2012-04-20 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
0b302171 2 Copyright (C) 2006-2012 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
27#include "gdb_string.h"
28#include "gdb_assert.h"
29#include "frame.h"
30#include "frame-unwind.h"
31#include "frame-base.h"
32#include "trad-frame.h"
33#include "symtab.h"
34#include "symfile.h"
35#include "value.h"
36#include "inferior.h"
37#include "dis-asm.h"
38#include "objfiles.h"
39#include "language.h"
40#include "regcache.h"
41#include "reggroups.h"
42#include "floatformat.h"
3285f3fe 43#include "block.h"
dcf52cd8 44#include "observer.h"
ff1a52c6 45#include "infcall.h"
54fcddd0 46#include "dwarf2.h"
8dccd430 47#include "exceptions.h"
771b4502
UW
48#include "spu-tdep.h"
49
794ac428 50
3285f3fe
UW
51/* The list of available "set spu " and "show spu " commands. */
52static struct cmd_list_element *setspucmdlist = NULL;
53static struct cmd_list_element *showspucmdlist = NULL;
54
55/* Whether to stop for new SPE contexts. */
56static int spu_stop_on_load_p = 0;
ff1a52c6
UW
57/* Whether to automatically flush the SW-managed cache. */
58static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
59
60
794ac428
UW
61/* The tdep structure. */
62struct gdbarch_tdep
63{
85e747d2
UW
64 /* The spufs ID identifying our address space. */
65 int id;
66
794ac428
UW
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69};
70
71
f2d43c2c 72/* SPU-specific vector type. */
794ac428
UW
73static struct type *
74spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75{
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
df4df182 80 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
81 struct type *t;
82
e9bb382b
UW
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 85 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 86 append_composite_type_field (t, "v2_int64",
df4df182 87 init_vector_type (bt->builtin_int64, 2));
794ac428 88 append_composite_type_field (t, "v4_int32",
df4df182 89 init_vector_type (bt->builtin_int32, 4));
794ac428 90 append_composite_type_field (t, "v8_int16",
df4df182 91 init_vector_type (bt->builtin_int16, 8));
794ac428 92 append_composite_type_field (t, "v16_int8",
df4df182 93 init_vector_type (bt->builtin_int8, 16));
794ac428 94 append_composite_type_field (t, "v2_double",
df4df182 95 init_vector_type (bt->builtin_double, 2));
794ac428 96 append_composite_type_field (t, "v4_float",
df4df182 97 init_vector_type (bt->builtin_float, 4));
794ac428 98
876cecd0 99 TYPE_VECTOR (t) = 1;
794ac428
UW
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106}
107
771b4502 108
23d964e7
UW
109/* The list of available "info spu " commands. */
110static struct cmd_list_element *infospucmdlist = NULL;
111
771b4502
UW
112/* Registers. */
113
114static const char *
d93859e2 115spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502
UW
116{
117 static char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144}
145
146static struct type *
147spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148{
149 if (reg_nr < SPU_NUM_GPRS)
794ac428 150 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
df4df182 155 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
156
157 case SPU_PC_REGNUM:
0dfff4cb 158 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
159
160 case SPU_SP_REGNUM:
0dfff4cb 161 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 162
23d964e7 163 case SPU_FPSCR_REGNUM:
df4df182 164 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
165
166 case SPU_SRR0_REGNUM:
df4df182 167 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
168
169 case SPU_LSLR_REGNUM:
df4df182 170 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
171
172 case SPU_DECR_REGNUM:
df4df182 173 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
174
175 case SPU_DECR_STATUS_REGNUM:
df4df182 176 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 177
771b4502 178 default:
a73c6dcd 179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
180 }
181}
182
183/* Pseudo registers for preferred slots - stack pointer. */
184
05d1431c 185static enum register_status
23d964e7
UW
186spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188{
e17a4113
UW
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 191 enum register_status status;
23d964e7
UW
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
195
05d1431c
PA
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
23d964e7
UW
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
e17a4113 204 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
05d1431c 205 return REG_VALID;
23d964e7
UW
206}
207
05d1431c 208static enum register_status
771b4502
UW
209spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
210 int regnum, gdb_byte *buf)
211{
212 gdb_byte reg[16];
23d964e7
UW
213 char annex[32];
214 ULONGEST id;
05d1431c 215 enum register_status status;
771b4502
UW
216
217 switch (regnum)
218 {
219 case SPU_SP_REGNUM:
05d1431c
PA
220 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
221 if (status != REG_VALID)
222 return status;
771b4502 223 memcpy (buf, reg, 4);
05d1431c 224 return status;
771b4502 225
23d964e7 226 case SPU_FPSCR_REGNUM:
05d1431c
PA
227 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
228 if (status != REG_VALID)
229 return status;
23d964e7
UW
230 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
231 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 232 return status;
23d964e7
UW
233
234 case SPU_SRR0_REGNUM:
05d1431c 235 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
236
237 case SPU_LSLR_REGNUM:
05d1431c 238 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
239
240 case SPU_DECR_REGNUM:
05d1431c 241 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
242
243 case SPU_DECR_STATUS_REGNUM:
05d1431c 244 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 245
771b4502
UW
246 default:
247 internal_error (__FILE__, __LINE__, _("invalid regnum"));
248 }
249}
250
23d964e7
UW
251static void
252spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
253 const gdb_byte *buf)
254{
e17a4113
UW
255 struct gdbarch *gdbarch = get_regcache_arch (regcache);
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
257 gdb_byte reg[32];
258 char annex[32];
259 ULONGEST id;
260
261 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
262 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
263 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 264 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7
UW
265 target_write (&current_target, TARGET_OBJECT_SPU, annex,
266 reg, 0, strlen (reg));
267}
268
771b4502
UW
269static void
270spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
271 int regnum, const gdb_byte *buf)
272{
273 gdb_byte reg[16];
23d964e7
UW
274 char annex[32];
275 ULONGEST id;
771b4502
UW
276
277 switch (regnum)
278 {
279 case SPU_SP_REGNUM:
280 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
281 memcpy (reg, buf, 4);
282 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
283 break;
284
23d964e7
UW
285 case SPU_FPSCR_REGNUM:
286 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
287 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
288 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
289 break;
290
291 case SPU_SRR0_REGNUM:
292 spu_pseudo_register_write_spu (regcache, "srr0", buf);
293 break;
294
295 case SPU_LSLR_REGNUM:
296 spu_pseudo_register_write_spu (regcache, "lslr", buf);
297 break;
298
299 case SPU_DECR_REGNUM:
300 spu_pseudo_register_write_spu (regcache, "decr", buf);
301 break;
302
303 case SPU_DECR_STATUS_REGNUM:
304 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
305 break;
306
771b4502
UW
307 default:
308 internal_error (__FILE__, __LINE__, _("invalid regnum"));
309 }
310}
311
312/* Value conversion -- access scalar values at the preferred slot. */
313
9acbedc0
UW
314static struct value *
315spu_value_from_register (struct type *type, int regnum,
316 struct frame_info *frame)
771b4502 317{
9acbedc0
UW
318 struct value *value = default_value_from_register (type, regnum, frame);
319 int len = TYPE_LENGTH (type);
771b4502 320
9acbedc0
UW
321 if (regnum < SPU_NUM_GPRS && len < 16)
322 {
323 int preferred_slot = len < 4 ? 4 - len : 0;
324 set_value_offset (value, preferred_slot);
325 }
771b4502 326
9acbedc0 327 return value;
771b4502
UW
328}
329
330/* Register groups. */
331
332static int
333spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
334 struct reggroup *group)
335{
336 /* Registers displayed via 'info regs'. */
337 if (group == general_reggroup)
338 return 1;
339
340 /* Registers displayed via 'info float'. */
341 if (group == float_reggroup)
342 return 0;
343
344 /* Registers that need to be saved/restored in order to
345 push or pop frames. */
346 if (group == save_reggroup || group == restore_reggroup)
347 return 1;
348
349 return default_register_reggroup_p (gdbarch, regnum, group);
350}
351
ff1a52c6
UW
352
353/* Address handling. */
36acd84e 354
85e747d2
UW
355static int
356spu_gdbarch_id (struct gdbarch *gdbarch)
357{
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359 int id = tdep->id;
360
361 /* The objfile architecture of a standalone SPU executable does not
b021a221 362 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
363 address range in this special case. */
364 if (id == -1
365 && symfile_objfile && symfile_objfile->obfd
366 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
367 && symfile_objfile->sections != symfile_objfile->sections_end)
368 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
369
370 return id;
371}
372
ff1a52c6
UW
373static int
374spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
375{
376 if (dwarf2_addr_class == 1)
377 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
378 else
379 return 0;
380}
381
382static const char *
383spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
384{
385 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
386 return "__ea";
387 else
388 return NULL;
389}
390
391static int
392spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
393 const char *name, int *type_flags_ptr)
394{
395 if (strcmp (name, "__ea") == 0)
396 {
397 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
398 return 1;
399 }
400 else
401 return 0;
402}
403
85e747d2
UW
404static void
405spu_address_to_pointer (struct gdbarch *gdbarch,
406 struct type *type, gdb_byte *buf, CORE_ADDR addr)
407{
408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
409 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
410 SPUADDR_ADDR (addr));
411}
412
36acd84e 413static CORE_ADDR
9898f801
UW
414spu_pointer_to_address (struct gdbarch *gdbarch,
415 struct type *type, const gdb_byte *buf)
36acd84e 416{
