Johns release
[deliverable/binutils-gdb.git] / gdb / sparc-xdep.c
CommitLineData
dd3b648e
RP
1/* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger, for SPARC host systems.
3
4 Copyright (C) 1986, 1987, 1989, 1990 Free Software Foundation, Inc.
5
6This file is part of GDB.
7
8GDB is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 1, or (at your option)
11any later version.
12
13GDB is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GDB; see the file COPYING. If not, write to
20the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22#include <stdio.h>
23#include "defs.h"
24#include "tm-sparc.h"
25#include "param-no-tm.h"
26#include "inferior.h"
27#include "target.h"
28
29#include <sys/param.h>
30#include <sys/file.h> /* For L_SET */
31
32#include <sys/ptrace.h>
33#include <machine/reg.h>
34
35#include "gdbcore.h"
36#include <sys/core.h>
37
38extern char register_valid[];
39
40/* Fetch one or more registers from the inferior. REGNO == -1 to get
41 them all. We actually fetch more than requested, when convenient,
42 marking them as valid so we won't fetch them again. */
43void
44fetch_inferior_registers (regno)
45 int regno;
46{
47 struct regs inferior_registers;
48 struct fp_status inferior_fp_registers;
49 int i;
50
51 /* We should never be called with deferred stores, because a prerequisite
52 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
53 if (deferred_stores) abort();
54
55 DO_DEFERRED_STORES;
56
57 /* Global and Out regs are fetched directly, as well as the control
58 registers. If we're getting one of the in or local regs,
59 and the stack pointer has not yet been fetched,
60 we have to do that first, since they're found in memory relative
61 to the stack pointer. */
62 if (regno < O7_REGNUM /* including -1 */
63 || regno >= Y_REGNUM
64 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
65 {
66 if (0 != ptrace (PTRACE_GETREGS, inferior_pid, &inferior_registers))
67 perror("ptrace_getregs");
68
69 registers[REGISTER_BYTE (0)] = 0;
70 bcopy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (1)], 15 * REGISTER_RAW_SIZE (G0_REGNUM));
71 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
72 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
73 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
74 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
75
76 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
77 register_valid[i] = 1;
78 register_valid[Y_REGNUM] = 1;
79 register_valid[PS_REGNUM] = 1;
80 register_valid[PC_REGNUM] = 1;
81 register_valid[NPC_REGNUM] = 1;
82 /* If we don't set these valid, read_register_bytes() rereads
83 all the regs every time it is called! FIXME. */
84 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
85 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
86 register_valid[FPS_REGNUM] = 1; /* Not true yet, FIXME */
87 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
88 }
89
90 /* Floating point registers */
91 if (regno == -1 || (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
92 {
93 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid, &inferior_fp_registers))
94 perror("ptrace_getfpregs");
95 bcopy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
96 sizeof inferior_fp_registers.fpu_fr);
97 /* bcopy (&inferior_fp_registers.Fpu_fsr,
98 &registers[REGISTER_BYTE (FPS_REGNUM)],
99 sizeof (FPU_FSR_TYPE)); FIXME??? -- gnu@cyg */
100 for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
101 register_valid[i] = 1;
102 register_valid[FPS_REGNUM] = 1;
103 }
104
105 /* These regs are saved on the stack by the kernel. Only read them
106 all (16 ptrace calls!) if we really need them. */
107 if (regno == -1)
108 {
109 target_xfer_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
110 &registers[REGISTER_BYTE (L0_REGNUM)],
111 16*REGISTER_RAW_SIZE (L0_REGNUM), 0);
112 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
113 register_valid[i] = 1;
114 }
115 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
116 {
117 CORE_ADDR sp = *(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)];
118 i = REGISTER_BYTE (regno);
119 if (register_valid[regno])
120 printf("register %d valid and read\n", regno);
121 target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
122 &registers[i], REGISTER_RAW_SIZE (regno), 0);
123 register_valid[regno] = 1;
124 }
125}
126
127/* Store our register values back into the inferior.
128 If REGNO is -1, do this for all registers.
129 Otherwise, REGNO specifies which register (so we can save time). */
130
131#define INT_REGS 1
132#define STACK_REGS 2
133#define FP_REGS 4
134int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
135
136int
137store_inferior_registers (regno)
138 int regno;
139{
140 struct regs inferior_registers;
141 struct fp_status inferior_fp_registers;
142 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
143
144 /* First decide which pieces of machine-state we need to modify.
