Use forward_scope_exit for scoped_finish_thread_state
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
42a4f53d 2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
771b4502
UW
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
e47ad6c0 36#include "disasm.h"
771b4502
UW
37#include "objfiles.h"
38#include "language.h"
39#include "regcache.h"
40#include "reggroups.h"
3285f3fe 41#include "block.h"
76727919 42#include "observable.h"
ff1a52c6 43#include "infcall.h"
54fcddd0 44#include "dwarf2.h"
7ce16bd4
UW
45#include "dwarf2-frame.h"
46#include "ax.h"
771b4502 47#include "spu-tdep.h"
f00aae0f 48#include "location.h"
794ac428 49
3285f3fe
UW
50/* The list of available "set spu " and "show spu " commands. */
51static struct cmd_list_element *setspucmdlist = NULL;
52static struct cmd_list_element *showspucmdlist = NULL;
53
54/* Whether to stop for new SPE contexts. */
55static int spu_stop_on_load_p = 0;
ff1a52c6
UW
56/* Whether to automatically flush the SW-managed cache. */
57static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
58
59
794ac428
UW
60/* The tdep structure. */
61struct gdbarch_tdep
62{
85e747d2
UW
63 /* The spufs ID identifying our address space. */
64 int id;
65
794ac428
UW
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68};
69
70
f2d43c2c 71/* SPU-specific vector type. */
794ac428
UW
72static struct type *
73spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74{
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
df4df182 79 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
80 struct type *t;
81
e9bb382b
UW
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 84 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 85 append_composite_type_field (t, "v2_int64",
df4df182 86 init_vector_type (bt->builtin_int64, 2));
794ac428 87 append_composite_type_field (t, "v4_int32",
df4df182 88 init_vector_type (bt->builtin_int32, 4));
794ac428 89 append_composite_type_field (t, "v8_int16",
df4df182 90 init_vector_type (bt->builtin_int16, 8));
794ac428 91 append_composite_type_field (t, "v16_int8",
df4df182 92 init_vector_type (bt->builtin_int8, 16));
794ac428 93 append_composite_type_field (t, "v2_double",
df4df182 94 init_vector_type (bt->builtin_double, 2));
794ac428 95 append_composite_type_field (t, "v4_float",
df4df182 96 init_vector_type (bt->builtin_float, 4));
794ac428 97
876cecd0 98 TYPE_VECTOR (t) = 1;
794ac428
UW
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105}
106
771b4502 107
23d964e7
UW
108/* The list of available "info spu " commands. */
109static struct cmd_list_element *infospucmdlist = NULL;
110
771b4502
UW
111/* Registers. */
112
113static const char *
d93859e2 114spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502 115{
a121b7c1 116 static const char *register_names[] =
771b4502
UW
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143}
144
145static struct type *
146spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147{
148 if (reg_nr < SPU_NUM_GPRS)
794ac428 149 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
df4df182 154 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
155
156 case SPU_PC_REGNUM:
0dfff4cb 157 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
158
159 case SPU_SP_REGNUM:
0dfff4cb 160 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 161
23d964e7 162 case SPU_FPSCR_REGNUM:
df4df182 163 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
164
165 case SPU_SRR0_REGNUM:
df4df182 166 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
167
168 case SPU_LSLR_REGNUM:
df4df182 169 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
170
171 case SPU_DECR_REGNUM:
df4df182 172 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
173
174 case SPU_DECR_STATUS_REGNUM:
df4df182 175 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 176
771b4502 177 default:
a73c6dcd 178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
179 }
180}
181
182/* Pseudo registers for preferred slots - stack pointer. */
183
05d1431c 184static enum register_status
849d0ba8 185spu_pseudo_register_read_spu (readable_regcache *regcache, const char *regname,
23d964e7
UW
186 gdb_byte *buf)
187{
ac7936df 188 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 190 enum register_status status;
23d964e7
UW
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
001f13d8 194 ULONGEST ul;
23d964e7 195
03f50fc8 196 status = regcache->raw_read (SPU_ID_REGNUM, &id);
05d1431c
PA
197 if (status != REG_VALID)
198 return status;
23d964e7
UW
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
8b88a78e 201 target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
23d964e7
UW
202 reg, 0, sizeof reg);
203
001f13d8
PA
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
05d1431c 206 return REG_VALID;
23d964e7
UW
207}
208
05d1431c 209static enum register_status
849d0ba8 210spu_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
771b4502
UW
211 int regnum, gdb_byte *buf)
212{
213 gdb_byte reg[16];
23d964e7
UW
214 char annex[32];
215 ULONGEST id;
05d1431c 216 enum register_status status;
771b4502
UW
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
03f50fc8 221 status = regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
05d1431c
PA
222 if (status != REG_VALID)
223 return status;
771b4502 224 memcpy (buf, reg, 4);
05d1431c 225 return status;
771b4502 226
23d964e7 227 case SPU_FPSCR_REGNUM:
03f50fc8 228 status = regcache->raw_read (SPU_ID_REGNUM, &id);
05d1431c
PA
229 if (status != REG_VALID)
230 return status;
23d964e7 231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
8b88a78e 232 target_read (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 233 return status;
23d964e7
UW
234
235 case SPU_SRR0_REGNUM:
05d1431c 236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
237
238 case SPU_LSLR_REGNUM:
05d1431c 239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
240
241 case SPU_DECR_REGNUM:
05d1431c 242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
243
244 case SPU_DECR_STATUS_REGNUM:
05d1431c 245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 246
771b4502
UW
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250}
251
23d964e7
UW
252static void
253spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255{
ac7936df 256 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
001f13d8 258 char reg[32];
23d964e7
UW
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
8b88a78e 266 target_write (current_top_target (), TARGET_OBJECT_SPU, annex,
001f13d8 267 (gdb_byte *) reg, 0, strlen (reg));
23d964e7
UW
268}
269
771b4502
UW
270static void
271spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273{
274 gdb_byte reg[16];
23d964e7
UW
275 char annex[32];
276 ULONGEST id;
771b4502
UW
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
0b883586 281 regcache->raw_read (SPU_RAW_SP_REGNUM, reg);
771b4502 282 memcpy (reg, buf, 4);
10eaee5f 283 regcache->raw_write (SPU_RAW_SP_REGNUM, reg);
771b4502
UW
284 break;
285
23d964e7
UW
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
8b88a78e 289 target_write (current_top_target (), TARGET_OBJECT_SPU, annex, buf, 0, 16);
23d964e7
UW
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
771b4502
UW
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311}
312
7ce16bd4
UW
313static int
314spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316{
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333}
334
335static int
336spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338{
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355}
356
357
771b4502
UW
358/* Value conversion -- access scalar values at the preferred slot. */
359
9acbedc0 360static struct value *
2ed3c037
UW
361spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
771b4502 363{
2ed3c037
UW
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
6b850546 366 LONGEST len = TYPE_LENGTH (type);
771b4502 367
bad43aa5 368 if (regnum < SPU_NUM_GPRS && len < 16)
9acbedc0 369 {
bad43aa5 370 int preferred_slot = len < 4 ? 4 - len : 0;
9acbedc0
UW
371 set_value_offset (value, preferred_slot);
372 }
771b4502 373
9acbedc0 374 return value;
771b4502
UW
375}
376
377/* Register groups. */
378
379static int
380spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382{
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397}
398
7ce16bd4
UW
399/* DWARF-2 register numbers. */
400
401static int
402spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403{
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406}
407
ff1a52c6
UW
408
409/* Address handling. */
36acd84e 410
85e747d2
UW
411static int
412spu_gdbarch_id (struct gdbarch *gdbarch)
413{
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
b021a221 418 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427}
428
ff1a52c6
UW
429static int
430spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431{
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436}
437
438static const char *
439spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440{
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445}
446
447static int
448spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450{
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458}
459
85e747d2
UW
460static void
461spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463{
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467}
468
36acd84e 469static CORE_ADDR
9898f801
UW
470spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
36acd84e 472{
85e747d2 473 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 477
ff1a52c6
UW
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
d2ed6730 482 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
483}
484
485static CORE_ADDR
486spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488{
85e747d2 489 int id = spu_gdbarch_id (gdbarch);
36acd84e 490 ULONGEST addr = unpack_long (type, buf);
36acd84e 491
d2ed6730 492 return SPUADDR (id, addr);
36acd84e
UW
493}
494
771b4502
UW
495
496/* Decoding SPU instructions. */
497
498enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
a536c6d7 514 op_selb = 0x8,
771b4502
UW
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532static int
533is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534{
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544}
545
546static int
547is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548{
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559}
560
561static int
562is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563{
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573}
574
575static int
576is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577{
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587}
588
589static int
590is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591{
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600}
601
602static int
603is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604{
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613}
614
615static int
616is_branch (unsigned int insn, int *offset, int *reg)
617{
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652}
653
654
655/* Prolog parsing. */
656
657struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670static CORE_ADDR
e17a4113
UW
671spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
673 struct spu_prologue_data *data)
674{
e17a4113 675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
ce50d78b 679 int found_bc = 0;
771b4502
UW
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
ce50d78b 708 - The first instruction to save the backchain.