85e747d2 417 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
418 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
419 ULONGEST addr
420 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 421
ff1a52c6
UW
422 /* Do not convert __ea pointers. */
423 if (TYPE_ADDRESS_CLASS_1 (type))
424 return addr;
425
d2ed6730 426 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
427}
428
429static CORE_ADDR
430spu_integer_to_address (struct gdbarch *gdbarch,
431 struct type *type, const gdb_byte *buf)
432{
85e747d2 433 int id = spu_gdbarch_id (gdbarch);
36acd84e 434 ULONGEST addr = unpack_long (type, buf);
36acd84e 435
d2ed6730 436 return SPUADDR (id, addr);
36acd84e
UW
437}
438
771b4502
UW
439
440/* Decoding SPU instructions. */
441
442enum
443 {
444 op_lqd = 0x34,
445 op_lqx = 0x3c4,
446 op_lqa = 0x61,
447 op_lqr = 0x67,
448 op_stqd = 0x24,
449 op_stqx = 0x144,
450 op_stqa = 0x41,
451 op_stqr = 0x47,
452
453 op_il = 0x081,
454 op_ila = 0x21,
455 op_a = 0x0c0,
456 op_ai = 0x1c,
457
a536c6d7 458 op_selb = 0x8,
771b4502
UW
459
460 op_br = 0x64,
461 op_bra = 0x60,
462 op_brsl = 0x66,
463 op_brasl = 0x62,
464 op_brnz = 0x42,
465 op_brz = 0x40,
466 op_brhnz = 0x46,
467 op_brhz = 0x44,
468 op_bi = 0x1a8,
469 op_bisl = 0x1a9,
470 op_biz = 0x128,
471 op_binz = 0x129,
472 op_bihz = 0x12a,
473 op_bihnz = 0x12b,
474 };
475
476static int
477is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
478{
479 if ((insn >> 21) == op)
480 {
481 *rt = insn & 127;
482 *ra = (insn >> 7) & 127;
483 *rb = (insn >> 14) & 127;
484 return 1;
485 }
486
487 return 0;
488}
489
490static int
491is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
492{
493 if ((insn >> 28) == op)
494 {
495 *rt = (insn >> 21) & 127;
496 *ra = (insn >> 7) & 127;
497 *rb = (insn >> 14) & 127;
498 *rc = insn & 127;
499 return 1;
500 }
501
502 return 0;
503}
504
505static int
506is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
507{
508 if ((insn >> 21) == op)
509 {
510 *rt = insn & 127;
511 *ra = (insn >> 7) & 127;
512 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
513 return 1;
514 }
515
516 return 0;
517}
518
519static int
520is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
521{
522 if ((insn >> 24) == op)
523 {
524 *rt = insn & 127;
525 *ra = (insn >> 7) & 127;
526 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
527 return 1;
528 }
529
530 return 0;
531}
532
533static int
534is_ri16 (unsigned int insn, int op, int *rt, int *i16)
535{
536 if ((insn >> 23) == op)
537 {
538 *rt = insn & 127;
539 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
540 return 1;
541 }
542
543 return 0;
544}
545
546static int
547is_ri18 (unsigned int insn, int op, int *rt, int *i18)
548{
549 if ((insn >> 25) == op)
550 {
551 *rt = insn & 127;
552 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
553 return 1;
554 }
555
556 return 0;
557}
558
559static int
560is_branch (unsigned int insn, int *offset, int *reg)
561{
562 int rt, i7, i16;
563
564 if (is_ri16 (insn, op_br, &rt, &i16)
565 || is_ri16 (insn, op_brsl, &rt, &i16)
566 || is_ri16 (insn, op_brnz, &rt, &i16)
567 || is_ri16 (insn, op_brz, &rt, &i16)
568 || is_ri16 (insn, op_brhnz, &rt, &i16)
569 || is_ri16 (insn, op_brhz, &rt, &i16))
570 {
571 *reg = SPU_PC_REGNUM;
572 *offset = i16 << 2;
573 return 1;
574 }
575
576 if (is_ri16 (insn, op_bra, &rt, &i16)
577 || is_ri16 (insn, op_brasl, &rt, &i16))
578 {
579 *reg = -1;
580 *offset = i16 << 2;
581 return 1;
582 }
583
584 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
585 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
586 || is_ri7 (insn, op_biz, &rt, reg, &i7)
587 || is_ri7 (insn, op_binz, &rt, reg, &i7)
588 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
589 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
590 {
591 *offset = 0;
592 return 1;
593 }
594
595 return 0;
596}
597
598
599/* Prolog parsing. */
600
601struct spu_prologue_data
602 {
603 /* Stack frame size. -1 if analysis was unsuccessful. */
604 int size;
605
606 /* How to find the CFA. The CFA is equal to SP at function entry. */
607 int cfa_reg;
608 int cfa_offset;
609
610 /* Offset relative to CFA where a register is saved. -1 if invalid. */
611 int reg_offset[SPU_NUM_GPRS];
612 };
613
614static CORE_ADDR
e17a4113
UW
615spu_analyze_prologue (struct gdbarch *gdbarch,
616 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
617 struct spu_prologue_data *data)
618{
e17a4113 619 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
620 int found_sp = 0;
621 int found_fp = 0;
622 int found_lr = 0;
ce50d78b 623 int found_bc = 0;
771b4502
UW
624 int reg_immed[SPU_NUM_GPRS];
625 gdb_byte buf[16];
626 CORE_ADDR prolog_pc = start_pc;
627 CORE_ADDR pc;
628 int i;
629
630
631 /* Initialize DATA to default values. */
632 data->size = -1;
633
634 data->cfa_reg = SPU_RAW_SP_REGNUM;
635 data->cfa_offset = 0;
636
637 for (i = 0; i < SPU_NUM_GPRS; i++)
638 data->reg_offset[i] = -1;
639
640 /* Set up REG_IMMED array. This is non-zero for a register if we know its
641 preferred slot currently holds this immediate value. */
642 for (i = 0; i < SPU_NUM_GPRS; i++)
643 reg_immed[i] = 0;
644
645 /* Scan instructions until the first branch.
646
647 The following instructions are important prolog components:
648
649 - The first instruction to set up the stack pointer.
650 - The first instruction to set up the frame pointer.
651 - The first instruction to save the link register.
ce50d78b 652 - The first instruction to save the backchain.
771b4502 653
ce50d78b 654 We return the instruction after the latest of these four,
771b4502
UW
655 or the incoming PC if none is found. The first instruction
656 to set up the stack pointer also defines the frame size.
657
658 Note that instructions saving incoming arguments to their stack
659 slots are not counted as important, because they are hard to
660 identify with certainty. This should not matter much, because
661 arguments are relevant only in code compiled with debug data,
662 and in such code the GDB core will advance until the first source
663 line anyway, using SAL data.
664
665 For purposes of stack unwinding, we analyze the following types
666 of instructions in addition:
667
668 - Any instruction adding to the current frame pointer.
669 - Any instruction loading an immediate constant into a register.
670 - Any instruction storing a register onto the stack.
671
672 These are used to compute the CFA and REG_OFFSET output. */
673
674 for (pc = start_pc; pc < end_pc; pc += 4)
675 {
676 unsigned int insn;
677 int rt, ra, rb, rc, immed;
678
679 if (target_read_memory (pc, buf, 4))
680 break;
e17a4113 681 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
682
683 /* AI is the typical instruction to set up a stack frame.
684 It is also used to initialize the frame pointer. */
685 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
686 {
687 if (rt == data->cfa_reg && ra == data->cfa_reg)
688 data->cfa_offset -= immed;
689
690 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
691 && !found_sp)
692 {
693 found_sp = 1;
694 prolog_pc = pc + 4;
695
696 data->size = -immed;
697 }
698 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
699 && !found_fp)
700 {
701 found_fp = 1;
702 prolog_pc = pc + 4;
703
704 data->cfa_reg = SPU_FP_REGNUM;
705 data->cfa_offset -= immed;
706 }
707 }
708
709 /* A is used to set up stack frames of size >= 512 bytes.
710 If we have tracked the contents of the addend register,
711 we can handle this as well. */
712 else if (is_rr (insn, op_a, &rt, &ra, &rb))
713 {
714 if (rt == data->cfa_reg && ra == data->cfa_reg)
715 {
716 if (reg_immed[rb] != 0)
717 data->cfa_offset -= reg_immed[rb];
718 else
719 data->cfa_reg = -1; /* We don't know the CFA any more. */
720 }
721
722 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
723 && !found_sp)
724 {
725 found_sp = 1;
726 prolog_pc = pc + 4;
727
728 if (reg_immed[rb] != 0)
729 data->size = -reg_immed[rb];
730 }
731 }
732
733 /* We need to track IL and ILA used to load immediate constants
734 in case they are later used as input to an A instruction. */
735 else if (is_ri16 (insn, op_il, &rt, &immed))
736 {
737 reg_immed[rt] = immed;
12102450
UW
738
739 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
740 found_sp = 1;
771b4502
UW
741 }
742
743 else if (is_ri18 (insn, op_ila, &rt, &immed))
744 {
745 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
746
747 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
748 found_sp = 1;
771b4502
UW
749 }
750
751 /* STQD is used to save registers to the stack. */
752 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
753 {
754 if (ra == data->cfa_reg)
755 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
756
757 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
758 && !found_lr)
759 {
760 found_lr = 1;
761 prolog_pc = pc + 4;
762 }
ce50d78b
UW
763
764 if (ra == SPU_RAW_SP_REGNUM
765 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
766 && !found_bc)
767 {
768 found_bc = 1;
769 prolog_pc = pc + 4;
770 }
771b4502
UW
771 }
772
773 /* _start uses SELB to set up the stack pointer. */
774 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
775 {
776 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
777 found_sp = 1;
778 }
779
780 /* We terminate if we find a branch. */
781 else if (is_branch (insn, &immed, &ra))
782 break;
783 }
784
785
786 /* If we successfully parsed until here, and didn't find any instruction
787 modifying SP, we assume we have a frameless function. */
788 if (!found_sp)
789 data->size = 0;
790
791 /* Return cooked instead of raw SP. */
792 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
793 data->cfa_reg = SPU_SP_REGNUM;
794
795 return prolog_pc;
796}
797
798/* Return the first instruction after the prologue starting at PC. */
799static CORE_ADDR
6093d2eb 800spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
801{
802 struct spu_prologue_data data;
e17a4113 803 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
804}
805
806/* Return the frame pointer in use at address PC. */
807static void
a54fba4c
MD
808spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
809 int *reg, LONGEST *offset)
771b4502
UW
810{
811 struct spu_prologue_data data;
e17a4113 812 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
813
814 if (data.size != -1 && data.cfa_reg != -1)
815 {
816 /* The 'frame pointer' address is CFA minus frame size. */
817 *reg = data.cfa_reg;
818 *offset = data.cfa_offset - data.size;
819 }
820 else
821 {
c378eb4e 822 /* ??? We don't really know ... */
771b4502
UW
823 *reg = SPU_SP_REGNUM;
824 *offset = 0;
825 }
826}
827
fe5febed
UW
828/* Return true if we are in the function's epilogue, i.e. after the
829 instruction that destroyed the function's stack frame.
