Introduce event_location_up
[deliverable/binutils-gdb.git] / gdb / spu-multiarch.c
CommitLineData
85e747d2 1/* Cell SPU GNU/Linux multi-architecture debugging support.
61baf725 2 Copyright (C) 2009-2017 Free Software Foundation, Inc.
85e747d2
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
dcf7800b 10 the Free Software Foundation; either version 3 of the License, or
85e747d2
UW
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
dcf7800b 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
85e747d2
UW
20
21#include "defs.h"
22#include "gdbcore.h"
23#include "gdbcmd.h"
85e747d2
UW
24#include "arch-utils.h"
25#include "observer.h"
26#include "inferior.h"
27#include "regcache.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "solib.h"
31#include "solist.h"
32
33#include "ppc-tdep.h"
34#include "ppc-linux-tdep.h"
35#include "spu-tdep.h"
36
37/* This module's target vector. */
38static struct target_ops spu_ops;
39
40/* Number of SPE objects loaded into the current inferior. */
41static int spu_nr_solib;
42
43/* Stand-alone SPE executable? */
44#define spu_standalone_p() \
45 (symfile_objfile && symfile_objfile->obfd \
46 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
47
48/* PPU side system calls. */
49#define INSTR_SC 0x44000002
50#define NR_spu_run 0x0116
51
52/* If the PPU thread is currently stopped on a spu_run system call,
53 return to FD and ADDR the file handle and NPC parameter address
54 used with the system call. Return non-zero if successful. */
55static int
56parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
57{
f5656ead 58 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
791bb1f4 59 struct cleanup *old_chain;
85e747d2
UW
60 struct gdbarch_tdep *tdep;
61 struct regcache *regcache;
e362b510 62 gdb_byte buf[4];
85e747d2
UW
63 ULONGEST regval;
64
65 /* If we're not on PPU, there's nothing to detect. */
f5656ead 66 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_powerpc)
85e747d2
UW
67 return 0;
68
791bb1f4
UW
69 /* If we're called too early (e.g. after fork), we cannot
70 access the inferior yet. */
71 if (find_inferior_ptid (ptid) == NULL)
72 return 0;
73
85e747d2 74 /* Get PPU-side registers. */
f5656ead
TT
75 regcache = get_thread_arch_regcache (ptid, target_gdbarch ());
76 tdep = gdbarch_tdep (target_gdbarch ());
85e747d2
UW
77
78 /* Fetch instruction preceding current NIP. */
791bb1f4
UW
79 old_chain = save_inferior_ptid ();
80 inferior_ptid = ptid;
81 regval = target_read_memory (regcache_read_pc (regcache) - 4, buf, 4);
82 do_cleanups (old_chain);
83 if (regval != 0)
85e747d2
UW
84 return 0;
85 /* It should be a "sc" instruction. */
86 if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
87 return 0;
88 /* System call number should be NR_spu_run. */
89 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
90 if (regval != NR_spu_run)
91 return 0;
92
93 /* Register 3 contains fd, register 4 the NPC param pointer. */
94 regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
95 *fd = (int) regval;
96 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
97 *addr = (CORE_ADDR) regval;
98 return 1;
99}
100
101/* Find gdbarch for SPU context SPUFS_FD. */
102static struct gdbarch *
103spu_gdbarch (int spufs_fd)
104{
105 struct gdbarch_info info;
106 gdbarch_info_init (&info);
107 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
108 info.byte_order = BFD_ENDIAN_BIG;
109 info.osabi = GDB_OSABI_LINUX;
ede5f151 110 info.tdep_info = &spufs_fd;
85e747d2
UW
111 return gdbarch_find_by_info (info);
112}
113
114/* Override the to_thread_architecture routine. */
115static struct gdbarch *
116spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
117{
118 int spufs_fd;
119 CORE_ADDR spufs_addr;
120
121 if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
122 return spu_gdbarch (spufs_fd);
123
f5656ead 124 return target_gdbarch ();
85e747d2
UW
125}
126
127/* Override the to_region_ok_for_hw_watchpoint routine. */
128static int
31568a15
TT
129spu_region_ok_for_hw_watchpoint (struct target_ops *self,
130 CORE_ADDR addr, int len)
85e747d2 131{
44e89118 132 struct target_ops *ops_beneath = find_target_beneath (self);
85e747d2
UW
133
134 /* We cannot watch SPU local store. */
135 if (SPUADDR_SPU (addr) != -1)
136 return 0;
137
e75fdfca 138 return ops_beneath->to_region_ok_for_hw_watchpoint (ops_beneath, addr, len);
85e747d2
UW
139}
140
141/* Override the to_fetch_registers routine. */
142static void
143spu_fetch_registers (struct target_ops *ops,
144 struct regcache *regcache, int regno)
145{
146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
