gdb/
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
4c38e0a4 2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
27#include "gdb_string.h"
28#include "gdb_assert.h"
29#include "frame.h"
30#include "frame-unwind.h"
31#include "frame-base.h"
32#include "trad-frame.h"
33#include "symtab.h"
34#include "symfile.h"
35#include "value.h"
36#include "inferior.h"
37#include "dis-asm.h"
38#include "objfiles.h"
39#include "language.h"
40#include "regcache.h"
41#include "reggroups.h"
42#include "floatformat.h"
3285f3fe 43#include "block.h"
dcf52cd8 44#include "observer.h"
ff1a52c6 45#include "infcall.h"
771b4502
UW
46
47#include "spu-tdep.h"
48
794ac428 49
3285f3fe
UW
50/* The list of available "set spu " and "show spu " commands. */
51static struct cmd_list_element *setspucmdlist = NULL;
52static struct cmd_list_element *showspucmdlist = NULL;
53
54/* Whether to stop for new SPE contexts. */
55static int spu_stop_on_load_p = 0;
ff1a52c6
UW
56/* Whether to automatically flush the SW-managed cache. */
57static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
58
59
794ac428
UW
60/* The tdep structure. */
61struct gdbarch_tdep
62{
85e747d2
UW
63 /* The spufs ID identifying our address space. */
64 int id;
65
794ac428
UW
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68};
69
70
f2d43c2c 71/* SPU-specific vector type. */
794ac428
UW
72static struct type *
73spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74{
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
df4df182 79 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
80 struct type *t;
81
e9bb382b
UW
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 84 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 85 append_composite_type_field (t, "v2_int64",
df4df182 86 init_vector_type (bt->builtin_int64, 2));
794ac428 87 append_composite_type_field (t, "v4_int32",
df4df182 88 init_vector_type (bt->builtin_int32, 4));
794ac428 89 append_composite_type_field (t, "v8_int16",
df4df182 90 init_vector_type (bt->builtin_int16, 8));
794ac428 91 append_composite_type_field (t, "v16_int8",
df4df182 92 init_vector_type (bt->builtin_int8, 16));
794ac428 93 append_composite_type_field (t, "v2_double",
df4df182 94 init_vector_type (bt->builtin_double, 2));
794ac428 95 append_composite_type_field (t, "v4_float",
df4df182 96 init_vector_type (bt->builtin_float, 4));
794ac428 97
876cecd0 98 TYPE_VECTOR (t) = 1;
794ac428
UW
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105}
106
771b4502 107
23d964e7
UW
108/* The list of available "info spu " commands. */
109static struct cmd_list_element *infospucmdlist = NULL;
110
771b4502
UW
111/* Registers. */
112
113static const char *
d93859e2 114spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502
UW
115{
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143}
144
145static struct type *
146spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147{
148 if (reg_nr < SPU_NUM_GPRS)
794ac428 149 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
df4df182 154 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
155
156 case SPU_PC_REGNUM:
0dfff4cb 157 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
158
159 case SPU_SP_REGNUM:
0dfff4cb 160 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 161
23d964e7 162 case SPU_FPSCR_REGNUM:
df4df182 163 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
164
165 case SPU_SRR0_REGNUM:
df4df182 166 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
167
168 case SPU_LSLR_REGNUM:
df4df182 169 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
170
171 case SPU_DECR_REGNUM:
df4df182 172 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
173
174 case SPU_DECR_STATUS_REGNUM:
df4df182 175 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 176
771b4502
UW
177 default:
178 internal_error (__FILE__, __LINE__, "invalid regnum");
179 }
180}
181
182/* Pseudo registers for preferred slots - stack pointer. */
183
23d964e7
UW
184static void
185spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187{
e17a4113
UW
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
190 gdb_byte reg[32];
191 char annex[32];
192 ULONGEST id;
193
194 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
195 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
196 memset (reg, 0, sizeof reg);
197 target_read (&current_target, TARGET_OBJECT_SPU, annex,
198 reg, 0, sizeof reg);
199
e17a4113 200 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
23d964e7
UW
201}
202
771b4502
UW
203static void
204spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
205 int regnum, gdb_byte *buf)
206{
207 gdb_byte reg[16];
23d964e7
UW
208 char annex[32];
209 ULONGEST id;
771b4502
UW
210
211 switch (regnum)
212 {
213 case SPU_SP_REGNUM:
214 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
215 memcpy (buf, reg, 4);
216 break;
217
23d964e7
UW
218 case SPU_FPSCR_REGNUM:
219 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
220 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
221 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
222 break;
223
224 case SPU_SRR0_REGNUM:
225 spu_pseudo_register_read_spu (regcache, "srr0", buf);
226 break;
227
228 case SPU_LSLR_REGNUM:
229 spu_pseudo_register_read_spu (regcache, "lslr", buf);
230 break;
231
232 case SPU_DECR_REGNUM:
233 spu_pseudo_register_read_spu (regcache, "decr", buf);
234 break;
235
236 case SPU_DECR_STATUS_REGNUM:
237 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
238 break;
239
771b4502
UW
240 default:
241 internal_error (__FILE__, __LINE__, _("invalid regnum"));
242 }
243}
244
23d964e7
UW
245static void
246spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
247 const gdb_byte *buf)
248{
e17a4113
UW
249 struct gdbarch *gdbarch = get_regcache_arch (regcache);
250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
251 gdb_byte reg[32];
252 char annex[32];
253 ULONGEST id;
254
255 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
