Move 2006 ChangeLog entries to ChangeLog-2006.
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
CommitLineData
386c036b 1/* Target-dependent code for SPARC.
cda5a58a 2
0a8f48b9 3 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
197e01b6
EZ
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
c906108c 21
c906108c 22#include "defs.h"
5af923b0 23#include "arch-utils.h"
386c036b 24#include "dis-asm.h"
f5a9b87d 25#include "dwarf2-frame.h"
386c036b 26#include "floatformat.h"
c906108c 27#include "frame.h"
386c036b
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "gdbcore.h"
31#include "gdbtypes.h"
c906108c 32#include "inferior.h"
386c036b
MK
33#include "symtab.h"
34#include "objfiles.h"
35#include "osabi.h"
36#include "regcache.h"
c906108c
SS
37#include "target.h"
38#include "value.h"
c906108c 39
43bd9a9e 40#include "gdb_assert.h"
386c036b 41#include "gdb_string.h"
c906108c 42
386c036b 43#include "sparc-tdep.h"
c906108c 44
a54124c5
MK
45struct regset;
46
9eb42ed1
MK
47/* This file implements the SPARC 32-bit ABI as defined by the section
48 "Low-Level System Information" of the SPARC Compliance Definition
49 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
f2e7c15d 50 lists changes with respect to the original 32-bit psABI as defined
9eb42ed1 51 in the "System V ABI, SPARC Processor Supplement".
386c036b
MK
52
53 Note that if we talk about SunOS, we mean SunOS 4.x, which was
54 BSD-based, which is sometimes (retroactively?) referred to as
55 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
56 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
57 suffering from severe version number inflation). Solaris 2.x is
58 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 2.x is SVR4-based. */
60
61/* Please use the sparc32_-prefix for 32-bit specific code, the
62 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
63 code that can handle both. The 64-bit specific code lives in
64 sparc64-tdep.c; don't add any here. */
65
66/* The SPARC Floating-Point Quad-Precision format is similar to
67 big-endian IA-64 Quad-recision format. */
68#define floatformat_sparc_quad floatformat_ia64_quad_big
69
70/* The stack pointer is offset from the stack frame by a BIAS of 2047
71 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
72 hosts, so undefine it first. */
73#undef BIAS
74#define BIAS 2047
75
76/* Macros to extract fields from SPARC instructions. */
c906108c
SS
77#define X_OP(i) (((i) >> 30) & 0x3)
78#define X_RD(i) (((i) >> 25) & 0x1f)
79#define X_A(i) (((i) >> 29) & 1)
80#define X_COND(i) (((i) >> 25) & 0xf)
81#define X_OP2(i) (((i) >> 22) & 0x7)
82#define X_IMM22(i) ((i) & 0x3fffff)
83#define X_OP3(i) (((i) >> 19) & 0x3f)
075ccec8 84#define X_RS1(i) (((i) >> 14) & 0x1f)
c906108c 85#define X_I(i) (((i) >> 13) & 1)
c906108c 86/* Sign extension macros. */
c906108c 87#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
c906108c 88#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
075ccec8 89#define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
c906108c 90
386c036b
MK
91/* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
93
94unsigned long
95sparc_fetch_instruction (CORE_ADDR pc)
c906108c 96{
e1613aba 97 gdb_byte buf[4];
386c036b
MK
98 unsigned long insn;
99 int i;
100
690668cc 101 /* If we can't read the instruction at PC, return zero. */
b5bf31df 102 if (read_memory_nobpt (pc, buf, sizeof (buf)))
690668cc 103 return 0;
c906108c 104
386c036b
MK
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
109}
42cdca6c
MK
110\f
111
5465445a
JB
112/* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
114
115static int
116sparc_is_unimp_insn (CORE_ADDR pc)
117{
118 const unsigned long insn = sparc_fetch_instruction (pc);
119
120 return ((insn & 0xc1c00000) == 0);
121}
122
42cdca6c
MK
123/* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
129
130 The same website provides the following description of how
131 StackGhost works:
132
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
142
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
145
146 More information on StackGuard can be found on in:
147
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
151
152/* Fetch StackGhost Per-Process XOR cookie. */
153
154ULONGEST
155sparc_fetch_wcookie (void)
156{
baf92889 157 struct target_ops *ops = &current_target;
e1613aba 158 gdb_byte buf[8];
baf92889
MK
159 int len;
160
13547ab6 161 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
baf92889
MK
162 if (len == -1)
163 return 0;
42cdca6c 164
baf92889
MK
165 /* We should have either an 32-bit or an 64-bit cookie. */
166 gdb_assert (len == 4 || len == 8);
167
168 return extract_unsigned_integer (buf, len);
169}
386c036b 170\f
baf92889 171
386c036b 172/* Return the contents if register REGNUM as an address. */
c906108c 173
c893be75 174CORE_ADDR
386c036b
MK
175sparc_address_from_register (int regnum)
176{
177 ULONGEST addr;
c906108c 178
386c036b
MK
179 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
180 return addr;
181}
182\f
c906108c 183
386c036b
MK
184/* The functions on this page are intended to be used to classify
185 function arguments. */
c906108c 186
386c036b 187/* Check whether TYPE is "Integral or Pointer". */
c906108c 188
386c036b
MK
189static int
190sparc_integral_or_pointer_p (const struct type *type)
c906108c 191{
80ad1639
MK
192 int len = TYPE_LENGTH (type);
193
386c036b 194 switch (TYPE_CODE (type))
c906108c 195 {
386c036b
MK
196 case TYPE_CODE_INT:
197 case TYPE_CODE_BOOL:
198 case TYPE_CODE_CHAR:
199 case TYPE_CODE_ENUM:
200 case TYPE_CODE_RANGE:
80ad1639
MK
201 /* We have byte, half-word, word and extended-word/doubleword
202 integral types. The doubleword is an extension to the
203 original 32-bit ABI by the SCD 2.4.x. */
204 return (len == 1 || len == 2 || len == 4 || len == 8);
386c036b
MK
205 case TYPE_CODE_PTR:
206 case TYPE_CODE_REF:
80ad1639
MK
207 /* Allow either 32-bit or 64-bit pointers. */
208 return (len == 4 || len == 8);
386c036b
MK
209 default:
210 break;
211 }
c906108c 212
386c036b
MK
213 return 0;
214}
c906108c 215
386c036b 216/* Check whether TYPE is "Floating". */
c906108c 217
386c036b
MK
218static int
219sparc_floating_p (const struct type *type)
220{
221 switch (TYPE_CODE (type))
c906108c 222 {
386c036b
MK
223 case TYPE_CODE_FLT:
224 {
225 int len = TYPE_LENGTH (type);
226 return (len == 4 || len == 8 || len == 16);
227 }
228 default:
229 break;
230 }
231
232 return 0;
233}
c906108c 234
386c036b 235/* Check whether TYPE is "Structure or Union". */
c906108c 236
386c036b
MK
