daily update
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
28e7fd62 2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
27#include "gdb_string.h"
28#include "gdb_assert.h"
29#include "frame.h"
30#include "frame-unwind.h"
31#include "frame-base.h"
32#include "trad-frame.h"
33#include "symtab.h"
34#include "symfile.h"
35#include "value.h"
36#include "inferior.h"
37#include "dis-asm.h"
38#include "objfiles.h"
39#include "language.h"
40#include "regcache.h"
41#include "reggroups.h"
42#include "floatformat.h"
3285f3fe 43#include "block.h"
dcf52cd8 44#include "observer.h"
ff1a52c6 45#include "infcall.h"
54fcddd0 46#include "dwarf2.h"
8dccd430 47#include "exceptions.h"
771b4502
UW
48#include "spu-tdep.h"
49
794ac428 50
3285f3fe
UW
51/* The list of available "set spu " and "show spu " commands. */
52static struct cmd_list_element *setspucmdlist = NULL;
53static struct cmd_list_element *showspucmdlist = NULL;
54
55/* Whether to stop for new SPE contexts. */
56static int spu_stop_on_load_p = 0;
ff1a52c6
UW
57/* Whether to automatically flush the SW-managed cache. */
58static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
59
60
794ac428
UW
61/* The tdep structure. */
62struct gdbarch_tdep
63{
85e747d2
UW
64 /* The spufs ID identifying our address space. */
65 int id;
66
794ac428
UW
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69};
70
71
f2d43c2c 72/* SPU-specific vector type. */
794ac428
UW
73static struct type *
74spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75{
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
df4df182 80 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
81 struct type *t;
82
e9bb382b
UW
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 85 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 86 append_composite_type_field (t, "v2_int64",
df4df182 87 init_vector_type (bt->builtin_int64, 2));
794ac428 88 append_composite_type_field (t, "v4_int32",
df4df182 89 init_vector_type (bt->builtin_int32, 4));
794ac428 90 append_composite_type_field (t, "v8_int16",
df4df182 91 init_vector_type (bt->builtin_int16, 8));
794ac428 92 append_composite_type_field (t, "v16_int8",
df4df182 93 init_vector_type (bt->builtin_int8, 16));
794ac428 94 append_composite_type_field (t, "v2_double",
df4df182 95 init_vector_type (bt->builtin_double, 2));
794ac428 96 append_composite_type_field (t, "v4_float",
df4df182 97 init_vector_type (bt->builtin_float, 4));
794ac428 98
876cecd0 99 TYPE_VECTOR (t) = 1;
794ac428
UW
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106}
107
771b4502 108
23d964e7
UW
109/* The list of available "info spu " commands. */
110static struct cmd_list_element *infospucmdlist = NULL;
111
771b4502
UW
112/* Registers. */
113
114static const char *
d93859e2 115spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502
UW
116{
117 static char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144}
145
146static struct type *
147spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148{
149 if (reg_nr < SPU_NUM_GPRS)
794ac428 150 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
df4df182 155 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
156
157 case SPU_PC_REGNUM:
0dfff4cb 158 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
159
160 case SPU_SP_REGNUM:
0dfff4cb 161 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 162
23d964e7 163 case SPU_FPSCR_REGNUM:
df4df182 164 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
165
166 case SPU_SRR0_REGNUM:
df4df182 167 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
168
169 case SPU_LSLR_REGNUM:
df4df182 170 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
171
172 case SPU_DECR_REGNUM:
df4df182 173 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
174
175 case SPU_DECR_STATUS_REGNUM:
df4df182 176 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 177
771b4502 178 default:
a73c6dcd 179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
180 }
181}
182
183/* Pseudo registers for preferred slots - stack pointer. */
184
05d1431c 185static enum register_status
23d964e7
UW
186spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188{
e17a4113
UW
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 191 enum register_status status;
23d964e7
UW
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
001f13d8 195 ULONGEST ul;
23d964e7 196
05d1431c
PA
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
23d964e7
UW
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
001f13d8
PA
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
05d1431c 207 return REG_VALID;
23d964e7
UW
208}
209
05d1431c 210static enum register_status
771b4502
UW
211spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213{
214 gdb_byte reg[16];
23d964e7
UW
215 char annex[32];
216 ULONGEST id;
05d1431c 217 enum register_status status;
771b4502
UW
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
05d1431c
PA
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
771b4502 225 memcpy (buf, reg, 4);
05d1431c 226 return status;
771b4502 227
23d964e7 228 case SPU_FPSCR_REGNUM:
05d1431c
PA
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
23d964e7
UW
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 234 return status;
23d964e7
UW
235
236 case SPU_SRR0_REGNUM:
05d1431c 237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
238
239 case SPU_LSLR_REGNUM:
05d1431c 240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
241
242 case SPU_DECR_REGNUM:
05d1431c 243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
244
245 case SPU_DECR_STATUS_REGNUM:
05d1431c 246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 247
771b4502
UW
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251}
252
23d964e7
UW
253static void
254spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256{
e17a4113
UW
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
001f13d8 259 char reg[32];
23d964e7
UW
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7 267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
001f13d8 268 (gdb_byte *) reg, 0, strlen (reg));
23d964e7
UW
269}
270
771b4502
UW
271static void
272spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274{
275 gdb_byte reg[16];
23d964e7
UW
276 char annex[32];
277 ULONGEST id;
771b4502
UW
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
23d964e7
UW
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
771b4502
UW
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312}
313
314/* Value conversion -- access scalar values at the preferred slot. */
315
9acbedc0
UW
316static struct value *
317spu_value_from_register (struct type *type, int regnum,
318 struct frame_info *frame)
771b4502 319{
9acbedc0 320 struct value *value = default_value_from_register (type, regnum, frame);
bad43aa5 321 int len = TYPE_LENGTH (type);
771b4502 322
bad43aa5 323 if (regnum < SPU_NUM_GPRS && len < 16)
9acbedc0 324 {
bad43aa5 325 int preferred_slot = len < 4 ? 4 - len : 0;
9acbedc0
UW
326 set_value_offset (value, preferred_slot);
327 }
771b4502 328
9acbedc0 329 return value;
771b4502
UW
330}
331
332/* Register groups. */
333
334static int
335spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
336 struct reggroup *group)
337{
338 /* Registers displayed via 'info regs'. */
339 if (group == general_reggroup)
340 return 1;
341
342 /* Registers displayed via 'info float'. */
343 if (group == float_reggroup)
344 return 0;
345
346 /* Registers that need to be saved/restored in order to
347 push or pop frames. */
348 if (group == save_reggroup || group == restore_reggroup)
349 return 1;
350
351 return default_register_reggroup_p (gdbarch, regnum, group);
352}
353
ff1a52c6
UW
354
355/* Address handling. */
36acd84e 356
85e747d2
UW
357static int
358spu_gdbarch_id (struct gdbarch *gdbarch)
359{
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361 int id = tdep->id;
362
363 /* The objfile architecture of a standalone SPU executable does not
b021a221 364 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
365 address range in this special case. */
366 if (id == -1
367 && symfile_objfile && symfile_objfile->obfd
368 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
369 && symfile_objfile->sections != symfile_objfile->sections_end)
370 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
371
372 return id;
373}
374
ff1a52c6
UW
375static int
376spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
377{
378 if (dwarf2_addr_class == 1)
379 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
380 else
381 return 0;
382}
383
384static const char *
385spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
386{
387 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 return "__ea";
389 else
390 return NULL;
391}
392
393static int
394spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
395 const char *name, int *type_flags_ptr)
396{
397 if (strcmp (name, "__ea") == 0)
398 {
399 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
400 return 1;
401 }
402 else
403 return 0;
404}
405
85e747d2
UW
406static void
407spu_address_to_pointer (struct gdbarch *gdbarch,
408 struct type *type, gdb_byte *buf, CORE_ADDR addr)
409{
410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
411 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
412 SPUADDR_ADDR (addr));
413}
414
36acd84e 415static CORE_ADDR
9898f801
UW
416spu_pointer_to_address (struct gdbarch *gdbarch,
417 struct type *type, const gdb_byte *buf)
36acd84e 418{
85e747d2 419 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421 ULONGEST addr
422 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 423
ff1a52c6
UW
424 /* Do not convert __ea pointers. */
425 if (TYPE_ADDRESS_CLASS_1 (type))
426 return addr;
427
d2ed6730 428 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
429}
430
431static CORE_ADDR
432spu_integer_to_address (struct gdbarch *gdbarch,
433 struct type *type, const gdb_byte *buf)
434{
85e747d2 435 int id = spu_gdbarch_id (gdbarch);
36acd84e 436 ULONGEST addr = unpack_long (type, buf);
36acd84e 437
d2ed6730 438 return SPUADDR (id, addr);
36acd84e
UW