771b4502 709
ce50d78b 710 We return the instruction after the latest of these four,
771b4502
UW
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
e17a4113 737 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
12102450
UW
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
771b4502
UW
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
771b4502
UW
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
ce50d78b
UW
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
771b4502
UW
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852}
853
854/* Return the first instruction after the prologue starting at PC. */
855static CORE_ADDR
6093d2eb 856spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
857{
858 struct spu_prologue_data data;
e17a4113 859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
860}
861
862/* Return the frame pointer in use at address PC. */
863static void
a54fba4c
MD
864spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
771b4502
UW
866{
867 struct spu_prologue_data data;
e17a4113 868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
c378eb4e 878 /* ??? We don't really know ... */
771b4502
UW
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882}
883
c9cf6e20 884/* Implement the stack_frame_destroyed_p gdbarch method.
fe5febed
UW
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900static int
c9cf6e20 901spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
fe5febed 902{
e17a4113 903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
22e048c9 907 int rt, ra, rb, immed;
fe5febed
UW
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
e17a4113 933 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
e17a4113 961 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976}
977
978
771b4502
UW
979/* Normal stack frames. */
980
981struct spu_unwind_cache
982{
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988};
989
990static struct spu_unwind_cache *
8d998b8f 991spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
992 void **this_prologue_cache)
993{
e17a4113 994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
85e747d2 999 CORE_ADDR id = tdep->id;
dcf52cd8 1000 gdb_byte buf[16];
771b4502
UW
1001
1002 if (*this_prologue_cache)
19ba03f4 1003 return (struct spu_unwind_cache *) *this_prologue_cache;
771b4502
UW
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
8d998b8f 1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 1012 info->func = get_frame_func (this_frame);
771b4502
UW
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
8d998b8f 1016 info->func = get_frame_pc (this_frame);
771b4502
UW
1017 data.size = -1;
1018 }
1019 else
e17a4113
UW
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
771b4502
UW
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
771b4502
UW
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 1030 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 1032 cfa = SPUADDR (id, cfa);
771b4502
UW
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
771b4502
UW
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
cdc9523a
UW
1049 CORE_ADDR reg;
1050 LONGEST backchain;
13def385 1051 ULONGEST lslr;
cdc9523a 1052 int status;
771b4502 1053
13def385
UW
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
771b4502 1059 /* Get the backchain. */
8d998b8f 1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
771b4502
UW
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
13def385 1066 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1067 {
1068 /* Assume the link register is saved into its slot. */
13def385 1069 if (backchain + 16 <= lslr)
c378eb4e
MS
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
771b4502 1072
771b4502 1073 /* Frame bases. */
85e747d2
UW
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
771b4502
UW
1076 }
1077 }
dcf52cd8 1078
c4891da7
UW
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
dcf52cd8 1083 /* The previous SP is equal to the CFA. */
85e747d2
UW
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1086
0a44cb36
UW
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
dcf52cd8
UW
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
8d998b8f 1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1093
0a44cb36
UW
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
e17a4113 1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1102 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1105 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1106
1107 return info;
1108}
1109
1110static void
8d998b8f 1111spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1112 void **this_prologue_cache, struct frame_id *this_id)
1113{
1114 struct spu_unwind_cache *info =
8d998b8f 1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121}
1122
8d998b8f
UW
1123static struct value *
1124spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
771b4502
UW
1126{
1127 struct spu_unwind_cache *info
8d998b8f 1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
8d998b8f 1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1135}
1136
1137static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
8fbca658 1139 default_frame_unwind_stop_reason,
771b4502 1140 spu_frame_this_id,
8d998b8f
UW
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
771b4502
UW
1144};
1145
771b4502 1146static CORE_ADDR
8d998b8f 1147spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1148{
1149 struct spu_unwind_cache *info
8d998b8f 1150 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1151 return info->local_base;
1152}
1153
1154static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159};
1160
1161static CORE_ADDR
1162spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163{
85e747d2 1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
85e747d2 1167 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1168}
1169
1170static CORE_ADDR
1171spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172{
85e747d2
UW
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
771b4502
UW
1176}
1177
118dfbaf 1178static CORE_ADDR
c113ed0c 1179spu_read_pc (readable_regcache *regcache)
118dfbaf 1180{
ac7936df 1181 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
61a1198a 1182 ULONGEST pc;
c113ed0c
YQ
1183
1184 regcache->cooked_read (SPU_PC_REGNUM, &pc);
118dfbaf 1185 /* Mask off interrupt enable bit. */
85e747d2 1186 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1187}
1188
1189static void
61a1198a 1190spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1191{
1192 /* Keep interrupt enabled state unchanged. */
61a1198a 1193 ULONGEST old_pc;
30bcb456 1194
61a1198a
UW
1195 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1196 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1197 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1198}
1199
771b4502 1200
cc5f0d61
UW
1201/* Cell/B.E. cross-architecture unwinder support. */
1202
1203struct spu2ppu_cache
1204{
1205 struct frame_id frame_id;
daf6667d 1206 readonly_detached_regcache *regcache;
cc5f0d61
UW
1207};
1208
1209static struct gdbarch *
1210spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1211{
19ba03f4 1212 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
ac7936df 1213 return cache->regcache->arch ();
cc5f0d61
UW
1214}
1215
1216static void
1217spu2ppu_this_id (struct frame_info *this_frame,
1218 void **this_cache, struct frame_id *this_id)
1219{
19ba03f4 1220 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1221 *this_id = cache->frame_id;
1222}
1223
1224static struct value *
1225spu2ppu_prev_register (struct frame_info *this_frame,
1226 void **this_cache, int regnum)
1227{
19ba03f4 1228 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
ac7936df 1229 struct gdbarch *gdbarch = cache->regcache->arch ();
cc5f0d61
UW
1230 gdb_byte *buf;
1231
224c3ddb 1232 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
daf6667d 1233 cache->regcache->cooked_read (regnum, buf);
cc5f0d61
UW
1234 return frame_unwind_got_bytes (this_frame, regnum, buf);
1235}
1236
1237static int
1238spu2ppu_sniffer (const struct frame_unwind *self,
1239 struct frame_info *this_frame, void **this_prologue_cache)
1240{
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 CORE_ADDR base, func, backchain;
1244 gdb_byte buf[4];
1245
f5656ead 1246 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
cc5f0d61
UW
1247 return 0;
1248
1249 base = get_frame_sp (this_frame);
1250 func = get_frame_pc (this_frame);
1251 if (target_read_memory (base, buf, 4))
1252 return 0;
1253 backchain = extract_unsigned_integer (buf, 4, byte_order);
1254
1255 if (!backchain)
1256 {
1257 struct frame_info *fi;
1258
1259 struct spu2ppu_cache *cache
1260 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1261
1262 cache->frame_id = frame_id_build (base + 16, func);
1263
1264 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1265 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1266 break;
1267
1268 if (fi)
1269 {
9ac86b52 1270 cache->regcache = frame_save_as_regcache (fi).release ();
cc5f0d61
UW
1271 *this_prologue_cache = cache;
1272 return 1;
1273 }
1274 else
1275 {
1276 struct regcache *regcache;
f5656ead 1277 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
daf6667d 1278 cache->regcache = new readonly_detached_regcache (*regcache);
cc5f0d61
UW
1279 *this_prologue_cache = cache;
1280 return 1;
1281 }
1282 }
1283
1284 return 0;
1285}
1286
1287static void
1288spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1289{
19ba03f4 1290 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
c0e383c6 1291 delete cache->regcache;
cc5f0d61
UW
1292}
1293