237static int
238sparc_structure_or_union_p (const struct type *type)
239{
240 switch (TYPE_CODE (type))
241 {
242 case TYPE_CODE_STRUCT:
243 case TYPE_CODE_UNION:
244 return 1;
245 default:
246 break;
c906108c 247 }
386c036b
MK
248
249 return 0;
c906108c 250}
386c036b
MK
251
252/* Register information. */
253
254static const char *sparc32_register_names[] =
5af923b0 255{
386c036b
MK
256 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
257 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
258 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
259 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
260
261 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
262 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
263 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
264 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
265
266 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
5af923b0
MS
267};
268
386c036b
MK
269/* Total number of registers. */
270#define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
c906108c 271
386c036b
MK
272/* We provide the aliases %d0..%d30 for the floating registers as
273 "psuedo" registers. */
274
275static const char *sparc32_pseudo_register_names[] =
276{
277 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
278 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
279};
280
281/* Total number of pseudo registers. */
282#define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
283
284/* Return the name of register REGNUM. */
285
286static const char *
287sparc32_register_name (int regnum)
288{
289 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
290 return sparc32_register_names[regnum];
291
292 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
293 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
294
295 return NULL;
296}
2d457077
MK
297\f
298
299/* Type for %psr. */
300struct type *sparc_psr_type;
301
302/* Type for %fsr. */
303struct type *sparc_fsr_type;
304
305/* Construct types for ISA-specific registers. */
306
307static void
308sparc_init_types (void)
309{
310 struct type *type;
311
312 type = init_flags_type ("builtin_type_sparc_psr", 4);
313 append_flags_type_flag (type, 5, "ET");
314 append_flags_type_flag (type, 6, "PS");
315 append_flags_type_flag (type, 7, "S");
316 append_flags_type_flag (type, 12, "EF");
317 append_flags_type_flag (type, 13, "EC");
318 sparc_psr_type = type;
319
320 type = init_flags_type ("builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
337 sparc_fsr_type = type;
338}
386c036b
MK
339
340/* Return the GDB type object for the "standard" data type of data in
341 register REGNUM. */
342
343static struct type *
344sparc32_register_type (struct gdbarch *gdbarch, int regnum)
345{
346 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
347 return builtin_type_float;
348
349 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
350 return builtin_type_double;
351
352 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
353 return builtin_type_void_data_ptr;
354
355 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
356 return builtin_type_void_func_ptr;
357
2d457077
MK
358 if (regnum == SPARC32_PSR_REGNUM)
359 return sparc_psr_type;
360
361 if (regnum == SPARC32_FSR_REGNUM)
362 return sparc_fsr_type;
363
386c036b
MK
364 return builtin_type_int32;
365}
366
367static void
368sparc32_pseudo_register_read (struct gdbarch *gdbarch,
369 struct regcache *regcache,
e1613aba 370 int regnum, gdb_byte *buf)
386c036b
MK
371{
372 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
373
374 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
375 regcache_raw_read (regcache, regnum, buf);
e1613aba 376 regcache_raw_read (regcache, regnum + 1, buf + 4);
386c036b
MK
377}
378
379static void
380sparc32_pseudo_register_write (struct gdbarch *gdbarch,
381 struct regcache *regcache,
e1613aba 382 int regnum, const gdb_byte *buf)
386c036b
MK
383{
384 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
385
386 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
387 regcache_raw_write (regcache, regnum, buf);
e1613aba 388 regcache_raw_write (regcache, regnum + 1, buf + 4);
386c036b
MK
389}
390\f
391
392static CORE_ADDR
393sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
394 CORE_ADDR funcaddr, int using_gcc,
395 struct value **args, int nargs,
396 struct type *value_type,
397 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
c906108c 398{
386c036b
MK
399 *bp_addr = sp - 4;
400 *real_pc = funcaddr;
401
402 if (using_struct_return (value_type, using_gcc))
c906108c 403 {
e1613aba 404 gdb_byte buf[4];
386c036b
MK
405
406 /* This is an UNIMP instruction. */
407 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
408 write_memory (sp - 8, buf, 4);
409 return sp - 8;
c906108c
SS
410 }
411
386c036b
MK
412 return sp - 4;
413}
414
415static CORE_ADDR
416sparc32_store_arguments (struct regcache *regcache, int nargs,
417 struct value **args, CORE_ADDR sp,
418 int struct_return, CORE_ADDR struct_addr)
419{
420 /* Number of words in the "parameter array". */
421 int num_elements = 0;
422 int element = 0;
423 int i;
424
425 for (i = 0; i < nargs; i++)
c906108c 426 {
4991999e 427 struct type *type = value_type (args[i]);
386c036b
MK
428 int len = TYPE_LENGTH (type);
429
430 if (sparc_structure_or_union_p (type)
431 || (sparc_floating_p (type) && len == 16))
c906108c 432 {
386c036b
MK
433 /* Structure, Union and Quad-Precision Arguments. */
434 sp -= len;
435
436 /* Use doubleword alignment for these values. That's always
437 correct, and wasting a few bytes shouldn't be a problem. */
438 sp &= ~0x7;
439
0fd88904 440 write_memory (sp, value_contents (args[i]), len);
386c036b
MK
441 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
442 num_elements++;
443 }
444 else if (sparc_floating_p (type))
445 {
446 /* Floating arguments. */
447 gdb_assert (len == 4 || len == 8);
448 num_elements += (len / 4);
c906108c 449 }
c5aa993b
JM
450 else
451 {
386c036b
MK
452 /* Integral and pointer arguments. */
453 gdb_assert (sparc_integral_or_pointer_p (type));
454
455 if (len < 4)
456 args[i] = value_cast (builtin_type_int32, args[i]);
457 num_elements += ((len + 3) / 4);
c5aa993b 458 }
c906108c 459 }
c906108c 460
386c036b
MK
461 /* Always allocate at least six words. */
462 sp -= max (6, num_elements) * 4;
c906108c 463
386c036b
MK
464 /* The psABI says that "Software convention requires space for the
465 struct/union return value pointer, even if the word is unused." */
466 sp -= 4;
c906108c 467
386c036b
MK