256 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
257 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 258 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7
UW
259 target_write (&current_target, TARGET_OBJECT_SPU, annex,
260 reg, 0, strlen (reg));
261}
262
771b4502
UW
263static void
264spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
265 int regnum, const gdb_byte *buf)
266{
267 gdb_byte reg[16];
23d964e7
UW
268 char annex[32];
269 ULONGEST id;
771b4502
UW
270
271 switch (regnum)
272 {
273 case SPU_SP_REGNUM:
274 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
275 memcpy (reg, buf, 4);
276 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
277 break;
278
23d964e7
UW
279 case SPU_FPSCR_REGNUM:
280 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
281 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
282 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
283 break;
284
285 case SPU_SRR0_REGNUM:
286 spu_pseudo_register_write_spu (regcache, "srr0", buf);
287 break;
288
289 case SPU_LSLR_REGNUM:
290 spu_pseudo_register_write_spu (regcache, "lslr", buf);
291 break;
292
293 case SPU_DECR_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "decr", buf);
295 break;
296
297 case SPU_DECR_STATUS_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
299 break;
300
771b4502
UW
301 default:
302 internal_error (__FILE__, __LINE__, _("invalid regnum"));
303 }
304}
305
306/* Value conversion -- access scalar values at the preferred slot. */
307
9acbedc0
UW
308static struct value *
309spu_value_from_register (struct type *type, int regnum,
310 struct frame_info *frame)
771b4502 311{
9acbedc0
UW
312 struct value *value = default_value_from_register (type, regnum, frame);
313 int len = TYPE_LENGTH (type);
771b4502 314
9acbedc0
UW
315 if (regnum < SPU_NUM_GPRS && len < 16)
316 {
317 int preferred_slot = len < 4 ? 4 - len : 0;
318 set_value_offset (value, preferred_slot);
319 }
771b4502 320
9acbedc0 321 return value;
771b4502
UW
322}
323
324/* Register groups. */
325
326static int
327spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
328 struct reggroup *group)
329{
330 /* Registers displayed via 'info regs'. */
331 if (group == general_reggroup)
332 return 1;
333
334 /* Registers displayed via 'info float'. */
335 if (group == float_reggroup)
336 return 0;
337
338 /* Registers that need to be saved/restored in order to
339 push or pop frames. */
340 if (group == save_reggroup || group == restore_reggroup)
341 return 1;
342
343 return default_register_reggroup_p (gdbarch, regnum, group);
344}
345
ff1a52c6
UW
346
347/* Address handling. */
36acd84e 348
85e747d2
UW
349static int
350spu_gdbarch_id (struct gdbarch *gdbarch)
351{
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353 int id = tdep->id;
354
355 /* The objfile architecture of a standalone SPU executable does not
356 provide an SPU ID. Retrieve it from the the objfile's relocated
357 address range in this special case. */
358 if (id == -1
359 && symfile_objfile && symfile_objfile->obfd
360 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
361 && symfile_objfile->sections != symfile_objfile->sections_end)
362 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
363
364 return id;
365}
366
367static ULONGEST
368spu_lslr (int id)
369{
370 gdb_byte buf[32];
371 char annex[32];
372
373 if (id == -1)
374 return SPU_LS_SIZE - 1;
375
376 xsnprintf (annex, sizeof annex, "%d/lslr", id);
377 memset (buf, 0, sizeof buf);
378 target_read (&current_target, TARGET_OBJECT_SPU, annex,
379 buf, 0, sizeof buf);
380
381 return strtoulst (buf, NULL, 16);
382}
383
ff1a52c6
UW
384static int
385spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
386{
387 if (dwarf2_addr_class == 1)
388 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
389 else
390 return 0;
391}
392
393static const char *
394spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
395{
396 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
397 return "__ea";
398 else
399 return NULL;
400}
401
402static int
403spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
404 const char *name, int *type_flags_ptr)
405{
406 if (strcmp (name, "__ea") == 0)
407 {
408 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
409 return 1;
410 }
411 else
412 return 0;
413}
414
85e747d2
UW
415static void
416spu_address_to_pointer (struct gdbarch *gdbarch,
417 struct type *type, gdb_byte *buf, CORE_ADDR addr)
418{
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
421 SPUADDR_ADDR (addr));
422}
423
36acd84e 424static CORE_ADDR
9898f801
UW
425spu_pointer_to_address (struct gdbarch *gdbarch,
426 struct type *type, const gdb_byte *buf)
36acd84e 427{
85e747d2
UW
428 int id = spu_gdbarch_id (gdbarch);
429 ULONGEST lslr = spu_lslr (id);
e17a4113
UW
430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431 ULONGEST addr
432 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 433
ff1a52c6
UW
434 /* Do not convert __ea pointers. */
435 if (TYPE_ADDRESS_CLASS_1 (type))
436 return addr;
437
85e747d2 438 return addr? SPUADDR (id, addr & lslr) : 0;
36acd84e
UW
439}
440
441static CORE_ADDR
442spu_integer_to_address (struct gdbarch *gdbarch,
443 struct type *type, const gdb_byte *buf)
444{
85e747d2
UW
445 int id = spu_gdbarch_id (gdbarch);
446 ULONGEST lslr = spu_lslr (id);
36acd84e 447 ULONGEST addr = unpack_long (type, buf);
36acd84e 448
85e747d2 449 return SPUADDR (id, addr & lslr);
36acd84e
UW
450}
451
771b4502
UW
452
453/* Decoding SPU instructions. */
454
455enum
456 {
457 op_lqd = 0x34,
458 op_lqx = 0x3c4,
459 op_lqa = 0x61,
460 op_lqr = 0x67,
461 op_stqd = 0x24,
462 op_stqx = 0x144,
463 op_stqa = 0x41,
464 op_stqr = 0x47,
465
466 op_il = 0x081,
467 op_ila = 0x21,
468 op_a = 0x0c0,
469 op_ai = 0x1c,
470
471 op_selb = 0x4,
472
473 op_br = 0x64,
474 op_bra = 0x60,
475 op_brsl = 0x66,
476 op_brasl = 0x62,
477 op_brnz = 0x42,
478 op_brz = 0x40,
479 op_brhnz = 0x46,
480 op_brhz = 0x44,
481 op_bi = 0x1a8,