439}
440
771b4502
UW
441
442/* Decoding SPU instructions. */
443
444enum
445 {
446 op_lqd = 0x34,
447 op_lqx = 0x3c4,
448 op_lqa = 0x61,
449 op_lqr = 0x67,
450 op_stqd = 0x24,
451 op_stqx = 0x144,
452 op_stqa = 0x41,
453 op_stqr = 0x47,
454
455 op_il = 0x081,
456 op_ila = 0x21,
457 op_a = 0x0c0,
458 op_ai = 0x1c,
459
a536c6d7 460 op_selb = 0x8,
771b4502
UW
461
462 op_br = 0x64,
463 op_bra = 0x60,
464 op_brsl = 0x66,
465 op_brasl = 0x62,
466 op_brnz = 0x42,
467 op_brz = 0x40,
468 op_brhnz = 0x46,
469 op_brhz = 0x44,
470 op_bi = 0x1a8,
471 op_bisl = 0x1a9,
472 op_biz = 0x128,
473 op_binz = 0x129,
474 op_bihz = 0x12a,
475 op_bihnz = 0x12b,
476 };
477
478static int
479is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
480{
481 if ((insn >> 21) == op)
482 {
483 *rt = insn & 127;
484 *ra = (insn >> 7) & 127;
485 *rb = (insn >> 14) & 127;
486 return 1;
487 }
488
489 return 0;
490}
491
492static int
493is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
494{
495 if ((insn >> 28) == op)
496 {
497 *rt = (insn >> 21) & 127;
498 *ra = (insn >> 7) & 127;
499 *rb = (insn >> 14) & 127;
500 *rc = insn & 127;
501 return 1;
502 }
503
504 return 0;
505}
506
507static int
508is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
509{
510 if ((insn >> 21) == op)
511 {
512 *rt = insn & 127;
513 *ra = (insn >> 7) & 127;
514 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
515 return 1;
516 }
517
518 return 0;
519}
520
521static int
522is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
523{
524 if ((insn >> 24) == op)
525 {
526 *rt = insn & 127;
527 *ra = (insn >> 7) & 127;
528 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
529 return 1;
530 }
531
532 return 0;
533}
534
535static int
536is_ri16 (unsigned int insn, int op, int *rt, int *i16)
537{
538 if ((insn >> 23) == op)
539 {
540 *rt = insn & 127;
541 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
542 return 1;
543 }
544
545 return 0;
546}
547
548static int
549is_ri18 (unsigned int insn, int op, int *rt, int *i18)
550{
551 if ((insn >> 25) == op)
552 {
553 *rt = insn & 127;
554 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
555 return 1;
556 }
557
558 return 0;
559}
560
561static int
562is_branch (unsigned int insn, int *offset, int *reg)
563{
564 int rt, i7, i16;
565
566 if (is_ri16 (insn, op_br, &rt, &i16)
567 || is_ri16 (insn, op_brsl, &rt, &i16)
568 || is_ri16 (insn, op_brnz, &rt, &i16)
569 || is_ri16 (insn, op_brz, &rt, &i16)
570 || is_ri16 (insn, op_brhnz, &rt, &i16)
571 || is_ri16 (insn, op_brhz, &rt, &i16))
572 {
573 *reg = SPU_PC_REGNUM;
574 *offset = i16 << 2;
575 return 1;
576 }
577
578 if (is_ri16 (insn, op_bra, &rt, &i16)
579 || is_ri16 (insn, op_brasl, &rt, &i16))
580 {
581 *reg = -1;
582 *offset = i16 << 2;
583 return 1;
584 }
585
586 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
587 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
588 || is_ri7 (insn, op_biz, &rt, reg, &i7)
589 || is_ri7 (insn, op_binz, &rt, reg, &i7)
590 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
591 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
592 {
593 *offset = 0;
594 return 1;
595 }
596
597 return 0;
598}
599
600
601/* Prolog parsing. */
602
603struct spu_prologue_data
604 {
605 /* Stack frame size. -1 if analysis was unsuccessful. */
606 int size;
607
608 /* How to find the CFA. The CFA is equal to SP at function entry. */
609 int cfa_reg;
610 int cfa_offset;
611
612 /* Offset relative to CFA where a register is saved. -1 if invalid. */
613 int reg_offset[SPU_NUM_GPRS];
614 };
615
616static CORE_ADDR
e17a4113
UW
617spu_analyze_prologue (struct gdbarch *gdbarch,
618 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
619 struct spu_prologue_data *data)
620{
e17a4113 621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
622 int found_sp = 0;
623 int found_fp = 0;
624 int found_lr = 0;
ce50d78b 625 int found_bc = 0;
771b4502
UW
626 int reg_immed[SPU_NUM_GPRS];
627 gdb_byte buf[16];
628 CORE_ADDR prolog_pc = start_pc;
629 CORE_ADDR pc;
630 int i;
631
632
633 /* Initialize DATA to default values. */
634 data->size = -1;
635
636 data->cfa_reg = SPU_RAW_SP_REGNUM;
637 data->cfa_offset = 0;
638
639 for (i = 0; i < SPU_NUM_GPRS; i++)
640 data->reg_offset[i] = -1;
641
642 /* Set up REG_IMMED array. This is non-zero for a register if we know its
643 preferred slot currently holds this immediate value. */
644 for (i = 0; i < SPU_NUM_GPRS; i++)
645 reg_immed[i] = 0;
646
647 /* Scan instructions until the first branch.
648
649 The following instructions are important prolog components:
650
651 - The first instruction to set up the stack pointer.
652 - The first instruction to set up the frame pointer.
653 - The first instruction to save the link register.
ce50d78b 654 - The first instruction to save the backchain.
771b4502 655
ce50d78b 656 We return the instruction after the latest of these four,
771b4502
UW
657 or the incoming PC if none is found. The first instruction
658 to set up the stack pointer also defines the frame size.
659
660 Note that instructions saving incoming arguments to their stack
661 slots are not counted as important, because they are hard to
662 identify with certainty. This should not matter much, because
663 arguments are relevant only in code compiled with debug data,
664 and in such code the GDB core will advance until the first source
665 line anyway, using SAL data.
666
667 For purposes of stack unwinding, we analyze the following types
668 of instructions in addition:
669
670 - Any instruction adding to the current frame pointer.
671 - Any instruction loading an immediate constant into a register.
672 - Any instruction storing a register onto the stack.
673
674 These are used to compute the CFA and REG_OFFSET output. */
675
676 for (pc = start_pc; pc < end_pc; pc += 4)
677 {
678 unsigned int insn;
679 int rt, ra, rb, rc, immed;
680
681 if (target_read_memory (pc, buf, 4))
682 break;
e17a4113 683 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
684
685 /* AI is the typical instruction to set up a stack frame.
686 It is also used to initialize the frame pointer. */
687 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
688 {
689 if (rt == data->cfa_reg && ra == data->cfa_reg)
690 data->cfa_offset -= immed;
691
692 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
693 && !found_sp)
694 {
695 found_sp = 1;
696 prolog_pc = pc + 4;
697
698 data->size = -immed;
699 }
700 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
701 && !found_fp)
702 {
703 found_fp = 1;
704 prolog_pc = pc + 4;
705
706 data->cfa_reg = SPU_FP_REGNUM;
707 data->cfa_offset -= immed;
708 }
709 }
710
711 /* A is used to set up stack frames of size >= 512 bytes.
712 If we have tracked the contents of the addend register,
713 we can handle this as well. */
714 else if (is_rr (insn, op_a, &rt, &ra, &rb))
715 {
716 if (rt == data->cfa_reg && ra == data->cfa_reg)
717 {
718 if (reg_immed[rb] != 0)
719 data->cfa_offset -= reg_immed[rb];
720 else
721 data->cfa_reg = -1; /* We don't know the CFA any more. */
722 }
723
724 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
725 && !found_sp)
726 {
727 found_sp = 1;
728 prolog_pc = pc + 4;
729
730 if (reg_immed[rb] != 0)
731 data->size = -reg_immed[rb];
732 }
733 }
734
735 /* We need to track IL and ILA used to load immediate constants
736 in case they are later used as input to an A instruction. */
737 else if (is_ri16 (insn, op_il, &rt, &immed))
738 {
739 reg_immed[rt] = immed;
12102450
UW
740
741 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
742 found_sp = 1;
771b4502
UW
743 }
744
745 else if (is_ri18 (insn, op_ila, &rt, &immed))
746 {
747 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
748
749 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
750 found_sp = 1;
771b4502
UW
751 }
752
753 /* STQD is used to save registers to the stack. */
754 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
755 {
756 if (ra == data->cfa_reg)
757 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
758
759 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
760 && !found_lr)
761 {
762 found_lr = 1;
763 prolog_pc = pc + 4;
764 }
ce50d78b
UW
765
766 if (ra == SPU_RAW_SP_REGNUM
767 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
768 && !found_bc)
769 {
770 found_bc = 1;
771 prolog_pc = pc + 4;
772 }
771b4502
UW
773 }
774
775 /* _start uses SELB to set up the stack pointer. */
776 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
777 {
778 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
779 found_sp = 1;
780 }
781
782 /* We terminate if we find a branch. */
783 else if (is_branch (insn, &immed, &ra))
784 break;
785 }
786
787
788 /* If we successfully parsed until here, and didn't find any instruction
789 modifying SP, we assume we have a frameless function. */
790 if (!found_sp)
791 data->size = 0;
792
793 /* Return cooked instead of raw SP. */
794 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
795 data->cfa_reg = SPU_SP_REGNUM;
796
797 return prolog_pc;
798}
799
800/* Return the first instruction after the prologue starting at PC. */
801static CORE_ADDR
6093d2eb 802spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
803{
804 struct spu_prologue_data data;
e17a4113 805 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
806}
807
808/* Return the frame pointer in use at address PC. */
809static void
a54fba4c
MD
810spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
811 int *reg, LONGEST *offset)
771b4502
UW
812{
813 struct spu_prologue_data data;
e17a4113 814 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
815
816 if (data.size != -1 && data.cfa_reg != -1)
817 {
818 /* The 'frame pointer' address is CFA minus frame size. */
819 *reg = data.cfa_reg;
820 *offset = data.cfa_offset - data.size;
821 }
822 else
823 {
c378eb4e 824 /* ??? We don't really know ... */
771b4502
UW
825 *reg = SPU_SP_REGNUM;
826 *offset = 0;
827 }
828}
829
fe5febed
UW
830/* Return true if we are in the function's epilogue, i.e. after the
831 instruction that destroyed the function's stack frame.