830
831 1) scan forward from the point of execution:
832 a) If you find an instruction that modifies the stack pointer
833 or transfers control (except a return), execution is not in
834 an epilogue, return.
835 b) Stop scanning if you find a return instruction or reach the
836 end of the function or reach the hard limit for the size of
837 an epilogue.
838 2) scan backward from the point of execution:
839 a) If you find an instruction that modifies the stack pointer,
840 execution *is* in an epilogue, return.
841 b) Stop scanning if you reach an instruction that transfers
842 control or the beginning of the function or reach the hard
843 limit for the size of an epilogue. */
844
845static int
846spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
847{
e17a4113 848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
849 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
850 bfd_byte buf[4];
851 unsigned int insn;
852 int rt, ra, rb, rc, immed;
853
854 /* Find the search limits based on function boundaries and hard limit.
855 We assume the epilogue can be up to 64 instructions long. */
856
857 const int spu_max_epilogue_size = 64 * 4;
858
859 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
860 return 0;
861
862 if (pc - func_start < spu_max_epilogue_size)
863 epilogue_start = func_start;
864 else
865 epilogue_start = pc - spu_max_epilogue_size;
866
867 if (func_end - pc < spu_max_epilogue_size)
868 epilogue_end = func_end;
869 else
870 epilogue_end = pc + spu_max_epilogue_size;
871
872 /* Scan forward until next 'bi $0'. */
873
874 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
875 {
876 if (target_read_memory (scan_pc, buf, 4))
877 return 0;
e17a4113 878 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
879
880 if (is_branch (insn, &immed, &ra))
881 {
882 if (immed == 0 && ra == SPU_LR_REGNUM)
883 break;
884
885 return 0;
886 }
887
888 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
889 || is_rr (insn, op_a, &rt, &ra, &rb)
890 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
891 {
892 if (rt == SPU_RAW_SP_REGNUM)
893 return 0;
894 }
895 }
896
897 if (scan_pc >= epilogue_end)
898 return 0;
899
900 /* Scan backward until adjustment to stack pointer (R1). */
901
902 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
903 {
904 if (target_read_memory (scan_pc, buf, 4))
905 return 0;
e17a4113 906 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
907
908 if (is_branch (insn, &immed, &ra))
909 return 0;
910
911 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
912 || is_rr (insn, op_a, &rt, &ra, &rb)
913 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
914 {
915 if (rt == SPU_RAW_SP_REGNUM)
916 return 1;
917 }
918 }
919
920 return 0;
921}
922
923
771b4502
UW
924/* Normal stack frames. */
925
926struct spu_unwind_cache
927{
928 CORE_ADDR func;
929 CORE_ADDR frame_base;
930 CORE_ADDR local_base;
931
932 struct trad_frame_saved_reg *saved_regs;
933};
934
935static struct spu_unwind_cache *
8d998b8f 936spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
937 void **this_prologue_cache)
938{
e17a4113 939 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
942 struct spu_unwind_cache *info;
943 struct spu_prologue_data data;
85e747d2 944 CORE_ADDR id = tdep->id;
dcf52cd8 945 gdb_byte buf[16];
771b4502
UW
946
947 if (*this_prologue_cache)
948 return *this_prologue_cache;
949
950 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
951 *this_prologue_cache = info;
8d998b8f 952 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
953 info->frame_base = 0;
954 info->local_base = 0;
955
956 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 957 info->func = get_frame_func (this_frame);
771b4502
UW
958 if (info->func == 0)
959 {
960 /* Fall back to using the current PC as frame ID. */
8d998b8f 961 info->func = get_frame_pc (this_frame);
771b4502
UW
962 data.size = -1;
963 }
964 else
e17a4113
UW
965 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
966 &data);
771b4502
UW
967
968 /* If successful, use prologue analysis data. */
969 if (data.size != -1 && data.cfa_reg != -1)
970 {
971 CORE_ADDR cfa;
972 int i;
771b4502
UW
973
974 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 975 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 976 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 977 cfa = SPUADDR (id, cfa);
771b4502
UW
978
979 /* Call-saved register slots. */
980 for (i = 0; i < SPU_NUM_GPRS; i++)
981 if (i == SPU_LR_REGNUM
982 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
983 if (data.reg_offset[i] != -1)
984 info->saved_regs[i].addr = cfa - data.reg_offset[i];
985
771b4502
UW
986 /* Frame bases. */
987 info->frame_base = cfa;
988 info->local_base = cfa - data.size;
989 }
990
991 /* Otherwise, fall back to reading the backchain link. */
992 else
993 {
cdc9523a
UW
994 CORE_ADDR reg;
995 LONGEST backchain;
13def385 996 ULONGEST lslr;
cdc9523a 997 int status;
771b4502 998
13def385
UW
999 /* Get local store limit. */
1000 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1001 if (!lslr)
1002 lslr = (ULONGEST) -1;
1003
771b4502 1004 /* Get the backchain. */
8d998b8f 1005 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1006 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1007 &backchain);
771b4502
UW
1008
1009 /* A zero backchain terminates the frame chain. Also, sanity
1010 check against the local store size limit. */
13def385 1011 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1012 {
1013 /* Assume the link register is saved into its slot. */
13def385 1014 if (backchain + 16 <= lslr)
c378eb4e
MS
1015 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1016 backchain + 16);
771b4502 1017
771b4502 1018 /* Frame bases. */
85e747d2
UW
1019 info->frame_base = SPUADDR (id, backchain);
1020 info->local_base = SPUADDR (id, reg);
771b4502
UW
1021 }
1022 }
dcf52cd8 1023
c4891da7
UW
1024 /* If we didn't find a frame, we cannot determine SP / return address. */
1025 if (info->frame_base == 0)
1026 return info;
1027
dcf52cd8 1028 /* The previous SP is equal to the CFA. */
85e747d2
UW
1029 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1030 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1031
0a44cb36
UW
1032 /* Read full contents of the unwound link register in order to
1033 be able to determine the return address. */
dcf52cd8
UW
1034 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1035 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1036 else
8d998b8f 1037 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1038
0a44cb36
UW
1039 /* Normally, the return address is contained in the slot 0 of the
1040 link register, and slots 1-3 are zero. For an overlay return,
1041 slot 0 contains the address of the overlay manager return stub,
1042 slot 1 contains the partition number of the overlay section to
1043 be returned to, and slot 2 contains the return address within
1044 that section. Return the latter address in that case. */
e17a4113 1045 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1046 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1047 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1048 else
1049 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1050 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1051
1052 return info;
1053}
1054
1055static void
8d998b8f 1056spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1057 void **this_prologue_cache, struct frame_id *this_id)
1058{
1059 struct spu_unwind_cache *info =
8d998b8f 1060 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1061
1062 if (info->frame_base == 0)
1063 return;
1064
1065 *this_id = frame_id_build (info->frame_base, info->func);
1066}
1067
8d998b8f
UW
1068static struct value *
1069spu_frame_prev_register (struct frame_info *this_frame,
1070 void **this_prologue_cache, int regnum)
771b4502
UW
1071{
1072 struct spu_unwind_cache *info
8d998b8f 1073 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1074
1075 /* Special-case the stack pointer. */
1076 if (regnum == SPU_RAW_SP_REGNUM)
1077 regnum = SPU_SP_REGNUM;
1078
8d998b8f 1079 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1080}
1081
1082static const struct frame_unwind spu_frame_unwind = {
1083 NORMAL_FRAME,
8fbca658 1084 default_frame_unwind_stop_reason,
771b4502 1085 spu_frame_this_id,
8d998b8f
UW
1086 spu_frame_prev_register,
1087 NULL,
1088 default_frame_sniffer
771b4502
UW
1089};
1090
771b4502 1091static CORE_ADDR
8d998b8f 1092spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1093{
1094 struct spu_unwind_cache *info
8d998b8f 1095 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1096 return info->local_base;
1097}
1098
1099static const struct frame_base spu_frame_base = {
1100 &spu_frame_unwind,
1101 spu_frame_base_address,
1102 spu_frame_base_address,
1103 spu_frame_base_address
1104};
1105
1106static CORE_ADDR
1107spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1108{
85e747d2 1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1110 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1111 /* Mask off interrupt enable bit. */
85e747d2 1112 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1113}
1114
1115static CORE_ADDR
1116spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1117{
85e747d2
UW
1118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1119 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1120 return SPUADDR (tdep->id, sp);
771b4502
UW
1121}
1122
118dfbaf 1123static CORE_ADDR
61a1198a 1124spu_read_pc (struct regcache *regcache)
118dfbaf 1125{
85e747d2 1126 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1127 ULONGEST pc;
1128 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1129 /* Mask off interrupt enable bit. */
85e747d2 1130 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1131}
1132
1133static void
61a1198a 1134spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1135{
1136 /* Keep interrupt enabled state unchanged. */
61a1198a
UW
1137 ULONGEST old_pc;
1138 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1139 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1140 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1141}
1142
771b4502 1143
cc5f0d61
UW
1144/* Cell/B.E. cross-architecture unwinder support. */
1145
1146struct spu2ppu_cache
1147{
1148 struct frame_id frame_id;
1149 struct regcache *regcache;
1150};
1151
1152static struct gdbarch *
1153spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1154{
1155 struct spu2ppu_cache *cache = *this_cache;
1156 return get_regcache_arch (cache->regcache);
1157}
1158
1159static void
1160spu2ppu_this_id (struct frame_info *this_frame,
1161 void **this_cache, struct frame_id *this_id)
1162{
1163 struct spu2ppu_cache *cache = *this_cache;
