_register_names[] =
290{
291 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
292 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
293};
294
295/* Total number of pseudo registers. */
296#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
297
298/* Return the name of register REGNUM. */
299
300static const char *
d93859e2 301sparc32_register_name (struct gdbarch *gdbarch, int regnum)
386c036b
MK
302{
303 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
304 return sparc32_register_names[regnum];
305
306 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
307 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
308
309 return NULL;
310}
2d457077 311\f
209bd28e 312/* Construct types for ISA-specific registers. */
2d457077 313
209bd28e
UW
314static struct type *
315sparc_psr_type (struct gdbarch *gdbarch)
316{
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2d457077 318
209bd28e
UW
319 if (!tdep->sparc_psr_type)
320 {
321 struct type *type;
2d457077 322
e9bb382b 323 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
209bd28e
UW
324 append_flags_type_flag (type, 5, "ET");
325 append_flags_type_flag (type, 6, "PS");
326 append_flags_type_flag (type, 7, "S");
327 append_flags_type_flag (type, 12, "EF");
328 append_flags_type_flag (type, 13, "EC");
2d457077 329
209bd28e
UW
330 tdep->sparc_psr_type = type;
331 }
332
333 return tdep->sparc_psr_type;
334}
335
336static struct type *
337sparc_fsr_type (struct gdbarch *gdbarch)
2d457077 338{
209bd28e
UW
339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
340
341 if (!tdep->sparc_fsr_type)
342 {
343 struct type *type;
344
e9bb382b 345 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
209bd28e
UW
346 append_flags_type_flag (type, 0, "NXA");
347 append_flags_type_flag (type, 1, "DZA");
348 append_flags_type_flag (type, 2, "UFA");
349 append_flags_type_flag (type, 3, "OFA");
350 append_flags_type_flag (type, 4, "NVA");
351 append_flags_type_flag (type, 5, "NXC");
352 append_flags_type_flag (type, 6, "DZC");
353 append_flags_type_flag (type, 7, "UFC");
354 append_flags_type_flag (type, 8, "OFC");
355 append_flags_type_flag (type, 9, "NVC");
356 append_flags_type_flag (type, 22, "NS");
357 append_flags_type_flag (type, 23, "NXM");
358 append_flags_type_flag (type, 24, "DZM");
359 append_flags_type_flag (type, 25, "UFM");
360 append_flags_type_flag (type, 26, "OFM");
361 append_flags_type_flag (type, 27, "NVM");
362
363 tdep->sparc_fsr_type = type;
364 }
365
366 return tdep->sparc_fsr_type;
2d457077 367}
386c036b
MK
368
369/* Return the GDB type object for the "standard" data type of data in
c378eb4e 370 register REGNUM. */
386c036b
MK
371
372static struct type *
373sparc32_register_type (struct gdbarch *gdbarch, int regnum)
374{
375 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
0dfff4cb 376 return builtin_type (gdbarch)->builtin_float;
386c036b
MK
377
378 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
0dfff4cb 379 return builtin_type (gdbarch)->builtin_double;
386c036b
MK
380
381 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
0dfff4cb 382 return builtin_type (gdbarch)->builtin_data_ptr;
386c036b
MK
383
384 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
0dfff4cb 385 return builtin_type (gdbarch)->builtin_func_ptr;
386c036b 386
2d457077 387 if (regnum == SPARC32_PSR_REGNUM)
209bd28e 388 return sparc_psr_type (gdbarch);
2d457077
MK
389
390 if (regnum == SPARC32_FSR_REGNUM)
209bd28e 391 return sparc_fsr_type (gdbarch);
2d457077 392
df4df182 393 return builtin_type (gdbarch)->builtin_int32;
386c036b
MK
394}
395
05d1431c 396static enum register_status
386c036b
MK
397sparc32_pseudo_register_read (struct gdbarch *gdbarch,
398 struct regcache *regcache,
e1613aba 399 int regnum, gdb_byte *buf)
386c036b 400{
05d1431c
PA
401 enum register_status status;
402
386c036b
MK
403 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
404
405 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
05d1431c
PA
406 status = regcache_raw_read (regcache, regnum, buf);
407 if (status == REG_VALID)
408 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
409 return status;
386c036b
MK
410}
411
412static void
413sparc32_pseudo_register_write (struct gdbarch *gdbarch,
414 struct regcache *regcache,
e1613aba 415 int regnum, const gdb_byte *buf)
386c036b
MK
416{
417 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
418
419 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
420 regcache_raw_write (regcache, regnum, buf);
e1613aba 421 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
422}
423\f
424
49a45ecf
JB
425static CORE_ADDR
426sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
427{
428 /* The ABI requires double-word alignment. */
429 return address & ~0x7;
430}
431
386c036b
MK
432static CORE_ADDR
433sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
82585c72 434 CORE_ADDR funcaddr,
386c036b
MK
435 struct value **args, int nargs,
436 struct type *value_type,
e4fd649a
UW
437 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
438 struct regcache *regcache)
c906108c 439{
e17a4113
UW
440 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
441
386c036b
MK
442 *bp_addr = sp - 4;
443 *real_pc = funcaddr;
444
d80b854b 445 if (using_struct_return (gdbarch, NULL, value_type))
c906108c 446 {
e1613aba 447 gdb_byte buf[4];
386c036b
MK
448
449 /* This is an UNIMP instruction. */
e17a4113
UW
450 store_unsigned_integer (buf, 4, byte_order,
451 TYPE_LENGTH (value_type) & 0x1fff);
386c036b
MK
452 write_memory (sp - 8, buf, 4);
453 return sp - 8;
c906108c
SS
454 }
455
386c036b
MK
456 return sp - 4;
457}
458
459static CORE_ADDR
460sparc32_store_arguments (struct regcache *regcache, int nargs,
461 struct value **args, CORE_ADDR sp,
462 int struct_return, CORE_ADDR struct_addr)
463{
df4df182 464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b
MK
466 /* Number of words in the "parameter array". */
467 int num_elements = 0;
468 int element = 0;
469 int i;
470
471 for (i = 0; i < nargs; i++)
c906108c 472 {
4991999e 473 struct type *type = value_type (args[i]);
386c036b
MK
474 int len = TYPE_LENGTH (type);
475
476 if (sparc_structure_or_union_p (type)
fe10a582
DM
477 || (sparc_floating_p (type) && len == 16)
478 || sparc_complex_floating_p (type))
c906108c 479 {
386c036b
MK
480 /* Structure, Union and Quad-Precision Arguments. */
481 sp -= len;
482
483 /* Use doubleword alignment for these values. That's always
484 correct, and wasting a few bytes shouldn't be a problem. */
485 sp &= ~0x7;
486
0fd88904 487 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
488 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
489 num_elements++;