1294static const struct frame_unwind spu2ppu_unwind = {
1295 ARCH_FRAME,
8fbca658 1296 default_frame_unwind_stop_reason,
cc5f0d61
UW
1297 spu2ppu_this_id,
1298 spu2ppu_prev_register,
1299 NULL,
1300 spu2ppu_sniffer,
1301 spu2ppu_dealloc_cache,
1302 spu2ppu_prev_arch,
1303};
1304
1305
771b4502
UW
1306/* Function calling convention. */
1307
7b3dc0b7
UW
1308static CORE_ADDR
1309spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1310{
1311 return sp & ~15;
1312}
1313
87805e63
UW
1314static CORE_ADDR
1315spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1316 struct value **args, int nargs, struct type *value_type,
1317 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1318 struct regcache *regcache)
1319{
1320 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1321 sp = (sp - 4) & ~15;
1322 /* Store the address of that breakpoint */
1323 *bp_addr = sp;
1324 /* The call starts at the callee's entry point. */
1325 *real_pc = funaddr;
1326
1327 return sp;
1328}
1329
771b4502
UW
1330static int
1331spu_scalar_value_p (struct type *type)
1332{
1333 switch (TYPE_CODE (type))
1334 {
1335 case TYPE_CODE_INT:
1336 case TYPE_CODE_ENUM:
1337 case TYPE_CODE_RANGE:
1338 case TYPE_CODE_CHAR:
1339 case TYPE_CODE_BOOL:
1340 case TYPE_CODE_PTR:
1341 case TYPE_CODE_REF:
aa006118 1342 case TYPE_CODE_RVALUE_REF:
771b4502
UW
1343 return TYPE_LENGTH (type) <= 16;
1344
1345 default:
1346 return 0;
1347 }
1348}
1349
1350static void
1351spu_value_to_regcache (struct regcache *regcache, int regnum,
1352 struct type *type, const gdb_byte *in)
1353{
1354 int len = TYPE_LENGTH (type);
1355
1356 if (spu_scalar_value_p (type))
1357 {
1358 int preferred_slot = len < 4 ? 4 - len : 0;
e4c4a59b 1359 regcache->cooked_write_part (regnum, preferred_slot, len, in);
771b4502
UW
1360 }
1361 else
1362 {
1363 while (len >= 16)
1364 {
b66f5587 1365 regcache->cooked_write (regnum++, in);
771b4502
UW
1366 in += 16;
1367 len -= 16;
1368 }
1369
1370 if (len > 0)
e4c4a59b 1371 regcache->cooked_write_part (regnum, 0, len, in);
771b4502
UW
1372 }
1373}
1374
1375static void
1376spu_regcache_to_value (struct regcache *regcache, int regnum,
1377 struct type *type, gdb_byte *out)
1378{
1379 int len = TYPE_LENGTH (type);
1380
1381 if (spu_scalar_value_p (type))
1382 {
1383 int preferred_slot = len < 4 ? 4 - len : 0;
73bb0000 1384 regcache->cooked_read_part (regnum, preferred_slot, len, out);
771b4502
UW
1385 }
1386 else
1387 {
1388 while (len >= 16)
1389 {
dca08e1f 1390 regcache->cooked_read (regnum++, out);
771b4502
UW
1391 out += 16;
1392 len -= 16;
1393 }
1394
1395 if (len > 0)
73bb0000 1396 regcache->cooked_read_part (regnum, 0, len, out);
771b4502
UW
1397 }
1398}
1399
1400static CORE_ADDR
1401spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1402 struct regcache *regcache, CORE_ADDR bp_addr,
1403 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1404 function_call_return_method return_method,
1405 CORE_ADDR struct_addr)
771b4502 1406{
e17a4113 1407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1408 CORE_ADDR sp_delta;
771b4502
UW
1409 int i;
1410 int regnum = SPU_ARG1_REGNUM;
1411 int stack_arg = -1;
1412 gdb_byte buf[16];
1413
1414 /* Set the return address. */
1415 memset (buf, 0, sizeof buf);
85e747d2 1416 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
b66f5587 1417 regcache->cooked_write (SPU_LR_REGNUM, buf);
771b4502
UW
1418
1419 /* If STRUCT_RETURN is true, then the struct return address (in
1420 STRUCT_ADDR) will consume the first argument-passing register.
1421 Both adjust the register count and store that value. */
cf84fa6b 1422 if (return_method == return_method_struct)
771b4502
UW
1423 {
1424 memset (buf, 0, sizeof buf);
85e747d2 1425 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
b66f5587 1426 regcache->cooked_write (regnum++, buf);
771b4502
UW
1427 }
1428
1429 /* Fill in argument registers. */
1430 for (i = 0; i < nargs; i++)
1431 {
1432 struct value *arg = args[i];
1433 struct type *type = check_typedef (value_type (arg));
1434 const gdb_byte *contents = value_contents (arg);
354ecfd5 1435 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
771b4502
UW
1436
1437 /* If the argument doesn't wholly fit into registers, it and
1438 all subsequent arguments go to the stack. */
1439 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1440 {
1441 stack_arg = i;
1442 break;
1443 }
1444
1445 spu_value_to_regcache (regcache, regnum, type, contents);
1446 regnum += n_regs;
1447 }
1448
1449 /* Overflow arguments go to the stack. */
1450 if (stack_arg != -1)
1451 {
1452 CORE_ADDR ap;
1453
1454 /* Allocate all required stack size. */
1455 for (i = stack_arg; i < nargs; i++)
1456 {
1457 struct type *type = check_typedef (value_type (args[i]));
1458 sp -= align_up (TYPE_LENGTH (type), 16);
1459 }
1460
1461 /* Fill in stack arguments. */
1462 ap = sp;
1463 for (i = stack_arg; i < nargs; i++)
1464 {
1465 struct value *arg = args[i];
1466 struct type *type = check_typedef (value_type (arg));
1467 int len = TYPE_LENGTH (type);
1468 int preferred_slot;
1469
1470 if (spu_scalar_value_p (type))
1471 preferred_slot = len < 4 ? 4 - len : 0;
1472 else
1473 preferred_slot = 0;
1474
1475 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1476 ap += align_up (TYPE_LENGTH (type), 16);
1477 }
1478 }
1479
1480 /* Allocate stack frame header. */
1481 sp -= 32;
1482
ee82e879 1483 /* Store stack back chain. */
dca08e1f 1484 regcache->cooked_read (SPU_RAW_SP_REGNUM, buf);
ee82e879
UW
1485 target_write_memory (sp, buf, 16);
1486
9ff3afda 1487 /* Finally, update all slots of the SP register. */
e17a4113 1488 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1489 for (i = 0; i < 4; i++)
1490 {
e17a4113
UW
1491 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1492 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda 1493 }
b66f5587 1494 regcache->cooked_write (SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1495
1496 return sp;
1497}
1498
1499static struct frame_id
8d998b8f 1500spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1501{
85e747d2 1502 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1503 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1504 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1505 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1506}
1507
1508/* Function return value access. */
1509
1510static enum return_value_convention
6a3a010b 1511spu_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1512 struct type *type, struct regcache *regcache,
1513 gdb_byte *out, const gdb_byte *in)
771b4502 1514{
6a3a010b 1515 struct type *func_type = function ? value_type (function) : NULL;
771b4502 1516 enum return_value_convention rvc;
54fcddd0
UW
1517 int opencl_vector = 0;
1518
598cfb71
UW
1519 if (func_type)
1520 {
1521 func_type = check_typedef (func_type);
1522
1523 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1524 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1525
1526 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1527 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1528 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1529 && TYPE_VECTOR (type))
1530 opencl_vector = 1;
1531 }
771b4502
UW
1532
1533 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1534 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1535 else
1536 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1537
1538 if (in)
1539 {
1540 switch (rvc)
1541 {
1542 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0 1543 if (opencl_vector && TYPE_LENGTH (type) == 2)
e4c4a59b 1544 regcache->cooked_write_part (SPU_ARG1_REGNUM, 2, 2, in);
54fcddd0
UW
1545 else
1546 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1547 break;
1548
1549 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1550 error (_("Cannot set function return value."));
771b4502
UW
1551 break;
1552 }
1553 }
1554 else if (out)
1555 {
1556 switch (rvc)
1557 {
1558 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0 1559 if (opencl_vector && TYPE_LENGTH (type) == 2)
73bb0000 1560 regcache->cooked_read_part (SPU_ARG1_REGNUM, 2, 2, out);
54fcddd0
UW
1561 else
1562 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1563 break;
1564
1565 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1566 error (_("Function return value unknown."));
771b4502
UW
1567 break;
1568 }
1569 }
1570
1571 return rvc;
1572}
1573
1574
1575/* Breakpoints. */
04180708 1576constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
771b4502 1577
04180708 1578typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
771b4502 1579
d03285ec
UW
1580static int
1581spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1582 struct bp_target_info *bp_tgt)
1583{
1584 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1585 that in a combined application, we have some breakpoints inserted in SPU
1586 code, and now the application forks (on the PPU side). GDB common code
1587 will assume that the fork system call copied all breakpoints into the new
1588 process' address space, and that all those copies now need to be removed
1589 (see breakpoint.c:detach_breakpoints).
1590
1591 While this is certainly true for PPU side breakpoints, it is not true
1592 for SPU side breakpoints. fork will clone the SPU context file
1593 descriptors, so that all the existing SPU contexts are in accessible
1594 in the new process. However, the contents of the SPU contexts themselves
1595 are *not* cloned. Therefore the effect of detach_breakpoints is to
1596 remove SPU breakpoints from the *original* SPU context's local store
1597 -- this is not the correct behaviour.