147 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
148 struct target_ops *ops_beneath = find_target_beneath (ops);
149 int spufs_fd;
150 CORE_ADDR spufs_addr;
151
639a9038
SM
152 /* Since we use functions that rely on inferior_ptid, we need to set and
153 restore it. */
154 scoped_restore save_ptid
155 = make_scoped_restore (&inferior_ptid, regcache_get_ptid (regcache));
156
85e747d2
UW
157 /* This version applies only if we're currently in spu_run. */
158 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
159 {
85e747d2
UW
160 ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
161 return;
162 }
163
164 /* We must be stopped on a spu_run system call. */
165 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
166 return;
167
168 /* The ID register holds the spufs file handle. */
169 if (regno == -1 || regno == SPU_ID_REGNUM)
170 {
e362b510 171 gdb_byte buf[4];
85e747d2
UW
172 store_unsigned_integer (buf, 4, byte_order, spufs_fd);
173 regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
174 }
175
176 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
177 if (regno == -1 || regno == SPU_PC_REGNUM)
178 {
e362b510 179 gdb_byte buf[4];
85e747d2
UW
180
181 if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
182 buf, spufs_addr, sizeof buf) == sizeof buf)
183 regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
184 }
185
186 /* The GPRs are found in the "regs" spufs file. */
187 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
188 {
e362b510
PA
189 gdb_byte buf[16 * SPU_NUM_GPRS];
190 char annex[32];
85e747d2
UW
191 int i;
192
193 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
194 if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
195 buf, 0, sizeof buf) == sizeof buf)
196 for (i = 0; i < SPU_NUM_GPRS; i++)
197 regcache_raw_supply (regcache, i, buf + i*16);
198 }
199}
200
201/* Override the to_store_registers routine. */
202static void
203spu_store_registers (struct target_ops *ops,
204 struct regcache *regcache, int regno)
205{
206 struct gdbarch *gdbarch = get_regcache_arch (regcache);
207 struct target_ops *ops_beneath = find_target_beneath (ops);
208 int spufs_fd;
209 CORE_ADDR spufs_addr;
210
639a9038
SM
211 /* Since we use functions that rely on inferior_ptid, we need to set and
212 restore it. */
213 scoped_restore save_ptid
214 = make_scoped_restore (&inferior_ptid, regcache_get_ptid (regcache));
215
85e747d2
UW
216 /* This version applies only if we're currently in spu_run. */
217 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
218 {
85e747d2
UW
219 ops_beneath->to_store_registers (ops_beneath, regcache, regno);
220 return;
221 }
222
223 /* We must be stopped on a spu_run system call. */
224 if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
225 return;
226
227 /* The NPC register is found in PPC memory at SPUFS_ADDR. */
228 if (regno == -1 || regno == SPU_PC_REGNUM)
229 {
e362b510 230 gdb_byte buf[4];
85e747d2
UW
231 regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
232
233 target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
234 buf, spufs_addr, sizeof buf);
235 }
236
237 /* The GPRs are found in the "regs" spufs file. */
238 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
239 {
e362b510
PA
240 gdb_byte buf[16 * SPU_NUM_GPRS];
241 char annex[32];
85e747d2
UW
242 int i;
243
244 for (i = 0; i < SPU_NUM_GPRS; i++)
245 regcache_raw_collect (regcache, i, buf + i*16);
246
247 xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
248 target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
249 buf, 0, sizeof buf);
250 }
251}
252
253/* Override the to_xfer_partial routine. */
9b409511 254static enum target_xfer_status
85e747d2
UW
255spu_xfer_partial (struct target_ops *ops, enum target_object object,
256 const char *annex, gdb_byte *readbuf,
9b409511
YQ
257 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
258 ULONGEST *xfered_len)
85e747d2
UW
259{
260 struct target_ops *ops_beneath = find_target_beneath (ops);
85e747d2
UW
261
262 /* Use the "mem" spufs file to access SPU local store. */
263 if (object == TARGET_OBJECT_MEMORY)
264 {
265 int fd = SPUADDR_SPU (offset);
266 CORE_ADDR addr = SPUADDR_ADDR (offset);
d2ed6730
UW
267 char mem_annex[32], lslr_annex[32];
268 gdb_byte buf[32];
269 ULONGEST lslr;
9b409511 270 enum target_xfer_status ret;
85e747d2 271
d2ed6730 272 if (fd >= 0)
85e747d2
UW
273 {
274 xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
d2ed6730
UW
275 ret = ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
276 mem_annex, readbuf, writebuf,
9b409511