482 op_bisl = 0x1a9,
483 op_biz = 0x128,
484 op_binz = 0x129,
485 op_bihz = 0x12a,
486 op_bihnz = 0x12b,
487 };
488
489static int
490is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
491{
492 if ((insn >> 21) == op)
493 {
494 *rt = insn & 127;
495 *ra = (insn >> 7) & 127;
496 *rb = (insn >> 14) & 127;
497 return 1;
498 }
499
500 return 0;
501}
502
503static int
504is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
505{
506 if ((insn >> 28) == op)
507 {
508 *rt = (insn >> 21) & 127;
509 *ra = (insn >> 7) & 127;
510 *rb = (insn >> 14) & 127;
511 *rc = insn & 127;
512 return 1;
513 }
514
515 return 0;
516}
517
518static int
519is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
520{
521 if ((insn >> 21) == op)
522 {
523 *rt = insn & 127;
524 *ra = (insn >> 7) & 127;
525 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
526 return 1;
527 }
528
529 return 0;
530}
531
532static int
533is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
534{
535 if ((insn >> 24) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
540 return 1;
541 }
542
543 return 0;
544}
545
546static int
547is_ri16 (unsigned int insn, int op, int *rt, int *i16)
548{
549 if ((insn >> 23) == op)
550 {
551 *rt = insn & 127;
552 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
553 return 1;
554 }
555
556 return 0;
557}
558
559static int
560is_ri18 (unsigned int insn, int op, int *rt, int *i18)
561{
562 if ((insn >> 25) == op)
563 {
564 *rt = insn & 127;
565 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
566 return 1;
567 }
568
569 return 0;
570}
571
572static int
573is_branch (unsigned int insn, int *offset, int *reg)
574{
575 int rt, i7, i16;
576
577 if (is_ri16 (insn, op_br, &rt, &i16)
578 || is_ri16 (insn, op_brsl, &rt, &i16)
579 || is_ri16 (insn, op_brnz, &rt, &i16)
580 || is_ri16 (insn, op_brz, &rt, &i16)
581 || is_ri16 (insn, op_brhnz, &rt, &i16)
582 || is_ri16 (insn, op_brhz, &rt, &i16))
583 {
584 *reg = SPU_PC_REGNUM;
585 *offset = i16 << 2;
586 return 1;
587 }
588
589 if (is_ri16 (insn, op_bra, &rt, &i16)
590 || is_ri16 (insn, op_brasl, &rt, &i16))
591 {
592 *reg = -1;
593 *offset = i16 << 2;
594 return 1;
595 }
596
597 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
598 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
599 || is_ri7 (insn, op_biz, &rt, reg, &i7)
600 || is_ri7 (insn, op_binz, &rt, reg, &i7)
601 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
602 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
603 {
604 *offset = 0;
605 return 1;
606 }
607
608 return 0;
609}
610
611
612/* Prolog parsing. */
613
614struct spu_prologue_data
615 {
616 /* Stack frame size. -1 if analysis was unsuccessful. */
617 int size;
618
619 /* How to find the CFA. The CFA is equal to SP at function entry. */
620 int cfa_reg;
621 int cfa_offset;
622
623 /* Offset relative to CFA where a register is saved. -1 if invalid. */
624 int reg_offset[SPU_NUM_GPRS];
625 };
626
627static CORE_ADDR
e17a4113
UW
628spu_analyze_prologue (struct gdbarch *gdbarch,
629 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
630 struct spu_prologue_data *data)
631{
e17a4113 632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
633 int found_sp = 0;
634 int found_fp = 0;
635 int found_lr = 0;
636 int reg_immed[SPU_NUM_GPRS];
637 gdb_byte buf[16];
638 CORE_ADDR prolog_pc = start_pc;
639 CORE_ADDR pc;
640 int i;
641
642
643 /* Initialize DATA to default values. */
644 data->size = -1;
645
646 data->cfa_reg = SPU_RAW_SP_REGNUM;
647 data->cfa_offset = 0;
648
649 for (i = 0; i < SPU_NUM_GPRS; i++)
650 data->reg_offset[i] = -1;
651
652 /* Set up REG_IMMED array. This is non-zero for a register if we know its
653 preferred slot currently holds this immediate value. */
654 for (i = 0; i < SPU_NUM_GPRS; i++)
655 reg_immed[i] = 0;
656
657 /* Scan instructions until the first branch.
658
659 The following instructions are important prolog components:
660
661 - The first instruction to set up the stack pointer.
662 - The first instruction to set up the frame pointer.
663 - The first instruction to save the link register.
664
665 We return the instruction after the latest of these three,
666 or the incoming PC if none is found. The first instruction
667 to set up the stack pointer also defines the frame size.
668
669 Note that instructions saving incoming arguments to their stack
670 slots are not counted as important, because they are hard to
671 identify with certainty. This should not matter much, because
672 arguments are relevant only in code compiled with debug data,
673 and in such code the GDB core will advance until the first source
674 line anyway, using SAL data.
675
676 For purposes of stack unwinding, we analyze the following types
677 of instructions in addition:
678
679 - Any instruction adding to the current frame pointer.
680 - Any instruction loading an immediate constant into a register.
681 - Any instruction storing a register onto the stack.
682
683 These are used to compute the CFA and REG_OFFSET output. */
684
685 for (pc = start_pc; pc < end_pc; pc += 4)
686 {
687 unsigned int insn;
688 int rt, ra, rb, rc, immed;
689
690 if (target_read_memory (pc, buf, 4))
691 break;
e17a4113 692 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
693
694 /* AI is the typical instruction to set up a stack frame.
695 It is also used to initialize the frame pointer. */
696 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
697 {
698 if (rt == data->cfa_reg && ra == data->cfa_reg)
699 data->cfa_offset -= immed;
700
701 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
702 && !found_sp)
703 {
704 found_sp = 1;
705 prolog_pc = pc + 4;
706
707 data->size = -immed;
708 }
709 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
710 && !found_fp)
711 {
712 found_fp = 1;
713 prolog_pc = pc + 4;
714
715 data->cfa_reg = SPU_FP_REGNUM;
716 data->cfa_offset -= immed;
717 }
718 }
719
720 /* A is used to set up stack frames of size >= 512 bytes.