1164 *this_id = cache->frame_id;
1165}
1166
1167static struct value *
1168spu2ppu_prev_register (struct frame_info *this_frame,
1169 void **this_cache, int regnum)
1170{
1171 struct spu2ppu_cache *cache = *this_cache;
1172 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1173 gdb_byte *buf;
1174
1175 buf = alloca (register_size (gdbarch, regnum));
1176 regcache_cooked_read (cache->regcache, regnum, buf);
1177 return frame_unwind_got_bytes (this_frame, regnum, buf);
1178}
1179
1180static int
1181spu2ppu_sniffer (const struct frame_unwind *self,
1182 struct frame_info *this_frame, void **this_prologue_cache)
1183{
1184 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1186 CORE_ADDR base, func, backchain;
1187 gdb_byte buf[4];
1188
1189 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1190 return 0;
1191
1192 base = get_frame_sp (this_frame);
1193 func = get_frame_pc (this_frame);
1194 if (target_read_memory (base, buf, 4))
1195 return 0;
1196 backchain = extract_unsigned_integer (buf, 4, byte_order);
1197
1198 if (!backchain)
1199 {
1200 struct frame_info *fi;
1201
1202 struct spu2ppu_cache *cache
1203 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1204
1205 cache->frame_id = frame_id_build (base + 16, func);
1206
1207 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1208 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1209 break;
1210
1211 if (fi)
1212 {
1213 cache->regcache = frame_save_as_regcache (fi);
1214 *this_prologue_cache = cache;
1215 return 1;
1216 }
1217 else
1218 {
1219 struct regcache *regcache;
1220 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1221 cache->regcache = regcache_dup (regcache);
1222 *this_prologue_cache = cache;
1223 return 1;
1224 }
1225 }
1226
1227 return 0;
1228}
1229
1230static void
1231spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1232{
1233 struct spu2ppu_cache *cache = this_cache;
1234 regcache_xfree (cache->regcache);
1235}
1236
1237static const struct frame_unwind spu2ppu_unwind = {
1238 ARCH_FRAME,
8fbca658 1239 default_frame_unwind_stop_reason,
cc5f0d61
UW
1240 spu2ppu_this_id,
1241 spu2ppu_prev_register,
1242 NULL,
1243 spu2ppu_sniffer,
1244 spu2ppu_dealloc_cache,
1245 spu2ppu_prev_arch,
1246};
1247
1248
771b4502
UW
1249/* Function calling convention. */
1250
7b3dc0b7
UW
1251static CORE_ADDR
1252spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1253{
1254 return sp & ~15;
1255}
1256
87805e63
UW
1257static CORE_ADDR
1258spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1259 struct value **args, int nargs, struct type *value_type,
1260 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1261 struct regcache *regcache)
1262{
1263 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1264 sp = (sp - 4) & ~15;
1265 /* Store the address of that breakpoint */
1266 *bp_addr = sp;
1267 /* The call starts at the callee's entry point. */
1268 *real_pc = funaddr;
1269
1270 return sp;
1271}
1272
771b4502
UW
1273static int
1274spu_scalar_value_p (struct type *type)
1275{
1276 switch (TYPE_CODE (type))
1277 {
1278 case TYPE_CODE_INT:
1279 case TYPE_CODE_ENUM:
1280 case TYPE_CODE_RANGE:
1281 case TYPE_CODE_CHAR:
1282 case TYPE_CODE_BOOL:
1283 case TYPE_CODE_PTR:
1284 case TYPE_CODE_REF:
1285 return TYPE_LENGTH (type) <= 16;
1286
1287 default:
1288 return 0;
1289 }
1290}
1291
1292static void
1293spu_value_to_regcache (struct regcache *regcache, int regnum,
1294 struct type *type, const gdb_byte *in)
1295{
1296 int len = TYPE_LENGTH (type);
1297
1298 if (spu_scalar_value_p (type))
1299 {
1300 int preferred_slot = len < 4 ? 4 - len : 0;
1301 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1302 }
1303 else
1304 {
1305 while (len >= 16)
1306 {
1307 regcache_cooked_write (regcache, regnum++, in);
1308 in += 16;
1309 len -= 16;
1310 }
1311
1312 if (len > 0)
1313 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1314 }
1315}
1316
1317static void
1318spu_regcache_to_value (struct regcache *regcache, int regnum,
1319 struct type *type, gdb_byte *out)
1320{
1321 int len = TYPE_LENGTH (type);
1322
1323 if (spu_scalar_value_p (type))
1324 {
1325 int preferred_slot = len < 4 ? 4 - len : 0;
1326 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1327 }
1328 else
1329 {
1330 while (len >= 16)
1331 {
1332 regcache_cooked_read (regcache, regnum++, out);
1333 out += 16;
1334 len -= 16;
1335 }
1336
1337 if (len > 0)
1338 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1339 }
1340}
1341
1342static CORE_ADDR
1343spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1344 struct regcache *regcache, CORE_ADDR bp_addr,
1345 int nargs, struct value **args, CORE_ADDR sp,
1346 int struct_return, CORE_ADDR struct_addr)
1347{
e17a4113 1348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1349 CORE_ADDR sp_delta;
771b4502
UW
1350 int i;
1351 int regnum = SPU_ARG1_REGNUM;
1352 int stack_arg = -1;
1353 gdb_byte buf[16];
1354
1355 /* Set the return address. */
1356 memset (buf, 0, sizeof buf);
85e747d2 1357 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1358 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1359
1360 /* If STRUCT_RETURN is true, then the struct return address (in
1361 STRUCT_ADDR) will consume the first argument-passing register.
1362 Both adjust the register count and store that value. */
1363 if (struct_return)
1364 {
1365 memset (buf, 0, sizeof buf);
85e747d2 1366 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1367 regcache_cooked_write (regcache, regnum++, buf);
1368 }
1369
1370 /* Fill in argument registers. */
1371 for (i = 0; i < nargs; i++)
1372 {
1373 struct value *arg = args[i];
1374 struct type *type = check_typedef (value_type (arg));
1375 const gdb_byte *contents = value_contents (arg);
1376 int len = TYPE_LENGTH (type);
1377 int n_regs = align_up (len, 16) / 16;
1378
1379 /* If the argument doesn't wholly fit into registers, it and
1380 all subsequent arguments go to the stack. */
1381 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1382 {
1383 stack_arg = i;
1384 break;
1385 }
1386
1387 spu_value_to_regcache (regcache, regnum, type, contents);
1388 regnum += n_regs;
1389 }
1390
1391 /* Overflow arguments go to the stack. */
1392 if (stack_arg != -1)
1393 {
1394 CORE_ADDR ap;
1395
1396 /* Allocate all required stack size. */
1397 for (i = stack_arg; i < nargs; i++)
1398 {
1399 struct type *type = check_typedef (value_type (args[i]));
1400 sp -= align_up (TYPE_LENGTH (type), 16);
1401 }
1402
1403 /* Fill in stack arguments. */
1404 ap = sp;
1405 for (i = stack_arg; i < nargs; i++)
1406 {
1407 struct value *arg = args[i];
1408 struct type *type = check_typedef (value_type (arg));
1409 int len = TYPE_LENGTH (type);
1410 int preferred_slot;
1411
1412 if (spu_scalar_value_p (type))
1413 preferred_slot = len < 4 ? 4 - len : 0;
1414 else
1415 preferred_slot = 0;
1416
1417 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1418 ap += align_up (TYPE_LENGTH (type), 16);
1419 }
1420 }
1421
1422 /* Allocate stack frame header. */
1423 sp -= 32;
1424
ee82e879
UW
1425 /* Store stack back chain. */
1426 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1427 target_write_memory (sp, buf, 16);
1428
9ff3afda 1429 /* Finally, update all slots of the SP register. */
e17a4113 1430 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1431 for (i = 0; i < 4; i++)
1432 {
e17a4113
UW
1433 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1434 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1435 }
1436 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1437
1438 return sp;
1439}
1440
1441static struct frame_id
8d998b8f 1442spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1443{
85e747d2 1444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1445 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1446 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1447 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1448}
1449
1450/* Function return value access. */
1451
1452static enum return_value_convention
c055b101
CV
1453spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1454 struct type *type, struct regcache *regcache,
1455 gdb_byte *out, const gdb_byte *in)
771b4502
UW
1456{
1457 enum return_value_convention rvc;
54fcddd0
UW
1458 int opencl_vector = 0;
1459
598cfb71
UW
1460 if (func_type)
1461 {
1462 func_type = check_typedef (func_type);
1463
1464 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1465 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1466
1467 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1468 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1469 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1470 && TYPE_VECTOR (type))
1471 opencl_vector = 1;
1472 }
771b4502
UW
1473
1474 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1475 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1476 else
1477 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1478
1479 if (in)
1480 {
1481 switch (rvc)
1482 {
1483 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1484 if (opencl_vector && TYPE_LENGTH (type) == 2)
1485 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1486 else
1487 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1488 break;
1489
1490 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1491 error (_("Cannot set function return value."));
771b4502
UW
1492 break;
1493 }
1494 }
1495 else if (out)
1496 {
1497 switch (rvc)
1498 {
1499 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1500 if (opencl_vector && TYPE_LENGTH (type) == 2)
1501 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1502 else
1503 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1504 break;
1505
1506 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1507 error (_("Function return value unknown."));
771b4502
UW
1508 break;
1509 }
1510 }
1511
1512 return rvc;
1513}
1514
1515
1516/* Breakpoints. */
1517
1518static const gdb_byte *
c378eb4e
MS
1519spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1520 CORE_ADDR * pcptr, int *lenptr)
771b4502
UW
1521{
1522 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1523
1524 *lenptr = sizeof breakpoint;
1525 return breakpoint;
1526}
1527
d03285ec
UW
1528static int
1529spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1530 struct bp_target_info *bp_tgt)
1531{
1532 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1533 that in a combined application, we have some breakpoints inserted in SPU
1534 code, and now the application forks (on the PPU side). GDB common code
1535 will assume that the fork system call copied all breakpoints into the new
1536 process' address space, and that all those copies now need to be removed
1537 (see breakpoint.c:detach_breakpoints).