490 }
491 else if (sparc_floating_p (type))
492 {
493 /* Floating arguments. */
494 gdb_assert (len == 4 || len == 8);
495 num_elements += (len / 4);
c906108c 496 }
c5aa993b
JM
497 else
498 {
386c036b
MK
499 /* Integral and pointer arguments. */
500 gdb_assert (sparc_integral_or_pointer_p (type));
501
502 if (len < 4)
df4df182
UW
503 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
504 args[i]);
386c036b 505 num_elements += ((len + 3) / 4);
c5aa993b 506 }
c906108c 507 }
c906108c 508
386c036b
MK
509 /* Always allocate at least six words. */
510 sp -= max (6, num_elements) * 4;
c906108c 511
386c036b
MK
512 /* The psABI says that "Software convention requires space for the
513 struct/union return value pointer, even if the word is unused." */
514 sp -= 4;
c906108c 515
386c036b
MK
516 /* The psABI says that "Although software convention and the
517 operating system require every stack frame to be doubleword
518 aligned." */
519 sp &= ~0x7;
c906108c 520
386c036b 521 for (i = 0; i < nargs; i++)
c906108c 522 {
0fd88904 523 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 524 struct type *type = value_type (args[i]);
386c036b 525 int len = TYPE_LENGTH (type);
c906108c 526
386c036b 527 gdb_assert (len == 4 || len == 8);
c906108c 528
386c036b
MK
529 if (element < 6)
530 {
531 int regnum = SPARC_O0_REGNUM + element;
c906108c 532
386c036b
MK
533 regcache_cooked_write (regcache, regnum, valbuf);
534 if (len > 4 && element < 5)
535 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
536 }
5af923b0 537
386c036b
MK
538 /* Always store the argument in memory. */
539 write_memory (sp + 4 + element * 4, valbuf, len);
540 element += len / 4;
541 }
c906108c 542
386c036b 543 gdb_assert (element == num_elements);
c906108c 544
386c036b 545 if (struct_return)
c906108c 546 {
e1613aba 547 gdb_byte buf[4];
c906108c 548
e17a4113 549 store_unsigned_integer (buf, 4, byte_order, struct_addr);
386c036b
MK
550 write_memory (sp, buf, 4);
551 }
c906108c 552
386c036b 553 return sp;
c906108c
SS
554}
555
386c036b 556static CORE_ADDR
7d9b040b 557sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
558 struct regcache *regcache, CORE_ADDR bp_addr,
559 int nargs, struct value **args, CORE_ADDR sp,
560 int struct_return, CORE_ADDR struct_addr)
c906108c 561{
386c036b
MK
562 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
563
564 /* Set return address. */
565 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
566
567 /* Set up function arguments. */
568 sp = sparc32_store_arguments (regcache, nargs, args, sp,
569 struct_return, struct_addr);
570
571 /* Allocate the 16-word window save area. */
572 sp -= 16 * 4;
c906108c 573
386c036b
MK
574 /* Stack should be doubleword aligned at this point. */
575 gdb_assert (sp % 8 == 0);
c906108c 576
386c036b
MK
577 /* Finally, update the stack pointer. */
578 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
579
580 return sp;
581}
582\f
c906108c 583
386c036b
MK
584/* Use the program counter to determine the contents and size of a
585 breakpoint instruction. Return a pointer to a string of bytes that
586 encode a breakpoint instruction, store the length of the string in
587 *LEN and optionally adjust *PC to point to the correct memory
588 location for inserting the breakpoint. */
589
e1613aba 590static const gdb_byte *
67d57894 591sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
386c036b 592{
864a1a37 593 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 594
386c036b
MK
595 *len = sizeof (break_insn);
596 return break_insn;
c906108c 597}
386c036b 598\f
c906108c 599
386c036b 600/* Allocate and initialize a frame cache. */
c906108c 601
386c036b
MK
602static struct sparc_frame_cache *
603sparc_alloc_frame_cache (void)
604{
605 struct sparc_frame_cache *cache;
c906108c 606
386c036b 607 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 608
386c036b
MK
609 /* Base address. */
610 cache->base = 0;
611 cache->pc = 0;
c906108c 612
386c036b
MK
613 /* Frameless until proven otherwise. */
614 cache->frameless_p = 1;
369c397b
JB
615 cache->frame_offset = 0;
616 cache->saved_regs_mask = 0;
617 cache->copied_regs_mask = 0;
386c036b
MK
618 cache->struct_return_p = 0;
619
620 return cache;
621}
622
b0b92586
JB
623/* GCC generates several well-known sequences of instructions at the begining
624 of each function prologue when compiling with -fstack-check. If one of
625 such sequences starts at START_PC, then return the address of the
626 instruction immediately past this sequence. Otherwise, return START_PC. */
627
628static CORE_ADDR
629sparc_skip_stack_check (const CORE_ADDR start_pc)
630{
631 CORE_ADDR pc = start_pc;
632 unsigned long insn;
633 int offset_stack_checking_sequence = 0;
2067c8d4 634 int probing_loop = 0;
b0b92586
JB
635
636 /* With GCC, all stack checking sequences begin with the same two
2067c8d4 637 instructions, plus an optional one in the case of a probing loop:
b0b92586 638
2067c8d4
JG
639 sethi <some immediate>, %g1
640 sub %sp, %g1, %g1
641
642 or:
643
644 sethi <some immediate>, %g1
645 sethi <some immediate>, %g4
646 sub %sp, %g1, %g1
647
648 or:
649
650 sethi <some immediate>, %g1
651 sub %sp, %g1, %g1
652 sethi <some immediate>, %g4
653
654 If the optional instruction is found (setting g4), assume that a
655 probing loop will follow. */
656
657 /* sethi <some immediate>, %g1 */
b0b92586
JB
658 insn = sparc_fetch_instruction (pc);
659 pc = pc + 4;
660 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
661 return start_pc;
662
2067c8d4 663 /* optional: sethi <some immediate>, %g4 */
b0b92586
JB
664 insn = sparc_fetch_instruction (pc);
665 pc = pc + 4;
2067c8d4
JG
666 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
667 {
668 probing_loop = 1;
669 insn = sparc_fetch_instruction (pc);
670 pc = pc + 4;
671 }
672
673 /* sub %sp, %g1, %g1 */
b0b92586
JB
674 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
675 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
676 return start_pc;
677
678 insn = sparc_fetch_instruction (pc);
679 pc = pc + 4;
680
2067c8d4
JG
681 /* optional: sethi <some immediate>, %g4 */
682 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
683 {
684 probing_loop = 1;
685 insn = sparc_fetch_instruction (pc);
686 pc = pc + 4;
687 }
688
b0b92586
JB
689 /* First possible sequence:
690 [first two instructions above]
691 clr [%g1 - some immediate] */
692
693 /* clr [%g1 - some immediate] */
694 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
695 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
696 {
697 /* Valid stack-check sequence, return the new PC. */
698 return pc;
699 }
700
701 /* Second possible sequence: A small number of probes.