721 If we have tracked the contents of the addend register,
722 we can handle this as well. */
723 else if (is_rr (insn, op_a, &rt, &ra, &rb))
724 {
725 if (rt == data->cfa_reg && ra == data->cfa_reg)
726 {
727 if (reg_immed[rb] != 0)
728 data->cfa_offset -= reg_immed[rb];
729 else
730 data->cfa_reg = -1; /* We don't know the CFA any more. */
731 }
732
733 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
734 && !found_sp)
735 {
736 found_sp = 1;
737 prolog_pc = pc + 4;
738
739 if (reg_immed[rb] != 0)
740 data->size = -reg_immed[rb];
741 }
742 }
743
744 /* We need to track IL and ILA used to load immediate constants
745 in case they are later used as input to an A instruction. */
746 else if (is_ri16 (insn, op_il, &rt, &immed))
747 {
748 reg_immed[rt] = immed;
12102450
UW
749
750 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
751 found_sp = 1;
771b4502
UW
752 }
753
754 else if (is_ri18 (insn, op_ila, &rt, &immed))
755 {
756 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
757
758 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
759 found_sp = 1;
771b4502
UW
760 }
761
762 /* STQD is used to save registers to the stack. */
763 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
764 {
765 if (ra == data->cfa_reg)
766 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
767
768 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
769 && !found_lr)
770 {
771 found_lr = 1;
772 prolog_pc = pc + 4;
773 }
774 }
775
776 /* _start uses SELB to set up the stack pointer. */
777 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
778 {
779 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
780 found_sp = 1;
781 }
782
783 /* We terminate if we find a branch. */
784 else if (is_branch (insn, &immed, &ra))
785 break;
786 }
787
788
789 /* If we successfully parsed until here, and didn't find any instruction
790 modifying SP, we assume we have a frameless function. */
791 if (!found_sp)
792 data->size = 0;
793
794 /* Return cooked instead of raw SP. */
795 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
796 data->cfa_reg = SPU_SP_REGNUM;
797
798 return prolog_pc;
799}
800
801/* Return the first instruction after the prologue starting at PC. */
802static CORE_ADDR
6093d2eb 803spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
804{
805 struct spu_prologue_data data;
e17a4113 806 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
807}
808
809/* Return the frame pointer in use at address PC. */
810static void
a54fba4c
MD
811spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
812 int *reg, LONGEST *offset)
771b4502
UW
813{
814 struct spu_prologue_data data;
e17a4113 815 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
816
817 if (data.size != -1 && data.cfa_reg != -1)
818 {
819 /* The 'frame pointer' address is CFA minus frame size. */
820 *reg = data.cfa_reg;
821 *offset = data.cfa_offset - data.size;
822 }
823 else
824 {
825 /* ??? We don't really know ... */
826 *reg = SPU_SP_REGNUM;
827 *offset = 0;
828 }
829}
830
fe5febed
UW
831/* Return true if we are in the function's epilogue, i.e. after the
832 instruction that destroyed the function's stack frame.
833
834 1) scan forward from the point of execution:
835 a) If you find an instruction that modifies the stack pointer
836 or transfers control (except a return), execution is not in
837 an epilogue, return.
838 b) Stop scanning if you find a return instruction or reach the
839 end of the function or reach the hard limit for the size of
840 an epilogue.
841 2) scan backward from the point of execution:
842 a) If you find an instruction that modifies the stack pointer,
843 execution *is* in an epilogue, return.
844 b) Stop scanning if you reach an instruction that transfers
845 control or the beginning of the function or reach the hard
846 limit for the size of an epilogue. */
847
848static int
849spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
850{
e17a4113 851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
852 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
853 bfd_byte buf[4];
854 unsigned int insn;
855 int rt, ra, rb, rc, immed;
856
857 /* Find the search limits based on function boundaries and hard limit.
858 We assume the epilogue can be up to 64 instructions long. */
859
860 const int spu_max_epilogue_size = 64 * 4;
861
862 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
863 return 0;
864
865 if (pc - func_start < spu_max_epilogue_size)
866 epilogue_start = func_start;
867 else
868 epilogue_start = pc - spu_max_epilogue_size;
869
870 if (func_end - pc < spu_max_epilogue_size)
871 epilogue_end = func_end;
872 else
873 epilogue_end = pc + spu_max_epilogue_size;
874
875 /* Scan forward until next 'bi $0'. */
876
877 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
878 {
879 if (target_read_memory (scan_pc, buf, 4))
880 return 0;
e17a4113 881 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
882
883 if (is_branch (insn, &immed, &ra))
884 {
885 if (immed == 0 && ra == SPU_LR_REGNUM)
886 break;
887
888 return 0;
889 }
890
891 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
892 || is_rr (insn, op_a, &rt, &ra, &rb)
893 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
894 {
895 if (rt == SPU_RAW_SP_REGNUM)
896 return 0;
897 }
898 }
899
900 if (scan_pc >= epilogue_end)
901 return 0;
902
903 /* Scan backward until adjustment to stack pointer (R1). */
904
905 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
906 {
907 if (target_read_memory (scan_pc, buf, 4))
908 return 0;
e17a4113 909 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
910
911 if (is_branch (insn, &immed, &ra))
912 return 0;
913
914 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
915 || is_rr (insn, op_a, &rt, &ra, &rb)
916 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
917 {
918 if (rt == SPU_RAW_SP_REGNUM)
919 return 1;
920 }
921 }
922
923 return 0;
924}
925
926
771b4502
UW
927/* Normal stack frames. */
928
929struct spu_unwind_cache
930{
931 CORE_ADDR func;
932 CORE_ADDR frame_base;
933 CORE_ADDR local_base;
934
935 struct trad_frame_saved_reg *saved_regs;
936};
937
938static struct spu_unwind_cache *
8d998b8f 939spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
940 void **this_prologue_cache)
941{