1538
1539 While this is certainly true for PPU side breakpoints, it is not true
1540 for SPU side breakpoints. fork will clone the SPU context file
1541 descriptors, so that all the existing SPU contexts are in accessible
1542 in the new process. However, the contents of the SPU contexts themselves
1543 are *not* cloned. Therefore the effect of detach_breakpoints is to
1544 remove SPU breakpoints from the *original* SPU context's local store
1545 -- this is not the correct behaviour.
1546
1547 The workaround is to check whether the PID we are asked to remove this
1548 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1549 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1550 true in the context of detach_breakpoints. If so, we simply do nothing.
1551 [ Note that for the fork child process, it does not matter if breakpoints
1552 remain inserted, because those SPU contexts are not runnable anyway --
1553 the Linux kernel allows only the original process to invoke spu_run. */
1554
1555 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1556 return 0;
1557
1558 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1559}
1560
771b4502
UW
1561
1562/* Software single-stepping support. */
1563
63807e1d 1564static int
0b1b3e42 1565spu_software_single_step (struct frame_info *frame)
771b4502 1566{
a6d9a66e 1567 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1568 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1569 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1570 CORE_ADDR pc, next_pc;
1571 unsigned int insn;
1572 int offset, reg;
1573 gdb_byte buf[4];
13def385 1574 ULONGEST lslr;
771b4502 1575
0b1b3e42 1576 pc = get_frame_pc (frame);
771b4502 1577
e0cd558a
UW
1578 if (target_read_memory (pc, buf, 4))
1579 return 1;
e17a4113 1580 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1581
13def385
UW
1582 /* Get local store limit. */
1583 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1584 if (!lslr)
1585 lslr = (ULONGEST) -1;
1586
e0cd558a
UW
1587 /* Next sequential instruction is at PC + 4, except if the current
1588 instruction is a PPE-assisted call, in which case it is at PC + 8.
1589 Wrap around LS limit to be on the safe side. */
1590 if ((insn & 0xffffff00) == 0x00002100)
13def385 1591 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1592 else
13def385 1593 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1594
6c95b8df
PA
1595 insert_single_step_breakpoint (gdbarch,
1596 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1597
e0cd558a
UW
1598 if (is_branch (insn, &offset, &reg))
1599 {
1600 CORE_ADDR target = offset;
771b4502 1601
e0cd558a 1602 if (reg == SPU_PC_REGNUM)
85e747d2 1603 target += SPUADDR_ADDR (pc);
e0cd558a
UW
1604 else if (reg != -1)
1605 {
8dccd430
PA
1606 int optim, unavail;
1607
1608 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1609 &optim, &unavail))
1610 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1611 else
1612 {
1613 if (optim)
1614 error (_("Could not determine address of "
1615 "single-step breakpoint."));
1616 if (unavail)
1617 throw_error (NOT_AVAILABLE_ERROR,
1618 _("Could not determine address of "
1619 "single-step breakpoint."));
1620 }
771b4502 1621 }
e0cd558a 1622
13def385 1623 target = target & lslr;
e0cd558a 1624 if (target != next_pc)
6c95b8df 1625 insert_single_step_breakpoint (gdbarch, aspace,
85e747d2 1626 SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1627 }
e6590a1b
UW
1628
1629 return 1;
771b4502
UW
1630}
1631
6e3f70d7
UW
1632
1633/* Longjmp support. */
1634
1635static int
1636spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1637{
e17a4113 1638 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1639 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1641 gdb_byte buf[4];
1642 CORE_ADDR jb_addr;
8dccd430 1643 int optim, unavail;
6e3f70d7
UW
1644
1645 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1646 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1647 &optim, &unavail))
1648 return 0;
1649
e17a4113 1650 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1651 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1652 return 0;
1653
e17a4113 1654 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1655 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1656 return 1;
1657}
1658
1659
85e747d2
UW
1660/* Disassembler. */
1661
1662struct spu_dis_asm_data
1663{
1664 struct gdbarch *gdbarch;
1665 int id;
1666};
1667
1668static void
1669spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1670{
1671 struct spu_dis_asm_data *data = info->application_data;
1672 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1673}
1674
1675static int
1676gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1677{
c378eb4e
MS
1678 /* The opcodes disassembler does 18-bit address arithmetic. Make
1679 sure the SPU ID encoded in the high bits is added back when we
1680 call print_address. */
85e747d2
UW
1681 struct disassemble_info spu_info = *info;
1682 struct spu_dis_asm_data data;
1683 data.gdbarch = info->application_data;
1684 data.id = SPUADDR_SPU (memaddr);
1685
1686 spu_info.application_data = &data;
1687 spu_info.print_address_func = spu_dis_asm_print_address;
1688 return print_insn_spu (memaddr, &spu_info);
1689}
1690
1691
dcf52cd8
UW
1692/* Target overlays for the SPU overlay manager.
1693
1694 See the documentation of simple_overlay_update for how the
1695 interface is supposed to work.
1696
1697 Data structures used by the overlay manager:
1698
1699 struct ovly_table
1700 {
1701 u32 vma;
1702 u32 size;
1703 u32 pos;
1704 u32 buf;
1705 } _ovly_table[]; -- one entry per overlay section
1706
1707 struct ovly_buf_table
1708 {
1709 u32 mapped;
1710 } _ovly_buf_table[]; -- one entry per overlay buffer
1711
1712 _ovly_table should never change.
1713
c378eb4e
MS
1714 Both tables are aligned to a 16-byte boundary, the symbols
1715 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1716 size set to the size of the respective array. buf in _ovly_table is
1717 an index into _ovly_buf_table.
dcf52cd8 1718
c378eb4e 1719 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1720 from one to reference the first entry in their respective tables. */
1721
1722/* Using the per-objfile private data mechanism, we store for each
1723 objfile an array of "struct spu_overlay_table" structures, one
1724 for each obj_section of the objfile. This structure holds two
1725 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1726 is *not* an overlay section. If it is non-zero, it represents
1727 a target address. The overlay section is mapped iff the target
1728 integer at this location equals MAPPED_VAL. */
1729
1730static const struct objfile_data *spu_overlay_data;
1731
1732struct spu_overlay_table
1733 {
1734 CORE_ADDR mapped_ptr;
1735 CORE_ADDR mapped_val;
1736 };
1737
1738/* Retrieve the overlay table for OBJFILE. If not already cached, read
1739 the _ovly_table data structure from the target and initialize the
1740 spu_overlay_table data structure from it. */
1741static struct spu_overlay_table *
1742spu_get_overlay_table (struct objfile *objfile)
1743{
e17a4113
UW
1744 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1745 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8
UW
1746 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1747 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1748 unsigned ovly_table_size, ovly_buf_table_size;
1749 struct spu_overlay_table *tbl;
1750 struct obj_section *osect;
1751 char *ovly_table;
1752 int i;
1753
1754 tbl = objfile_data (objfile, spu_overlay_data);
1755 if (tbl)
1756 return tbl;
1757
1758 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1759 if (!ovly_table_msym)
1760 return NULL;
1761
c378eb4e
MS
1762 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1763 NULL, objfile);
dcf52cd8
UW
1764 if (!ovly_buf_table_msym)
1765 return NULL;
1766
1767 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1768 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1769
1770 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1771 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1772
1773 ovly_table = xmalloc (ovly_table_size);
1774 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1775
1776 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1777 objfile->sections_end - objfile->sections,
1778 struct spu_overlay_table);
1779
1780 for (i = 0; i < ovly_table_size / 16; i++)
1781 {
e17a4113
UW
1782 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1783 4, byte_order);
1784 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1785 4, byte_order);
1786 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1787 4, byte_order);
1788 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1789 4, byte_order);
dcf52cd8
UW
1790
1791 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1792 continue;
1793
1794 ALL_OBJFILE_OSECTIONS (objfile, osect)
1795 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1796 && pos == osect->the_bfd_section->filepos)
1797 {
1798 int ndx = osect - objfile->sections;
1799 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1800 tbl[ndx].mapped_val = i + 1;
1801 break;
1802 }
1803 }
1804
1805 xfree (ovly_table);
1806 set_objfile_data (objfile, spu_overlay_data, tbl);
1807 return tbl;
1808}
1809
1810/* Read _ovly_buf_table entry from the target to dermine whether
1811 OSECT is currently mapped, and update the mapped state. */
1812static void
1813spu_overlay_update_osect (struct obj_section *osect)
1814{
e17a4113
UW
1815 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1816 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1817 struct spu_overlay_table *ovly_table;
85e747d2 1818 CORE_ADDR id, val;
dcf52cd8
UW
1819
1820 ovly_table = spu_get_overlay_table (osect->objfile);
1821 if (!ovly_table)
1822 return;
1823
1824 ovly_table += osect - osect->objfile->sections;
1825 if (ovly_table->mapped_ptr == 0)
1826 return;
1827
85e747d2
UW
1828 id = SPUADDR_SPU (obj_section_addr (osect));
1829 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1830 4, byte_order);
dcf52cd8
UW
1831 osect->ovly_mapped = (val == ovly_table->mapped_val);
1832}
1833
1834/* If OSECT is NULL, then update all sections' mapped state.