1598
1599 The workaround is to check whether the PID we are asked to remove this
e99b03dc 1600 breakpoint from (i.e. inferior_ptid.pid ()) is different from the
d03285ec
UW
1601 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1602 true in the context of detach_breakpoints. If so, we simply do nothing.
1603 [ Note that for the fork child process, it does not matter if breakpoints
1604 remain inserted, because those SPU contexts are not runnable anyway --
1605 the Linux kernel allows only the original process to invoke spu_run. */
1606
e99b03dc 1607 if (inferior_ptid.pid () != current_inferior ()->pid)
d03285ec
UW
1608 return 0;
1609
1610 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1611}
1612
771b4502
UW
1613
1614/* Software single-stepping support. */
1615
a0ff9e1a 1616static std::vector<CORE_ADDR>
f5ea389a 1617spu_software_single_step (struct regcache *regcache)
771b4502 1618{
ac7936df 1619 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1620 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1621 CORE_ADDR pc, next_pc;
1622 unsigned int insn;
1623 int offset, reg;
1624 gdb_byte buf[4];
13def385 1625 ULONGEST lslr;
a0ff9e1a 1626 std::vector<CORE_ADDR> next_pcs;
771b4502 1627
b2260160 1628 pc = regcache_read_pc (regcache);
771b4502 1629
e0cd558a 1630 if (target_read_memory (pc, buf, 4))
941319d1
YQ
1631 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1632 paddress (gdbarch, pc));
1633
e17a4113 1634 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1635
13def385 1636 /* Get local store limit. */
5ffd2cb7
UW
1637 if ((regcache_cooked_read_unsigned (regcache, SPU_LSLR_REGNUM, &lslr)
1638 != REG_VALID) || !lslr)
13def385
UW
1639 lslr = (ULONGEST) -1;
1640
e0cd558a
UW
1641 /* Next sequential instruction is at PC + 4, except if the current
1642 instruction is a PPE-assisted call, in which case it is at PC + 8.
1643 Wrap around LS limit to be on the safe side. */
1644 if ((insn & 0xffffff00) == 0x00002100)
13def385 1645 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1646 else
13def385 1647 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1648
a0ff9e1a 1649 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1650
e0cd558a
UW
1651 if (is_branch (insn, &offset, &reg))
1652 {
1653 CORE_ADDR target = offset;
771b4502 1654
e0cd558a 1655 if (reg == SPU_PC_REGNUM)
85e747d2 1656 target += SPUADDR_ADDR (pc);
e0cd558a 1657 else if (reg != -1)
5ffd2cb7 1658 {
502fe83e 1659 regcache->raw_read_part (reg, 0, 4, buf);
5ffd2cb7
UW
1660 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1661 }
e0cd558a 1662
13def385 1663 target = target & lslr;
e0cd558a 1664 if (target != next_pc)
a0ff9e1a 1665 next_pcs.push_back (SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1666 }
e6590a1b 1667
93f9a11f 1668 return next_pcs;
771b4502
UW
1669}
1670
6e3f70d7
UW
1671
1672/* Longjmp support. */
1673
1674static int
1675spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1676{
e17a4113 1677 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1679 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1680 gdb_byte buf[4];
1681 CORE_ADDR jb_addr;
8dccd430 1682 int optim, unavail;
6e3f70d7
UW
1683
1684 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1685 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1686 &optim, &unavail))
1687 return 0;
1688
e17a4113 1689 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1690 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1691 return 0;
1692
e17a4113 1693 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1694 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1695 return 1;
1696}
1697
1698
85e747d2
UW
1699/* Disassembler. */
1700
e47ad6c0 1701struct spu_dis_asm_info : disassemble_info
85e747d2 1702{
85e747d2
UW
1703 int id;
1704};
1705
1706static void
1707spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1708{
e47ad6c0
YQ
1709 struct spu_dis_asm_info *data = (struct spu_dis_asm_info *) info;
1710 gdb_disassembler *di
1711 = static_cast<gdb_disassembler *>(info->application_data);
1712
1713 print_address (di->arch (), SPUADDR (data->id, addr),
19ba03f4 1714 (struct ui_file *) info->stream);
85e747d2
UW
1715}
1716
1717static int
1718gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1719{
c378eb4e
MS
1720 /* The opcodes disassembler does 18-bit address arithmetic. Make
1721 sure the SPU ID encoded in the high bits is added back when we
1722 call print_address. */
e47ad6c0 1723 struct spu_dis_asm_info spu_info;
85e747d2 1724
e47ad6c0
YQ
1725 memcpy (&spu_info, info, sizeof (*info));
1726 spu_info.id = SPUADDR_SPU (memaddr);
85e747d2 1727 spu_info.print_address_func = spu_dis_asm_print_address;
6394c606 1728 return default_print_insn (memaddr, &spu_info);
85e747d2
UW
1729}
1730
1731
dcf52cd8
UW
1732/* Target overlays for the SPU overlay manager.
1733
1734 See the documentation of simple_overlay_update for how the
1735 interface is supposed to work.
1736
1737 Data structures used by the overlay manager:
1738
1739 struct ovly_table
1740 {
1741 u32 vma;
1742 u32 size;
1743 u32 pos;
1744 u32 buf;
1745 } _ovly_table[]; -- one entry per overlay section
1746
1747 struct ovly_buf_table
1748 {
1749 u32 mapped;
1750 } _ovly_buf_table[]; -- one entry per overlay buffer
1751
1752 _ovly_table should never change.
1753
c378eb4e
MS
1754 Both tables are aligned to a 16-byte boundary, the symbols
1755 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1756 size set to the size of the respective array. buf in _ovly_table is
1757 an index into _ovly_buf_table.
dcf52cd8 1758
c378eb4e 1759 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1760 from one to reference the first entry in their respective tables. */
1761
1762/* Using the per-objfile private data mechanism, we store for each
1763 objfile an array of "struct spu_overlay_table" structures, one
1764 for each obj_section of the objfile. This structure holds two
1765 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1766 is *not* an overlay section. If it is non-zero, it represents
1767 a target address. The overlay section is mapped iff the target
1768 integer at this location equals MAPPED_VAL. */
1769
1770static const struct objfile_data *spu_overlay_data;
1771
1772struct spu_overlay_table
1773 {
1774 CORE_ADDR mapped_ptr;
1775 CORE_ADDR mapped_val;
1776 };
1777
1778/* Retrieve the overlay table for OBJFILE. If not already cached, read
1779 the _ovly_table data structure from the target and initialize the
1780 spu_overlay_table data structure from it. */
1781static struct spu_overlay_table *
1782spu_get_overlay_table (struct objfile *objfile)
1783{
e17a4113
UW
1784 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1785 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3b7344d5 1786 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
dcf52cd8
UW
1787 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1788 unsigned ovly_table_size, ovly_buf_table_size;
1789 struct spu_overlay_table *tbl;
1790 struct obj_section *osect;
948f8e3d 1791 gdb_byte *ovly_table;
dcf52cd8
UW
1792 int i;
1793
19ba03f4 1794 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
dcf52cd8
UW
1795 if (tbl)
1796 return tbl;
1797
1798 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
3b7344d5 1799 if (!ovly_table_msym.minsym)
dcf52cd8
UW
1800 return NULL;
1801
c378eb4e
MS
1802 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1803 NULL, objfile);
3b7344d5 1804 if (!ovly_buf_table_msym.minsym)
dcf52cd8
UW
1805 return NULL;
1806
77e371c0 1807 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3b7344d5 1808 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
dcf52cd8 1809
77e371c0 1810 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
3b7344d5 1811 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
dcf52cd8 1812
224c3ddb 1813 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
dcf52cd8
UW
1814 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1815
1816 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1817 objfile->sections_end - objfile->sections,
1818 struct spu_overlay_table);
1819
1820 for (i = 0; i < ovly_table_size / 16; i++)
1821 {
e17a4113
UW
1822 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1823 4, byte_order);
f4e80e13
TT
1824 /* Note that this skips the "size" entry, which is at offset
1825 4. */
e17a4113
UW
1826 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1827 4, byte_order);
1828 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1829 4, byte_order);
dcf52cd8
UW
1830
1831 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1832 continue;
1833
1834 ALL_OBJFILE_OSECTIONS (objfile, osect)
1835 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1836 && pos == osect->the_bfd_section->filepos)
1837 {
1838 int ndx = osect - objfile->sections;
1839 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1840 tbl[ndx].mapped_val = i + 1;
1841 break;
1842 }
1843 }
1844
1845 xfree (ovly_table);
1846 set_objfile_data (objfile, spu_overlay_data, tbl);
1847 return tbl;
1848}
1849
1850/* Read _ovly_buf_table entry from the target to dermine whether
1851 OSECT is currently mapped, and update the mapped state. */
1852static void
1853spu_overlay_update_osect (struct obj_section *osect)
1854{
e17a4113
UW
1855 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1856 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1857 struct spu_overlay_table *ovly_table;
85e747d2 1858 CORE_ADDR id, val;
dcf52cd8
UW
1859
1860 ovly_table = spu_get_overlay_table (osect->objfile);
1861 if (!ovly_table)
1862 return;
1863
1864 ovly_table += osect - osect->objfile->sections;
1865 if (ovly_table->mapped_ptr == 0)
1866 return;
1867
85e747d2
UW
1868 id = SPUADDR_SPU (obj_section_addr (osect));
1869 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1870 4, byte_order);
dcf52cd8
UW
1871 osect->ovly_mapped = (val == ovly_table->mapped_val);
1872}
1873
1874/* If OSECT is NULL, then update all sections' mapped state.