e17a4113 942 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 944 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
945 struct spu_unwind_cache *info;
946 struct spu_prologue_data data;
85e747d2 947 CORE_ADDR id = tdep->id;
dcf52cd8 948 gdb_byte buf[16];
771b4502
UW
949
950 if (*this_prologue_cache)
951 return *this_prologue_cache;
952
953 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
954 *this_prologue_cache = info;
8d998b8f 955 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
956 info->frame_base = 0;
957 info->local_base = 0;
958
959 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 960 info->func = get_frame_func (this_frame);
771b4502
UW
961 if (info->func == 0)
962 {
963 /* Fall back to using the current PC as frame ID. */
8d998b8f 964 info->func = get_frame_pc (this_frame);
771b4502
UW
965 data.size = -1;
966 }
967 else
e17a4113
UW
968 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
969 &data);
771b4502
UW
970
971 /* If successful, use prologue analysis data. */
972 if (data.size != -1 && data.cfa_reg != -1)
973 {
974 CORE_ADDR cfa;
975 int i;
771b4502
UW
976
977 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 978 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 979 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 980 cfa = SPUADDR (id, cfa);
771b4502
UW
981
982 /* Call-saved register slots. */
983 for (i = 0; i < SPU_NUM_GPRS; i++)
984 if (i == SPU_LR_REGNUM
985 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
986 if (data.reg_offset[i] != -1)
987 info->saved_regs[i].addr = cfa - data.reg_offset[i];
988
771b4502
UW
989 /* Frame bases. */
990 info->frame_base = cfa;
991 info->local_base = cfa - data.size;
992 }
993
994 /* Otherwise, fall back to reading the backchain link. */
995 else
996 {
cdc9523a
UW
997 CORE_ADDR reg;
998 LONGEST backchain;
999 int status;
771b4502
UW
1000
1001 /* Get the backchain. */
8d998b8f 1002 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1003 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1004 &backchain);
771b4502
UW
1005
1006 /* A zero backchain terminates the frame chain. Also, sanity
1007 check against the local store size limit. */
cdc9523a 1008 if (status && backchain > 0 && backchain < SPU_LS_SIZE)
771b4502
UW
1009 {
1010 /* Assume the link register is saved into its slot. */
1011 if (backchain + 16 < SPU_LS_SIZE)
85e747d2 1012 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
771b4502 1013
771b4502 1014 /* Frame bases. */
85e747d2
UW
1015 info->frame_base = SPUADDR (id, backchain);
1016 info->local_base = SPUADDR (id, reg);
771b4502
UW
1017 }
1018 }
dcf52cd8 1019
c4891da7
UW
1020 /* If we didn't find a frame, we cannot determine SP / return address. */
1021 if (info->frame_base == 0)
1022 return info;
1023
dcf52cd8 1024 /* The previous SP is equal to the CFA. */
85e747d2
UW
1025 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1026 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1027
0a44cb36
UW
1028 /* Read full contents of the unwound link register in order to
1029 be able to determine the return address. */
dcf52cd8
UW
1030 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1031 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1032 else
8d998b8f 1033 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1034
0a44cb36
UW
1035 /* Normally, the return address is contained in the slot 0 of the
1036 link register, and slots 1-3 are zero. For an overlay return,
1037 slot 0 contains the address of the overlay manager return stub,
1038 slot 1 contains the partition number of the overlay section to
1039 be returned to, and slot 2 contains the return address within
1040 that section. Return the latter address in that case. */
e17a4113 1041 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1042 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1043 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1044 else
1045 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1046 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1047
1048 return info;
1049}
1050
1051static void
8d998b8f 1052spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1053 void **this_prologue_cache, struct frame_id *this_id)
1054{
1055 struct spu_unwind_cache *info =
8d998b8f 1056 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1057
1058 if (info->frame_base == 0)
1059 return;
1060
1061 *this_id = frame_id_build (info->frame_base, info->func);
1062}
1063
8d998b8f
UW
1064static struct value *
1065spu_frame_prev_register (struct frame_info *this_frame,
1066 void **this_prologue_cache, int regnum)
771b4502
UW
1067{
1068 struct spu_unwind_cache *info
8d998b8f 1069 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1070
1071 /* Special-case the stack pointer. */
1072 if (regnum == SPU_RAW_SP_REGNUM)
1073 regnum = SPU_SP_REGNUM;
1074
8d998b8f 1075 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1076}
1077
1078static const struct frame_unwind spu_frame_unwind = {
1079 NORMAL_FRAME,
1080 spu_frame_this_id,
8d998b8f
UW
1081 spu_frame_prev_register,
1082 NULL,
1083 default_frame_sniffer
771b4502
UW
1084};
1085
771b4502 1086static CORE_ADDR
8d998b8f 1087spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1088{
1089 struct spu_unwind_cache *info
8d998b8f 1090 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1091 return info->local_base;
1092}
1093
1094static const struct frame_base spu_frame_base = {
1095 &spu_frame_unwind,
1096 spu_frame_base_address,
1097 spu_frame_base_address,
1098 spu_frame_base_address
1099};
1100
1101static CORE_ADDR
1102spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1103{
85e747d2 1104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1105 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1106 /* Mask off interrupt enable bit. */
85e747d2 1107 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1108}
1109
1110static CORE_ADDR
1111spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1112{
85e747d2
UW
1113 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1114 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1115 return SPUADDR (tdep->id, sp);
771b4502
UW
1116}
1117
118dfbaf 1118static CORE_ADDR
61a1198a 1119spu_read_pc (struct regcache *regcache)
118dfbaf 1120{