1835 If OSECT is non-NULL, then update only OSECT's mapped state. */
1836static void
1837spu_overlay_update (struct obj_section *osect)
1838{
1839 /* Just one section. */
1840 if (osect)
1841 spu_overlay_update_osect (osect);
1842
1843 /* All sections. */
1844 else
1845 {
1846 struct objfile *objfile;
1847
1848 ALL_OBJSECTIONS (objfile, osect)
714835d5 1849 if (section_is_overlay (osect))
dcf52cd8
UW
1850 spu_overlay_update_osect (osect);
1851 }
1852}
1853
1854/* Whenever a new objfile is loaded, read the target's _ovly_table.
1855 If there is one, go through all sections and make sure for non-
1856 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1857 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1858static void
1859spu_overlay_new_objfile (struct objfile *objfile)
1860{
1861 struct spu_overlay_table *ovly_table;
1862 struct obj_section *osect;
1863
1864 /* If we've already touched this file, do nothing. */
1865 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1866 return;
1867
0391f248
UW
1868 /* Consider only SPU objfiles. */
1869 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1870 return;
1871
dcf52cd8
UW
1872 /* Check if this objfile has overlays. */
1873 ovly_table = spu_get_overlay_table (objfile);
1874 if (!ovly_table)
1875 return;
1876
1877 /* Now go and fiddle with all the LMAs. */
1878 ALL_OBJFILE_OSECTIONS (objfile, osect)
1879 {
1880 bfd *obfd = objfile->obfd;
1881 asection *bsect = osect->the_bfd_section;
1882 int ndx = osect - objfile->sections;
1883
1884 if (ovly_table[ndx].mapped_ptr == 0)
1885 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1886 else
d2ed6730 1887 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1888 }
1889}
1890
771b4502 1891
3285f3fe
UW
1892/* Insert temporary breakpoint on "main" function of newly loaded
1893 SPE context OBJFILE. */
1894static void
1895spu_catch_start (struct objfile *objfile)
1896{
1897 struct minimal_symbol *minsym;
1898 struct symtab *symtab;
1899 CORE_ADDR pc;
1900 char buf[32];
1901
1902 /* Do this only if requested by "set spu stop-on-load on". */
1903 if (!spu_stop_on_load_p)
1904 return;
1905
1906 /* Consider only SPU objfiles. */
1907 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1908 return;
1909
1910 /* The main objfile is handled differently. */
1911 if (objfile == symfile_objfile)
1912 return;
1913
1914 /* There can be multiple symbols named "main". Search for the
1915 "main" in *this* objfile. */
1916 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1917 if (!minsym)
1918 return;
1919
1920 /* If we have debugging information, try to use it -- this
1921 will allow us to properly skip the prologue. */
1922 pc = SYMBOL_VALUE_ADDRESS (minsym);
1923 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1924 if (symtab != NULL)
1925 {
1926 struct blockvector *bv = BLOCKVECTOR (symtab);
1927 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1928 struct symbol *sym;
1929 struct symtab_and_line sal;
1930
94af9270 1931 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
3285f3fe
UW
1932 if (sym)
1933 {
1934 fixup_symbol_section (sym, objfile);
1935 sal = find_function_start_sal (sym, 1);
1936 pc = sal.pc;
1937 }
1938 }
1939
1940 /* Use a numerical address for the set_breakpoint command to avoid having
1941 the breakpoint re-set incorrectly. */
1942 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
d8c09fb5
JK
1943 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1944 NULL /* cond_string */, -1 /* thread */,
1945 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 1946 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
1947 0 /* ignore_count */,
1948 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 1949 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 1950 1 /* enabled */, 0 /* internal */, 0);
3285f3fe
UW
1951}
1952
1953
ff1a52c6
UW
1954/* Look up OBJFILE loaded into FRAME's SPU context. */
1955static struct objfile *
1956spu_objfile_from_frame (struct frame_info *frame)
1957{
1958 struct gdbarch *gdbarch = get_frame_arch (frame);
1959 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1960 struct objfile *obj;
1961
1962 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1963 return NULL;
1964
1965 ALL_OBJFILES (obj)
1966 {
1967 if (obj->sections != obj->sections_end
1968 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1969 return obj;
1970 }
1971
1972 return NULL;
1973}
1974
1975/* Flush cache for ea pointer access if available. */
1976static void
1977flush_ea_cache (void)
1978{
1979 struct minimal_symbol *msymbol;
1980 struct objfile *obj;
1981
1982 if (!has_stack_frames ())
1983 return;
1984
1985 obj = spu_objfile_from_frame (get_current_frame ());
1986 if (obj == NULL)
1987 return;
1988
1989 /* Lookup inferior function __cache_flush. */
1990 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1991 if (msymbol != NULL)
1992 {
1993 struct type *type;
1994 CORE_ADDR addr;
1995
1996 type = objfile_type (obj)->builtin_void;
1997 type = lookup_function_type (type);
1998 type = lookup_pointer_type (type);
1999 addr = SYMBOL_VALUE_ADDRESS (msymbol);
2000
2001 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2002 }
2003}
2004
2005/* This handler is called when the inferior has stopped. If it is stopped in
2006 SPU architecture then flush the ea cache if used. */
2007static void
2008spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2009{
2010 if (!spu_auto_flush_cache_p)
2011 return;
2012
2013 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2014 re-entering this function when __cache_flush stops. */
2015 spu_auto_flush_cache_p = 0;
2016 flush_ea_cache ();
2017 spu_auto_flush_cache_p = 1;
2018}
2019
2020
23d964e7
UW
2021/* "info spu" commands. */
2022
2023static void
2024info_spu_event_command (char *args, int from_tty)
2025{
2026 struct frame_info *frame = get_selected_frame (NULL);
2027 ULONGEST event_status = 0;
2028 ULONGEST event_mask = 0;
2029 struct cleanup *chain;
2030 gdb_byte buf[100];
2031 char annex[32];
2032 LONGEST len;
2033 int rc, id;
2034
0391f248
UW
2035 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2036 error (_("\"info spu\" is only supported on the SPU architecture."));
2037
23d964e7
UW
2038 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2039
2040 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2041 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2042 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2043 if (len <= 0)
2044 error (_("Could not read event_status."));
9971ac47 2045 buf[len] = '\0';
23d964e7
UW
2046 event_status = strtoulst (buf, NULL, 16);
2047
2048 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2049 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2050 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2051 if (len <= 0)
2052 error (_("Could not read event_mask."));
9971ac47 2053 buf[len] = '\0';
23d964e7
UW
2054 event_mask = strtoulst (buf, NULL, 16);
2055
31a0ae49 2056 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
23d964e7 2057
31a0ae49 2058 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2059 {
31a0ae49 2060 ui_out_field_fmt (current_uiout, "event_status",
23d964e7 2061 "0x%s", phex_nz (event_status, 4));
31a0ae49 2062 ui_out_field_fmt (current_uiout, "event_mask",
23d964e7
UW
2063 "0x%s", phex_nz (event_mask, 4));
2064 }
2065 else
2066 {
2067 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2068 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2069 }
2070
2071 do_cleanups (chain);
2072}
2073
2074static void
2075info_spu_signal_command (char *args, int from_tty)
2076{
2077 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2078 struct gdbarch *gdbarch = get_frame_arch (frame);
2079 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2080 ULONGEST signal1 = 0;
2081 ULONGEST signal1_type = 0;
2082 int signal1_pending = 0;
2083 ULONGEST signal2 = 0;
2084 ULONGEST signal2_type = 0;
2085 int signal2_pending = 0;
2086 struct cleanup *chain;
2087 char annex[32];
2088 gdb_byte buf[100];
2089 LONGEST len;
2090 int rc, id;
2091
e17a4113 2092 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2093 error (_("\"info spu\" is only supported on the SPU architecture."));
2094
23d964e7
UW
2095 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2096
2097 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2098 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2099 if (len < 0)
2100 error (_("Could not read signal1."));
2101 else if (len == 4)
2102 {
e17a4113 2103 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2104 signal1_pending = 1;
2105 }
2106
2107 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2108 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2109 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2110 if (len <= 0)
2111 error (_("Could not read signal1_type."));
9971ac47 2112 buf[len] = '\0';
23d964e7
UW
2113 signal1_type = strtoulst (buf, NULL, 16);
2114
2115 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2116 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2117 if (len < 0)
2118 error (_("Could not read signal2."));
2119 else if (len == 4)
2120 {
e17a4113 2121 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2122 signal2_pending = 1;
2123 }
2124
2125 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2126 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2127 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2128 if (len <= 0)
2129 error (_("Could not read signal2_type."));
9971ac47 2130 buf[len] = '\0';
23d964e7
UW
2131 signal2_type = strtoulst (buf, NULL, 16);
2132
31a0ae49 2133 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
23d964e7 2134
31a0ae49 2135 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2136 {
31a0ae49
JK
2137 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2138 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2139 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2140 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2141 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2142 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
23d964e7
UW
2143 }
2144 else
2145 {
2146 if (signal1_pending)
2147 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2148 else
2149 printf_filtered (_("Signal 1 not pending "));
2150
2151 if (signal1_type)
23d964e7 2152 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2153 else
2154 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2155
2156 if (signal2_pending)
2157 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2158 else
2159 printf_filtered (_("Signal 2 not pending "));
2160
2161 if (signal2_type)
23d964e7 2162 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2163 else
2164 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2165 }
2166
2167 do_cleanups (chain);
2168}
2169
2170static void
e17a4113 2171info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2172 const char *field, const char *msg)
2173{
2174 struct cleanup *chain;
2175 int i;
2176
2177 if (nr <= 0)
2178 return;
2179
31a0ae49 2180 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
23d964e7 2181
31a0ae49
JK
2182 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2183 ui_out_table_body (current_uiout);
23d964e7
UW
2184
2185 for (i = 0; i < nr; i++)
2186 {
2187 struct cleanup *val_chain;
2188 ULONGEST val;
31a0ae49 2189 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
e17a4113 2190 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
31a0ae49 2191 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
23d964e7
UW
2192 do_cleanups (val_chain);
2193
31a0ae49 2194 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2195 printf_filtered ("\n");
2196 }
2197
2198 do_cleanups (chain);
2199}
2200