468 /* The psABI says that "Although software convention and the
469 operating system require every stack frame to be doubleword
470 aligned." */
471 sp &= ~0x7;
c906108c 472
386c036b 473 for (i = 0; i < nargs; i++)
c906108c 474 {
0fd88904 475 const bfd_byte *valbuf = value_contents (args[i]);
4991999e 476 struct type *type = value_type (args[i]);
386c036b 477 int len = TYPE_LENGTH (type);
c906108c 478
386c036b 479 gdb_assert (len == 4 || len == 8);
c906108c 480
386c036b
MK
481 if (element < 6)
482 {
483 int regnum = SPARC_O0_REGNUM + element;
c906108c 484
386c036b
MK
485 regcache_cooked_write (regcache, regnum, valbuf);
486 if (len > 4 && element < 5)
487 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
488 }
5af923b0 489
386c036b
MK
490 /* Always store the argument in memory. */
491 write_memory (sp + 4 + element * 4, valbuf, len);
492 element += len / 4;
493 }
c906108c 494
386c036b 495 gdb_assert (element == num_elements);
c906108c 496
386c036b 497 if (struct_return)
c906108c 498 {
e1613aba 499 gdb_byte buf[4];
c906108c 500
386c036b
MK
501 store_unsigned_integer (buf, 4, struct_addr);
502 write_memory (sp, buf, 4);
503 }
c906108c 504
386c036b 505 return sp;
c906108c
SS
506}
507
386c036b 508static CORE_ADDR
7d9b040b 509sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
386c036b
MK
510 struct regcache *regcache, CORE_ADDR bp_addr,
511 int nargs, struct value **args, CORE_ADDR sp,
512 int struct_return, CORE_ADDR struct_addr)
c906108c 513{
386c036b
MK
514 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
515
516 /* Set return address. */
517 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
518
519 /* Set up function arguments. */
520 sp = sparc32_store_arguments (regcache, nargs, args, sp,
521 struct_return, struct_addr);
522
523 /* Allocate the 16-word window save area. */
524 sp -= 16 * 4;
c906108c 525
386c036b
MK
526 /* Stack should be doubleword aligned at this point. */
527 gdb_assert (sp % 8 == 0);
c906108c 528
386c036b
MK
529 /* Finally, update the stack pointer. */
530 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
531
532 return sp;
533}
534\f
c906108c 535
386c036b
MK
536/* Use the program counter to determine the contents and size of a
537 breakpoint instruction. Return a pointer to a string of bytes that
538 encode a breakpoint instruction, store the length of the string in
539 *LEN and optionally adjust *PC to point to the correct memory
540 location for inserting the breakpoint. */
541
e1613aba 542static const gdb_byte *
386c036b
MK
543sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
544{
864a1a37 545 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
c5aa993b 546
386c036b
MK
547 *len = sizeof (break_insn);
548 return break_insn;
c906108c 549}
386c036b 550\f
c906108c 551
386c036b 552/* Allocate and initialize a frame cache. */
c906108c 553
386c036b
MK
554static struct sparc_frame_cache *
555sparc_alloc_frame_cache (void)
556{
557 struct sparc_frame_cache *cache;
558 int i;
c906108c 559
386c036b 560 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
c906108c 561
386c036b
MK
562 /* Base address. */
563 cache->base = 0;
564 cache->pc = 0;
c906108c 565
386c036b
MK
566 /* Frameless until proven otherwise. */
567 cache->frameless_p = 1;
568
569 cache->struct_return_p = 0;
570
571 return cache;
572}
573
574CORE_ADDR
575sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
576 struct sparc_frame_cache *cache)
c906108c 577{
386c036b
MK
578 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
579 unsigned long insn;
580 int offset = 0;
c906108c 581 int dest = -1;
c906108c 582
386c036b
MK
583 if (current_pc <= pc)
584 return current_pc;
585
586 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
587 SPARC the linker usually defines a symbol (typically
588 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
589 This symbol makes us end up here with PC pointing at the start of
590 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
591 would do our normal prologue analysis, we would probably conclude
592 that we've got a frame when in reality we don't, since the
593 dynamic linker patches up the first PLT with some code that
594 starts with a SAVE instruction. Patch up PC such that it points
595 at the start of our PLT entry. */
596 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
597 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
c906108c 598
386c036b
MK
599 insn = sparc_fetch_instruction (pc);
600
601 /* Recognize a SETHI insn and record its destination. */
602 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
c906108c
SS
603 {
604 dest = X_RD (insn);
386c036b
MK
605 offset += 4;
606
607 insn = sparc_fetch_instruction (pc + 4);
c906108c
SS
608 }
609
386c036b
MK
610 /* Allow for an arithmetic operation on DEST or %g1. */
611 if (X_OP (insn) == 2 && X_I (insn)
c906108c
SS
612 && (X_RD (insn) == 1 || X_RD (insn) == dest))
613 {
386c036b 614 offset += 4;
c906108c 615
386c036b 616 insn = sparc_fetch_instruction (pc + 8);
c906108c 617 }
c906108c 618
386c036b
MK
619 /* Check for the SAVE instruction that sets up the frame. */
620 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
c906108c 621 {
386c036b
MK
622 cache->frameless_p = 0;
623 return pc + offset + 4;
c906108c
SS
624 }
625
626 return pc;
627}
628
386c036b
MK
629static CORE_ADDR
630sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
631{
632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
633 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
634}
635
636/* Return PC of first real instruction of the function starting at
637 START_PC. */
f510d44e 638
386c036b
MK
639static CORE_ADDR
640sparc32_skip_prologue (CORE_ADDR start_pc)
c906108c 641{
f510d44e
DM
642 struct symtab_and_line sal;
643 CORE_ADDR func_start, func_end;
386c036b 644 struct sparc_frame_cache cache;
f510d44e
DM
645
646 /* This is the preferred method, find the end of the prologue by
647 using the debugging information. */
648 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
649 {
650 sal = find_pc_line (func_start, 0);
651
652 if (sal.end < func_end
653 && start_pc <= sal.end)
654 return sal.end;
655 }
656
075ccec8
MK
657 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
658
659 /* The psABI says that "Although the first 6 words of arguments
660 reside in registers, the standard stack frame reserves space for
661 them.". It also suggests that a function may use that space to
662 "write incoming arguments 0 to 5" into that space, and that's
663 indeed what GCC seems to be doing. In that case GCC will