85e747d2 1121 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1122 ULONGEST pc;
1123 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1124 /* Mask off interrupt enable bit. */
85e747d2 1125 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1126}
1127
1128static void
61a1198a 1129spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1130{
1131 /* Keep interrupt enabled state unchanged. */
61a1198a
UW
1132 ULONGEST old_pc;
1133 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1134 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1135 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1136}
1137
771b4502 1138
cc5f0d61
UW
1139/* Cell/B.E. cross-architecture unwinder support. */
1140
1141struct spu2ppu_cache
1142{
1143 struct frame_id frame_id;
1144 struct regcache *regcache;
1145};
1146
1147static struct gdbarch *
1148spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1149{
1150 struct spu2ppu_cache *cache = *this_cache;
1151 return get_regcache_arch (cache->regcache);
1152}
1153
1154static void
1155spu2ppu_this_id (struct frame_info *this_frame,
1156 void **this_cache, struct frame_id *this_id)
1157{
1158 struct spu2ppu_cache *cache = *this_cache;
1159 *this_id = cache->frame_id;
1160}
1161
1162static struct value *
1163spu2ppu_prev_register (struct frame_info *this_frame,
1164 void **this_cache, int regnum)
1165{
1166 struct spu2ppu_cache *cache = *this_cache;
1167 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1168 gdb_byte *buf;
1169
1170 buf = alloca (register_size (gdbarch, regnum));
1171 regcache_cooked_read (cache->regcache, regnum, buf);
1172 return frame_unwind_got_bytes (this_frame, regnum, buf);
1173}
1174
1175static int
1176spu2ppu_sniffer (const struct frame_unwind *self,
1177 struct frame_info *this_frame, void **this_prologue_cache)
1178{
1179 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1180 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1181 CORE_ADDR base, func, backchain;
1182 gdb_byte buf[4];
1183
1184 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1185 return 0;
1186
1187 base = get_frame_sp (this_frame);
1188 func = get_frame_pc (this_frame);
1189 if (target_read_memory (base, buf, 4))
1190 return 0;
1191 backchain = extract_unsigned_integer (buf, 4, byte_order);
1192
1193 if (!backchain)
1194 {
1195 struct frame_info *fi;
1196
1197 struct spu2ppu_cache *cache
1198 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1199
1200 cache->frame_id = frame_id_build (base + 16, func);
1201
1202 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1203 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1204 break;
1205
1206 if (fi)
1207 {
1208 cache->regcache = frame_save_as_regcache (fi);
1209 *this_prologue_cache = cache;
1210 return 1;
1211 }
1212 else
1213 {
1214 struct regcache *regcache;
1215 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1216 cache->regcache = regcache_dup (regcache);
1217 *this_prologue_cache = cache;
1218 return 1;
1219 }
1220 }
1221
1222 return 0;
1223}
1224
1225static void
1226spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1227{
1228 struct spu2ppu_cache *cache = this_cache;
1229 regcache_xfree (cache->regcache);
1230}
1231
1232static const struct frame_unwind spu2ppu_unwind = {
1233 ARCH_FRAME,
1234 spu2ppu_this_id,
1235 spu2ppu_prev_register,
1236 NULL,
1237 spu2ppu_sniffer,
1238 spu2ppu_dealloc_cache,
1239 spu2ppu_prev_arch,
1240};
1241
1242
771b4502
UW
1243/* Function calling convention. */
1244
7b3dc0b7
UW
1245static CORE_ADDR
1246spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1247{
1248 return sp & ~15;
1249}
1250
87805e63
UW
1251static CORE_ADDR
1252spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1253 struct value **args, int nargs, struct type *value_type,
1254 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1255 struct regcache *regcache)
1256{
1257 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1258 sp = (sp - 4) & ~15;
1259 /* Store the address of that breakpoint */
1260 *bp_addr = sp;
1261 /* The call starts at the callee's entry point. */
1262 *real_pc = funaddr;
1263
1264 return sp;
1265}
1266
771b4502
UW
1267static int
1268spu_scalar_value_p (struct type *type)
1269{
1270 switch (TYPE_CODE (type))
1271 {
1272 case TYPE_CODE_INT:
1273 case TYPE_CODE_ENUM:
1274 case TYPE_CODE_RANGE:
1275 case TYPE_CODE_CHAR:
1276 case TYPE_CODE_BOOL:
1277 case TYPE_CODE_PTR:
1278 case TYPE_CODE_REF:
1279 return TYPE_LENGTH (type) <= 16;
1280
1281 default:
1282 return 0;
1283 }
1284}
1285
1286static void
1287spu_value_to_regcache (struct regcache *regcache, int regnum,
1288 struct type *type, const gdb_byte *in)
1289{
1290 int len = TYPE_LENGTH (type);
1291
1292 if (spu_scalar_value_p (type))
1293 {
1294 int preferred_slot = len < 4 ? 4 - len : 0;
1295 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1296 }
1297 else
1298 {
1299 while (len >= 16)
1300 {
1301 regcache_cooked_write (regcache, regnum++, in);
1302 in += 16;
1303 len -= 16;
1304 }
1305
1306 if (len > 0)
1307 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1308 }
1309}
1310
1311static void
1312spu_regcache_to_value (struct regcache *regcache, int regnum,
1313 struct type *type, gdb_byte *out)
1314{
1315 int len = TYPE_LENGTH (type);
1316
1317 if (spu_scalar_value_p (type))
1318 {
1319 int preferred_slot = len < 4 ? 4 - len : 0;
1320 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1321 }
1322 else
1323 {
1324 while (len >= 16)
1325 {
1326 regcache_cooked_read (regcache, regnum++, out);
1327 out += 16;
1328 len -= 16;
1329 }
1330
1331 if (len > 0)
1332 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1333 }
1334}
1335
1336static CORE_ADDR
1337spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1338 struct regcache *regcache, CORE_ADDR bp_addr,
1339 int nargs, struct value **args, CORE_ADDR sp,
1340 int struct_return, CORE_ADDR struct_addr)
1341{
e17a4113 1342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1343 CORE_ADDR sp_delta;
771b4502
UW
1344 int i;
1345 int regnum = SPU_ARG1_REGNUM;
1346 int stack_arg = -1;
1347 gdb_byte buf[16];
1348
1349 /* Set the return address. */
1350 memset (buf, 0, sizeof buf);
85e747d2 1351 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1352 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1353