2201static void
2202info_spu_mailbox_command (char *args, int from_tty)
2203{
2204 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2205 struct gdbarch *gdbarch = get_frame_arch (frame);
2206 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2207 struct cleanup *chain;
2208 char annex[32];
2209 gdb_byte buf[1024];
2210 LONGEST len;
2211 int i, id;
2212
e17a4113 2213 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2214 error (_("\"info spu\" is only supported on the SPU architecture."));
2215
23d964e7
UW
2216 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2217
31a0ae49 2218 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2219
2220 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2221 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2222 buf, 0, sizeof buf);
2223 if (len < 0)
2224 error (_("Could not read mbox_info."));
2225
e17a4113
UW
2226 info_spu_mailbox_list (buf, len / 4, byte_order,
2227 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2228
2229 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2230 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2231 buf, 0, sizeof buf);
2232 if (len < 0)
2233 error (_("Could not read ibox_info."));
2234
e17a4113
UW
2235 info_spu_mailbox_list (buf, len / 4, byte_order,
2236 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2237
2238 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2239 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2240 buf, 0, sizeof buf);
2241 if (len < 0)
2242 error (_("Could not read wbox_info."));
2243
e17a4113
UW
2244 info_spu_mailbox_list (buf, len / 4, byte_order,
2245 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2246
2247 do_cleanups (chain);
2248}
2249
2250static ULONGEST
2251spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2252{
2253 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2254 return (word >> (63 - last)) & mask;
2255}
2256
2257static void
e17a4113 2258info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7
UW
2259{
2260 static char *spu_mfc_opcode[256] =
2261 {
2262 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2263 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2264 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2265 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2266 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2267 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2268 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2270 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2271 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2272 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2274 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2275 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2276 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2277 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2278 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2279 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2280 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2281 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2282 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2283 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2284 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2285 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2286 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2287 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2288 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2289 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2290 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2291 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2292 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 };
2295
12ab8a60
UW
2296 int *seq = alloca (nr * sizeof (int));
2297 int done = 0;
23d964e7 2298 struct cleanup *chain;
12ab8a60
UW
2299 int i, j;
2300
2301
2302 /* Determine sequence in which to display (valid) entries. */
2303 for (i = 0; i < nr; i++)
2304 {
2305 /* Search for the first valid entry all of whose
2306 dependencies are met. */
2307 for (j = 0; j < nr; j++)
2308 {
2309 ULONGEST mfc_cq_dw3;
2310 ULONGEST dependencies;
2311
2312 if (done & (1 << (nr - 1 - j)))
2313 continue;
2314
e17a4113
UW
2315 mfc_cq_dw3
2316 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2317 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2318 continue;
2319
2320 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2321 if ((dependencies & done) != dependencies)
2322 continue;
2323
2324 seq[i] = j;
2325 done |= 1 << (nr - 1 - j);
2326 break;
2327 }
2328
2329 if (j == nr)
2330 break;
2331 }
2332
2333 nr = i;
2334
23d964e7 2335
31a0ae49
JK
2336 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2337 "dma_cmd");
23d964e7 2338
31a0ae49
JK
2339 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2340 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2341 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2342 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2343 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2344 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2345 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2346 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2347 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2348 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
23d964e7 2349
31a0ae49 2350 ui_out_table_body (current_uiout);
23d964e7
UW
2351
2352 for (i = 0; i < nr; i++)
2353 {
2354 struct cleanup *cmd_chain;
2355 ULONGEST mfc_cq_dw0;
2356 ULONGEST mfc_cq_dw1;
2357 ULONGEST mfc_cq_dw2;
23d964e7
UW
2358 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2359 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2360 ULONGEST mfc_ea;
2361 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2362
2363 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2364 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2365
e17a4113
UW
2366 mfc_cq_dw0
2367 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2368 mfc_cq_dw1
2369 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2370 mfc_cq_dw2
2371 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2372
2373 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2374 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2375 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2376 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2377 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2378 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2379 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2380
2381 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2382 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2383
2384 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2385 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2386 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2387 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2388 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2389 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2390
31a0ae49 2391 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
23d964e7
UW
2392
2393 if (spu_mfc_opcode[mfc_cmd_opcode])
31a0ae49 2394 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
23d964e7 2395 else
31a0ae49 2396 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
23d964e7 2397
31a0ae49
JK
2398 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2399 ui_out_field_int (current_uiout, "tid", tclass_id);
2400 ui_out_field_int (current_uiout, "rid", rclass_id);
23d964e7
UW
2401
2402 if (ea_valid_p)
31a0ae49 2403 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
23d964e7 2404 else
31a0ae49 2405 ui_out_field_skip (current_uiout, "ea");
23d964e7 2406
31a0ae49 2407 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
23d964e7 2408 if (qw_valid_p)
31a0ae49 2409 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
23d964e7 2410 else
31a0ae49 2411 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
23d964e7
UW
2412
2413 if (list_valid_p)
2414 {
31a0ae49
JK
2415 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2416 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
23d964e7
UW
2417 }
2418 else
2419 {
31a0ae49
JK
2420 ui_out_field_skip (current_uiout, "lstaddr");
2421 ui_out_field_skip (current_uiout, "lstsize");
23d964e7
UW
2422 }
2423
2424 if (cmd_error_p)
31a0ae49 2425 ui_out_field_string (current_uiout, "error_p", "*");
23d964e7 2426 else
31a0ae49 2427 ui_out_field_skip (current_uiout, "error_p");
23d964e7
UW
2428
2429 do_cleanups (cmd_chain);
2430
31a0ae49 2431 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2432 printf_filtered ("\n");
2433 }
2434
2435 do_cleanups (chain);
2436}
2437
2438static void
2439info_spu_dma_command (char *args, int from_tty)
2440{
2441 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2442 struct gdbarch *gdbarch = get_frame_arch (frame);
2443 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2444 ULONGEST dma_info_type;
2445 ULONGEST dma_info_mask;
2446 ULONGEST dma_info_status;
2447 ULONGEST dma_info_stall_and_notify;
2448 ULONGEST dma_info_atomic_command_status;
2449 struct cleanup *chain;
2450 char annex[32];
2451 gdb_byte buf[1024];
2452 LONGEST len;
2453 int i, id;
2454
0391f248
UW
2455 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2456 error (_("\"info spu\" is only supported on the SPU architecture."));
2457
23d964e7
UW
2458 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2459
2460 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2461 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2462 buf, 0, 40 + 16 * 32);
2463 if (len <= 0)
2464 error (_("Could not read dma_info."));
2465
e17a4113
UW
2466 dma_info_type
2467 = extract_unsigned_integer (buf, 8, byte_order);
2468 dma_info_mask
2469 = extract_unsigned_integer (buf + 8, 8, byte_order);
2470 dma_info_status
2471 = extract_unsigned_integer (buf + 16, 8, byte_order);
2472 dma_info_stall_and_notify
2473 = extract_unsigned_integer (buf + 24, 8, byte_order);
2474 dma_info_atomic_command_status
2475 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2476
31a0ae49 2477 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
23d964e7 2478
31a0ae49 2479 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2480 {
31a0ae49 2481 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
23d964e7 2482 phex_nz (dma_info_type, 4));
31a0ae49 2483 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
23d964e7 2484 phex_nz (dma_info_mask, 4));
31a0ae49 2485 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
23d964e7 2486 phex_nz (dma_info_status, 4));
31a0ae49 2487 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
23d964e7 2488 phex_nz (dma_info_stall_and_notify, 4));
31a0ae49 2489 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
23d964e7
UW
2490 phex_nz (dma_info_atomic_command_status, 4));
2491 }
2492 else
2493 {
8fbde58b 2494 const char *query_msg = _("no query pending");
23d964e7 2495
8fbde58b
UW
2496 if (dma_info_type & 4)
2497 switch (dma_info_type & 3)
2498 {
2499 case 1: query_msg = _("'any' query pending"); break;
2500 case 2: query_msg = _("'all' query pending"); break;
2501 default: query_msg = _("undefined query type"); break;
2502 }
23d964e7
UW
2503
2504 printf_filtered (_("Tag-Group Status 0x%s\n"),
2505 phex (dma_info_status, 4));
2506 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2507 phex (dma_info_mask, 4), query_msg);
2508 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2509 phex (dma_info_stall_and_notify, 4));
2510 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2511 phex (dma_info_atomic_command_status, 4));
2512 printf_filtered ("\n");
2513 }
2514