832
833 1) scan forward from the point of execution:
834 a) If you find an instruction that modifies the stack pointer
835 or transfers control (except a return), execution is not in
836 an epilogue, return.
837 b) Stop scanning if you find a return instruction or reach the
838 end of the function or reach the hard limit for the size of
839 an epilogue.
840 2) scan backward from the point of execution:
841 a) If you find an instruction that modifies the stack pointer,
842 execution *is* in an epilogue, return.
843 b) Stop scanning if you reach an instruction that transfers
844 control or the beginning of the function or reach the hard
845 limit for the size of an epilogue. */
846
847static int
848spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
849{
e17a4113 850 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
851 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
852 bfd_byte buf[4];
853 unsigned int insn;
22e048c9 854 int rt, ra, rb, immed;
fe5febed
UW
855
856 /* Find the search limits based on function boundaries and hard limit.
857 We assume the epilogue can be up to 64 instructions long. */
858
859 const int spu_max_epilogue_size = 64 * 4;
860
861 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
862 return 0;
863
864 if (pc - func_start < spu_max_epilogue_size)
865 epilogue_start = func_start;
866 else
867 epilogue_start = pc - spu_max_epilogue_size;
868
869 if (func_end - pc < spu_max_epilogue_size)
870 epilogue_end = func_end;
871 else
872 epilogue_end = pc + spu_max_epilogue_size;
873
874 /* Scan forward until next 'bi $0'. */
875
876 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
877 {
878 if (target_read_memory (scan_pc, buf, 4))
879 return 0;
e17a4113 880 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
881
882 if (is_branch (insn, &immed, &ra))
883 {
884 if (immed == 0 && ra == SPU_LR_REGNUM)
885 break;
886
887 return 0;
888 }
889
890 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
891 || is_rr (insn, op_a, &rt, &ra, &rb)
892 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
893 {
894 if (rt == SPU_RAW_SP_REGNUM)
895 return 0;
896 }
897 }
898
899 if (scan_pc >= epilogue_end)
900 return 0;
901
902 /* Scan backward until adjustment to stack pointer (R1). */
903
904 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
905 {
906 if (target_read_memory (scan_pc, buf, 4))
907 return 0;
e17a4113 908 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
909
910 if (is_branch (insn, &immed, &ra))
911 return 0;
912
913 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
914 || is_rr (insn, op_a, &rt, &ra, &rb)
915 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
916 {
917 if (rt == SPU_RAW_SP_REGNUM)
918 return 1;
919 }
920 }
921
922 return 0;
923}
924
925
771b4502
UW
926/* Normal stack frames. */
927
928struct spu_unwind_cache
929{
930 CORE_ADDR func;
931 CORE_ADDR frame_base;
932 CORE_ADDR local_base;
933
934 struct trad_frame_saved_reg *saved_regs;
935};
936
937static struct spu_unwind_cache *
8d998b8f 938spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
939 void **this_prologue_cache)
940{
e17a4113 941 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 943 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
944 struct spu_unwind_cache *info;
945 struct spu_prologue_data data;
85e747d2 946 CORE_ADDR id = tdep->id;
dcf52cd8 947 gdb_byte buf[16];
771b4502
UW
948
949 if (*this_prologue_cache)
950 return *this_prologue_cache;
951
952 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
953 *this_prologue_cache = info;
8d998b8f 954 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
955 info->frame_base = 0;
956 info->local_base = 0;
957
958 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 959 info->func = get_frame_func (this_frame);
771b4502
UW
960 if (info->func == 0)
961 {
962 /* Fall back to using the current PC as frame ID. */
8d998b8f 963 info->func = get_frame_pc (this_frame);
771b4502
UW
964 data.size = -1;
965 }
966 else
e17a4113
UW
967 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
968 &data);
771b4502
UW
969
970 /* If successful, use prologue analysis data. */
971 if (data.size != -1 && data.cfa_reg != -1)
972 {
973 CORE_ADDR cfa;
974 int i;
771b4502
UW
975
976 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 977 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 978 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 979 cfa = SPUADDR (id, cfa);
771b4502
UW
980
981 /* Call-saved register slots. */
982 for (i = 0; i < SPU_NUM_GPRS; i++)
983 if (i == SPU_LR_REGNUM
984 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
985 if (data.reg_offset[i] != -1)
986 info->saved_regs[i].addr = cfa - data.reg_offset[i];
987
771b4502
UW
988 /* Frame bases. */
989 info->frame_base = cfa;
990 info->local_base = cfa - data.size;
991 }
992
993 /* Otherwise, fall back to reading the backchain link. */
994 else
995 {
cdc9523a
UW
996 CORE_ADDR reg;
997 LONGEST backchain;
13def385 998 ULONGEST lslr;
cdc9523a 999 int status;
771b4502 1000
13def385
UW
1001 /* Get local store limit. */
1002 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1003 if (!lslr)
1004 lslr = (ULONGEST) -1;
1005
771b4502 1006 /* Get the backchain. */
8d998b8f 1007 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1008 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1009 &backchain);
771b4502
UW
1010
1011 /* A zero backchain terminates the frame chain. Also, sanity
1012 check against the local store size limit. */
13def385 1013 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1014 {
1015 /* Assume the link register is saved into its slot. */
13def385 1016 if (backchain + 16 <= lslr)
c378eb4e
MS
1017 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1018 backchain + 16);
771b4502 1019
771b4502 1020 /* Frame bases. */
85e747d2
UW
1021 info->frame_base = SPUADDR (id, backchain);
1022 info->local_base = SPUADDR (id, reg);
771b4502
UW
1023 }
1024 }
dcf52cd8 1025
c4891da7
UW
1026 /* If we didn't find a frame, we cannot determine SP / return address. */
1027 if (info->frame_base == 0)
1028 return info;
1029
dcf52cd8 1030 /* The previous SP is equal to the CFA. */
85e747d2
UW
1031 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1032 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1033
0a44cb36
UW
1034 /* Read full contents of the unwound link register in order to
1035 be able to determine the return address. */
dcf52cd8
UW
1036 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1037 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1038 else
8d998b8f 1039 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1040
0a44cb36
UW
1041 /* Normally, the return address is contained in the slot 0 of the
1042 link register, and slots 1-3 are zero. For an overlay return,
1043 slot 0 contains the address of the overlay manager return stub,
1044 slot 1 contains the partition number of the overlay section to
1045 be returned to, and slot 2 contains the return address within
1046 that section. Return the latter address in that case. */
e17a4113 1047 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1048 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1049 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1050 else
1051 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1052 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1053
1054 return info;
1055}
1056
1057static void
8d998b8f 1058spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1059 void **this_prologue_cache, struct frame_id *this_id)
1060{
1061 struct spu_unwind_cache *info =
8d998b8f 1062 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1063
1064 if (info->frame_base == 0)
1065 return;
1066
1067 *this_id = frame_id_build (info->frame_base, info->func);
1068}
1069
8d998b8f
UW
1070static struct value *
1071spu_frame_prev_register (struct frame_info *this_frame,
1072 void **this_prologue_cache, int regnum)
771b4502
UW
1073{
1074 struct spu_unwind_cache *info
8d998b8f 1075 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1076
1077 /* Special-case the stack pointer. */
1078 if (regnum == SPU_RAW_SP_REGNUM)
1079 regnum = SPU_SP_REGNUM;
1080
8d998b8f 1081 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1082}
1083
1084static const struct frame_unwind spu_frame_unwind = {
1085 NORMAL_FRAME,
8fbca658 1086 default_frame_unwind_stop_reason,
771b4502 1087 spu_frame_this_id,
8d998b8f
UW
1088 spu_frame_prev_register,
1089 NULL,
1090 default_frame_sniffer
771b4502
UW
1091};
1092
771b4502 1093static CORE_ADDR
8d998b8f 1094spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1095{
1096 struct spu_unwind_cache *info
8d998b8f 1097 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1098 return info->local_base;
1099}
1100
1101static const struct frame_base spu_frame_base = {
1102 &spu_frame_unwind,
1103 spu_frame_base_address,
1104 spu_frame_base_address,
1105 spu_frame_base_address
1106};
1107
1108static CORE_ADDR
1109spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1110{
85e747d2 1111 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1112 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1113 /* Mask off interrupt enable bit. */
85e747d2 1114 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1115}
1116
1117static CORE_ADDR
1118spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1119{
85e747d2
UW
1120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1121 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1122 return SPUADDR (tdep->id, sp);
771b4502
UW
1123}
1124
118dfbaf 1125static CORE_ADDR
61a1198a 1126spu_read_pc (struct regcache *regcache)
118dfbaf 1127{
85e747d2 1128 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1129 ULONGEST pc;
1130 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1131 /* Mask off interrupt enable bit. */
85e747d2 1132 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1133}
1134
1135static void
61a1198a 1136spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1137{
1138 /* Keep interrupt enabled state unchanged. */
61a1198a 1139 ULONGEST old_pc;
30bcb456 1140
61a1198a
UW
1141 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1142 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1143 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1144}
1145
771b4502 1146
cc5f0d61
UW
1147/* Cell/B.E. cross-architecture unwinder support. */
1148
1149struct spu2ppu_cache
1150{
1151 struct frame_id frame_id;
1152 struct regcache *regcache;
1153};
1154
1155static struct gdbarch *
1156spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1157{
1158 struct spu2ppu_cache *cache = *this_cache;
1159 return get_regcache_arch (cache->regcache);
1160}
1161
1162static void
1163spu2ppu_this_id (struct frame_info *this_frame,
1164 void **this_cache, struct frame_id *this_id)
1165{
1166 struct spu2ppu_cache *cache = *this_cache;