1354 /* If STRUCT_RETURN is true, then the struct return address (in
1355 STRUCT_ADDR) will consume the first argument-passing register.
1356 Both adjust the register count and store that value. */
1357 if (struct_return)
1358 {
1359 memset (buf, 0, sizeof buf);
85e747d2 1360 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1361 regcache_cooked_write (regcache, regnum++, buf);
1362 }
1363
1364 /* Fill in argument registers. */
1365 for (i = 0; i < nargs; i++)
1366 {
1367 struct value *arg = args[i];
1368 struct type *type = check_typedef (value_type (arg));
1369 const gdb_byte *contents = value_contents (arg);
1370 int len = TYPE_LENGTH (type);
1371 int n_regs = align_up (len, 16) / 16;
1372
1373 /* If the argument doesn't wholly fit into registers, it and
1374 all subsequent arguments go to the stack. */
1375 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1376 {
1377 stack_arg = i;
1378 break;
1379 }
1380
1381 spu_value_to_regcache (regcache, regnum, type, contents);
1382 regnum += n_regs;
1383 }
1384
1385 /* Overflow arguments go to the stack. */
1386 if (stack_arg != -1)
1387 {
1388 CORE_ADDR ap;
1389
1390 /* Allocate all required stack size. */
1391 for (i = stack_arg; i < nargs; i++)
1392 {
1393 struct type *type = check_typedef (value_type (args[i]));
1394 sp -= align_up (TYPE_LENGTH (type), 16);
1395 }
1396
1397 /* Fill in stack arguments. */
1398 ap = sp;
1399 for (i = stack_arg; i < nargs; i++)
1400 {
1401 struct value *arg = args[i];
1402 struct type *type = check_typedef (value_type (arg));
1403 int len = TYPE_LENGTH (type);
1404 int preferred_slot;
1405
1406 if (spu_scalar_value_p (type))
1407 preferred_slot = len < 4 ? 4 - len : 0;
1408 else
1409 preferred_slot = 0;
1410
1411 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1412 ap += align_up (TYPE_LENGTH (type), 16);
1413 }
1414 }
1415
1416 /* Allocate stack frame header. */
1417 sp -= 32;
1418
ee82e879
UW
1419 /* Store stack back chain. */
1420 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1421 target_write_memory (sp, buf, 16);
1422
9ff3afda 1423 /* Finally, update all slots of the SP register. */
e17a4113 1424 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1425 for (i = 0; i < 4; i++)
1426 {
e17a4113
UW
1427 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1428 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1429 }
1430 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1431
1432 return sp;
1433}
1434
1435static struct frame_id
8d998b8f 1436spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1437{
85e747d2 1438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1439 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1440 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1441 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1442}
1443
1444/* Function return value access. */
1445
1446static enum return_value_convention
c055b101
CV
1447spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1448 struct type *type, struct regcache *regcache,
1449 gdb_byte *out, const gdb_byte *in)
771b4502
UW
1450{
1451 enum return_value_convention rvc;
1452
1453 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1454 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1455 else
1456 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1457
1458 if (in)
1459 {
1460 switch (rvc)
1461 {
1462 case RETURN_VALUE_REGISTER_CONVENTION:
1463 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1464 break;
1465
1466 case RETURN_VALUE_STRUCT_CONVENTION:
1467 error ("Cannot set function return value.");
1468 break;
1469 }
1470 }
1471 else if (out)
1472 {
1473 switch (rvc)
1474 {
1475 case RETURN_VALUE_REGISTER_CONVENTION:
1476 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1477 break;
1478
1479 case RETURN_VALUE_STRUCT_CONVENTION:
1480 error ("Function return value unknown.");
1481 break;
1482 }
1483 }
1484
1485 return rvc;
1486}
1487
1488
1489/* Breakpoints. */
1490
1491static const gdb_byte *
67d57894 1492spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
771b4502
UW
1493{
1494 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1495
1496 *lenptr = sizeof breakpoint;
1497 return breakpoint;
1498}
1499
1500
1501/* Software single-stepping support. */
1502
63807e1d 1503static int
0b1b3e42 1504spu_software_single_step (struct frame_info *frame)
771b4502 1505{
a6d9a66e 1506 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1507 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1509 CORE_ADDR pc, next_pc;
1510 unsigned int insn;
1511 int offset, reg;
1512 gdb_byte buf[4];
771b4502 1513
0b1b3e42 1514 pc = get_frame_pc (frame);
771b4502 1515
e0cd558a
UW
1516 if (target_read_memory (pc, buf, 4))
1517 return 1;
e17a4113 1518 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1519
e0cd558a
UW
1520 /* Next sequential instruction is at PC + 4, except if the current
1521 instruction is a PPE-assisted call, in which case it is at PC + 8.