702 [first two instructions above]
703 clr [%g1]
704 add %g1, -<some immediate>, %g1
705 clr [%g1]
706 [repeat the two instructions above any (small) number of times]
707 clr [%g1 - some immediate] */
708
709 /* clr [%g1] */
710 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
711 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
712 {
713 while (1)
714 {
715 /* add %g1, -<some immediate>, %g1 */
716 insn = sparc_fetch_instruction (pc);
717 pc = pc + 4;
718 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
719 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
720 break;
721
722 /* clr [%g1] */
723 insn = sparc_fetch_instruction (pc);
724 pc = pc + 4;
725 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
726 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
727 return start_pc;
728 }
729
730 /* clr [%g1 - some immediate] */
731 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
732 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
733 return start_pc;
734
735 /* We found a valid stack-check sequence, return the new PC. */
736 return pc;
737 }
738
739 /* Third sequence: A probing loop.
2067c8d4 740 [first three instructions above]
b0b92586
JB
741 sub %g1, %g4, %g4
742 cmp %g1, %g4
743 be <disp>
744 add %g1, -<some immediate>, %g1
745 ba <disp>
746 clr [%g1]
2067c8d4
JG
747
748 And an optional last probe for the remainder:
749
b0b92586
JB
750 clr [%g4 - some immediate] */
751
2067c8d4 752 if (probing_loop)
b0b92586
JB
753 {
754 /* sub %g1, %g4, %g4 */
b0b92586
JB
755 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
756 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
757 return start_pc;
758
759 /* cmp %g1, %g4 */
760 insn = sparc_fetch_instruction (pc);
761 pc = pc + 4;
762 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
763 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
764 return start_pc;
765
766 /* be <disp> */
767 insn = sparc_fetch_instruction (pc);
768 pc = pc + 4;
769 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
770 return start_pc;
771
772 /* add %g1, -<some immediate>, %g1 */
773 insn = sparc_fetch_instruction (pc);
774 pc = pc + 4;
775 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
776 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
777 return start_pc;
778
779 /* ba <disp> */
780 insn = sparc_fetch_instruction (pc);
781 pc = pc + 4;
782 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
783 return start_pc;
784
2067c8d4 785 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
b0b92586
JB
786 insn = sparc_fetch_instruction (pc);
787 pc = pc + 4;
2067c8d4
JG
788 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
789 && X_RD (insn) == 0 && X_RS1 (insn) == 1
790 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
b0b92586
JB
791 return start_pc;
792
2067c8d4
JG
793 /* We found a valid stack-check sequence, return the new PC. */
794
795 /* optional: clr [%g4 - some immediate] */
b0b92586
JB
796 insn = sparc_fetch_instruction (pc);
797 pc = pc + 4;
798 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
799 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
2067c8d4
JG
800 return pc - 4;
801 else
802 return pc;
b0b92586
JB
803 }
804
805 /* No stack check code in our prologue, return the start_pc. */
806 return start_pc;
807}
808
369c397b
JB
809/* Record the effect of a SAVE instruction on CACHE. */
810
811void
812sparc_record_save_insn (struct sparc_frame_cache *cache)
813{
814 /* The frame is set up. */
815 cache->frameless_p = 0;
816
817 /* The frame pointer contains the CFA. */
818 cache->frame_offset = 0;
819
820 /* The `local' and `in' registers are all saved. */
821 cache->saved_regs_mask = 0xffff;
822
823 /* The `out' registers are all renamed. */
824 cache->copied_regs_mask = 0xff;
825}
826
827/* Do a full analysis of the prologue at PC and update CACHE accordingly.
828 Bail out early if CURRENT_PC is reached. Return the address where
829 the analysis stopped.
830
831 We handle both the traditional register window model and the single
832 register window (aka flat) model. */
833
386c036b 834CORE_ADDR
be8626e0
MD
835sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
836 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
c906108c 837{
be8626e0 838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386c036b
MK
839 unsigned long insn;
840 int offset = 0;
c906108c 841 int dest = -1;
c906108c 842
b0b92586
JB
843 pc = sparc_skip_stack_check (pc);
844
386c036b
MK
845 if (current_pc <= pc)
846 return current_pc;
847
848 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
849 SPARC the linker usually defines a symbol (typically
850 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
851 This symbol makes us end up here with PC pointing at the start of
852 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
853 would do our normal prologue analysis, we would probably conclude
854 that we've got a frame when in reality we don't, since the
855 dynamic linker patches up the first PLT with some code that
856 starts with a SAVE instruction. Patch up PC such that it points
857 at the start of our PLT entry. */
3e5d3a5a 858 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
386c036b 859 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 860
386c036b
MK
861 insn = sparc_fetch_instruction (pc);
862
369c397b
JB
863 /* Recognize store insns and record their sources. */
864 while (X_OP (insn) == 3
865 && (X_OP3 (insn) == 0x4 /* stw */
866 || X_OP3 (insn) == 0x7 /* std */
867 || X_OP3 (insn) == 0xe) /* stx */
868 && X_RS1 (insn) == SPARC_SP_REGNUM)
869 {
870 int regnum = X_RD (insn);
871
872 /* Recognize stores into the corresponding stack slots. */
873 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
874 && ((X_I (insn)
875 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
876 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
877 : (regnum - SPARC_L0_REGNUM) * 4))
878 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
879 {
880 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
881 if (X_OP3 (insn) == 0x7)
882 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
883 }
884
885 offset += 4;
886
887 insn = sparc_fetch_instruction (pc + offset);
888 }
889
386c036b
MK
890 /* Recognize a SETHI insn and record its destination. */
891 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
892 {
893 dest = X_RD (insn);
386c036b
MK
894 offset += 4;
895
369c397b 896 insn = sparc_fetch_instruction (pc + offset);
c906108c
SS
897 }
898
386c036b
MK
899 /* Allow for an arithmetic operation on DEST or %g1. */
900 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
901 && (X_RD (insn) == 1 || X_RD (insn) == dest))
902 {
386c036b 903 offset += 4;
c906108c 904
369c397b 905 insn = sparc_fetch_instruction (pc + offset);
c906108c 906 }
c906108c 907
386c036b
MK
908 /* Check for the SAVE instruction that sets up the frame. */
909 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 910 {
369c397b
JB
911 sparc_record_save_insn (cache);
912 offset += 4;
913 return pc + offset;
914 }
915
916 /* Check for an arithmetic operation on %sp. */
917 if (X_OP (insn) == 2
918 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
919 && X_RS1 (insn) == SPARC_SP_REGNUM
920 && X_RD (insn) == SPARC_SP_REGNUM)
921 {
922 if (X_I (insn))
923 {
924 cache->frame_offset = X_SIMM13 (insn);
925 if (X_OP3 (insn) == 0)
926 cache->frame_offset = -cache->frame_offset;
927 }