1167 *this_id = cache->frame_id;
1168}
1169
1170static struct value *
1171spu2ppu_prev_register (struct frame_info *this_frame,
1172 void **this_cache, int regnum)
1173{
1174 struct spu2ppu_cache *cache = *this_cache;
1175 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1176 gdb_byte *buf;
1177
1178 buf = alloca (register_size (gdbarch, regnum));
1179 regcache_cooked_read (cache->regcache, regnum, buf);
1180 return frame_unwind_got_bytes (this_frame, regnum, buf);
1181}
1182
1183static int
1184spu2ppu_sniffer (const struct frame_unwind *self,
1185 struct frame_info *this_frame, void **this_prologue_cache)
1186{
1187 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 CORE_ADDR base, func, backchain;
1190 gdb_byte buf[4];
1191
f5656ead 1192 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
cc5f0d61
UW
1193 return 0;
1194
1195 base = get_frame_sp (this_frame);
1196 func = get_frame_pc (this_frame);
1197 if (target_read_memory (base, buf, 4))
1198 return 0;
1199 backchain = extract_unsigned_integer (buf, 4, byte_order);
1200
1201 if (!backchain)
1202 {
1203 struct frame_info *fi;
1204
1205 struct spu2ppu_cache *cache
1206 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1207
1208 cache->frame_id = frame_id_build (base + 16, func);
1209
1210 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1211 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1212 break;
1213
1214 if (fi)
1215 {
1216 cache->regcache = frame_save_as_regcache (fi);
1217 *this_prologue_cache = cache;
1218 return 1;
1219 }
1220 else
1221 {
1222 struct regcache *regcache;
f5656ead 1223 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
cc5f0d61
UW
1224 cache->regcache = regcache_dup (regcache);
1225 *this_prologue_cache = cache;
1226 return 1;
1227 }
1228 }
1229
1230 return 0;
1231}
1232
1233static void
1234spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1235{
1236 struct spu2ppu_cache *cache = this_cache;
1237 regcache_xfree (cache->regcache);
1238}
1239
1240static const struct frame_unwind spu2ppu_unwind = {
1241 ARCH_FRAME,
8fbca658 1242 default_frame_unwind_stop_reason,
cc5f0d61
UW
1243 spu2ppu_this_id,
1244 spu2ppu_prev_register,
1245 NULL,
1246 spu2ppu_sniffer,
1247 spu2ppu_dealloc_cache,
1248 spu2ppu_prev_arch,
1249};
1250
1251
771b4502
UW
1252/* Function calling convention. */
1253
7b3dc0b7
UW
1254static CORE_ADDR
1255spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1256{
1257 return sp & ~15;
1258}
1259
87805e63
UW
1260static CORE_ADDR
1261spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1262 struct value **args, int nargs, struct type *value_type,
1263 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1264 struct regcache *regcache)
1265{
1266 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1267 sp = (sp - 4) & ~15;
1268 /* Store the address of that breakpoint */
1269 *bp_addr = sp;
1270 /* The call starts at the callee's entry point. */
1271 *real_pc = funaddr;
1272
1273 return sp;
1274}
1275
771b4502
UW
1276static int
1277spu_scalar_value_p (struct type *type)
1278{
1279 switch (TYPE_CODE (type))
1280 {
1281 case TYPE_CODE_INT:
1282 case TYPE_CODE_ENUM:
1283 case TYPE_CODE_RANGE:
1284 case TYPE_CODE_CHAR:
1285 case TYPE_CODE_BOOL:
1286 case TYPE_CODE_PTR:
1287 case TYPE_CODE_REF:
1288 return TYPE_LENGTH (type) <= 16;
1289
1290 default:
1291 return 0;
1292 }
1293}
1294
1295static void
1296spu_value_to_regcache (struct regcache *regcache, int regnum,
1297 struct type *type, const gdb_byte *in)
1298{
1299 int len = TYPE_LENGTH (type);
1300
1301 if (spu_scalar_value_p (type))
1302 {
1303 int preferred_slot = len < 4 ? 4 - len : 0;
1304 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1305 }
1306 else
1307 {
1308 while (len >= 16)
1309 {
1310 regcache_cooked_write (regcache, regnum++, in);
1311 in += 16;
1312 len -= 16;
1313 }
1314
1315 if (len > 0)
1316 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1317 }
1318}
1319
1320static void
1321spu_regcache_to_value (struct regcache *regcache, int regnum,
1322 struct type *type, gdb_byte *out)
1323{
1324 int len = TYPE_LENGTH (type);
1325
1326 if (spu_scalar_value_p (type))
1327 {
1328 int preferred_slot = len < 4 ? 4 - len : 0;
1329 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1330 }
1331 else
1332 {
1333 while (len >= 16)
1334 {
1335 regcache_cooked_read (regcache, regnum++, out);
1336 out += 16;
1337 len -= 16;
1338 }
1339
1340 if (len > 0)
1341 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1342 }
1343}
1344
1345static CORE_ADDR
1346spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1347 struct regcache *regcache, CORE_ADDR bp_addr,
1348 int nargs, struct value **args, CORE_ADDR sp,
1349 int struct_return, CORE_ADDR struct_addr)
1350{
e17a4113 1351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1352 CORE_ADDR sp_delta;
771b4502
UW
1353 int i;
1354 int regnum = SPU_ARG1_REGNUM;
1355 int stack_arg = -1;
1356 gdb_byte buf[16];
1357
1358 /* Set the return address. */
1359 memset (buf, 0, sizeof buf);
85e747d2 1360 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1361 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1362
1363 /* If STRUCT_RETURN is true, then the struct return address (in
1364 STRUCT_ADDR) will consume the first argument-passing register.
1365 Both adjust the register count and store that value. */
1366 if (struct_return)
1367 {
1368 memset (buf, 0, sizeof buf);
85e747d2 1369 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1370 regcache_cooked_write (regcache, regnum++, buf);
1371 }
1372
1373 /* Fill in argument registers. */
1374 for (i = 0; i < nargs; i++)
1375 {
1376 struct value *arg = args[i];
1377 struct type *type = check_typedef (value_type (arg));
1378 const gdb_byte *contents = value_contents (arg);
354ecfd5 1379 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
771b4502
UW
1380
1381 /* If the argument doesn't wholly fit into registers, it and
1382 all subsequent arguments go to the stack. */
1383 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1384 {
1385 stack_arg = i;
1386 break;
1387 }
1388
1389 spu_value_to_regcache (regcache, regnum, type, contents);
1390 regnum += n_regs;
1391 }
1392
1393 /* Overflow arguments go to the stack. */
1394 if (stack_arg != -1)
1395 {
1396 CORE_ADDR ap;
1397
1398 /* Allocate all required stack size. */
1399 for (i = stack_arg; i < nargs; i++)
1400 {
1401 struct type *type = check_typedef (value_type (args[i]));
1402 sp -= align_up (TYPE_LENGTH (type), 16);
1403 }
1404
1405 /* Fill in stack arguments. */
1406 ap = sp;
1407 for (i = stack_arg; i < nargs; i++)
1408 {
1409 struct value *arg = args[i];
1410 struct type *type = check_typedef (value_type (arg));
1411 int len = TYPE_LENGTH (type);
1412 int preferred_slot;
1413
1414 if (spu_scalar_value_p (type))
1415 preferred_slot = len < 4 ? 4 - len : 0;
1416 else
1417 preferred_slot = 0;
1418
1419 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1420 ap += align_up (TYPE_LENGTH (type), 16);
1421 }
1422 }
1423
1424 /* Allocate stack frame header. */
1425 sp -= 32;
1426
ee82e879
UW
1427 /* Store stack back chain. */
1428 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1429 target_write_memory (sp, buf, 16);
1430
9ff3afda 1431 /* Finally, update all slots of the SP register. */
e17a4113 1432 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1433 for (i = 0; i < 4; i++)
1434 {
e17a4113
UW
1435 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1436 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1437 }
1438 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1439
1440 return sp;
1441}
1442
1443static struct frame_id
8d998b8f 1444spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1445{
85e747d2 1446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1447 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1448 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1449 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1450}
1451
1452/* Function return value access. */
1453
1454static enum return_value_convention
6a3a010b 1455spu_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1456 struct type *type, struct regcache *regcache,
1457 gdb_byte *out, const gdb_byte *in)
771b4502 1458{
6a3a010b 1459 struct type *func_type = function ? value_type (function) : NULL;
771b4502 1460 enum return_value_convention rvc;
54fcddd0
UW
1461 int opencl_vector = 0;
1462
598cfb71
UW
1463 if (func_type)
1464 {
1465 func_type = check_typedef (func_type);
1466
1467 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1468 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1469
1470 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1471 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1472 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1473 && TYPE_VECTOR (type))
1474 opencl_vector = 1;
1475 }
771b4502
UW
1476
1477 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1478 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1479 else
1480 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1481
1482 if (in)
1483 {
1484 switch (rvc)
1485 {
1486 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1487 if (opencl_vector && TYPE_LENGTH (type) == 2)
1488 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1489 else
1490 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1491 break;
1492
1493 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1494 error (_("Cannot set function return value."));
771b4502
UW
1495 break;
1496 }
1497 }
1498 else if (out)
1499 {
1500 switch (rvc)
1501 {
1502 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1503 if (opencl_vector && TYPE_LENGTH (type) == 2)
1504 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1505 else
1506 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1507 break;
1508
1509 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1510 error (_("Function return value unknown."));
771b4502
UW
1511 break;
1512 }
1513 }
1514
1515 return rvc;
1516}
1517
1518
1519/* Breakpoints. */
1520
1521static const gdb_byte *
c378eb4e
MS
1522spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1523 CORE_ADDR * pcptr, int *lenptr)
771b4502
UW
1524{
1525 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1526
1527 *lenptr = sizeof breakpoint;
1528 return breakpoint;
1529}
1530
d03285ec
UW
1531static int
1532spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1533 struct bp_target_info *bp_tgt)
1534{
1535 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1536 that in a combined application, we have some breakpoints inserted in SPU
1537 code, and now the application forks (on the PPU side). GDB common code
1538 will assume that the fork system call copied all breakpoints into the new
1539 process' address space, and that all those copies now need to be removed
1540 (see breakpoint.c:detach_breakpoints).