1875 If OSECT is non-NULL, then update only OSECT's mapped state. */
1876static void
1877spu_overlay_update (struct obj_section *osect)
1878{
1879 /* Just one section. */
1880 if (osect)
1881 spu_overlay_update_osect (osect);
1882
1883 /* All sections. */
1884 else
1885 {
2030c079 1886 for (objfile *objfile : current_program_space->objfiles ())
3b9d3ac2
TT
1887 ALL_OBJFILE_OSECTIONS (objfile, osect)
1888 if (section_is_overlay (osect))
1889 spu_overlay_update_osect (osect);
dcf52cd8
UW
1890 }
1891}
1892
1893/* Whenever a new objfile is loaded, read the target's _ovly_table.
1894 If there is one, go through all sections and make sure for non-
1895 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1896 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1897static void
1898spu_overlay_new_objfile (struct objfile *objfile)
1899{
1900 struct spu_overlay_table *ovly_table;
1901 struct obj_section *osect;
1902
1903 /* If we've already touched this file, do nothing. */
1904 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1905 return;
1906
0391f248
UW
1907 /* Consider only SPU objfiles. */
1908 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1909 return;
1910
dcf52cd8
UW
1911 /* Check if this objfile has overlays. */
1912 ovly_table = spu_get_overlay_table (objfile);
1913 if (!ovly_table)
1914 return;
1915
1916 /* Now go and fiddle with all the LMAs. */
1917 ALL_OBJFILE_OSECTIONS (objfile, osect)
1918 {
dcf52cd8
UW
1919 asection *bsect = osect->the_bfd_section;
1920 int ndx = osect - objfile->sections;
1921
1922 if (ovly_table[ndx].mapped_ptr == 0)
1923 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1924 else
d2ed6730 1925 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1926 }
1927}
1928
771b4502 1929
3285f3fe
UW
1930/* Insert temporary breakpoint on "main" function of newly loaded
1931 SPE context OBJFILE. */
1932static void
1933spu_catch_start (struct objfile *objfile)
1934{
3b7344d5 1935 struct bound_minimal_symbol minsym;
43f3e411 1936 struct compunit_symtab *cust;
3285f3fe 1937 CORE_ADDR pc;
3285f3fe
UW
1938
1939 /* Do this only if requested by "set spu stop-on-load on". */
1940 if (!spu_stop_on_load_p)
1941 return;
1942
1943 /* Consider only SPU objfiles. */
1944 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1945 return;
1946
1947 /* The main objfile is handled differently. */
1948 if (objfile == symfile_objfile)
1949 return;
1950
1951 /* There can be multiple symbols named "main". Search for the
1952 "main" in *this* objfile. */
1953 minsym = lookup_minimal_symbol ("main", NULL, objfile);
3b7344d5 1954 if (!minsym.minsym)
3285f3fe
UW
1955 return;
1956
1957 /* If we have debugging information, try to use it -- this
1958 will allow us to properly skip the prologue. */
77e371c0 1959 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
43f3e411
DE
1960 cust
1961 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1962 minsym.minsym));
1963 if (cust != NULL)
3285f3fe 1964 {
43f3e411 1965 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
3285f3fe
UW
1966 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1967 struct symbol *sym;
1968 struct symtab_and_line sal;
1969
a655456c
PA
1970 sym = block_lookup_symbol (block, "main",
1971 symbol_name_match_type::SEARCH_NAME,
1972 VAR_DOMAIN);
3285f3fe
UW
1973 if (sym)
1974 {
1975 fixup_symbol_section (sym, objfile);
1976 sal = find_function_start_sal (sym, 1);
1977 pc = sal.pc;
1978 }
1979 }
1980
1981 /* Use a numerical address for the set_breakpoint command to avoid having
1982 the breakpoint re-set incorrectly. */
ffc2605c
TT
1983 event_location_up location = new_address_location (pc, NULL, 0);
1984 create_breakpoint (get_objfile_arch (objfile), location.get (),
d8c09fb5 1985 NULL /* cond_string */, -1 /* thread */,
6a609e58 1986 NULL /* extra_string */,
d8c09fb5 1987 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 1988 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
1989 0 /* ignore_count */,
1990 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 1991 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 1992 1 /* enabled */, 0 /* internal */, 0);
3285f3fe
UW
1993}
1994
1995
ff1a52c6
UW
1996/* Look up OBJFILE loaded into FRAME's SPU context. */
1997static struct objfile *
1998spu_objfile_from_frame (struct frame_info *frame)
1999{
2000 struct gdbarch *gdbarch = get_frame_arch (frame);
2001 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ff1a52c6
UW
2002
2003 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2004 return NULL;
2005
2030c079 2006 for (objfile *obj : current_program_space->objfiles ())
ff1a52c6
UW
2007 {
2008 if (obj->sections != obj->sections_end
2009 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2010 return obj;
2011 }
2012
2013 return NULL;
2014}
2015
2016/* Flush cache for ea pointer access if available. */
2017static void
2018flush_ea_cache (void)
2019{
3b7344d5 2020 struct bound_minimal_symbol msymbol;
ff1a52c6
UW
2021 struct objfile *obj;
2022
2023 if (!has_stack_frames ())
2024 return;
2025
2026 obj = spu_objfile_from_frame (get_current_frame ());
2027 if (obj == NULL)
2028 return;
2029
2030 /* Lookup inferior function __cache_flush. */
2031 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
3b7344d5 2032 if (msymbol.minsym != NULL)
ff1a52c6
UW
2033 {
2034 struct type *type;
2035 CORE_ADDR addr;
2036
2037 type = objfile_type (obj)->builtin_void;
2038 type = lookup_function_type (type);
2039 type = lookup_pointer_type (type);
77e371c0 2040 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
ff1a52c6 2041
e71585ff 2042 call_function_by_hand (value_from_pointer (type, addr), NULL, {});
ff1a52c6
UW
2043 }
2044}
2045
2046/* This handler is called when the inferior has stopped. If it is stopped in
2047 SPU architecture then flush the ea cache if used. */
2048static void
2049spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2050{
2051 if (!spu_auto_flush_cache_p)
2052 return;
2053
2054 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2055 re-entering this function when __cache_flush stops. */
2056 spu_auto_flush_cache_p = 0;
2057 flush_ea_cache ();
2058 spu_auto_flush_cache_p = 1;
2059}
2060
2061
23d964e7
UW
2062/* "info spu" commands. */
2063
2064static void
e6738699 2065info_spu_event_command (const char *args, int from_tty)
23d964e7
UW
2066{
2067 struct frame_info *frame = get_selected_frame (NULL);
2068 ULONGEST event_status = 0;
2069 ULONGEST event_mask = 0;
23d964e7
UW
2070 gdb_byte buf[100];
2071 char annex[32];
2072 LONGEST len;
22e048c9 2073 int id;
23d964e7 2074
0391f248
UW
2075 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2076 error (_("\"info spu\" is only supported on the SPU architecture."));
2077
23d964e7
UW
2078 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2079
2080 xsnprintf (annex, sizeof annex, "%d/event_status", id);
8b88a78e 2081 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
9971ac47 2082 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2083 if (len <= 0)
2084 error (_("Could not read event_status."));
9971ac47 2085 buf[len] = '\0';
001f13d8 2086 event_status = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2087
2088 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
8b88a78e 2089 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
9971ac47 2090 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2091 if (len <= 0)
2092 error (_("Could not read event_mask."));
9971ac47 2093 buf[len] = '\0';
001f13d8 2094 event_mask = strtoulst ((char *) buf, NULL, 16);
23d964e7 2095
76f9c9cf 2096 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoEvent");
23d964e7 2097
40c03530 2098 current_uiout->text (_("Event Status "));
968ae51b
UW
2099 current_uiout->field_fmt ("event_status", "0x%s", phex (event_status, 4));
2100 current_uiout->text ("\n");
2101 current_uiout->text (_("Event Mask "));
2102 current_uiout->field_fmt ("event_mask", "0x%s", phex (event_mask, 4));
2103 current_uiout->text ("\n");
23d964e7
UW
2104}
2105
2106static void
e6738699 2107info_spu_signal_command (const char *args, int from_tty)
23d964e7
UW
2108{
2109 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2110 struct gdbarch *gdbarch = get_frame_arch (frame);
2111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2112 ULONGEST signal1 = 0;
2113 ULONGEST signal1_type = 0;
2114 int signal1_pending = 0;
2115 ULONGEST signal2 = 0;
2116 ULONGEST signal2_type = 0;
2117 int signal2_pending = 0;
23d964e7
UW
2118 char annex[32];
2119 gdb_byte buf[100];
2120 LONGEST len;
22e048c9 2121 int id;
23d964e7 2122
e17a4113 2123 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2124 error (_("\"info spu\" is only supported on the SPU architecture."));
2125
23d964e7
UW
2126 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2127
2128 xsnprintf (annex, sizeof annex, "%d/signal1", id);
8b88a78e
PA
2129 len = target_read (current_top_target (), TARGET_OBJECT_SPU,
2130 annex, buf, 0, 4);
23d964e7
UW
2131 if (len < 0)
2132 error (_("Could not read signal1."));
2133 else if (len == 4)
2134 {
e17a4113 2135 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2136 signal1_pending = 1;
2137 }
2138
2139 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
8b88a78e 2140 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
9971ac47 2141 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2142 if (len <= 0)