928 offset += 4;
929
930 insn = sparc_fetch_instruction (pc + offset);
931
932 /* Check for an arithmetic operation that sets up the frame. */
933 if (X_OP (insn) == 2
934 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
935 && X_RS1 (insn) == SPARC_SP_REGNUM
936 && X_RD (insn) == SPARC_FP_REGNUM)
937 {
938 cache->frameless_p = 0;
939 cache->frame_offset = 0;
940 /* We could check that the amount subtracted to %sp above is the
941 same as the one added here, but this seems superfluous. */
942 cache->copied_regs_mask |= 0x40;
943 offset += 4;
944
945 insn = sparc_fetch_instruction (pc + offset);
946 }
947
948 /* Check for a move (or) operation that copies the return register. */
949 if (X_OP (insn) == 2
950 && X_OP3 (insn) == 0x2
951 && !X_I (insn)
952 && X_RS1 (insn) == SPARC_G0_REGNUM
953 && X_RS2 (insn) == SPARC_O7_REGNUM
954 && X_RD (insn) == SPARC_I7_REGNUM)
955 {
956 cache->copied_regs_mask |= 0x80;
957 offset += 4;
958 }
959
960 return pc + offset;
c906108c
SS
961 }
962
963 return pc;
964}
965
386c036b 966static CORE_ADDR
236369e7 967sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
968{
969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236369e7 970 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
386c036b
MK
971}
972
973/* Return PC of first real instruction of the function starting at
974 START_PC. */
f510d44e 975
386c036b 976static CORE_ADDR
6093d2eb 977sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 978{
f510d44e
DM
979 struct symtab_and_line sal;
980 CORE_ADDR func_start, func_end;
386c036b 981 struct sparc_frame_cache cache;
f510d44e
DM
982
983 /* This is the preferred method, find the end of the prologue by
984 using the debugging information. */
985 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
986 {
987 sal = find_pc_line (func_start, 0);
988
989 if (sal.end < func_end
990 && start_pc <= sal.end)
991 return sal.end;
992 }
993
be8626e0 994 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
075ccec8
MK
995
996 /* The psABI says that "Although the first 6 words of arguments
997 reside in registers, the standard stack frame reserves space for
998 them.". It also suggests that a function may use that space to
999 "write incoming arguments 0 to 5" into that space, and that's
1000 indeed what GCC seems to be doing. In that case GCC will
1001 generate debug information that points to the stack slots instead
1002 of the registers, so we should consider the instructions that
369c397b 1003 write out these incoming arguments onto the stack. */
075ccec8 1004
369c397b 1005 while (1)
075ccec8
MK
1006 {
1007 unsigned long insn = sparc_fetch_instruction (start_pc);
1008
369c397b
JB
1009 /* Recognize instructions that store incoming arguments into the
1010 corresponding stack slots. */
1011 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1012 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
075ccec8 1013 {
369c397b
JB
1014 int regnum = X_RD (insn);
1015
1016 /* Case of arguments still in %o[0..5]. */
1017 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1018 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1019 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1020 {
1021 start_pc += 4;
1022 continue;
1023 }
1024
1025 /* Case of arguments copied into %i[0..5]. */
1026 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1027 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1028 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1029 {
1030 start_pc += 4;
1031 continue;
1032 }
075ccec8
MK
1033 }
1034
1035 break;
1036 }
1037
1038 return start_pc;
c906108c
SS
1039}
1040
386c036b 1041/* Normal frames. */
9319a2fe 1042
386c036b 1043struct sparc_frame_cache *
236369e7 1044sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
9319a2fe 1045{
386c036b 1046 struct sparc_frame_cache *cache;
9319a2fe 1047
386c036b
MK
1048 if (*this_cache)
1049 return *this_cache;
c906108c 1050
386c036b
MK
1051 cache = sparc_alloc_frame_cache ();
1052 *this_cache = cache;
c906108c 1053
236369e7 1054 cache->pc = get_frame_func (this_frame);
386c036b 1055 if (cache->pc != 0)
236369e7
JB
1056 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1057 get_frame_pc (this_frame), cache);
386c036b
MK
1058
1059 if (cache->frameless_p)
c906108c 1060 {
cbeae229
MK
1061 /* This function is frameless, so %fp (%i6) holds the frame
1062 pointer for our calling frame. Use %sp (%o6) as this frame's
1063 base address. */
1064 cache->base =
236369e7 1065 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
cbeae229
MK
1066 }
1067 else
1068 {
1069 /* For normal frames, %fp (%i6) holds the frame pointer, the
1070 base address for the current stack frame. */
1071 cache->base =
236369e7 1072 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
c906108c 1073 }
c906108c 1074
369c397b
JB
1075 cache->base += cache->frame_offset;
1076
5b2d44a0
MK
1077 if (cache->base & 1)
1078 cache->base += BIAS;
1079
386c036b 1080 return cache;
c906108c 1081}
c906108c 1082
aff37fc1
DM
1083static int
1084sparc32_struct_return_from_sym (struct symbol *sym)
1085{
1086 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1087 enum type_code code = TYPE_CODE (type);
1088
1089 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1090 {
1091 type = check_typedef (TYPE_TARGET_TYPE (type));
1092 if (sparc_structure_or_union_p (type)
1093 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1094 return 1;
1095 }
1096
1097 return 0;
1098}
1099
386c036b 1100struct sparc_frame_cache *
236369e7 1101sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 1102{
386c036b
MK
1103 struct sparc_frame_cache *cache;
1104 struct symbol *sym;
c906108c 1105
386c036b
MK
1106 if (*this_cache)
1107 return *this_cache;
c906108c 1108
236369e7 1109 cache = sparc_frame_cache (this_frame, this_cache);
c906108c 1110
386c036b
MK
1111 sym = find_pc_function (cache->pc);
1112 if (sym)
c906108c 1113 {
aff37fc1 1114 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 1115 }
5465445a
JB
1116 else
1117 {
1118 /* There is no debugging information for this function to
1119 help us determine whether this function returns a struct
1120 or not. So we rely on another heuristic which is to check
1121 the instruction at the return address and see if this is
1122 an "unimp" instruction. If it is, then it is a struct-return
1123 function. */
1124 CORE_ADDR pc;
369c397b
JB
1125 int regnum =
1126 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
5465445a 1127
236369e7 1128 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
5465445a
JB
1129 if (sparc_is_unimp_insn (pc))
1130 cache->struct_return_p = 1;
1131 }
c906108c 1132
386c036b
MK
1133 return cache;
1134}
1135
1136static void
236369e7 1137sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
386c036b
MK
1138 struct frame_id *this_id)
1139{
1140 struct sparc_frame_cache *cache =
236369e7 1141 sparc32_frame_cache (this_frame, this_cache);
386c036b
MK
1142
1143 /* This marks the outermost frame. */
1144 if (cache->base == 0)
1145 return;
1146
1147 (*this_id) = frame_id_build (cache->base, cache->pc);
1148}
c906108c 1149
236369e7
JB
1150static struct value *
1151sparc32_frame_prev_register (struct frame_info *this_frame,
1152 void **this_cache, int regnum)
386c036b 1153{
e17a4113 1154 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386c036b 1155 struct sparc_frame_cache *cache =
236369e7 1156 sparc32_frame_cache (this_frame, this_cache);