1541
1542 While this is certainly true for PPU side breakpoints, it is not true
1543 for SPU side breakpoints. fork will clone the SPU context file
1544 descriptors, so that all the existing SPU contexts are in accessible
1545 in the new process. However, the contents of the SPU contexts themselves
1546 are *not* cloned. Therefore the effect of detach_breakpoints is to
1547 remove SPU breakpoints from the *original* SPU context's local store
1548 -- this is not the correct behaviour.
1549
1550 The workaround is to check whether the PID we are asked to remove this
1551 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1552 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1553 true in the context of detach_breakpoints. If so, we simply do nothing.
1554 [ Note that for the fork child process, it does not matter if breakpoints
1555 remain inserted, because those SPU contexts are not runnable anyway --
1556 the Linux kernel allows only the original process to invoke spu_run. */
1557
1558 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1559 return 0;
1560
1561 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1562}
1563
771b4502
UW
1564
1565/* Software single-stepping support. */
1566
63807e1d 1567static int
0b1b3e42 1568spu_software_single_step (struct frame_info *frame)
771b4502 1569{
a6d9a66e 1570 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1571 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1573 CORE_ADDR pc, next_pc;
1574 unsigned int insn;
1575 int offset, reg;
1576 gdb_byte buf[4];
13def385 1577 ULONGEST lslr;
771b4502 1578
0b1b3e42 1579 pc = get_frame_pc (frame);
771b4502 1580
e0cd558a
UW
1581 if (target_read_memory (pc, buf, 4))
1582 return 1;
e17a4113 1583 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1584
13def385
UW
1585 /* Get local store limit. */
1586 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1587 if (!lslr)
1588 lslr = (ULONGEST) -1;
1589
e0cd558a
UW
1590 /* Next sequential instruction is at PC + 4, except if the current
1591 instruction is a PPE-assisted call, in which case it is at PC + 8.
1592 Wrap around LS limit to be on the safe side. */
1593 if ((insn & 0xffffff00) == 0x00002100)
13def385 1594 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1595 else
13def385 1596 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1597
6c95b8df
PA
1598 insert_single_step_breakpoint (gdbarch,
1599 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1600
e0cd558a
UW
1601 if (is_branch (insn, &offset, &reg))
1602 {
1603 CORE_ADDR target = offset;
771b4502 1604
e0cd558a 1605 if (reg == SPU_PC_REGNUM)
85e747d2 1606 target += SPUADDR_ADDR (pc);
e0cd558a
UW
1607 else if (reg != -1)
1608 {
8dccd430
PA
1609 int optim, unavail;
1610
1611 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1612 &optim, &unavail))
1613 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1614 else
1615 {
1616 if (optim)
1617 error (_("Could not determine address of "
1618 "single-step breakpoint."));
1619 if (unavail)
1620 throw_error (NOT_AVAILABLE_ERROR,
1621 _("Could not determine address of "
1622 "single-step breakpoint."));
1623 }
771b4502 1624 }
e0cd558a 1625
13def385 1626 target = target & lslr;
e0cd558a 1627 if (target != next_pc)
6c95b8df 1628 insert_single_step_breakpoint (gdbarch, aspace,
85e747d2 1629 SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1630 }
e6590a1b
UW
1631
1632 return 1;
771b4502
UW
1633}
1634
6e3f70d7
UW
1635
1636/* Longjmp support. */
1637
1638static int
1639spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1640{
e17a4113 1641 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1642 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1643 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1644 gdb_byte buf[4];
1645 CORE_ADDR jb_addr;
8dccd430 1646 int optim, unavail;
6e3f70d7
UW
1647
1648 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1649 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1650 &optim, &unavail))
1651 return 0;
1652
e17a4113 1653 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1654 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1655 return 0;
1656
e17a4113 1657 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1658 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1659 return 1;
1660}
1661
1662
85e747d2
UW
1663/* Disassembler. */
1664
1665struct spu_dis_asm_data
1666{
1667 struct gdbarch *gdbarch;
1668 int id;
1669};
1670
1671static void
1672spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1673{
1674 struct spu_dis_asm_data *data = info->application_data;
1675 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1676}
1677
1678static int
1679gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1680{
c378eb4e
MS
1681 /* The opcodes disassembler does 18-bit address arithmetic. Make
1682 sure the SPU ID encoded in the high bits is added back when we
1683 call print_address. */
85e747d2
UW
1684 struct disassemble_info spu_info = *info;
1685 struct spu_dis_asm_data data;
1686 data.gdbarch = info->application_data;
1687 data.id = SPUADDR_SPU (memaddr);
1688
1689 spu_info.application_data = &data;
1690 spu_info.print_address_func = spu_dis_asm_print_address;
1691 return print_insn_spu (memaddr, &spu_info);
1692}
1693
1694
dcf52cd8
UW
1695/* Target overlays for the SPU overlay manager.
1696
1697 See the documentation of simple_overlay_update for how the
1698 interface is supposed to work.
1699
1700 Data structures used by the overlay manager:
1701
1702 struct ovly_table
1703 {
1704 u32 vma;
1705 u32 size;
1706 u32 pos;
1707 u32 buf;
1708 } _ovly_table[]; -- one entry per overlay section
1709
1710 struct ovly_buf_table
1711 {
1712 u32 mapped;
1713 } _ovly_buf_table[]; -- one entry per overlay buffer
1714
1715 _ovly_table should never change.
1716
c378eb4e
MS
1717 Both tables are aligned to a 16-byte boundary, the symbols
1718 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1719 size set to the size of the respective array. buf in _ovly_table is
1720 an index into _ovly_buf_table.
dcf52cd8 1721
c378eb4e 1722 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1723 from one to reference the first entry in their respective tables. */
1724
1725/* Using the per-objfile private data mechanism, we store for each
1726 objfile an array of "struct spu_overlay_table" structures, one
1727 for each obj_section of the objfile. This structure holds two
1728 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1729 is *not* an overlay section. If it is non-zero, it represents
1730 a target address. The overlay section is mapped iff the target
1731 integer at this location equals MAPPED_VAL. */
1732
1733static const struct objfile_data *spu_overlay_data;
1734
1735struct spu_overlay_table
1736 {
1737 CORE_ADDR mapped_ptr;
1738 CORE_ADDR mapped_val;
1739 };
1740
1741/* Retrieve the overlay table for OBJFILE. If not already cached, read
1742 the _ovly_table data structure from the target and initialize the
1743 spu_overlay_table data structure from it. */
1744static struct spu_overlay_table *
1745spu_get_overlay_table (struct objfile *objfile)
1746{
e17a4113
UW
1747 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1748 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8
UW
1749 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1750 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1751 unsigned ovly_table_size, ovly_buf_table_size;
1752 struct spu_overlay_table *tbl;
1753 struct obj_section *osect;
948f8e3d 1754 gdb_byte *ovly_table;
dcf52cd8
UW
1755 int i;
1756
1757 tbl = objfile_data (objfile, spu_overlay_data);
1758 if (tbl)
1759 return tbl;
1760
1761 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1762 if (!ovly_table_msym)
1763 return NULL;
1764
c378eb4e
MS
1765 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1766 NULL, objfile);
dcf52cd8
UW
1767 if (!ovly_buf_table_msym)
1768 return NULL;
1769
1770 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1771 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1772
1773 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1774 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1775
1776 ovly_table = xmalloc (ovly_table_size);
1777 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1778
1779 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1780 objfile->sections_end - objfile->sections,
1781 struct spu_overlay_table);
1782
1783 for (i = 0; i < ovly_table_size / 16; i++)
1784 {
e17a4113
UW
1785 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1786 4, byte_order);
1787 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1788 4, byte_order);
1789 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1790 4, byte_order);
1791 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1792 4, byte_order);
dcf52cd8
UW
1793
1794 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1795 continue;
1796
1797 ALL_OBJFILE_OSECTIONS (objfile, osect)
1798 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1799 && pos == osect->the_bfd_section->filepos)
1800 {
1801 int ndx = osect - objfile->sections;
1802 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1803 tbl[ndx].mapped_val = i + 1;
1804 break;
1805 }
1806 }
1807
1808 xfree (ovly_table);
1809 set_objfile_data (objfile, spu_overlay_data, tbl);
1810 return tbl;
1811}
1812
1813/* Read _ovly_buf_table entry from the target to dermine whether
1814 OSECT is currently mapped, and update the mapped state. */
1815static void
1816spu_overlay_update_osect (struct obj_section *osect)
1817{
e17a4113
UW
1818 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1819 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1820 struct spu_overlay_table *ovly_table;
85e747d2 1821 CORE_ADDR id, val;
dcf52cd8
UW
1822
1823 ovly_table = spu_get_overlay_table (osect->objfile);
1824 if (!ovly_table)
1825 return;
1826
1827 ovly_table += osect - osect->objfile->sections;
1828 if (ovly_table->mapped_ptr == 0)
1829 return;
1830
85e747d2
UW
1831 id = SPUADDR_SPU (obj_section_addr (osect));
1832 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1833 4, byte_order);
dcf52cd8
UW
1834 osect->ovly_mapped = (val == ovly_table->mapped_val);
1835}
1836
1837/* If OSECT is NULL, then update all sections' mapped state.