664 generate debug information that points to the stack slots instead
665 of the registers, so we should consider the instructions that
666 write out these incoming arguments onto the stack. Of course we
667 only need to do this if we have a stack frame. */
668
669 while (!cache.frameless_p)
670 {
671 unsigned long insn = sparc_fetch_instruction (start_pc);
672
673 /* Recognize instructions that store incoming arguments in
674 %i0...%i5 into the corresponding stack slot. */
675 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
676 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
677 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
678 {
679 start_pc += 4;
680 continue;
681 }
682
683 break;
684 }
685
686 return start_pc;
c906108c
SS
687}
688
386c036b 689/* Normal frames. */
9319a2fe 690
386c036b
MK
691struct sparc_frame_cache *
692sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
9319a2fe 693{
386c036b 694 struct sparc_frame_cache *cache;
9319a2fe 695
386c036b
MK
696 if (*this_cache)
697 return *this_cache;
c906108c 698
386c036b
MK
699 cache = sparc_alloc_frame_cache ();
700 *this_cache = cache;
c906108c 701
386c036b
MK
702 cache->pc = frame_func_unwind (next_frame);
703 if (cache->pc != 0)
c906108c 704 {
386c036b
MK
705 CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
706 sparc_analyze_prologue (cache->pc, addr_in_block, cache);
c906108c 707 }
386c036b
MK
708
709 if (cache->frameless_p)
c906108c 710 {
cbeae229
MK
711 /* This function is frameless, so %fp (%i6) holds the frame
712 pointer for our calling frame. Use %sp (%o6) as this frame's
713 base address. */
714 cache->base =
715 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
716 }
717 else
718 {
719 /* For normal frames, %fp (%i6) holds the frame pointer, the
720 base address for the current stack frame. */
721 cache->base =
722 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
c906108c 723 }
c906108c 724
5b2d44a0
MK
725 if (cache->base & 1)
726 cache->base += BIAS;
727
386c036b 728 return cache;
c906108c 729}
c906108c 730
aff37fc1
DM
731static int
732sparc32_struct_return_from_sym (struct symbol *sym)
733{
734 struct type *type = check_typedef (SYMBOL_TYPE (sym));
735 enum type_code code = TYPE_CODE (type);
736
737 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
738 {
739 type = check_typedef (TYPE_TARGET_TYPE (type));
740 if (sparc_structure_or_union_p (type)
741 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
742 return 1;
743 }
744
745 return 0;
746}
747
386c036b
MK
748struct sparc_frame_cache *
749sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 750{
386c036b
MK
751 struct sparc_frame_cache *cache;
752 struct symbol *sym;
c906108c 753
386c036b
MK
754 if (*this_cache)
755 return *this_cache;
c906108c 756
386c036b 757 cache = sparc_frame_cache (next_frame, this_cache);
c906108c 758
386c036b
MK
759 sym = find_pc_function (cache->pc);
760 if (sym)
c906108c 761 {
aff37fc1 762 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
c906108c 763 }
5465445a
JB
764 else
765 {
766 /* There is no debugging information for this function to
767 help us determine whether this function returns a struct
768 or not. So we rely on another heuristic which is to check
769 the instruction at the return address and see if this is
770 an "unimp" instruction. If it is, then it is a struct-return
771 function. */
772 CORE_ADDR pc;
773 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
774
775 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
776 if (sparc_is_unimp_insn (pc))
777 cache->struct_return_p = 1;
778 }
c906108c 779
386c036b
MK
780 return cache;
781}
782
783static void
784sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
785 struct frame_id *this_id)
786{
787 struct sparc_frame_cache *cache =
788 sparc32_frame_cache (next_frame, this_cache);
789
790 /* This marks the outermost frame. */
791 if (cache->base == 0)
792 return;
793
794 (*this_id) = frame_id_build (cache->base, cache->pc);
795}
c906108c 796
386c036b
MK
797static void
798sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
799 int regnum, int *optimizedp,
800 enum lval_type *lvalp, CORE_ADDR *addrp,
47ef841b 801 int *realnump, gdb_byte *valuep)
386c036b
MK
802{
803 struct sparc_frame_cache *cache =
804 sparc32_frame_cache (next_frame, this_cache);
c906108c 805
386c036b 806 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
c906108c 807 {
386c036b
MK
808 *optimizedp = 0;
809 *lvalp = not_lval;
810 *addrp = 0;
811 *realnump = -1;
812 if (valuep)
c906108c 813 {
386c036b
MK
814 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
815
816 /* If this functions has a Structure, Union or
817 Quad-Precision return value, we have to skip the UNIMP
818 instruction that encodes the size of the structure. */
819 if (cache->struct_return_p)
820 pc += 4;
821
822 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
823 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
824 store_unsigned_integer (valuep, 4, pc);
c906108c 825 }
c906108c
SS
826 return;
827 }
828
42cdca6c
MK
829 /* Handle StackGhost. */
830 {
831 ULONGEST wcookie = sparc_fetch_wcookie ();
832
833 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
834 {
835 *optimizedp = 0;
836 *lvalp = not_lval;
837 *addrp = 0;
838 *realnump = -1;
839 if (valuep)
840 {
841 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
7d34766b 842 ULONGEST i7;
42cdca6c
MK
843
844 /* Read the value in from memory. */
7d34766b
MK
845 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
846 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
42cdca6c
MK
847 }
848 return;
849 }
850 }
851
386c036b
MK
852 /* The previous frame's `local' and `in' registers have been saved
853 in the register save area. */
854 if (!cache->frameless_p
855 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
c906108c 856 {
386c036b
MK
857 *optimizedp = 0;
858 *lvalp = lval_memory;
859 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
860 *realnump = -1;
861 if (valuep)
c906108c 862 {
386c036b
MK
863 struct gdbarch *gdbarch = get_frame_arch (next_frame);
864
865 /* Read the value in from memory. */
866 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
c906108c 867 }
386c036b
MK
868 return;
869 }
c906108c 870
386c036b
MK
871 /* The previous frame's `out' registers are accessable as the
872 current frame's `in' registers. */
873 if (!cache->frameless_p
874 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
875 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
5af923b0 876
00b25ff3
AC