c906108c 1157
386c036b 1158 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 1159 {
236369e7 1160 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
386c036b 1161
236369e7
JB
1162 /* If this functions has a Structure, Union or Quad-Precision
1163 return value, we have to skip the UNIMP instruction that encodes
1164 the size of the structure. */
1165 if (cache->struct_return_p)
1166 pc += 4;
386c036b 1167
369c397b
JB
1168 regnum =
1169 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
236369e7
JB
1170 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1171 return frame_unwind_got_constant (this_frame, regnum, pc);
c906108c
SS
1172 }
1173
42cdca6c
MK
1174 /* Handle StackGhost. */
1175 {
e17a4113 1176 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
42cdca6c
MK
1177
1178 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1179 {
236369e7
JB
1180 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1181 ULONGEST i7;
1182
1183 /* Read the value in from memory. */
1184 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1185 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
42cdca6c
MK
1186 }
1187 }
1188
369c397b 1189 /* The previous frame's `local' and `in' registers may have been saved
386c036b 1190 in the register save area. */
369c397b
JB
1191 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1192 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
c906108c 1193 {
236369e7 1194 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
386c036b 1195
236369e7 1196 return frame_unwind_got_memory (this_frame, regnum, addr);
386c036b 1197 }
c906108c 1198
369c397b
JB
1199 /* The previous frame's `out' registers may be accessible as the current
1200 frame's `in' registers. */
1201 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1202 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
386c036b 1203 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 1204
236369e7 1205 return frame_unwind_got_register (this_frame, regnum, regnum);
386c036b 1206}
c906108c 1207
386c036b
MK
1208static const struct frame_unwind sparc32_frame_unwind =
1209{
1210 NORMAL_FRAME,
8fbca658 1211 default_frame_unwind_stop_reason,
386c036b 1212 sparc32_frame_this_id,
236369e7
JB
1213 sparc32_frame_prev_register,
1214 NULL,
1215 default_frame_sniffer
386c036b 1216};
386c036b 1217\f
c906108c 1218
386c036b 1219static CORE_ADDR
236369e7 1220sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
386c036b
MK
1221{
1222 struct sparc_frame_cache *cache =
236369e7 1223 sparc32_frame_cache (this_frame, this_cache);
c906108c 1224
386c036b
MK
1225 return cache->base;
1226}
c906108c 1227
386c036b
MK
1228static const struct frame_base sparc32_frame_base =
1229{
1230 &sparc32_frame_unwind,
1231 sparc32_frame_base_address,
1232 sparc32_frame_base_address,
1233 sparc32_frame_base_address
1234};
c906108c 1235
386c036b 1236static struct frame_id
236369e7 1237sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
386c036b
MK
1238{
1239 CORE_ADDR sp;
5af923b0 1240
236369e7 1241 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
1242 if (sp & 1)
1243 sp += BIAS;
236369e7 1244 return frame_id_build (sp, get_frame_pc (this_frame));
386c036b
MK
1245}
1246\f
c906108c 1247
3923a2b2
MK
1248/* Extract a function return value of TYPE from REGCACHE, and copy
1249 that into VALBUF. */
5af923b0 1250
386c036b
MK
1251static void
1252sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 1253 gdb_byte *valbuf)
386c036b
MK
1254{
1255 int len = TYPE_LENGTH (type);
fe10a582 1256 gdb_byte buf[32];
c906108c 1257
386c036b
MK
1258 gdb_assert (!sparc_structure_or_union_p (type));
1259 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 1260
fe10a582 1261 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
5af923b0 1262 {
386c036b
MK
1263 /* Floating return values. */
1264 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1265 if (len > 4)
1266 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1267 if (len > 8)
1268 {
1269 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1270 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1271 }
1272 if (len > 16)
1273 {
1274 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1275 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1276 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1277 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1278 }
386c036b 1279 memcpy (valbuf, buf, len);
5af923b0
MS
1280 }
1281 else
1282 {
386c036b
MK
1283 /* Integral and pointer return values. */
1284 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 1285
386c036b
MK
1286 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1287 if (len > 4)
1288 {
1289 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1290 gdb_assert (len == 8);
1291 memcpy (valbuf, buf, 8);
1292 }
1293 else
1294 {
1295 /* Just stripping off any unused bytes should preserve the
1296 signed-ness just fine. */
1297 memcpy (valbuf, buf + 4 - len, len);
1298 }
1299 }
1300}
c906108c 1301
3923a2b2
MK
1302/* Store the function return value of type TYPE from VALBUF into
1303 REGCACHE. */
c906108c 1304
386c036b
MK
1305static void
1306sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 1307 const gdb_byte *valbuf)
386c036b
MK
1308{
1309 int len = TYPE_LENGTH (type);
e1613aba 1310 gdb_byte buf[8];
c906108c 1311
386c036b
MK
1312 gdb_assert (!sparc_structure_or_union_p (type));
1313 gdb_assert (!(sparc_floating_p (type) && len == 16));
a9789a6b 1314 gdb_assert (len <= 8);
c906108c 1315
fe10a582 1316 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
386c036b
MK
1317 {
1318 /* Floating return values. */
1319 memcpy (buf, valbuf, len);
1320 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1321 if (len > 4)
1322 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
fe10a582
DM
1323 if (len > 8)
1324 {
1325 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1326 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1327 }
1328 if (len > 16)
1329 {
1330 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1331 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1332 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1333 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1334 }
386c036b
MK
1335 }
1336 else
c906108c 1337 {
386c036b
MK
1338 /* Integral and pointer return values. */
1339 gdb_assert (sparc_integral_or_pointer_p (type));
1340
1341 if (len > 4)
2757dd86 1342 {
386c036b
MK
1343 gdb_assert (len == 8);
1344 memcpy (buf, valbuf, 8);
1345 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1346 }
1347 else
1348 {
386c036b
MK
1349 /* ??? Do we need to do any sign-extension here? */
1350 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1351 }
386c036b 1352 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1353 }
1354}
1355
b9d4c5ed 1356static enum return_value_convention
6a3a010b 1357sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1358 struct type *type, struct regcache *regcache,
1359 gdb_byte *readbuf, const gdb_byte *writebuf)
b9d4c5ed 1360{
e17a4113
UW
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362
0a8f48b9
MK
1363 /* The psABI says that "...every stack frame reserves the word at
1364 %fp+64. If a function returns a structure, union, or
1365 quad-precision value, this word should hold the address of the
1366 object into which the return value should be copied." This
1367 guarantees that we can always find the return value, not just