1838 If OSECT is non-NULL, then update only OSECT's mapped state. */
1839static void
1840spu_overlay_update (struct obj_section *osect)
1841{
1842 /* Just one section. */
1843 if (osect)
1844 spu_overlay_update_osect (osect);
1845
1846 /* All sections. */
1847 else
1848 {
1849 struct objfile *objfile;
1850
1851 ALL_OBJSECTIONS (objfile, osect)
714835d5 1852 if (section_is_overlay (osect))
dcf52cd8
UW
1853 spu_overlay_update_osect (osect);
1854 }
1855}
1856
1857/* Whenever a new objfile is loaded, read the target's _ovly_table.
1858 If there is one, go through all sections and make sure for non-
1859 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1860 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1861static void
1862spu_overlay_new_objfile (struct objfile *objfile)
1863{
1864 struct spu_overlay_table *ovly_table;
1865 struct obj_section *osect;
1866
1867 /* If we've already touched this file, do nothing. */
1868 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1869 return;
1870
0391f248
UW
1871 /* Consider only SPU objfiles. */
1872 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1873 return;
1874
dcf52cd8
UW
1875 /* Check if this objfile has overlays. */
1876 ovly_table = spu_get_overlay_table (objfile);
1877 if (!ovly_table)
1878 return;
1879
1880 /* Now go and fiddle with all the LMAs. */
1881 ALL_OBJFILE_OSECTIONS (objfile, osect)
1882 {
1883 bfd *obfd = objfile->obfd;
1884 asection *bsect = osect->the_bfd_section;
1885 int ndx = osect - objfile->sections;
1886
1887 if (ovly_table[ndx].mapped_ptr == 0)
1888 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1889 else
d2ed6730 1890 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1891 }
1892}
1893
771b4502 1894
3285f3fe
UW
1895/* Insert temporary breakpoint on "main" function of newly loaded
1896 SPE context OBJFILE. */
1897static void
1898spu_catch_start (struct objfile *objfile)
1899{
1900 struct minimal_symbol *minsym;
1901 struct symtab *symtab;
1902 CORE_ADDR pc;
1903 char buf[32];
1904
1905 /* Do this only if requested by "set spu stop-on-load on". */
1906 if (!spu_stop_on_load_p)
1907 return;
1908
1909 /* Consider only SPU objfiles. */
1910 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1911 return;
1912
1913 /* The main objfile is handled differently. */
1914 if (objfile == symfile_objfile)
1915 return;
1916
1917 /* There can be multiple symbols named "main". Search for the
1918 "main" in *this* objfile. */
1919 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1920 if (!minsym)
1921 return;
1922
1923 /* If we have debugging information, try to use it -- this
1924 will allow us to properly skip the prologue. */
1925 pc = SYMBOL_VALUE_ADDRESS (minsym);
e27d198c 1926 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (objfile, minsym));
3285f3fe
UW
1927 if (symtab != NULL)
1928 {
1929 struct blockvector *bv = BLOCKVECTOR (symtab);
1930 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1931 struct symbol *sym;
1932 struct symtab_and_line sal;
1933
94af9270 1934 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
3285f3fe
UW
1935 if (sym)
1936 {
1937 fixup_symbol_section (sym, objfile);
1938 sal = find_function_start_sal (sym, 1);
1939 pc = sal.pc;
1940 }
1941 }
1942
1943 /* Use a numerical address for the set_breakpoint command to avoid having
1944 the breakpoint re-set incorrectly. */
1945 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
d8c09fb5
JK
1946 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1947 NULL /* cond_string */, -1 /* thread */,
6a609e58 1948 NULL /* extra_string */,
d8c09fb5 1949 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 1950 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
1951 0 /* ignore_count */,
1952 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 1953 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 1954 1 /* enabled */, 0 /* internal */, 0);
3285f3fe
UW
1955}
1956
1957
ff1a52c6
UW
1958/* Look up OBJFILE loaded into FRAME's SPU context. */
1959static struct objfile *
1960spu_objfile_from_frame (struct frame_info *frame)
1961{
1962 struct gdbarch *gdbarch = get_frame_arch (frame);
1963 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1964 struct objfile *obj;
1965
1966 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1967 return NULL;
1968
1969 ALL_OBJFILES (obj)
1970 {
1971 if (obj->sections != obj->sections_end
1972 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1973 return obj;
1974 }
1975
1976 return NULL;
1977}
1978
1979/* Flush cache for ea pointer access if available. */
1980static void
1981flush_ea_cache (void)
1982{
1983 struct minimal_symbol *msymbol;
1984 struct objfile *obj;
1985
1986 if (!has_stack_frames ())
1987 return;
1988
1989 obj = spu_objfile_from_frame (get_current_frame ());
1990 if (obj == NULL)
1991 return;
1992
1993 /* Lookup inferior function __cache_flush. */
1994 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1995 if (msymbol != NULL)
1996 {
1997 struct type *type;
1998 CORE_ADDR addr;
1999
2000 type = objfile_type (obj)->builtin_void;
2001 type = lookup_function_type (type);
2002 type = lookup_pointer_type (type);
2003 addr = SYMBOL_VALUE_ADDRESS (msymbol);
2004
2005 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2006 }
2007}
2008
2009/* This handler is called when the inferior has stopped. If it is stopped in
2010 SPU architecture then flush the ea cache if used. */
2011static void
2012spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2013{
2014 if (!spu_auto_flush_cache_p)
2015 return;
2016
2017 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2018 re-entering this function when __cache_flush stops. */
2019 spu_auto_flush_cache_p = 0;
2020 flush_ea_cache ();
2021 spu_auto_flush_cache_p = 1;
2022}
2023
2024
23d964e7
UW
2025/* "info spu" commands. */
2026
2027static void
2028info_spu_event_command (char *args, int from_tty)
2029{
2030 struct frame_info *frame = get_selected_frame (NULL);
2031 ULONGEST event_status = 0;
2032 ULONGEST event_mask = 0;
2033 struct cleanup *chain;
2034 gdb_byte buf[100];
2035 char annex[32];
2036 LONGEST len;
22e048c9 2037 int id;
23d964e7 2038
0391f248
UW
2039 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2040 error (_("\"info spu\" is only supported on the SPU architecture."));
2041
23d964e7
UW
2042 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2043
2044 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2045 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2046 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2047 if (len <= 0)
2048 error (_("Could not read event_status."));
9971ac47 2049 buf[len] = '\0';
001f13d8 2050 event_status = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2051
2052 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2053 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2054 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2055 if (len <= 0)
2056 error (_("Could not read event_mask."));
9971ac47 2057 buf[len] = '\0';
001f13d8 2058 event_mask = strtoulst ((char *) buf, NULL, 16);
23d964e7 2059
31a0ae49 2060 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
23d964e7 2061
31a0ae49 2062 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2063 {
31a0ae49 2064 ui_out_field_fmt (current_uiout, "event_status",
23d964e7 2065 "0x%s", phex_nz (event_status, 4));
31a0ae49 2066 ui_out_field_fmt (current_uiout, "event_mask",
23d964e7
UW
2067 "0x%s", phex_nz (event_mask, 4));
2068 }
2069 else
2070 {
2071 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2072 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2073 }
2074
2075 do_cleanups (chain);
2076}
2077
2078static void
2079info_spu_signal_command (char *args, int from_tty)
2080{
2081 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2082 struct gdbarch *gdbarch = get_frame_arch (frame);
2083 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2084 ULONGEST signal1 = 0;
2085 ULONGEST signal1_type = 0;
2086 int signal1_pending = 0;
2087 ULONGEST signal2 = 0;
2088 ULONGEST signal2_type = 0;
2089 int signal2_pending = 0;
2090 struct cleanup *chain;
2091 char annex[32];
2092 gdb_byte buf[100];
2093 LONGEST len;
22e048c9 2094 int id;
23d964e7 2095
e17a4113 2096 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2097 error (_("\"info spu\" is only supported on the SPU architecture."));
2098
23d964e7
UW
2099 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2100
2101 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2102 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2103 if (len < 0)
2104 error (_("Could not read signal1."));
2105 else if (len == 4)
2106 {
e17a4113 2107 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2108 signal1_pending = 1;
2109 }
2110
2111 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2112 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2113 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2114 if (len <= 0)
2115 error (_("Could not read signal1_type."));
9971ac47 2116 buf[len] = '\0';
001f13d8 2117 signal1_type = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2118
2119 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2120 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2121 if (len < 0)
2122 error (_("Could not read signal2."));
2123 else if (len == 4)
2124 {
e17a4113 2125 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2126 signal2_pending = 1;
2127 }
2128
2129 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2130 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2131 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2132 if (len <= 0)
2133 error (_("Could not read signal2_type."));
9971ac47 2134 buf[len] = '\0';
001f13d8 2135 signal2_type = strtoulst ((char *) buf, NULL, 16);
23d964e7 2136
31a0ae49 2137 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
23d964e7 2138
31a0ae49 2139 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2140 {
31a0ae49
JK
2141 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2142 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2143 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2144 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2145 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2146 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
23d964e7
UW
2147 }
2148 else
2149 {
2150 if (signal1_pending)
2151 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2152 else
2153 printf_filtered (_("Signal 1 not pending "));
2154
2155 if (signal1_type)
23d964e7 2156 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2157 else
2158 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2159
2160 if (signal2_pending)
2161 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2162 else
2163 printf_filtered (_("Signal 2 not pending "));
2164
2165 if (signal2_type)
23d964e7 2166 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2167 else
2168 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2169 }
2170
2171 do_cleanups (chain);
2172}
2173
2174static void
e17a4113 2175info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2176 const char *field, const char *msg)
2177{
2178 struct cleanup *chain;
2179 int i;
2180
2181 if (nr <= 0)
2182 return;
2183
31a0ae49 2184 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
23d964e7 2185
31a0ae49
JK
2186 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2187 ui_out_table_body (current_uiout);
23d964e7
UW
2188
2189 for (i = 0; i < nr; i++)
2190 {
2191 struct cleanup *val_chain;
2192 ULONGEST val;
31a0ae49 2193 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
e17a4113 2194 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
31a0ae49 2195 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
23d964e7
UW
2196 do_cleanups (val_chain);