2143 error (_("Could not read signal1_type."));
9971ac47 2144 buf[len] = '\0';
001f13d8 2145 signal1_type = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2146
2147 xsnprintf (annex, sizeof annex, "%d/signal2", id);
8b88a78e
PA
2148 len = target_read (current_top_target (), TARGET_OBJECT_SPU,
2149 annex, buf, 0, 4);
23d964e7
UW
2150 if (len < 0)
2151 error (_("Could not read signal2."));
2152 else if (len == 4)
2153 {
e17a4113 2154 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2155 signal2_pending = 1;
2156 }
2157
2158 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
8b88a78e 2159 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
9971ac47 2160 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2161 if (len <= 0)
2162 error (_("Could not read signal2_type."));
9971ac47 2163 buf[len] = '\0';
001f13d8 2164 signal2_type = strtoulst ((char *) buf, NULL, 16);
23d964e7 2165
76f9c9cf 2166 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoSignal");
23d964e7 2167
112e8700 2168 if (current_uiout->is_mi_like_p ())
23d964e7 2169 {
112e8700
SM
2170 current_uiout->field_int ("signal1_pending", signal1_pending);
2171 current_uiout->field_fmt ("signal1", "0x%s", phex_nz (signal1, 4));
2172 current_uiout->field_int ("signal1_type", signal1_type);
2173 current_uiout->field_int ("signal2_pending", signal2_pending);
2174 current_uiout->field_fmt ("signal2", "0x%s", phex_nz (signal2, 4));
2175 current_uiout->field_int ("signal2_type", signal2_type);
23d964e7
UW
2176 }
2177 else
2178 {
2179 if (signal1_pending)
2180 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2181 else
2182 printf_filtered (_("Signal 1 not pending "));
2183
2184 if (signal1_type)
23d964e7 2185 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2186 else
2187 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2188
2189 if (signal2_pending)
2190 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2191 else
2192 printf_filtered (_("Signal 2 not pending "));
2193
2194 if (signal2_type)
23d964e7 2195 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2196 else
2197 printf_filtered (_("(Type Overwrite)\n"));
23d964e7 2198 }
23d964e7
UW
2199}
2200
2201static void
e17a4113 2202info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2203 const char *field, const char *msg)
2204{
23d964e7
UW
2205 int i;
2206
2207 if (nr <= 0)
2208 return;
2209
dc9fe180 2210 ui_out_emit_table table_emitter (current_uiout, 1, nr, "mbox");
23d964e7 2211
112e8700
SM
2212 current_uiout->table_header (32, ui_left, field, msg);
2213 current_uiout->table_body ();
23d964e7
UW
2214
2215 for (i = 0; i < nr; i++)
2216 {
dc9fe180
TT
2217 {
2218 ULONGEST val;
2219 ui_out_emit_tuple tuple_emitter (current_uiout, "mbox");
2220 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
2221 current_uiout->field_fmt (field, "0x%s", phex (val, 4));
2222 }
23d964e7 2223
40c03530 2224 current_uiout->text ("\n");
23d964e7 2225 }
23d964e7
UW
2226}
2227
2228static void
e6738699 2229info_spu_mailbox_command (const char *args, int from_tty)
23d964e7
UW
2230{
2231 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2232 struct gdbarch *gdbarch = get_frame_arch (frame);
2233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2234 char annex[32];
2235 gdb_byte buf[1024];
2236 LONGEST len;
22e048c9 2237 int id;
23d964e7 2238
e17a4113 2239 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2240 error (_("\"info spu\" is only supported on the SPU architecture."));
2241
23d964e7
UW
2242 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2243
76f9c9cf 2244 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2245
2246 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
8b88a78e 2247 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
23d964e7
UW
2248 buf, 0, sizeof buf);
2249 if (len < 0)
2250 error (_("Could not read mbox_info."));
2251
e17a4113
UW
2252 info_spu_mailbox_list (buf, len / 4, byte_order,
2253 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2254
2255 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
8b88a78e 2256 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
23d964e7
UW
2257 buf, 0, sizeof buf);
2258 if (len < 0)
2259 error (_("Could not read ibox_info."));
2260
e17a4113
UW
2261 info_spu_mailbox_list (buf, len / 4, byte_order,
2262 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2263
2264 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
8b88a78e 2265 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
23d964e7
UW
2266 buf, 0, sizeof buf);
2267 if (len < 0)
2268 error (_("Could not read wbox_info."));
2269
e17a4113
UW
2270 info_spu_mailbox_list (buf, len / 4, byte_order,
2271 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2272}
2273
2274static ULONGEST
2275spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2276{
2277 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2278 return (word >> (63 - last)) & mask;
2279}
2280
2281static void
e17a4113 2282info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7 2283{
a121b7c1 2284 static const char *spu_mfc_opcode[256] =
23d964e7
UW
2285 {
2286 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2287 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2288 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2289 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2290 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2291 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2292 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2293 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2294 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2295 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2296 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2297 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2298 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2299 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2300 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2301 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2302 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2303 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2304 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2305 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2306 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2307 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2308 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2309 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2310 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2311 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2312 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2313 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2314 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2315 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2316 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2317 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2318 };
2319
8d749320 2320 int *seq = XALLOCAVEC (int, nr);
12ab8a60 2321 int done = 0;
12ab8a60
UW
2322 int i, j;
2323
2324
2325 /* Determine sequence in which to display (valid) entries. */
2326 for (i = 0; i < nr; i++)
2327 {
2328 /* Search for the first valid entry all of whose
2329 dependencies are met. */
2330 for (j = 0; j < nr; j++)
2331 {
2332 ULONGEST mfc_cq_dw3;
2333 ULONGEST dependencies;
2334
2335 if (done & (1 << (nr - 1 - j)))
2336 continue;
2337
e17a4113
UW
2338 mfc_cq_dw3
2339 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2340 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2341 continue;
2342
2343 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2344 if ((dependencies & done) != dependencies)
2345 continue;
2346
2347 seq[i] = j;
2348 done |= 1 << (nr - 1 - j);
2349 break;
2350 }
2351
2352 if (j == nr)
2353 break;
2354 }
2355
2356 nr = i;
2357
23d964e7 2358
dc9fe180 2359 ui_out_emit_table table_emitter (current_uiout, 10, nr, "dma_cmd");
23d964e7 2360
112e8700
SM
2361 current_uiout->table_header (7, ui_left, "opcode", "Opcode");
2362 current_uiout->table_header (3, ui_left, "tag", "Tag");
2363 current_uiout->table_header (3, ui_left, "tid", "TId");
2364 current_uiout->table_header (3, ui_left, "rid", "RId");
2365 current_uiout->table_header (18, ui_left, "ea", "EA");
2366 current_uiout->table_header (7, ui_left, "lsa", "LSA");
2367 current_uiout->table_header (7, ui_left, "size", "Size");
2368 current_uiout->table_header (7, ui_left, "lstaddr", "LstAddr");
2369 current_uiout->table_header (7, ui_left, "lstsize", "LstSize");
2370 current_uiout->table_header (1, ui_left, "error_p", "E");
23d964e7 2371
112e8700 2372 current_uiout->table_body ();
23d964e7
UW
2373
2374 for (i = 0; i < nr; i++)
2375 {
23d964e7
UW
2376 ULONGEST mfc_cq_dw0;
2377 ULONGEST mfc_cq_dw1;
2378 ULONGEST mfc_cq_dw2;
23d964e7 2379 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
22e048c9 2380 int list_lsa, list_size, mfc_lsa, mfc_size;
23d964e7 2381 ULONGEST mfc_ea;
870f88f7 2382 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
23d964e7
UW
2383
2384 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2385 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2386
e17a4113
UW
2387 mfc_cq_dw0
2388 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2389 mfc_cq_dw1
2390 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2391 mfc_cq_dw2