877 *optimizedp = 0;
878 *lvalp = lval_register;
879 *addrp = 0;
880 *realnump = regnum;
881 if (valuep)
882 frame_unwind_register (next_frame, (*realnump), valuep);
386c036b 883}
c906108c 884
386c036b
MK
885static const struct frame_unwind sparc32_frame_unwind =
886{
887 NORMAL_FRAME,
888 sparc32_frame_this_id,
889 sparc32_frame_prev_register
890};
891
892static const struct frame_unwind *
893sparc32_frame_sniffer (struct frame_info *next_frame)
894{
895 return &sparc32_frame_unwind;
c906108c 896}
386c036b 897\f
c906108c 898
386c036b
MK
899static CORE_ADDR
900sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
901{
902 struct sparc_frame_cache *cache =
903 sparc32_frame_cache (next_frame, this_cache);
c906108c 904
386c036b
MK
905 return cache->base;
906}
c906108c 907
386c036b
MK
908static const struct frame_base sparc32_frame_base =
909{
910 &sparc32_frame_unwind,
911 sparc32_frame_base_address,
912 sparc32_frame_base_address,
913 sparc32_frame_base_address
914};
c906108c 915
386c036b
MK
916static struct frame_id
917sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
918{
919 CORE_ADDR sp;
5af923b0 920
386c036b 921 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
5b2d44a0
MK
922 if (sp & 1)
923 sp += BIAS;
386c036b
MK
924 return frame_id_build (sp, frame_pc_unwind (next_frame));
925}
926\f
c906108c 927
386c036b
MK
928/* Extract from an array REGBUF containing the (raw) register state, a
929 function return value of TYPE, and copy that into VALBUF. */
5af923b0 930
386c036b
MK
931static void
932sparc32_extract_return_value (struct type *type, struct regcache *regcache,
e1613aba 933 gdb_byte *valbuf)
386c036b
MK
934{
935 int len = TYPE_LENGTH (type);
e1613aba 936 gdb_byte buf[8];
c906108c 937
386c036b
MK
938 gdb_assert (!sparc_structure_or_union_p (type));
939 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 940
386c036b 941 if (sparc_floating_p (type))
5af923b0 942 {
386c036b
MK
943 /* Floating return values. */
944 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
945 if (len > 4)
946 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
947 memcpy (valbuf, buf, len);
5af923b0
MS
948 }
949 else
950 {
386c036b
MK
951 /* Integral and pointer return values. */
952 gdb_assert (sparc_integral_or_pointer_p (type));
c906108c 953
386c036b
MK
954 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
955 if (len > 4)
956 {
957 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
958 gdb_assert (len == 8);
959 memcpy (valbuf, buf, 8);
960 }
961 else
962 {
963 /* Just stripping off any unused bytes should preserve the
964 signed-ness just fine. */
965 memcpy (valbuf, buf + 4 - len, len);
966 }
967 }
968}
c906108c 969
386c036b
MK
970/* Write into the appropriate registers a function return value stored
971 in VALBUF of type TYPE. */
c906108c 972
386c036b
MK
973static void
974sparc32_store_return_value (struct type *type, struct regcache *regcache,
e1613aba 975 const gdb_byte *valbuf)
386c036b
MK
976{
977 int len = TYPE_LENGTH (type);
e1613aba 978 gdb_byte buf[8];
c906108c 979
386c036b
MK
980 gdb_assert (!sparc_structure_or_union_p (type));
981 gdb_assert (!(sparc_floating_p (type) && len == 16));
c906108c 982
386c036b
MK
983 if (sparc_floating_p (type))
984 {
985 /* Floating return values. */
986 memcpy (buf, valbuf, len);
987 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
988 if (len > 4)
989 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
990 }
991 else
c906108c 992 {
386c036b
MK
993 /* Integral and pointer return values. */
994 gdb_assert (sparc_integral_or_pointer_p (type));
995
996 if (len > 4)
2757dd86 997 {
386c036b
MK
998 gdb_assert (len == 8);
999 memcpy (buf, valbuf, 8);
1000 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
2757dd86
AC
1001 }
1002 else
1003 {
386c036b
MK
1004 /* ??? Do we need to do any sign-extension here? */
1005 memcpy (buf + 4 - len, valbuf, len);
2757dd86 1006 }
386c036b 1007 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
c906108c
SS
1008 }
1009}
1010
b9d4c5ed
MK
1011static enum return_value_convention
1012sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
e1613aba
MK
1013 struct regcache *regcache, gdb_byte *readbuf,
1014 const gdb_byte *writebuf)
b9d4c5ed 1015{
0a8f48b9
MK
1016 /* The psABI says that "...every stack frame reserves the word at
1017 %fp+64. If a function returns a structure, union, or
1018 quad-precision value, this word should hold the address of the
1019 object into which the return value should be copied." This
1020 guarantees that we can always find the return value, not just
1021 before the function returns. */
1022
b9d4c5ed
MK
1023 if (sparc_structure_or_union_p (type)
1024 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
0a8f48b9
MK
1025 {
1026 if (readbuf)
1027 {
1028 ULONGEST sp;
1029 CORE_ADDR addr;
1030
1031 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1032 addr = read_memory_unsigned_integer (sp + 64, 4);
1033 read_memory (addr, readbuf, TYPE_LENGTH (type));
1034 }
1035
1036 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1037 }
b9d4c5ed
MK
1038
1039 if (readbuf)
1040 sparc32_extract_return_value (type, regcache, readbuf);
1041 if (writebuf)
1042 sparc32_store_return_value (type, regcache, writebuf);
1043
1044 return RETURN_VALUE_REGISTER_CONVENTION;
1045}
1046
386c036b
MK
1047static int
1048sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
c906108c 1049{
386c036b
MK
1050 return (sparc_structure_or_union_p (type)
1051 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1052}
c906108c 1053
aff37fc1
DM
1054static int
1055sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1056{
1057 CORE_ADDR pc = frame_unwind_address_in_block (next_frame);
1058 struct symbol *sym = find_pc_function (pc);
1059
1060 if (sym)
1061 return sparc32_struct_return_from_sym (sym);
1062 return 0;
1063}
1064
f5a9b87d
DM
1065static void
1066sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
1067 struct dwarf2_frame_state_reg *reg,
1068 struct frame_info *next_frame)
f5a9b87d 1069{
aff37fc1
DM
1070 int off;
1071
f5a9b87d
DM
1072 switch (regnum)
1073 {
1074 case SPARC_G0_REGNUM:
1075 /* Since %g0 is always zero, there is no point in saving it, and
1076 people will be inclined omit it from the CFI. Make sure we
1077 don't warn about that. */
1078 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1079 break;
1080 case SPARC_SP_REGNUM:
1081 reg->how = DWARF2_FRAME_REG_CFA;
1082 break;
1083 case SPARC32_PC_REGNUM:
f5a9b87d
DM
1084 case SPARC32_NPC_REGNUM:
1085 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