2197
31a0ae49 2198 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2199 printf_filtered ("\n");
2200 }
2201
2202 do_cleanups (chain);
2203}
2204
2205static void
2206info_spu_mailbox_command (char *args, int from_tty)
2207{
2208 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2209 struct gdbarch *gdbarch = get_frame_arch (frame);
2210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2211 struct cleanup *chain;
2212 char annex[32];
2213 gdb_byte buf[1024];
2214 LONGEST len;
22e048c9 2215 int id;
23d964e7 2216
e17a4113 2217 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2218 error (_("\"info spu\" is only supported on the SPU architecture."));
2219
23d964e7
UW
2220 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2221
31a0ae49 2222 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2223
2224 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2225 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2226 buf, 0, sizeof buf);
2227 if (len < 0)
2228 error (_("Could not read mbox_info."));
2229
e17a4113
UW
2230 info_spu_mailbox_list (buf, len / 4, byte_order,
2231 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2232
2233 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2234 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2235 buf, 0, sizeof buf);
2236 if (len < 0)
2237 error (_("Could not read ibox_info."));
2238
e17a4113
UW
2239 info_spu_mailbox_list (buf, len / 4, byte_order,
2240 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2241
2242 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2243 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2244 buf, 0, sizeof buf);
2245 if (len < 0)
2246 error (_("Could not read wbox_info."));
2247
e17a4113
UW
2248 info_spu_mailbox_list (buf, len / 4, byte_order,
2249 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2250
2251 do_cleanups (chain);
2252}
2253
2254static ULONGEST
2255spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2256{
2257 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2258 return (word >> (63 - last)) & mask;
2259}
2260
2261static void
e17a4113 2262info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7
UW
2263{
2264 static char *spu_mfc_opcode[256] =
2265 {
2266 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2267 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2268 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2270 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2271 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2272 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2274 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2275 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2276 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2277 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2278 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2279 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2280 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2281 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2282 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2283 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2284 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2285 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2286 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2287 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2288 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2289 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2290 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2292 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2295 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2296 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2298 };
2299
12ab8a60
UW
2300 int *seq = alloca (nr * sizeof (int));
2301 int done = 0;
23d964e7 2302 struct cleanup *chain;
12ab8a60
UW
2303 int i, j;
2304
2305
2306 /* Determine sequence in which to display (valid) entries. */
2307 for (i = 0; i < nr; i++)
2308 {
2309 /* Search for the first valid entry all of whose
2310 dependencies are met. */
2311 for (j = 0; j < nr; j++)
2312 {
2313 ULONGEST mfc_cq_dw3;
2314 ULONGEST dependencies;
2315
2316 if (done & (1 << (nr - 1 - j)))
2317 continue;
2318
e17a4113
UW
2319 mfc_cq_dw3
2320 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2321 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2322 continue;
2323
2324 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2325 if ((dependencies & done) != dependencies)
2326 continue;
2327
2328 seq[i] = j;
2329 done |= 1 << (nr - 1 - j);
2330 break;
2331 }
2332
2333 if (j == nr)
2334 break;
2335 }
2336
2337 nr = i;
2338
23d964e7 2339
31a0ae49
JK
2340 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2341 "dma_cmd");
23d964e7 2342
31a0ae49
JK
2343 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2344 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2345 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2346 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2347 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2348 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2349 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2350 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2351 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2352 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
23d964e7 2353
31a0ae49 2354 ui_out_table_body (current_uiout);
23d964e7
UW
2355
2356 for (i = 0; i < nr; i++)
2357 {
2358 struct cleanup *cmd_chain;
2359 ULONGEST mfc_cq_dw0;
2360 ULONGEST mfc_cq_dw1;
2361 ULONGEST mfc_cq_dw2;
23d964e7 2362 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
22e048c9 2363 int list_lsa, list_size, mfc_lsa, mfc_size;
23d964e7
UW
2364 ULONGEST mfc_ea;
2365 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2366
2367 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2368 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2369
e17a4113
UW
2370 mfc_cq_dw0
2371 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2372 mfc_cq_dw1
2373 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2374 mfc_cq_dw2
2375 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2376
2377 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2378 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2379 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2380 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2381 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2382 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2383 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2384
2385 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2386 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2387
2388 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2389 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2390 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2391 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2392 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2393 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2394
31a0ae49 2395 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
23d964e7
UW
2396
2397 if (spu_mfc_opcode[mfc_cmd_opcode])
31a0ae49 2398 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
23d964e7 2399 else
31a0ae49 2400 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
23d964e7 2401
31a0ae49
JK
2402 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2403 ui_out_field_int (current_uiout, "tid", tclass_id);
2404 ui_out_field_int (current_uiout, "rid", rclass_id);
23d964e7
UW
2405
2406 if (ea_valid_p)
31a0ae49 2407 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
23d964e7 2408 else
31a0ae49 2409 ui_out_field_skip (current_uiout, "ea");
23d964e7 2410
31a0ae49 2411 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
23d964e7 2412 if (qw_valid_p)
31a0ae49 2413 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
23d964e7 2414 else
31a0ae49 2415 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
23d964e7
UW
2416
2417 if (list_valid_p)
2418 {
31a0ae49
JK
2419 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2420 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
23d964e7
UW
2421 }
2422 else
2423 {
31a0ae49
JK
2424 ui_out_field_skip (current_uiout, "lstaddr");
2425 ui_out_field_skip (current_uiout, "lstsize");
23d964e7
UW
2426 }
2427
2428 if (cmd_error_p)
31a0ae49 2429 ui_out_field_string (current_uiout, "error_p", "*");
23d964e7 2430 else
31a0ae49 2431 ui_out_field_skip (current_uiout, "error_p");
23d964e7
UW
2432
2433 do_cleanups (cmd_chain);
2434
31a0ae49 2435 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2436 printf_filtered ("\n");
2437 }
2438
2439 do_cleanups (chain);
2440}
2441
2442static void
2443info_spu_dma_command (char *args, int from_tty)
2444{
2445 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2446 struct gdbarch *gdbarch = get_frame_arch (frame);
2447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2448 ULONGEST dma_info_type;
2449 ULONGEST dma_info_mask;
2450 ULONGEST dma_info_status;
2451 ULONGEST dma_info_stall_and_notify;
2452 ULONGEST dma_info_atomic_command_status;
2453 struct cleanup *chain;
2454 char annex[32];
2455 gdb_byte buf[1024];
2456 LONGEST len;
22e048c9 2457 int id;
23d964e7 2458
0391f248
UW
2459 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2460 error (_("\"info spu\" is only supported on the SPU architecture."));
2461
23d964e7
UW
2462 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2463
2464 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2465 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2466 buf, 0, 40 + 16 * 32);
2467 if (len <= 0)
2468 error (_("Could not read dma_info."));
2469
e17a4113
UW
2470 dma_info_type
2471 = extract_unsigned_integer (buf, 8, byte_order);
2472 dma_info_mask
2473 = extract_unsigned_integer (buf + 8, 8, byte_order);
2474 dma_info_status
2475 = extract_unsigned_integer (buf + 16, 8, byte_order);
2476 dma_info_stall_and_notify
2477 = extract_unsigned_integer (buf + 24, 8, byte_order);
2478 dma_info_atomic_command_status
2479 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2480
31a0ae49 2481 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
23d964e7 2482
31a0ae49 2483 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2484 {
31a0ae49 2485 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
23d964e7 2486 phex_nz (dma_info_type, 4));
31a0ae49 2487 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
23d964e7 2488 phex_nz (dma_info_mask, 4));
31a0ae49 2489 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
23d964e7 2490 phex_nz (dma_info_status, 4));
31a0ae49 2491 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
23d964e7 2492 phex_nz (dma_info_stall_and_notify, 4));
31a0ae49 2493 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
23d964e7
UW
2494 phex_nz (dma_info_atomic_command_status, 4));
2495 }
2496 else
2497 {
8fbde58b 2498 const char *query_msg = _("no query pending");
23d964e7 2499
8fbde58b
UW
2500 if (dma_info_type & 4)
2501 switch (dma_info_type & 3)
2502 {
2503 case 1: query_msg = _("'any' query pending"); break;
2504 case 2: query_msg = _("'all' query pending"); break;
2505 default: query_msg = _("undefined query type"); break;
2506 }
23d964e7
UW
2507
2508 printf_filtered (_("Tag-Group Status 0x%s\n"),
2509 phex (dma_info_status, 4));
2510 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2511 phex (dma_info_mask, 4), query_msg);
2512 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2513 phex (dma_info_stall_and_notify, 4));
2514 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2515 phex (dma_info_atomic_command_status, 4));
2516 printf_filtered ("\n");
2517 }
2518