1368 before the function returns. */
1369
b9d4c5ed
MK
1370 if (sparc_structure_or_union_p (type)
1371 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9 1372 {
bbfdfe1c
DM
1373 ULONGEST sp;
1374 CORE_ADDR addr;
1375
0a8f48b9
MK
1376 if (readbuf)
1377 {
0a8f48b9 1378 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
e17a4113 1379 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
0a8f48b9
MK
1380 read_memory (addr, readbuf, TYPE_LENGTH (type));
1381 }
bbfdfe1c
DM
1382 if (writebuf)
1383 {
1384 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1385 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1386 write_memory (addr, writebuf, TYPE_LENGTH (type));
1387 }
0a8f48b9
MK
1388
1389 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1390 }
b9d4c5ed
MK
1391
1392 if (readbuf)
1393 sparc32_extract_return_value (type, regcache, readbuf);
1394 if (writebuf)
1395 sparc32_store_return_value (type, regcache, writebuf);
1396
1397 return RETURN_VALUE_REGISTER_CONVENTION;
1398}
1399
386c036b
MK
1400static int
1401sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1402{
386c036b 1403 return (sparc_structure_or_union_p (type)
fe10a582
DM
1404 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1405 || sparc_complex_floating_p (type));
386c036b 1406}
c906108c 1407
aff37fc1 1408static int
4a4e5149 1409sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
aff37fc1 1410{
236369e7 1411 CORE_ADDR pc = get_frame_address_in_block (this_frame);
aff37fc1
DM
1412 struct symbol *sym = find_pc_function (pc);
1413
1414 if (sym)
1415 return sparc32_struct_return_from_sym (sym);
1416 return 0;
1417}
1418
f5a9b87d
DM
1419static void
1420sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1421 struct dwarf2_frame_state_reg *reg,
4a4e5149 1422 struct frame_info *this_frame)
f5a9b87d 1423{
aff37fc1
DM
1424 int off;
1425
f5a9b87d
DM
1426 switch (regnum)
1427 {
1428 case SPARC_G0_REGNUM:
1429 /* Since %g0 is always zero, there is no point in saving it, and
1430 people will be inclined omit it from the CFI. Make sure we
1431 don't warn about that. */
1432 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1433 break;
1434 case SPARC_SP_REGNUM:
1435 reg->how = DWARF2_FRAME_REG_CFA;
1436 break;
1437 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1438 case SPARC32_NPC_REGNUM:
1439 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1 1440 off = 8;
4a4e5149 1441 if (sparc32_dwarf2_struct_return_p (this_frame))
aff37fc1
DM
1442 off += 4;
1443 if (regnum == SPARC32_NPC_REGNUM)
1444 off += 4;
1445 reg->loc.offset = off;
f5a9b87d
DM
1446 break;
1447 }
1448}
1449
386c036b
MK
1450\f
1451/* The SPARC Architecture doesn't have hardware single-step support,
1452 and most operating systems don't implement it either, so we provide
1453 software single-step mechanism. */
c906108c 1454
386c036b 1455static CORE_ADDR
0b1b3e42 1456sparc_analyze_control_transfer (struct frame_info *frame,
c893be75 1457 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1458{
1459 unsigned long insn = sparc_fetch_instruction (pc);
1460 int conditional_p = X_COND (insn) & 0x7;
8d1b3521 1461 int branch_p = 0, fused_p = 0;
386c036b 1462 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1463
8d1b3521 1464 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
c906108c 1465 {
8d1b3521
DM
1466 if ((insn & 0x10000000) == 0)
1467 {
1468 /* Branch on Integer Register with Prediction (BPr). */
1469 branch_p = 1;
1470 conditional_p = 1;
1471 }
1472 else
1473 {
1474 /* Compare and Branch */
1475 branch_p = 1;
1476 fused_p = 1;
1477 offset = 4 * X_DISP10 (insn);
1478 }
c906108c 1479 }
386c036b 1480 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1481 {
386c036b
MK
1482 /* Branch on Floating-Point Condition Codes (FBfcc). */
1483 branch_p = 1;
1484 offset = 4 * X_DISP22 (insn);
c906108c 1485 }
386c036b
MK
1486 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1487 {
1488 /* Branch on Floating-Point Condition Codes with Prediction
1489 (FBPfcc). */
1490 branch_p = 1;
1491 offset = 4 * X_DISP19 (insn);
1492 }
1493 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1494 {
1495 /* Branch on Integer Condition Codes (Bicc). */
1496 branch_p = 1;
1497 offset = 4 * X_DISP22 (insn);
1498 }
1499 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1500 {
386c036b
MK
1501 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1502 branch_p = 1;
1503 offset = 4 * X_DISP19 (insn);
c906108c 1504 }
c893be75
MK
1505 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1506 {
1507 /* Trap instruction (TRAP). */
0b1b3e42 1508 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
c893be75 1509 }
386c036b
MK
1510
1511 /* FIXME: Handle DONE and RETRY instructions. */
1512
386c036b 1513 if (branch_p)
c906108c 1514 {
8d1b3521
DM
1515 if (fused_p)
1516 {
1517 /* Fused compare-and-branch instructions are non-delayed,
1518 and do not have an annuling capability. So we need to
1519 always set a breakpoint on both the NPC and the branch
1520 target address. */
1521 gdb_assert (offset != 0);
1522 return pc + offset;
1523 }
1524 else if (conditional_p)
c906108c 1525 {
386c036b
MK
1526 /* For conditional branches, return nPC + 4 iff the annul
1527 bit is 1. */
1528 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1529 }
1530 else
1531 {
386c036b
MK
1532 /* For unconditional branches, return the target if its
1533 specified condition is "always" and return nPC + 4 if the
1534 condition is "never". If the annul bit is 1, set *NPC to
1535 zero. */
1536 if (X_COND (insn) == 0x0)
1537 pc = *npc, offset = 4;
1538 if (X_A (insn))
1539 *npc = 0;
1540
386c036b 1541 return pc + offset;
c906108c
SS
1542 }
1543 }
386c036b
MK
1544
1545 return 0;
c906108c
SS
1546}
1547
c893be75 1548static CORE_ADDR
0b1b3e42 1549sparc_step_trap (struct frame_info *frame, unsigned long insn)
c893be75
MK
1550{
1551 return 0;
1552}
1553
e6590a1b 1554int
0b1b3e42 1555sparc_software_single_step (struct frame_info *frame)
386c036b 1556{
0b1b3e42 1557 struct gdbarch *arch = get_frame_arch (frame);
c893be75 1558 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
6c95b8df 1559 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 1560 CORE_ADDR npc, nnpc;
c906108c 1561
e0cd558a 1562 CORE_ADDR pc, orig_npc;
c906108c 1563
0b1b3e42
UW
1564 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1565 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
c906108c 1566
e0cd558a 1567 /* Analyze the instruction at PC. */
0b1b3e42 1568 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
e0cd558a 1569 if (npc != 0)
6c95b8df 1570 insert_single_step_breakpoint (arch, aspace, npc);
8181d85f 1571
e0cd558a 1572 if (nnpc != 0)
6c95b8df 1573 insert_single_step_breakpoint (arch, aspace, nnpc);
c906108c 1574
e0cd558a
UW
1575 /* Assert that we have set at least one breakpoint, and that
1576 they're not set at the same spot - unless we're going
1577 from here straight to NULL, i.e. a call or jump to 0. */
1578 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1579 gdb_assert (nnpc != npc || orig_npc == 0);
e6590a1b
UW
1580
1581 return 1;
386c036b
MK
1582}
1583
1584static void
61a1198a 1585sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
386c036b 1586{
61a1198a 1587 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
386c036b 1588
61a1198a
UW
1589 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1590 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
386c036b