aff37fc1
DM
1086 off = 8;
1087 if (sparc32_dwarf2_struct_return_p (next_frame))
1088 off += 4;
1089 if (regnum == SPARC32_NPC_REGNUM)
1090 off += 4;
1091 reg->loc.offset = off;
f5a9b87d
DM
1092 break;
1093 }
1094}
1095
386c036b
MK
1096\f
1097/* The SPARC Architecture doesn't have hardware single-step support,
1098 and most operating systems don't implement it either, so we provide
1099 software single-step mechanism. */
c906108c 1100
386c036b 1101static CORE_ADDR
c893be75
MK
1102sparc_analyze_control_transfer (struct gdbarch *arch,
1103 CORE_ADDR pc, CORE_ADDR *npc)
386c036b
MK
1104{
1105 unsigned long insn = sparc_fetch_instruction (pc);
1106 int conditional_p = X_COND (insn) & 0x7;
1107 int branch_p = 0;
1108 long offset = 0; /* Must be signed for sign-extend. */
c906108c 1109
386c036b 1110 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
c906108c 1111 {
386c036b
MK
1112 /* Branch on Integer Register with Prediction (BPr). */
1113 branch_p = 1;
1114 conditional_p = 1;
c906108c 1115 }
386c036b 1116 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
c906108c 1117 {
386c036b
MK
1118 /* Branch on Floating-Point Condition Codes (FBfcc). */
1119 branch_p = 1;
1120 offset = 4 * X_DISP22 (insn);
c906108c 1121 }
386c036b
MK
1122 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1123 {
1124 /* Branch on Floating-Point Condition Codes with Prediction
1125 (FBPfcc). */
1126 branch_p = 1;
1127 offset = 4 * X_DISP19 (insn);
1128 }
1129 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1130 {
1131 /* Branch on Integer Condition Codes (Bicc). */
1132 branch_p = 1;
1133 offset = 4 * X_DISP22 (insn);
1134 }
1135 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
c906108c 1136 {
386c036b
MK
1137 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1138 branch_p = 1;
1139 offset = 4 * X_DISP19 (insn);
c906108c 1140 }
c893be75
MK
1141 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1142 {
1143 /* Trap instruction (TRAP). */
1144 return gdbarch_tdep (arch)->step_trap (insn);
1145 }
386c036b
MK
1146
1147 /* FIXME: Handle DONE and RETRY instructions. */
1148
386c036b 1149 if (branch_p)
c906108c 1150 {
386c036b 1151 if (conditional_p)
c906108c 1152 {
386c036b
MK
1153 /* For conditional branches, return nPC + 4 iff the annul
1154 bit is 1. */
1155 return (X_A (insn) ? *npc + 4 : 0);
c906108c
SS
1156 }
1157 else
1158 {
386c036b
MK
1159 /* For unconditional branches, return the target if its
1160 specified condition is "always" and return nPC + 4 if the
1161 condition is "never". If the annul bit is 1, set *NPC to
1162 zero. */
1163 if (X_COND (insn) == 0x0)
1164 pc = *npc, offset = 4;
1165 if (X_A (insn))
1166 *npc = 0;
1167
1168 gdb_assert (offset != 0);
1169 return pc + offset;
c906108c
SS
1170 }
1171 }
386c036b
MK
1172
1173 return 0;
c906108c
SS
1174}
1175
c893be75
MK
1176static CORE_ADDR
1177sparc_step_trap (unsigned long insn)
1178{
1179 return 0;
1180}
1181
386c036b
MK
1182void
1183sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1184{
c893be75
MK
1185 struct gdbarch *arch = current_gdbarch;
1186 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
8181d85f 1187 CORE_ADDR npc, nnpc;
c906108c 1188
386c036b
MK
1189 if (insert_breakpoints_p)
1190 {
8c3900e4 1191 CORE_ADDR pc, orig_npc;
c906108c 1192
386c036b 1193 pc = sparc_address_from_register (tdep->pc_regnum);
8c3900e4 1194 orig_npc = npc = sparc_address_from_register (tdep->npc_regnum);
c906108c 1195
386c036b 1196 /* Analyze the instruction at PC. */
c893be75 1197 nnpc = sparc_analyze_control_transfer (arch, pc, &npc);
386c036b 1198 if (npc != 0)
8181d85f
DJ
1199 insert_single_step_breakpoint (npc);
1200
386c036b 1201 if (nnpc != 0)
8181d85f 1202 insert_single_step_breakpoint (nnpc);
c906108c 1203
386c036b 1204 /* Assert that we have set at least one breakpoint, and that
8c3900e4
DJ
1205 they're not set at the same spot - unless we're going
1206 from here straight to NULL, i.e. a call or jump to 0. */
1207 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1208 gdb_assert (nnpc != npc || orig_npc == 0);
60054393 1209 }
386c036b 1210 else
8181d85f 1211 remove_single_step_breakpoints ();
386c036b
MK
1212}
1213
1214static void
1215sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1216{
1217 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1218
1219 write_register_pid (tdep->pc_regnum, pc, ptid);
1220 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1221}
1222\f
1223/* Unglobalize NAME. */
1224
1225char *
1226sparc_stabs_unglobalize_name (char *name)
1227{
1228 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1229 SunPRO) convert file static variables into global values, a
1230 process known as globalization. In order to do this, the
1231 compiler will create a unique prefix and prepend it to each file
1232 static variable. For static variables within a function, this
1233 globalization prefix is followed by the function name (nested
1234 static variables within a function are supposed to generate a
1235 warning message, and are left alone). The procedure is
1236 documented in the Stabs Interface Manual, which is distrubuted
1237 with the compilers, although version 4.0 of the manual seems to
1238 be incorrect in some places, at least for SPARC. The
1239 globalization prefix is encoded into an N_OPT stab, with the form
1240 "G=<prefix>". The globalization prefix always seems to start
1241 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1242 simply strip everything up until the last dot. */
c906108c 1243
386c036b 1244 if (name[0] == '$')
c906108c 1245 {
386c036b
MK
1246 char *p = strrchr (name, '.');
1247 if (p)
1248 return p + 1;
c906108c 1249 }
c906108c 1250
386c036b
MK
1251 return name;
1252}
1253\f
5af923b0 1254
a54124c5
MK
1255/* Return the appropriate register set for the core section identified
1256 by SECT_NAME and SECT_SIZE. */
1257
1258const struct regset *
1259sparc_regset_from_core_section (struct gdbarch *gdbarch,
1260 const char *sect_name, size_t sect_size)
1261{
1262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1263
c558d81a 1264 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
a54124c5
MK
1265 return tdep->gregset;
1266
c558d81a 1267 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
a54124c5
MK
1268 return tdep->fpregset;
1269
1270 return NULL;
1271}
1272\f
1273
386c036b
MK
1274static struct gdbarch *
1275sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1276{
1277 struct gdbarch_tdep *tdep;
1278 struct gdbarch *gdbarch;
c906108c 1279
386c036b
MK