YQ
277 addr, len, xfered_len);
278 if (ret == TARGET_XFER_OK)
d2ed6730
UW
279 return ret;
280
281 /* SPU local store access wraps the address around at the
282 local store limit. We emulate this here. To avoid needing
283 an extra access to retrieve the LSLR, we only do that after
284 trying the original address first, and getting end-of-file. */
285 xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
286 memset (buf, 0, sizeof buf);
287 if (ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
288 lslr_annex, buf, NULL,
9b409511
YQ
289 0, sizeof buf, xfered_len)
290 != TARGET_XFER_OK)
d2ed6730
UW
291 return ret;
292
001f13d8 293 lslr = strtoulst ((char *) buf, NULL, 16);
85e747d2
UW
294 return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
295 mem_annex, readbuf, writebuf,
9b409511 296 addr & lslr, len, xfered_len);
85e747d2
UW
297 }
298 }
299
300 return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
9b409511 301 readbuf, writebuf, offset, len, xfered_len);
85e747d2
UW
302}
303
304/* Override the to_search_memory routine. */
305static int
306spu_search_memory (struct target_ops* ops,
307 CORE_ADDR start_addr, ULONGEST search_space_len,
308 const gdb_byte *pattern, ULONGEST pattern_len,
309 CORE_ADDR *found_addrp)
310{
311 struct target_ops *ops_beneath = find_target_beneath (ops);
85e747d2 312
e75fdfca
TT
313 /* For SPU local store, always fall back to the simple method. */
314 if (SPUADDR_SPU (start_addr) >= 0)
85e747d2
UW
315 return simple_search_memory (ops,
316 start_addr, search_space_len,
317 pattern, pattern_len, found_addrp);
318
319 return ops_beneath->to_search_memory (ops_beneath,
320 start_addr, search_space_len,
321 pattern, pattern_len, found_addrp);
322}
323
324
325/* Push and pop the SPU multi-architecture support target. */
326
327static void
328spu_multiarch_activate (void)
329{
330 /* If GDB was configured without SPU architecture support,
331 we cannot install SPU multi-architecture support either. */
332 if (spu_gdbarch (-1) == NULL)
333 return;
334
335 push_target (&spu_ops);
336
337 /* Make sure the thread architecture is re-evaluated. */
338 registers_changed ();
339}
340
341static void
342spu_multiarch_deactivate (void)
343{
344 unpush_target (&spu_ops);
345
346 /* Make sure the thread architecture is re-evaluated. */
347 registers_changed ();
348}
349
350static void
351spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
352{
353 if (spu_standalone_p ())
354 spu_multiarch_activate ();
355}
356
357static void
358spu_multiarch_solib_loaded (struct so_list *so)
359{
360 if (!spu_standalone_p ())
361 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
362 if (spu_nr_solib++ == 0)
363 spu_multiarch_activate ();
364}
365
366static void
367spu_multiarch_solib_unloaded (struct so_list *so)
368{
369 if (!spu_standalone_p ())
370 if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
371 if (--spu_nr_solib == 0)
372 spu_multiarch_deactivate ();
373}
374
375static void
376spu_mourn_inferior (struct target_ops *ops)
377{
378 struct target_ops *ops_beneath = find_target_beneath (ops);
85e747d2 379
85e747d2
UW
380 ops_beneath->to_mourn_inferior (ops_beneath);
381 spu_multiarch_deactivate ();
382}
383
384
385/* Initialize the SPU multi-architecture support target. */
386
387static void
388init_spu_ops (void)
389{
390 spu_ops.to_shortname = "spu";
391 spu_ops.to_longname = "SPU multi-architecture support.";
392 spu_ops.to_doc = "SPU multi-architecture support.";
393 spu_ops.to_mourn_inferior = spu_mourn_inferior;
394 spu_ops.to_fetch_registers = spu_fetch_registers;
395 spu_ops.to_store_registers = spu_store_registers;
396 spu_ops.to_xfer_partial = spu_xfer_partial;
397 spu_ops.to_search_memory = spu_search_memory;
398 spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
399 spu_ops.to_thread_architecture = spu_thread_architecture;
400 spu_ops.to_stratum = arch_stratum;
401 spu_ops.to_magic = OPS_MAGIC;
402}
403
693be288
JK
404/* -Wmissing-prototypes */
405extern initialize_file_ftype _initialize_spu_multiarch;
406
85e747d2
UW
407void
408_initialize_spu_multiarch (void)
409{
410 /* Install ourselves on the target stack. */
411 init_spu_ops ();
12070676 412 complete_target_initialization (&spu_ops);
85e747d2
UW
413
414 /* Install observers to watch for SPU objects. */
415 observer_attach_inferior_created (spu_multiarch_inferior_created);
416 observer_attach_solib_loaded (spu_multiarch_solib_loaded);
417 observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
418}
419
This page took 0.876856 seconds and 4 git commands to generate.