e17a4113 2519 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2520 do_cleanups (chain);
2521}
2522
2523static void
2524info_spu_proxydma_command (char *args, int from_tty)
2525{
2526 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2527 struct gdbarch *gdbarch = get_frame_arch (frame);
2528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2529 ULONGEST dma_info_type;
2530 ULONGEST dma_info_mask;
2531 ULONGEST dma_info_status;
2532 struct cleanup *chain;
2533 char annex[32];
2534 gdb_byte buf[1024];
2535 LONGEST len;
22e048c9 2536 int id;
23d964e7 2537
e17a4113 2538 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2539 error (_("\"info spu\" is only supported on the SPU architecture."));
2540
23d964e7
UW
2541 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2542
2543 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2544 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2545 buf, 0, 24 + 8 * 32);
2546 if (len <= 0)
2547 error (_("Could not read proxydma_info."));
2548
e17a4113
UW
2549 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2550 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2551 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2552
31a0ae49
JK
2553 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2554 "SPUInfoProxyDMA");
23d964e7 2555
31a0ae49 2556 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2557 {
31a0ae49 2558 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
23d964e7 2559 phex_nz (dma_info_type, 4));
31a0ae49 2560 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
23d964e7 2561 phex_nz (dma_info_mask, 4));
31a0ae49 2562 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
23d964e7
UW
2563 phex_nz (dma_info_status, 4));
2564 }
2565 else
2566 {
2567 const char *query_msg;
2568
8fbde58b 2569 switch (dma_info_type & 3)
23d964e7
UW
2570 {
2571 case 0: query_msg = _("no query pending"); break;
2572 case 1: query_msg = _("'any' query pending"); break;
2573 case 2: query_msg = _("'all' query pending"); break;
2574 default: query_msg = _("undefined query type"); break;
2575 }
2576
2577 printf_filtered (_("Tag-Group Status 0x%s\n"),
2578 phex (dma_info_status, 4));
2579 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2580 phex (dma_info_mask, 4), query_msg);
2581 printf_filtered ("\n");
2582 }
2583
e17a4113 2584 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2585 do_cleanups (chain);
2586}
2587
2588static void
2589info_spu_command (char *args, int from_tty)
2590{
c378eb4e
MS
2591 printf_unfiltered (_("\"info spu\" must be followed by "
2592 "the name of an SPU facility.\n"));
23d964e7
UW
2593 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2594}
2595
2596
3285f3fe
UW
2597/* Root of all "set spu "/"show spu " commands. */
2598
2599static void
2600show_spu_command (char *args, int from_tty)
2601{
2602 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2603}
2604
2605static void
2606set_spu_command (char *args, int from_tty)
2607{
2608 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2609}
2610
2611static void
2612show_spu_stop_on_load (struct ui_file *file, int from_tty,
2613 struct cmd_list_element *c, const char *value)
2614{
2615 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2616 value);
2617}
2618
ff1a52c6
UW
2619static void
2620show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2621 struct cmd_list_element *c, const char *value)
2622{
2623 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2624 value);
2625}
2626
3285f3fe 2627
771b4502
UW
2628/* Set up gdbarch struct. */
2629
2630static struct gdbarch *
2631spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2632{
2633 struct gdbarch *gdbarch;
794ac428 2634 struct gdbarch_tdep *tdep;
85e747d2
UW
2635 int id = -1;
2636
2637 /* Which spufs ID was requested as address space? */
2638 if (info.tdep_info)
2639 id = *(int *)info.tdep_info;
2640 /* For objfile architectures of SPU solibs, decode the ID from the name.
2641 This assumes the filename convention employed by solib-spu.c. */
2642 else if (info.abfd)
2643 {
2644 char *name = strrchr (info.abfd->filename, '@');
2645 if (name)
2646 sscanf (name, "@0x%*x <%d>", &id);
2647 }
771b4502 2648
85e747d2
UW
2649 /* Find a candidate among extant architectures. */
2650 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2651 arches != NULL;
2652 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2653 {
2654 tdep = gdbarch_tdep (arches->gdbarch);
2655 if (tdep && tdep->id == id)
2656 return arches->gdbarch;
2657 }
771b4502 2658
85e747d2 2659 /* None found, so create a new architecture. */
794ac428 2660 tdep = XCALLOC (1, struct gdbarch_tdep);
85e747d2 2661 tdep->id = id;
794ac428 2662 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2663
2664 /* Disassembler. */
85e747d2 2665 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2666
2667 /* Registers. */
2668 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2669 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2670 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2671 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2672 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2673 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2674 set_gdbarch_register_name (gdbarch, spu_register_name);
2675 set_gdbarch_register_type (gdbarch, spu_register_type);
2676 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2677 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2678 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502
UW
2679 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2680
2681 /* Data types. */
2682 set_gdbarch_char_signed (gdbarch, 0);
2683 set_gdbarch_ptr_bit (gdbarch, 32);
2684 set_gdbarch_addr_bit (gdbarch, 32);
2685 set_gdbarch_short_bit (gdbarch, 16);
2686 set_gdbarch_int_bit (gdbarch, 32);
2687 set_gdbarch_long_bit (gdbarch, 32);
2688 set_gdbarch_long_long_bit (gdbarch, 64);
2689 set_gdbarch_float_bit (gdbarch, 32);
2690 set_gdbarch_double_bit (gdbarch, 64);
2691 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2692 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2693 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2694 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2695
ff1a52c6 2696 /* Address handling. */
85e747d2 2697 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2698 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2699 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2700 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2701 set_gdbarch_address_class_type_flags_to_name
2702 (gdbarch, spu_address_class_type_flags_to_name);
2703 set_gdbarch_address_class_name_to_type_flags
2704 (gdbarch, spu_address_class_name_to_type_flags);
2705
36acd84e 2706
771b4502 2707 /* Inferior function calls. */
7b3dc0b7
UW
2708 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2709 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2710 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2711 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2712 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2713 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2714 set_gdbarch_return_value (gdbarch, spu_return_value);
2715
2716 /* Frame handling. */
2717 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8d998b8f 2718 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2719 frame_base_set_default (gdbarch, &spu_frame_base);
2720 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2721 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2722 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2723 set_gdbarch_frame_args_skip (gdbarch, 0);
2724 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
fe5febed 2725 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
771b4502 2726
cc5f0d61
UW
2727 /* Cell/B.E. cross-architecture unwinder support. */
2728 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2729
771b4502
UW
2730 /* Breakpoints. */
2731 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2732 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
d03285ec 2733 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502
UW
2734 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2735 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2736 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2737
dcf52cd8
UW
2738 /* Overlays. */
2739 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2740
771b4502
UW
2741 return gdbarch;
2742}
2743
63807e1d
PA
2744/* Provide a prototype to silence -Wmissing-prototypes. */
2745extern initialize_file_ftype _initialize_spu_tdep;
2746
771b4502
UW
2747void
2748_initialize_spu_tdep (void)
2749{
2750 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2751
dcf52cd8
UW
2752 /* Add ourselves to objfile event chain. */
2753 observer_attach_new_objfile (spu_overlay_new_objfile);
2754 spu_overlay_data = register_objfile_data ();
23d964e7 2755
3285f3fe
UW
2756 /* Install spu stop-on-load handler. */
2757 observer_attach_new_objfile (spu_catch_start);
2758
ff1a52c6
UW
2759 /* Add ourselves to normal_stop event chain. */
2760 observer_attach_normal_stop (spu_attach_normal_stop);
2761
3285f3fe
UW
2762 /* Add root prefix command for all "set spu"/"show spu" commands. */
2763 add_prefix_cmd ("spu", no_class, set_spu_command,
2764 _("Various SPU specific commands."),
2765 &setspucmdlist, "set spu ", 0, &setlist);
2766 add_prefix_cmd ("spu", no_class, show_spu_command,
2767 _("Various SPU specific commands."),
2768 &showspucmdlist, "show spu ", 0, &showlist);
2769
2770 /* Toggle whether or not to add a temporary breakpoint at the "main"
2771 function of new SPE contexts. */
2772 add_setshow_boolean_cmd ("stop-on-load", class_support,
2773 &spu_stop_on_load_p, _("\
2774Set whether to stop for new SPE threads."),
2775 _("\
2776Show whether to stop for new SPE threads."),
2777 _("\
2778Use \"on\" to give control to the user when a new SPE thread\n\
2779enters its \"main\" function.\n\
2780Use \"off\" to disable stopping for new SPE threads."),
2781 NULL,
2782 show_spu_stop_on_load,
2783 &setspucmdlist, &showspucmdlist);
2784
ff1a52c6
UW
2785 /* Toggle whether or not to automatically flush the software-managed
2786 cache whenever SPE execution stops. */
2787 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2788 &spu_auto_flush_cache_p, _("\
2789Set whether to automatically flush the software-managed cache."),
2790 _("\
2791Show whether to automatically flush the software-managed cache."),
2792 _("\
2793Use \"on\" to automatically flush the software-managed cache\n\
2794whenever SPE execution stops.\n\
2795Use \"off\" to never automatically flush the software-managed cache."),
2796 NULL,
2797 show_spu_auto_flush_cache,
2798 &setspucmdlist, &showspucmdlist);
2799
23d964e7
UW
2800 /* Add root prefix command for all "info spu" commands. */
2801 add_prefix_cmd ("spu", class_info, info_spu_command,
2802 _("Various SPU specific commands."),
2803 &infospucmdlist, "info spu ", 0, &infolist);
2804
2805 /* Add various "info spu" commands. */
2806 add_cmd ("event", class_info, info_spu_event_command,
2807 _("Display SPU event facility status.\n"),
2808 &infospucmdlist);
2809 add_cmd ("signal", class_info, info_spu_signal_command,
2810 _("Display SPU signal notification facility status.\n"),
2811 &infospucmdlist);
2812 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2813 _("Display SPU mailbox facility status.\n"),
2814 &infospucmdlist);
2815 add_cmd ("dma", class_info, info_spu_dma_command,
2816 _("Display MFC DMA status.\n"),
2817 &infospucmdlist);
2818 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2819 _("Display MFC Proxy-DMA status.\n"),
2820 &infospucmdlist);
771b4502 2821}
This page took 0.886187 seconds and 4 git commands to generate.