e17a4113 2515 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2516 do_cleanups (chain);
2517}
2518
2519static void
2520info_spu_proxydma_command (char *args, int from_tty)
2521{
2522 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2523 struct gdbarch *gdbarch = get_frame_arch (frame);
2524 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2525 ULONGEST dma_info_type;
2526 ULONGEST dma_info_mask;
2527 ULONGEST dma_info_status;
2528 struct cleanup *chain;
2529 char annex[32];
2530 gdb_byte buf[1024];
2531 LONGEST len;
2532 int i, id;
2533
e17a4113 2534 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2535 error (_("\"info spu\" is only supported on the SPU architecture."));
2536
23d964e7
UW
2537 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2538
2539 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2540 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2541 buf, 0, 24 + 8 * 32);
2542 if (len <= 0)
2543 error (_("Could not read proxydma_info."));
2544
e17a4113
UW
2545 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2546 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2547 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2548
31a0ae49
JK
2549 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2550 "SPUInfoProxyDMA");
23d964e7 2551
31a0ae49 2552 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2553 {
31a0ae49 2554 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
23d964e7 2555 phex_nz (dma_info_type, 4));
31a0ae49 2556 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
23d964e7 2557 phex_nz (dma_info_mask, 4));
31a0ae49 2558 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
23d964e7
UW
2559 phex_nz (dma_info_status, 4));
2560 }
2561 else
2562 {
2563 const char *query_msg;
2564
8fbde58b 2565 switch (dma_info_type & 3)
23d964e7
UW
2566 {
2567 case 0: query_msg = _("no query pending"); break;
2568 case 1: query_msg = _("'any' query pending"); break;
2569 case 2: query_msg = _("'all' query pending"); break;
2570 default: query_msg = _("undefined query type"); break;
2571 }
2572
2573 printf_filtered (_("Tag-Group Status 0x%s\n"),
2574 phex (dma_info_status, 4));
2575 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2576 phex (dma_info_mask, 4), query_msg);
2577 printf_filtered ("\n");
2578 }
2579
e17a4113 2580 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2581 do_cleanups (chain);
2582}
2583
2584static void
2585info_spu_command (char *args, int from_tty)
2586{
c378eb4e
MS
2587 printf_unfiltered (_("\"info spu\" must be followed by "
2588 "the name of an SPU facility.\n"));
23d964e7
UW
2589 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2590}
2591
2592
3285f3fe
UW
2593/* Root of all "set spu "/"show spu " commands. */
2594
2595static void
2596show_spu_command (char *args, int from_tty)
2597{
2598 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2599}
2600
2601static void
2602set_spu_command (char *args, int from_tty)
2603{
2604 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2605}
2606
2607static void
2608show_spu_stop_on_load (struct ui_file *file, int from_tty,
2609 struct cmd_list_element *c, const char *value)
2610{
2611 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2612 value);
2613}
2614
ff1a52c6
UW
2615static void
2616show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2617 struct cmd_list_element *c, const char *value)
2618{
2619 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2620 value);
2621}
2622
3285f3fe 2623
771b4502
UW
2624/* Set up gdbarch struct. */
2625
2626static struct gdbarch *
2627spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2628{
2629 struct gdbarch *gdbarch;
794ac428 2630 struct gdbarch_tdep *tdep;
85e747d2
UW
2631 int id = -1;
2632
2633 /* Which spufs ID was requested as address space? */
2634 if (info.tdep_info)
2635 id = *(int *)info.tdep_info;
2636 /* For objfile architectures of SPU solibs, decode the ID from the name.
2637 This assumes the filename convention employed by solib-spu.c. */
2638 else if (info.abfd)
2639 {
2640 char *name = strrchr (info.abfd->filename, '@');
2641 if (name)
2642 sscanf (name, "@0x%*x <%d>", &id);
2643 }
771b4502 2644
85e747d2
UW
2645 /* Find a candidate among extant architectures. */
2646 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2647 arches != NULL;
2648 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2649 {
2650 tdep = gdbarch_tdep (arches->gdbarch);
2651 if (tdep && tdep->id == id)
2652 return arches->gdbarch;
2653 }
771b4502 2654
85e747d2 2655 /* None found, so create a new architecture. */
794ac428 2656 tdep = XCALLOC (1, struct gdbarch_tdep);
85e747d2 2657 tdep->id = id;
794ac428 2658 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2659
2660 /* Disassembler. */
85e747d2 2661 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2662
2663 /* Registers. */
2664 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2665 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2666 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2667 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2668 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2669 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2670 set_gdbarch_register_name (gdbarch, spu_register_name);
2671 set_gdbarch_register_type (gdbarch, spu_register_type);
2672 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2673 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2674 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502
UW
2675 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2676
2677 /* Data types. */
2678 set_gdbarch_char_signed (gdbarch, 0);
2679 set_gdbarch_ptr_bit (gdbarch, 32);
2680 set_gdbarch_addr_bit (gdbarch, 32);
2681 set_gdbarch_short_bit (gdbarch, 16);
2682 set_gdbarch_int_bit (gdbarch, 32);
2683 set_gdbarch_long_bit (gdbarch, 32);
2684 set_gdbarch_long_long_bit (gdbarch, 64);
2685 set_gdbarch_float_bit (gdbarch, 32);
2686 set_gdbarch_double_bit (gdbarch, 64);
2687 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2688 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2689 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2690 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2691
ff1a52c6 2692 /* Address handling. */
85e747d2 2693 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2694 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2695 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2696 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2697 set_gdbarch_address_class_type_flags_to_name
2698 (gdbarch, spu_address_class_type_flags_to_name);
2699 set_gdbarch_address_class_name_to_type_flags
2700 (gdbarch, spu_address_class_name_to_type_flags);
2701
36acd84e 2702
771b4502 2703 /* Inferior function calls. */
7b3dc0b7
UW
2704 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2705 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2706 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2707 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2708 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2709 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2710 set_gdbarch_return_value (gdbarch, spu_return_value);
2711
2712 /* Frame handling. */
2713 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8d998b8f 2714 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2715 frame_base_set_default (gdbarch, &spu_frame_base);
2716 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2717 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2718 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2719 set_gdbarch_frame_args_skip (gdbarch, 0);
2720 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
fe5febed 2721 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
771b4502 2722
cc5f0d61
UW
2723 /* Cell/B.E. cross-architecture unwinder support. */
2724 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2725
771b4502
UW
2726 /* Breakpoints. */
2727 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2728 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
d03285ec 2729 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502
UW
2730 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2731 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2732 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2733
dcf52cd8
UW
2734 /* Overlays. */
2735 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2736
771b4502
UW
2737 return gdbarch;
2738}
2739
63807e1d
PA
2740/* Provide a prototype to silence -Wmissing-prototypes. */
2741extern initialize_file_ftype _initialize_spu_tdep;
2742
771b4502
UW
2743void
2744_initialize_spu_tdep (void)
2745{
2746 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2747
dcf52cd8
UW
2748 /* Add ourselves to objfile event chain. */
2749 observer_attach_new_objfile (spu_overlay_new_objfile);
2750 spu_overlay_data = register_objfile_data ();
23d964e7 2751
3285f3fe
UW
2752 /* Install spu stop-on-load handler. */
2753 observer_attach_new_objfile (spu_catch_start);
2754
ff1a52c6
UW
2755 /* Add ourselves to normal_stop event chain. */
2756 observer_attach_normal_stop (spu_attach_normal_stop);
2757
3285f3fe
UW
2758 /* Add root prefix command for all "set spu"/"show spu" commands. */
2759 add_prefix_cmd ("spu", no_class, set_spu_command,
2760 _("Various SPU specific commands."),
2761 &setspucmdlist, "set spu ", 0, &setlist);
2762 add_prefix_cmd ("spu", no_class, show_spu_command,
2763 _("Various SPU specific commands."),
2764 &showspucmdlist, "show spu ", 0, &showlist);
2765
2766 /* Toggle whether or not to add a temporary breakpoint at the "main"
2767 function of new SPE contexts. */
2768 add_setshow_boolean_cmd ("stop-on-load", class_support,
2769 &spu_stop_on_load_p, _("\
2770Set whether to stop for new SPE threads."),
2771 _("\
2772Show whether to stop for new SPE threads."),
2773 _("\
2774Use \"on\" to give control to the user when a new SPE thread\n\
2775enters its \"main\" function.\n\
2776Use \"off\" to disable stopping for new SPE threads."),
2777 NULL,
2778 show_spu_stop_on_load,
2779 &setspucmdlist, &showspucmdlist);
2780
ff1a52c6
UW
2781 /* Toggle whether or not to automatically flush the software-managed
2782 cache whenever SPE execution stops. */
2783 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2784 &spu_auto_flush_cache_p, _("\
2785Set whether to automatically flush the software-managed cache."),
2786 _("\
2787Show whether to automatically flush the software-managed cache."),
2788 _("\
2789Use \"on\" to automatically flush the software-managed cache\n\
2790whenever SPE execution stops.\n\
2791Use \"off\" to never automatically flush the software-managed cache."),
2792 NULL,
2793 show_spu_auto_flush_cache,
2794 &setspucmdlist, &showspucmdlist);
2795
23d964e7
UW
2796 /* Add root prefix command for all "info spu" commands. */
2797 add_prefix_cmd ("spu", class_info, info_spu_command,
2798 _("Various SPU specific commands."),
2799 &infospucmdlist, "info spu ", 0, &infolist);
2800
2801 /* Add various "info spu" commands. */
2802 add_cmd ("event", class_info, info_spu_event_command,
2803 _("Display SPU event facility status.\n"),
2804 &infospucmdlist);
2805 add_cmd ("signal", class_info, info_spu_signal_command,
2806 _("Display SPU signal notification facility status.\n"),
2807 &infospucmdlist);
2808 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2809 _("Display SPU mailbox facility status.\n"),
2810 &infospucmdlist);
2811 add_cmd ("dma", class_info, info_spu_dma_command,
2812 _("Display MFC DMA status.\n"),
2813 &infospucmdlist);
2814 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2815 _("Display MFC Proxy-DMA status.\n"),
2816 &infospucmdlist);
771b4502 2817}
This page took 0.718675 seconds and 4 git commands to generate.