MK
1591}
1592\f
5af923b0 1593
a54124c5
MK
1594/* Return the appropriate register set for the core section identified
1595 by SECT_NAME and SECT_SIZE. */
1596
63807e1d 1597static const struct regset *
a54124c5
MK
1598sparc_regset_from_core_section (struct gdbarch *gdbarch,
1599 const char *sect_name, size_t sect_size)
1600{
1601 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1602
c558d81a 1603 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1604 return tdep->gregset;
1605
c558d81a 1606 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1607 return tdep->fpregset;
1608
1609 return NULL;
1610}
1611\f
1612
386c036b
MK
1613static struct gdbarch *
1614sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1615{
1616 struct gdbarch_tdep *tdep;
1617 struct gdbarch *gdbarch;
c906108c 1618
386c036b
MK
1619 /* If there is already a candidate, use it. */
1620 arches = gdbarch_list_lookup_by_info (arches, &info);
1621 if (arches != NULL)
1622 return arches->gdbarch;
c906108c 1623
386c036b 1624 /* Allocate space for the new architecture. */
1390fcc2 1625 tdep = XZALLOC (struct gdbarch_tdep);
386c036b 1626 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1627
386c036b
MK
1628 tdep->pc_regnum = SPARC32_PC_REGNUM;
1629 tdep->npc_regnum = SPARC32_NPC_REGNUM;
c893be75 1630 tdep->step_trap = sparc_step_trap;
386c036b
MK
1631
1632 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 1633 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
386c036b
MK
1634
1635 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1636 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1637 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1638 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1639 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1640 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1641
1642 /* Register numbers of various important registers. */
1643 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1644 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1645 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1646
1647 /* Call dummy code. */
49a45ecf 1648 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
386c036b
MK
1649 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1650 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1651 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1652
b9d4c5ed 1653 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1654 set_gdbarch_stabs_argument_has_addr
1655 (gdbarch, sparc32_stabs_argument_has_addr);
1656
1657 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1658
1659 /* Stack grows downward. */
1660 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1661
386c036b 1662 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1663
386c036b 1664 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1665
386c036b 1666 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1667
386c036b
MK
1668 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1669 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1670
236369e7 1671 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
c906108c 1672
386c036b 1673 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1674
386c036b
MK
1675 frame_base_set_default (gdbarch, &sparc32_frame_base);
1676
f5a9b87d
DM
1677 /* Hook in the DWARF CFI frame unwinder. */
1678 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1679 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1680 StackGhost issues have been resolved. */
1681
b2a0b9b2
DM
1682 /* Hook in ABI-specific overrides, if they have been registered. */
1683 gdbarch_init_osabi (info, gdbarch);
1684
236369e7 1685 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
c906108c 1686
a54124c5 1687 /* If we have register sets, enable the generic core file support. */
4c72d57a 1688 if (tdep->gregset)
a54124c5
MK
1689 set_gdbarch_regset_from_core_section (gdbarch,
1690 sparc_regset_from_core_section);
1691
7e35103a
JB
1692 register_sparc_ravenscar_ops (gdbarch);
1693
386c036b
MK
1694 return gdbarch;
1695}
1696\f
1697/* Helper functions for dealing with register windows. */
1698
1699void
1700sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1701{
e17a4113
UW
1702 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1704 int offset = 0;
e1613aba 1705 gdb_byte buf[8];
386c036b
MK
1706 int i;
1707
1708 if (sp & 1)
1709 {
1710 /* Registers are 64-bit. */
1711 sp += BIAS;
c906108c 1712
386c036b
MK
1713 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1714 {
1715 if (regnum == i || regnum == -1)
1716 {
1717 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1718
1719 /* Handle StackGhost. */
1720 if (i == SPARC_I7_REGNUM)
1721 {
e17a4113
UW
1722 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1723 ULONGEST i7;
f700a364 1724
e17a4113
UW
1725 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1726 store_unsigned_integer (buf + offset, 8, byte_order,
1727 i7 ^ wcookie);
f700a364
MK
1728 }
1729
386c036b
MK
1730 regcache_raw_supply (regcache, i, buf);
1731 }
1732 }
1733 }
1734 else
c906108c 1735 {
386c036b
MK
1736 /* Registers are 32-bit. Toss any sign-extension of the stack
1737 pointer. */
1738 sp &= 0xffffffffUL;
c906108c 1739
386c036b
MK
1740 /* Clear out the top half of the temporary buffer, and put the
1741 register value in the bottom half if we're in 64-bit mode. */
e6d4f032 1742 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
c906108c 1743 {
386c036b
MK
1744 memset (buf, 0, 4);
1745 offset = 4;
1746 }
c906108c 1747
386c036b
MK
1748 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1749 {
1750 if (regnum == i || regnum == -1)
1751 {
1752 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1753 buf + offset, 4);
42cdca6c
MK
1754
1755 /* Handle StackGhost. */
1756 if (i == SPARC_I7_REGNUM)
1757 {
e17a4113
UW
1758 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1759 ULONGEST i7;
42cdca6c 1760
e17a4113
UW
1761 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1762 store_unsigned_integer (buf + offset, 4, byte_order,
1763 i7 ^ wcookie);
42cdca6c
MK
1764 }
1765
386c036b
MK
1766 regcache_raw_supply (regcache, i, buf);
1767 }
c906108c
SS
1768 }
1769 }
c906108c 1770}
c906108c
SS
1771
1772void
386c036b
MK
1773sparc_collect_rwindow (const struct regcache *regcache,
1774 CORE_ADDR sp, int regnum)
c906108c 1775{
e17a4113
UW
1776 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1777 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
386c036b 1778 int offset = 0;
e1613aba 1779 gdb_byte buf[8];
386c036b 1780 int i;
5af923b0 1781
386c036b 1782 if (sp & 1)
5af923b0 1783 {
386c036b
MK
1784 /* Registers are 64-bit. */
1785 sp += BIAS;
c906108c 1786
386c036b
MK
1787 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1788 {
1789 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1790 {
1791 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1792
1793 /* Handle StackGhost. */
1794 if (i == SPARC_I7_REGNUM)
1795 {
e17a4113
UW
1796 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1797 ULONGEST i7;
f700a364 1798
e17a4113
UW
1799 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1800 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
f700a364
MK
1801 }
1802
386c036b
MK
1803 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1804 }
1805 }
5af923b0
MS
1806 }
1807 else
1808 {
386c036b
MK
1809 /* Registers are 32-bit. Toss any sign-extension of the stack
1810 pointer. */