2392 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2393
2394 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2395 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2396 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2397 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2398 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2399 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2400 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2401
2402 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2403 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2404
2405 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2406 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
23d964e7
UW
2407 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2408 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2409 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2410
dc9fe180
TT
2411 {
2412 ui_out_emit_tuple tuple_emitter (current_uiout, "cmd");
23d964e7 2413
dc9fe180
TT
2414 if (spu_mfc_opcode[mfc_cmd_opcode])
2415 current_uiout->field_string ("opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2416 else
2417 current_uiout->field_int ("opcode", mfc_cmd_opcode);
23d964e7 2418
dc9fe180
TT
2419 current_uiout->field_int ("tag", mfc_cmd_tag);
2420 current_uiout->field_int ("tid", tclass_id);
2421 current_uiout->field_int ("rid", rclass_id);
23d964e7 2422
dc9fe180
TT
2423 if (ea_valid_p)
2424 current_uiout->field_fmt ("ea", "0x%s", phex (mfc_ea, 8));
2425 else
2426 current_uiout->field_skip ("ea");
23d964e7 2427
dc9fe180
TT
2428 current_uiout->field_fmt ("lsa", "0x%05x", mfc_lsa << 4);
2429 if (qw_valid_p)
2430 current_uiout->field_fmt ("size", "0x%05x", mfc_size << 4);
2431 else
2432 current_uiout->field_fmt ("size", "0x%05x", mfc_size);
23d964e7 2433
dc9fe180
TT
2434 if (list_valid_p)
2435 {
2436 current_uiout->field_fmt ("lstaddr", "0x%05x", list_lsa << 3);
2437 current_uiout->field_fmt ("lstsize", "0x%05x", list_size << 3);
2438 }
2439 else
2440 {
2441 current_uiout->field_skip ("lstaddr");
2442 current_uiout->field_skip ("lstsize");
2443 }
23d964e7 2444
dc9fe180
TT
2445 if (cmd_error_p)
2446 current_uiout->field_string ("error_p", "*");
2447 else
2448 current_uiout->field_skip ("error_p");
2449 }
23d964e7 2450
40c03530 2451 current_uiout->text ("\n");
23d964e7 2452 }
23d964e7
UW
2453}
2454
2455static void
e6738699 2456info_spu_dma_command (const char *args, int from_tty)
23d964e7
UW
2457{
2458 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2459 struct gdbarch *gdbarch = get_frame_arch (frame);
2460 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2461 ULONGEST dma_info_type;
2462 ULONGEST dma_info_mask;
2463 ULONGEST dma_info_status;
2464 ULONGEST dma_info_stall_and_notify;
2465 ULONGEST dma_info_atomic_command_status;
23d964e7
UW
2466 char annex[32];
2467 gdb_byte buf[1024];
2468 LONGEST len;
22e048c9 2469 int id;
23d964e7 2470
0391f248
UW
2471 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2472 error (_("\"info spu\" is only supported on the SPU architecture."));
2473
23d964e7
UW
2474 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2475
2476 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
8b88a78e 2477 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
23d964e7
UW
2478 buf, 0, 40 + 16 * 32);
2479 if (len <= 0)
2480 error (_("Could not read dma_info."));
2481
e17a4113
UW
2482 dma_info_type
2483 = extract_unsigned_integer (buf, 8, byte_order);
2484 dma_info_mask
2485 = extract_unsigned_integer (buf + 8, 8, byte_order);
2486 dma_info_status
2487 = extract_unsigned_integer (buf + 16, 8, byte_order);
2488 dma_info_stall_and_notify
2489 = extract_unsigned_integer (buf + 24, 8, byte_order);
2490 dma_info_atomic_command_status
2491 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2492
76f9c9cf 2493 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoDMA");
23d964e7 2494
112e8700 2495 if (current_uiout->is_mi_like_p ())
23d964e7 2496 {
112e8700
SM
2497 current_uiout->field_fmt ("dma_info_type", "0x%s",
2498 phex_nz (dma_info_type, 4));
2499 current_uiout->field_fmt ("dma_info_mask", "0x%s",
2500 phex_nz (dma_info_mask, 4));
2501 current_uiout->field_fmt ("dma_info_status", "0x%s",
2502 phex_nz (dma_info_status, 4));
2503 current_uiout->field_fmt ("dma_info_stall_and_notify", "0x%s",
2504 phex_nz (dma_info_stall_and_notify, 4));
2505 current_uiout->field_fmt ("dma_info_atomic_command_status", "0x%s",
2506 phex_nz (dma_info_atomic_command_status, 4));
23d964e7
UW
2507 }
2508 else
2509 {
8fbde58b 2510 const char *query_msg = _("no query pending");
23d964e7 2511
8fbde58b
UW
2512 if (dma_info_type & 4)
2513 switch (dma_info_type & 3)
2514 {
2515 case 1: query_msg = _("'any' query pending"); break;
2516 case 2: query_msg = _("'all' query pending"); break;
2517 default: query_msg = _("undefined query type"); break;
2518 }
23d964e7
UW
2519
2520 printf_filtered (_("Tag-Group Status 0x%s\n"),
2521 phex (dma_info_status, 4));
2522 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2523 phex (dma_info_mask, 4), query_msg);
2524 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2525 phex (dma_info_stall_and_notify, 4));
2526 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2527 phex (dma_info_atomic_command_status, 4));
2528 printf_filtered ("\n");
2529 }
2530
e17a4113 2531 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2532}
2533
2534static void
e6738699 2535info_spu_proxydma_command (const char *args, int from_tty)
23d964e7
UW
2536{
2537 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2538 struct gdbarch *gdbarch = get_frame_arch (frame);
2539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2540 ULONGEST dma_info_type;
2541 ULONGEST dma_info_mask;
2542 ULONGEST dma_info_status;
23d964e7
UW
2543 char annex[32];
2544 gdb_byte buf[1024];
2545 LONGEST len;
22e048c9 2546 int id;
23d964e7 2547
e17a4113 2548 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2549 error (_("\"info spu\" is only supported on the SPU architecture."));
2550
23d964e7
UW
2551 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2552
2553 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
8b88a78e 2554 len = target_read (current_top_target (), TARGET_OBJECT_SPU, annex,
23d964e7
UW
2555 buf, 0, 24 + 8 * 32);
2556 if (len <= 0)
2557 error (_("Could not read proxydma_info."));
2558
e17a4113
UW
2559 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2560 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2561 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2562
76f9c9cf 2563 ui_out_emit_tuple tuple_emitter (current_uiout, "SPUInfoProxyDMA");
23d964e7 2564
112e8700 2565 if (current_uiout->is_mi_like_p ())
23d964e7 2566 {
112e8700
SM
2567 current_uiout->field_fmt ("proxydma_info_type", "0x%s",
2568 phex_nz (dma_info_type, 4));
2569 current_uiout->field_fmt ("proxydma_info_mask", "0x%s",
2570 phex_nz (dma_info_mask, 4));
2571 current_uiout->field_fmt ("proxydma_info_status", "0x%s",
2572 phex_nz (dma_info_status, 4));
23d964e7
UW
2573 }
2574 else
2575 {
2576 const char *query_msg;
2577
8fbde58b 2578 switch (dma_info_type & 3)
23d964e7
UW
2579 {
2580 case 0: query_msg = _("no query pending"); break;
2581 case 1: query_msg = _("'any' query pending"); break;
2582 case 2: query_msg = _("'all' query pending"); break;
2583 default: query_msg = _("undefined query type"); break;
2584 }
2585
2586 printf_filtered (_("Tag-Group Status 0x%s\n"),
2587 phex (dma_info_status, 4));
2588 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2589 phex (dma_info_mask, 4), query_msg);
2590 printf_filtered ("\n");
2591 }
2592
e17a4113 2593 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2594}
2595
2596static void
981a3fb3 2597info_spu_command (const char *args, int from_tty)
23d964e7 2598{
c378eb4e
MS
2599 printf_unfiltered (_("\"info spu\" must be followed by "
2600 "the name of an SPU facility.\n"));
635c7e8a 2601 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
23d964e7
UW
2602}
2603
2604
3285f3fe
UW
2605/* Root of all "set spu "/"show spu " commands. */
2606
2607static void
981a3fb3 2608show_spu_command (const char *args, int from_tty)
3285f3fe
UW
2609{
2610 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2611}
2612
2613static void
981a3fb3 2614set_spu_command (const char *args, int from_tty)
3285f3fe
UW
2615{
2616 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2617}
2618
2619static void
2620show_spu_stop_on_load (struct ui_file *file, int from_tty,
2621 struct cmd_list_element *c, const char *value)
2622{
2623 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2624 value);
2625}
2626
ff1a52c6
UW
2627static void
2628show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2629 struct cmd_list_element *c, const char *value)
2630{
2631 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2632 value);
2633}
2634
3285f3fe 2635
771b4502
UW
2636/* Set up gdbarch struct. */
2637
2638static struct gdbarch *
2639spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2640{
2641 struct gdbarch *gdbarch;
794ac428 2642 struct gdbarch_tdep *tdep;
85e747d2
UW
2643 int id = -1;
2644
2645 /* Which spufs ID was requested as address space? */
0dba2a6c
MR
2646 if (info.id)
2647 id = *info.id;
85e747d2
UW
2648 /* For objfile architectures of SPU solibs, decode the ID from the name.