1280 /* If there is already a candidate, use it. */
1281 arches = gdbarch_list_lookup_by_info (arches, &info);
1282 if (arches != NULL)
1283 return arches->gdbarch;
c906108c 1284
386c036b
MK
1285 /* Allocate space for the new architecture. */
1286 tdep = XMALLOC (struct gdbarch_tdep);
1287 gdbarch = gdbarch_alloc (&info, tdep);
5af923b0 1288
386c036b
MK
1289 tdep->pc_regnum = SPARC32_PC_REGNUM;
1290 tdep->npc_regnum = SPARC32_NPC_REGNUM;
a54124c5 1291 tdep->gregset = NULL;
c558d81a 1292 tdep->sizeof_gregset = 0;
a54124c5 1293 tdep->fpregset = NULL;
c558d81a 1294 tdep->sizeof_fpregset = 0;
386c036b 1295 tdep->plt_entry_size = 0;
c893be75 1296 tdep->step_trap = sparc_step_trap;
386c036b
MK
1297
1298 set_gdbarch_long_double_bit (gdbarch, 128);
1299 set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad);
1300
1301 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1302 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1303 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1304 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1305 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1306 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1307
1308 /* Register numbers of various important registers. */
1309 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1310 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1311 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1312
1313 /* Call dummy code. */
1314 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1315 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1316 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1317
b9d4c5ed 1318 set_gdbarch_return_value (gdbarch, sparc32_return_value);
386c036b
MK
1319 set_gdbarch_stabs_argument_has_addr
1320 (gdbarch, sparc32_stabs_argument_has_addr);
1321
1322 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1323
1324 /* Stack grows downward. */
1325 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
c906108c 1326
386c036b 1327 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
c906108c 1328
386c036b 1329 set_gdbarch_frame_args_skip (gdbarch, 8);
5af923b0 1330
386c036b 1331 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
c906108c 1332
386c036b
MK
1333 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1334 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
c906108c 1335
386c036b 1336 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
c906108c 1337
386c036b 1338 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
c906108c 1339
386c036b
MK
1340 frame_base_set_default (gdbarch, &sparc32_frame_base);
1341
f5a9b87d
DM
1342 /* Hook in the DWARF CFI frame unwinder. */
1343 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1344 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1345 StackGhost issues have been resolved. */
1346
b2a0b9b2
DM
1347 /* Hook in ABI-specific overrides, if they have been registered. */
1348 gdbarch_init_osabi (info, gdbarch);
1349
386c036b 1350 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
c906108c 1351
a54124c5 1352 /* If we have register sets, enable the generic core file support. */
4c72d57a 1353 if (tdep->gregset)
a54124c5
MK
1354 set_gdbarch_regset_from_core_section (gdbarch,
1355 sparc_regset_from_core_section);
1356
386c036b
MK
1357 return gdbarch;
1358}
1359\f
1360/* Helper functions for dealing with register windows. */
1361
1362void
1363sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
c906108c 1364{
386c036b 1365 int offset = 0;
e1613aba 1366 gdb_byte buf[8];
386c036b
MK
1367 int i;
1368
1369 if (sp & 1)
1370 {
1371 /* Registers are 64-bit. */
1372 sp += BIAS;
c906108c 1373
386c036b
MK
1374 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1375 {
1376 if (regnum == i || regnum == -1)
1377 {
1378 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
f700a364
MK
1379
1380 /* Handle StackGhost. */
1381 if (i == SPARC_I7_REGNUM)
1382 {
1383 ULONGEST wcookie = sparc_fetch_wcookie ();
1384 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1385
1386 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1387 }
1388
386c036b
MK
1389 regcache_raw_supply (regcache, i, buf);
1390 }
1391 }
1392 }
1393 else
c906108c 1394 {
386c036b
MK
1395 /* Registers are 32-bit. Toss any sign-extension of the stack
1396 pointer. */
1397 sp &= 0xffffffffUL;
c906108c 1398
386c036b
MK
1399 /* Clear out the top half of the temporary buffer, and put the
1400 register value in the bottom half if we're in 64-bit mode. */
1401 if (gdbarch_ptr_bit (current_gdbarch) == 64)
c906108c 1402 {
386c036b
MK
1403 memset (buf, 0, 4);
1404 offset = 4;
1405 }
c906108c 1406
386c036b
MK
1407 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1408 {
1409 if (regnum == i || regnum == -1)
1410 {
1411 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1412 buf + offset, 4);
42cdca6c
MK
1413
1414 /* Handle StackGhost. */
1415 if (i == SPARC_I7_REGNUM)
1416 {
1417 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1418 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1419
7d34766b 1420 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1421 }
1422
386c036b
MK
1423 regcache_raw_supply (regcache, i, buf);
1424 }
c906108c
SS
1425 }
1426 }
c906108c 1427}
c906108c
SS
1428
1429void
386c036b
MK
1430sparc_collect_rwindow (const struct regcache *regcache,
1431 CORE_ADDR sp, int regnum)
c906108c 1432{
386c036b 1433 int offset = 0;
e1613aba 1434 gdb_byte buf[8];
386c036b 1435 int i;
5af923b0 1436
386c036b 1437 if (sp & 1)
5af923b0 1438 {
386c036b
MK
1439 /* Registers are 64-bit. */
1440 sp += BIAS;
c906108c 1441
386c036b
MK
1442 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1443 {
1444 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1445 {
1446 regcache_raw_collect (regcache, i, buf);
f700a364
MK
1447
1448 /* Handle StackGhost. */
1449 if (i == SPARC_I7_REGNUM)
1450 {
1451 ULONGEST wcookie = sparc_fetch_wcookie ();
1452 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1453
1454 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1455 }
1456
386c036b
MK
1457 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1458 }
1459 }
5af923b0
MS
1460 }
1461 else
1462 {
386c036b
MK
1463 /* Registers are 32-bit. Toss any sign-extension of the stack
1464 pointer. */
1465 sp &= 0xffffffffUL;
1466
1467 /* Only use the bottom half if we're in 64-bit mode. */
1468 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1469 offset = 4;
1470
1471 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1472 {
1473 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1474 {