145 Default for regno == -1 case is all pieces. */
146 if (regno >= 0)
147 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
148 {
149 wanna_store = FP_REGS;
150 }
151 else
152 {
153 if (regno == SP_REGNUM)
154 wanna_store = INT_REGS + STACK_REGS;
155 else if (regno < L0_REGNUM || regno > I7_REGNUM)
156 wanna_store = INT_REGS;
157 else
158 wanna_store = STACK_REGS;
159 }
160
161 /* See if we're forcing the stores to happen now, or deferring. */
162 if (regno == -2)
163 {
164 wanna_store = deferred_stores;
165 deferred_stores = 0;
166 }
167 else
168 {
169 if (wanna_store == STACK_REGS)
170 {
171 /* Fall through and just store one stack reg. If we deferred
172 it, we'd have to store them all, or remember more info. */
173 }
174 else
175 {
176 deferred_stores |= wanna_store;
177 return 0;
178 }
179 }
180
181 if (wanna_store & STACK_REGS)
182 {
183 CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
184
185 if (regno < 0 || regno == SP_REGNUM)
186 {
187 if (!register_valid[L0_REGNUM+5]) abort();
188 target_xfer_memory (sp,
189 &registers[REGISTER_BYTE (L0_REGNUM)],
190 16*REGISTER_RAW_SIZE (L0_REGNUM), 1);
191 }
192 else
193 {
194 if (!register_valid[regno]) abort();
195 target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
196 &registers[REGISTER_BYTE (regno)],
197 REGISTER_RAW_SIZE (regno), 1);
198 }
199
200 }
201
202 if (wanna_store & INT_REGS)
203 {
204 if (!register_valid[G1_REGNUM]) abort();
205
206 bcopy (&registers[REGISTER_BYTE (G1_REGNUM)],
207 &inferior_registers.r_g1, 15 * REGISTER_RAW_SIZE (G1_REGNUM));
208
209 inferior_registers.r_ps =
210 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
211 inferior_registers.r_pc =
212 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
213 inferior_registers.r_npc =
214 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
215 inferior_registers.r_y =
216 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
217
218 if (0 != ptrace (PTRACE_SETREGS, inferior_pid, &inferior_registers))
219 perror("ptrace_setregs");
220 }
221
222 if (wanna_store & FP_REGS)
223 {
224 if (!register_valid[FP0_REGNUM+9]) abort();
225 bcopy (&registers[REGISTER_BYTE (FP0_REGNUM)],
226 &inferior_fp_registers,
227 sizeof inferior_fp_registers.fpu_fr);
228
229/* bcopy (&registers[REGISTER_BYTE (FPS_REGNUM)],
230 &inferior_fp_registers.Fpu_fsr,
231 sizeof (FPU_FSR_TYPE));
232****/
233 if (0 !=
234 ptrace (PTRACE_SETFPREGS, inferior_pid, &inferior_fp_registers))
235 perror("ptrace_setfpregs");
236 }
237 return 0;
238}
239\f
240void
241fetch_core_registers (core_reg_sect, core_reg_size, which)
242 char *core_reg_sect;
243 unsigned core_reg_size;
244 int which;
245{
246
247 if (which == 0) {
248
249 /* Integer registers */
250
251#define gregs ((struct regs *)core_reg_sect)
252 /* G0 *always* holds 0. */
253 *(int *)&registers[REGISTER_BYTE (0)] = 0;
254
255 /* The globals and output registers. */
256 bcopy (&gregs->r_g1,
257 &registers[REGISTER_BYTE (G1_REGNUM)],
258 15 * REGISTER_RAW_SIZE (G1_REGNUM));
259 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
260 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
261 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
262 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
263
264 /* My best guess at where to get the locals and input
265 registers is exactly where they usually are, right above
266 the stack pointer. If the core dump was caused by a bus error
267 from blowing away the stack pointer (as is possible) then this
268 won't work, but it's worth the try. */
269 {
270 int sp;
271
272 sp = *(int *)&registers[REGISTER_BYTE (SP_REGNUM)];
273 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
274 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
275 {
276 /* fprintf so user can still use gdb */
277 fprintf (stderr,
278 "Couldn't read input and local registers from core file\n");
279 }
280 }
281 } else if (which == 2) {
282
283 /* Floating point registers */
284
285#define fpuregs ((struct fpu *) core_reg_sect)
286 if (core_reg_size >= sizeof (struct fpu))
287 {
288 bcopy (fpuregs->fpu_regs,
289 &registers[REGISTER_BYTE (FP0_REGNUM)],
290 sizeof (fpuregs->fpu_regs));
291 bcopy (&fpuregs->fpu_fsr,
292 &registers[REGISTER_BYTE (FPS_REGNUM)],
293 sizeof (FPU_FSR_TYPE));
294 }
295 else
296 fprintf (stderr, "Couldn't read float regs from core file\n");
297 }
298}
This page took 0.032776 seconds and 4 git commands to generate.