2649 This assumes the filename convention employed by solib-spu.c. */
2650 else if (info.abfd)
2651 {
53e78085 2652 const char *name = strrchr (info.abfd->filename, '@');
85e747d2
UW
2653 if (name)
2654 sscanf (name, "@0x%*x <%d>", &id);
2655 }
771b4502 2656
85e747d2
UW
2657 /* Find a candidate among extant architectures. */
2658 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2659 arches != NULL;
2660 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2661 {
2662 tdep = gdbarch_tdep (arches->gdbarch);
2663 if (tdep && tdep->id == id)
2664 return arches->gdbarch;
2665 }
771b4502 2666
85e747d2 2667 /* None found, so create a new architecture. */
fc270c35 2668 tdep = XCNEW (struct gdbarch_tdep);
85e747d2 2669 tdep->id = id;
794ac428 2670 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2671
2672 /* Disassembler. */
85e747d2 2673 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2674
2675 /* Registers. */
2676 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2677 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2678 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2679 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2680 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2681 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2682 set_gdbarch_register_name (gdbarch, spu_register_name);
2683 set_gdbarch_register_type (gdbarch, spu_register_type);
2684 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2685 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2686 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502 2687 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
7ce16bd4
UW
2688 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2689 set_gdbarch_ax_pseudo_register_collect
2690 (gdbarch, spu_ax_pseudo_register_collect);
2691 set_gdbarch_ax_pseudo_register_push_stack
2692 (gdbarch, spu_ax_pseudo_register_push_stack);
771b4502
UW
2693
2694 /* Data types. */
2695 set_gdbarch_char_signed (gdbarch, 0);
2696 set_gdbarch_ptr_bit (gdbarch, 32);
2697 set_gdbarch_addr_bit (gdbarch, 32);
2698 set_gdbarch_short_bit (gdbarch, 16);
2699 set_gdbarch_int_bit (gdbarch, 32);
2700 set_gdbarch_long_bit (gdbarch, 32);
2701 set_gdbarch_long_long_bit (gdbarch, 64);
2702 set_gdbarch_float_bit (gdbarch, 32);
2703 set_gdbarch_double_bit (gdbarch, 64);
2704 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2705 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2706 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2707 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2708
ff1a52c6 2709 /* Address handling. */
85e747d2 2710 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2711 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2712 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2713 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2714 set_gdbarch_address_class_type_flags_to_name
2715 (gdbarch, spu_address_class_type_flags_to_name);
2716 set_gdbarch_address_class_name_to_type_flags
2717 (gdbarch, spu_address_class_name_to_type_flags);
2718
396d3980
UW
2719 /* We need to support more than "addr_bit" significant address bits
2720 in order to support SPUADDR_ADDR encoded values. */
2721 set_gdbarch_significant_addr_bit (gdbarch, 64);
36acd84e 2722
771b4502 2723 /* Inferior function calls. */
7b3dc0b7
UW
2724 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2725 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2726 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2727 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2728 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2729 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2730 set_gdbarch_return_value (gdbarch, spu_return_value);
2731
2732 /* Frame handling. */
2733 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7ce16bd4 2734 dwarf2_append_unwinders (gdbarch);
8d998b8f 2735 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2736 frame_base_set_default (gdbarch, &spu_frame_base);
2737 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2738 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2739 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2740 set_gdbarch_frame_args_skip (gdbarch, 0);
2741 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
c9cf6e20 2742 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
771b4502 2743
cc5f0d61
UW
2744 /* Cell/B.E. cross-architecture unwinder support. */
2745 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2746
771b4502
UW
2747 /* Breakpoints. */
2748 set_gdbarch_decr_pc_after_break (gdbarch, 4);
04180708
YQ
2749 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2750 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
d03285ec 2751 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502 2752 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2753 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2754
dcf52cd8
UW
2755 /* Overlays. */
2756 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2757
771b4502
UW
2758 return gdbarch;
2759}
2760
2761void
2762_initialize_spu_tdep (void)
2763{
2764 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2765
dcf52cd8 2766 /* Add ourselves to objfile event chain. */
76727919 2767 gdb::observers::new_objfile.attach (spu_overlay_new_objfile);
dcf52cd8 2768 spu_overlay_data = register_objfile_data ();
23d964e7 2769
3285f3fe 2770 /* Install spu stop-on-load handler. */
76727919 2771 gdb::observers::new_objfile.attach (spu_catch_start);
3285f3fe 2772
ff1a52c6 2773 /* Add ourselves to normal_stop event chain. */
76727919 2774 gdb::observers::normal_stop.attach (spu_attach_normal_stop);
ff1a52c6 2775
3285f3fe
UW
2776 /* Add root prefix command for all "set spu"/"show spu" commands. */
2777 add_prefix_cmd ("spu", no_class, set_spu_command,
2778 _("Various SPU specific commands."),
2779 &setspucmdlist, "set spu ", 0, &setlist);
2780 add_prefix_cmd ("spu", no_class, show_spu_command,
2781 _("Various SPU specific commands."),
2782 &showspucmdlist, "show spu ", 0, &showlist);
2783
2784 /* Toggle whether or not to add a temporary breakpoint at the "main"
2785 function of new SPE contexts. */
2786 add_setshow_boolean_cmd ("stop-on-load", class_support,
2787 &spu_stop_on_load_p, _("\
2788Set whether to stop for new SPE threads."),
2789 _("\
2790Show whether to stop for new SPE threads."),
2791 _("\
2792Use \"on\" to give control to the user when a new SPE thread\n\
2793enters its \"main\" function.\n\
2794Use \"off\" to disable stopping for new SPE threads."),
2795 NULL,
2796 show_spu_stop_on_load,
2797 &setspucmdlist, &showspucmdlist);
2798
ff1a52c6
UW
2799 /* Toggle whether or not to automatically flush the software-managed
2800 cache whenever SPE execution stops. */
2801 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2802 &spu_auto_flush_cache_p, _("\
2803Set whether to automatically flush the software-managed cache."),
2804 _("\
2805Show whether to automatically flush the software-managed cache."),
2806 _("\
2807Use \"on\" to automatically flush the software-managed cache\n\
2808whenever SPE execution stops.\n\
2809Use \"off\" to never automatically flush the software-managed cache."),
2810 NULL,
2811 show_spu_auto_flush_cache,
2812 &setspucmdlist, &showspucmdlist);
2813
23d964e7
UW
2814 /* Add root prefix command for all "info spu" commands. */
2815 add_prefix_cmd ("spu", class_info, info_spu_command,
2816 _("Various SPU specific commands."),
2817 &infospucmdlist, "info spu ", 0, &infolist);
2818
2819 /* Add various "info spu" commands. */
2820 add_cmd ("event", class_info, info_spu_event_command,
2821 _("Display SPU event facility status.\n"),
2822 &infospucmdlist);
2823 add_cmd ("signal", class_info, info_spu_signal_command,
2824 _("Display SPU signal notification facility status.\n"),
2825 &infospucmdlist);
2826 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2827 _("Display SPU mailbox facility status.\n"),
2828 &infospucmdlist);
2829 add_cmd ("dma", class_info, info_spu_dma_command,
2830 _("Display MFC DMA status.\n"),
2831 &infospucmdlist);
2832 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2833 _("Display MFC Proxy-DMA status.\n"),
2834 &infospucmdlist);
771b4502 2835}
This page took 1.5347 seconds and 4 git commands to generate.