1811 sp &= 0xffffffffUL;
1812
1813 /* Only use the bottom half if we're in 64-bit mode. */
e6d4f032 1814 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
386c036b
MK
1815 offset = 4;
1816
1817 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1818 {
1819 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1820 {
1821 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1822
1823 /* Handle StackGhost. */
1824 if (i == SPARC_I7_REGNUM)
1825 {
e17a4113
UW
1826 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1827 ULONGEST i7;
42cdca6c 1828
e17a4113
UW
1829 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1830 store_unsigned_integer (buf + offset, 4, byte_order,
1831 i7 ^ wcookie);
42cdca6c
MK
1832 }
1833
386c036b
MK
1834 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1835 buf + offset, 4);
1836 }
1837 }
5af923b0 1838 }
c906108c
SS
1839}
1840
386c036b
MK
1841/* Helper functions for dealing with register sets. */
1842
c906108c 1843void
386c036b
MK
1844sparc32_supply_gregset (const struct sparc_gregset *gregset,
1845 struct regcache *regcache,
1846 int regnum, const void *gregs)
c906108c 1847{
e1613aba 1848 const gdb_byte *regs = gregs;
22e74ef9 1849 gdb_byte zero[4] = { 0 };
386c036b 1850 int i;
5af923b0 1851
386c036b
MK
1852 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1853 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1854 regs + gregset->r_psr_offset);
c906108c 1855
386c036b
MK
1856 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1857 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1858 regs + gregset->r_pc_offset);
5af923b0 1859
386c036b
MK
1860 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1861 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1862 regs + gregset->r_npc_offset);
5af923b0 1863
386c036b
MK
1864 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1865 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1866 regs + gregset->r_y_offset);
5af923b0 1867
386c036b 1868 if (regnum == SPARC_G0_REGNUM || regnum == -1)
22e74ef9 1869 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
5af923b0 1870
386c036b 1871 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1872 {
386c036b
MK
1873 int offset = gregset->r_g1_offset;
1874
1875 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1876 {
1877 if (regnum == i || regnum == -1)
1878 regcache_raw_supply (regcache, i, regs + offset);
1879 offset += 4;
1880 }
c906108c 1881 }
386c036b
MK
1882
1883 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1884 {
386c036b
MK
1885 /* Not all of the register set variants include Locals and
1886 Inputs. For those that don't, we read them off the stack. */
1887 if (gregset->r_l0_offset == -1)
1888 {
1889 ULONGEST sp;
1890
1891 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1892 sparc_supply_rwindow (regcache, sp, regnum);
1893 }
1894 else
1895 {
1896 int offset = gregset->r_l0_offset;
1897
1898 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1899 {
1900 if (regnum == i || regnum == -1)
1901 regcache_raw_supply (regcache, i, regs + offset);
1902 offset += 4;
1903 }
1904 }
c906108c
SS
1905 }
1906}
1907
c5aa993b 1908void
386c036b
MK
1909sparc32_collect_gregset (const struct sparc_gregset *gregset,
1910 const struct regcache *regcache,
1911 int regnum, void *gregs)
c906108c 1912{
e1613aba 1913 gdb_byte *regs = gregs;
386c036b 1914 int i;
c5aa993b 1915
386c036b
MK
1916 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1917 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1918 regs + gregset->r_psr_offset);
60054393 1919
386c036b
MK
1920 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1921 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1922 regs + gregset->r_pc_offset);
1923
1924 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1925 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1926 regs + gregset->r_npc_offset);
5af923b0 1927
386c036b
MK
1928 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1929 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1930 regs + gregset->r_y_offset);
1931
1932 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1933 {
386c036b
MK
1934 int offset = gregset->r_g1_offset;
1935
1936 /* %g0 is always zero. */
1937 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1938 {
1939 if (regnum == i || regnum == -1)
1940 regcache_raw_collect (regcache, i, regs + offset);
1941 offset += 4;
1942 }
5af923b0 1943 }
386c036b
MK
1944
1945 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1946 {
386c036b
MK
1947 /* Not all of the register set variants include Locals and
1948 Inputs. For those that don't, we read them off the stack. */
1949 if (gregset->r_l0_offset != -1)
1950 {
1951 int offset = gregset->r_l0_offset;
1952
1953 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1954 {
1955 if (regnum == i || regnum == -1)
1956 regcache_raw_collect (regcache, i, regs + offset);
1957 offset += 4;
1958 }
1959 }
5af923b0 1960 }
c906108c
SS
1961}
1962
c906108c 1963void
db75c717
DM
1964sparc32_supply_fpregset (const struct sparc_fpregset *fpregset,
1965 struct regcache *regcache,
386c036b 1966 int regnum, const void *fpregs)
c906108c 1967{
e1613aba 1968 const gdb_byte *regs = fpregs;
386c036b 1969 int i;
60054393 1970
386c036b 1971 for (i = 0; i < 32; i++)
c906108c 1972 {
386c036b 1973 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717
DM
1974 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
1975 regs + fpregset->r_f0_offset + (i * 4));
c906108c 1976 }
5af923b0 1977
386c036b 1978 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717
DM
1979 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1980 regs + fpregset->r_fsr_offset);
c906108c
SS
1981}
1982
386c036b 1983void
db75c717
DM
1984sparc32_collect_fpregset (const struct sparc_fpregset *fpregset,
1985 const struct regcache *regcache,
386c036b 1986 int regnum, void *fpregs)
c906108c 1987{
e1613aba 1988 gdb_byte *regs = fpregs;
386c036b 1989 int i;
c906108c 1990
386c036b
MK
1991 for (i = 0; i < 32; i++)
1992 {
1993 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
db75c717
DM
1994 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
1995 regs + fpregset->r_f0_offset + (i * 4));
386c036b 1996 }
c906108c 1997
386c036b 1998 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
db75c717
DM
1999 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2000 regs + fpregset->r_fsr_offset);
c906108c 2001}
c906108c 2002\f
c906108c 2003
386c036b 2004/* SunOS 4. */
c906108c 2005
386c036b
MK
2006/* From <machine/reg.h>. */
2007const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 2008{
386c036b
MK
2009 0 * 4, /* %psr */
2010 1 * 4, /* %pc */
2011 2 * 4, /* %npc */
2012 3 * 4, /* %y */
2013 -1, /* %wim */
2014 -1, /* %tbr */
2015 4 * 4, /* %g1 */
2016 -1 /* %l0 */
2017};
db75c717
DM
2018
2019const struct sparc_fpregset sparc32_sunos4_fpregset =
2020{
2021 0 * 4, /* %f0 */
2022 33 * 4, /* %fsr */
2023};
2024
2025const struct sparc_fpregset sparc32_bsd_fpregset =
2026{
2027 0 * 4, /* %f0 */
2028 32 * 4, /* %fsr */
2029};
386c036b 2030\f
c906108c 2031
386c036b
MK
2032/* Provide a prototype to silence -Wmissing-prototypes. */
2033void _initialize_sparc_tdep (void);
c906108c
SS
2034
2035void
386c036b 2036_initialize_sparc_tdep (void)
c906108c 2037{
386c036b 2038 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
ef3cf062 2039}
This page took 2.82138 seconds and 4 git commands to generate.