1475 regcache_raw_collect (regcache, i, buf);
42cdca6c
MK
1476
1477 /* Handle StackGhost. */
1478 if (i == SPARC_I7_REGNUM)
1479 {
1480 ULONGEST wcookie = sparc_fetch_wcookie ();
7d34766b 1481 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
42cdca6c 1482
7d34766b 1483 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
42cdca6c
MK
1484 }
1485
386c036b
MK
1486 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1487 buf + offset, 4);
1488 }
1489 }
5af923b0 1490 }
c906108c
SS
1491}
1492
386c036b
MK
1493/* Helper functions for dealing with register sets. */
1494
c906108c 1495void
386c036b
MK
1496sparc32_supply_gregset (const struct sparc_gregset *gregset,
1497 struct regcache *regcache,
1498 int regnum, const void *gregs)
c906108c 1499{
e1613aba 1500 const gdb_byte *regs = gregs;
386c036b 1501 int i;
5af923b0 1502
386c036b
MK
1503 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1504 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1505 regs + gregset->r_psr_offset);
c906108c 1506
386c036b
MK
1507 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1508 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1509 regs + gregset->r_pc_offset);
5af923b0 1510
386c036b
MK
1511 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1512 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1513 regs + gregset->r_npc_offset);
5af923b0 1514
386c036b
MK
1515 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1516 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1517 regs + gregset->r_y_offset);
5af923b0 1518
386c036b
MK
1519 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1520 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
5af923b0 1521
386c036b 1522 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
c906108c 1523 {
386c036b
MK
1524 int offset = gregset->r_g1_offset;
1525
1526 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1527 {
1528 if (regnum == i || regnum == -1)
1529 regcache_raw_supply (regcache, i, regs + offset);
1530 offset += 4;
1531 }
c906108c 1532 }
386c036b
MK
1533
1534 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
c906108c 1535 {
386c036b
MK
1536 /* Not all of the register set variants include Locals and
1537 Inputs. For those that don't, we read them off the stack. */
1538 if (gregset->r_l0_offset == -1)
1539 {
1540 ULONGEST sp;
1541
1542 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1543 sparc_supply_rwindow (regcache, sp, regnum);
1544 }
1545 else
1546 {
1547 int offset = gregset->r_l0_offset;
1548
1549 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1550 {
1551 if (regnum == i || regnum == -1)
1552 regcache_raw_supply (regcache, i, regs + offset);
1553 offset += 4;
1554 }
1555 }
c906108c
SS
1556 }
1557}
1558
c5aa993b 1559void
386c036b
MK
1560sparc32_collect_gregset (const struct sparc_gregset *gregset,
1561 const struct regcache *regcache,
1562 int regnum, void *gregs)
c906108c 1563{
e1613aba 1564 gdb_byte *regs = gregs;
386c036b 1565 int i;
c5aa993b 1566
386c036b
MK
1567 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1568 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1569 regs + gregset->r_psr_offset);
60054393 1570
386c036b
MK
1571 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1572 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1573 regs + gregset->r_pc_offset);
1574
1575 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1576 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1577 regs + gregset->r_npc_offset);
5af923b0 1578
386c036b
MK
1579 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1580 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1581 regs + gregset->r_y_offset);
1582
1583 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
5af923b0 1584 {
386c036b
MK
1585 int offset = gregset->r_g1_offset;
1586
1587 /* %g0 is always zero. */
1588 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1589 {
1590 if (regnum == i || regnum == -1)
1591 regcache_raw_collect (regcache, i, regs + offset);
1592 offset += 4;
1593 }
5af923b0 1594 }
386c036b
MK
1595
1596 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
5af923b0 1597 {
386c036b
MK
1598 /* Not all of the register set variants include Locals and
1599 Inputs. For those that don't, we read them off the stack. */
1600 if (gregset->r_l0_offset != -1)
1601 {
1602 int offset = gregset->r_l0_offset;
1603
1604 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1605 {
1606 if (regnum == i || regnum == -1)
1607 regcache_raw_collect (regcache, i, regs + offset);
1608 offset += 4;
1609 }
1610 }
5af923b0 1611 }
c906108c
SS
1612}
1613
c906108c 1614void
386c036b
MK
1615sparc32_supply_fpregset (struct regcache *regcache,
1616 int regnum, const void *fpregs)
c906108c 1617{
e1613aba 1618 const gdb_byte *regs = fpregs;
386c036b 1619 int i;
60054393 1620
386c036b 1621 for (i = 0; i < 32; i++)
c906108c 1622 {
386c036b
MK
1623 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1624 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
c906108c 1625 }
5af923b0 1626
386c036b
MK
1627 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1628 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c
SS
1629}
1630
386c036b
MK
1631void
1632sparc32_collect_fpregset (const struct regcache *regcache,
1633 int regnum, void *fpregs)
c906108c 1634{
e1613aba 1635 gdb_byte *regs = fpregs;
386c036b 1636 int i;
c906108c 1637
386c036b
MK
1638 for (i = 0; i < 32; i++)
1639 {
1640 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1641 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1642 }
c906108c 1643
386c036b
MK
1644 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1645 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
c906108c 1646}
c906108c 1647\f
c906108c 1648
386c036b 1649/* SunOS 4. */
c906108c 1650
386c036b
MK
1651/* From <machine/reg.h>. */
1652const struct sparc_gregset sparc32_sunos4_gregset =
c906108c 1653{
386c036b
MK
1654 0 * 4, /* %psr */
1655 1 * 4, /* %pc */
1656 2 * 4, /* %npc */
1657 3 * 4, /* %y */
1658 -1, /* %wim */
1659 -1, /* %tbr */
1660 4 * 4, /* %g1 */
1661 -1 /* %l0 */
1662};
1663\f
c906108c 1664
386c036b
MK
1665/* Provide a prototype to silence -Wmissing-prototypes. */
1666void _initialize_sparc_tdep (void);
c906108c
SS
1667
1668void
386c036b 1669_initialize_sparc_tdep (void)
c906108c 1670{
386c036b 1671 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2d457077
MK
1672
1673 /* Initialize the SPARC-specific register types. */
1674 sparc_init_types();
ef3cf062 1675}
This page took 0.758499 seconds and 4 git commands to generate.