1522 Wrap around LS limit to be on the safe side. */
1523 if ((insn & 0xffffff00) == 0x00002100)
85e747d2 1524 next_pc = (SPUADDR_ADDR (pc) + 8) & (SPU_LS_SIZE - 1);
e0cd558a 1525 else
85e747d2 1526 next_pc = (SPUADDR_ADDR (pc) + 4) & (SPU_LS_SIZE - 1);
771b4502 1527
6c95b8df
PA
1528 insert_single_step_breakpoint (gdbarch,
1529 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1530
e0cd558a
UW
1531 if (is_branch (insn, &offset, &reg))
1532 {
1533 CORE_ADDR target = offset;
771b4502 1534
e0cd558a 1535 if (reg == SPU_PC_REGNUM)
85e747d2 1536 target += SPUADDR_ADDR (pc);
e0cd558a
UW
1537 else if (reg != -1)
1538 {
0b1b3e42 1539 get_frame_register_bytes (frame, reg, 0, 4, buf);
e17a4113 1540 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
771b4502 1541 }
e0cd558a
UW
1542
1543 target = target & (SPU_LS_SIZE - 1);
1544 if (target != next_pc)
6c95b8df 1545 insert_single_step_breakpoint (gdbarch, aspace,
85e747d2 1546 SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1547 }
e6590a1b
UW
1548
1549 return 1;
771b4502
UW
1550}
1551
6e3f70d7
UW
1552
1553/* Longjmp support. */
1554
1555static int
1556spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1557{
e17a4113 1558 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1559 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1561 gdb_byte buf[4];
1562 CORE_ADDR jb_addr;
1563
1564 /* Jump buffer is pointed to by the argument register $r3. */
1565 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
e17a4113 1566 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1567 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1568 return 0;
1569
e17a4113 1570 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1571 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1572 return 1;
1573}
1574
1575
85e747d2
UW
1576/* Disassembler. */
1577
1578struct spu_dis_asm_data
1579{
1580 struct gdbarch *gdbarch;
1581 int id;
1582};
1583
1584static void
1585spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1586{
1587 struct spu_dis_asm_data *data = info->application_data;
1588 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1589}
1590
1591static int
1592gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1593{
1594 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1595 SPU ID encoded in the high bits is added back when we call print_address. */
1596 struct disassemble_info spu_info = *info;
1597 struct spu_dis_asm_data data;
1598 data.gdbarch = info->application_data;
1599 data.id = SPUADDR_SPU (memaddr);
1600
1601 spu_info.application_data = &data;
1602 spu_info.print_address_func = spu_dis_asm_print_address;
1603 return print_insn_spu (memaddr, &spu_info);
1604}
1605
1606
dcf52cd8
UW
1607/* Target overlays for the SPU overlay manager.
1608
1609 See the documentation of simple_overlay_update for how the
1610 interface is supposed to work.
1611
1612 Data structures used by the overlay manager:
1613
1614 struct ovly_table
1615 {
1616 u32 vma;
1617 u32 size;
1618 u32 pos;
1619 u32 buf;
1620 } _ovly_table[]; -- one entry per overlay section
1621
1622 struct ovly_buf_table
1623 {
1624 u32 mapped;
1625 } _ovly_buf_table[]; -- one entry per overlay buffer
1626
1627 _ovly_table should never change.
1628
1629 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1630 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1631 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1632
1633 mapped is an index into _ovly_table. Both the mapped and buf indices start
1634 from one to reference the first entry in their respective tables. */
1635
1636/* Using the per-objfile private data mechanism, we store for each
1637 objfile an array of "struct spu_overlay_table" structures, one
1638 for each obj_section of the objfile. This structure holds two
1639 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1640 is *not* an overlay section. If it is non-zero, it represents
1641 a target address. The overlay section is mapped iff the target
1642 integer at this location equals MAPPED_VAL. */
1643
1644static const struct objfile_data *spu_overlay_data;
1645
1646struct spu_overlay_table
1647 {
1648 CORE_ADDR mapped_ptr;
1649 CORE_ADDR mapped_val;
1650 };
1651
1652/* Retrieve the overlay table for OBJFILE. If not already cached, read
1653 the _ovly_table data structure from the target and initialize the
1654 spu_overlay_table data structure from it. */
1655static struct spu_overlay_table *
1656spu_get_overlay_table (struct objfile *objfile)
1657{
e17a4113
UW
1658 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1659 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8
UW
1660 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1661 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1662 unsigned ovly_table_size, ovly_buf_table_size;
1663 struct spu_overlay_table *tbl;
1664 struct obj_section *osect;
1665 char *ovly_table;
1666 int i;
1667
1668 tbl = objfile_data (objfile, spu_overlay_data);
1669 if (tbl)
1670 return tbl;
1671
1672 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1673 if (!ovly_table_msym)
1674 return NULL;
1675
1676 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1677 if (!ovly_buf_table_msym)
1678 return NULL;
1679
1680 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1681 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1682
1683 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1684 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1685
1686 ovly_table = xmalloc (ovly_table_size);
1687 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1688
1689 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1690 objfile->sections_end - objfile->sections,
1691 struct spu_overlay_table);
1692
1693 for (i = 0; i < ovly_table_size / 16; i++)
1694 {
e17a4113
UW
1695 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1696 4, byte_order);
1697 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1698 4, byte_order);
1699 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1700 4, byte_order);
1701 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1702 4, byte_order);
dcf52cd8
UW
1703
1704 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1705 continue;
1706
1707 ALL_OBJFILE_OSECTIONS (objfile, osect)
1708 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1709 && pos == osect->the_bfd_section->filepos)
1710 {
1711 int ndx = osect - objfile->sections;
1712 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1713 tbl[ndx].mapped_val = i + 1;
1714 break;
1715 }
1716 }
1717
1718 xfree (ovly_table);
1719 set_objfile_data (objfile, spu_overlay_data, tbl);
1720 return tbl;
1721}
1722
1723/* Read _ovly_buf_table entry from the target to dermine whether
1724 OSECT is currently mapped, and update the mapped state. */
1725static void
1726spu_overlay_update_osect (struct obj_section *osect)
1727{
e17a4113
UW
1728 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1729 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1730 struct spu_overlay_table *ovly_table;
85e747d2 1731 CORE_ADDR id, val;
dcf52cd8
UW
1732
1733 ovly_table = spu_get_overlay_table (osect->objfile);
1734 if (!ovly_table)
1735 return;
1736
1737 ovly_table += osect - osect->objfile->sections;
1738 if (ovly_table->mapped_ptr == 0)
1739 return;
1740
85e747d2
UW
1741 id = SPUADDR_SPU (obj_section_addr (osect));
1742 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1743 4, byte_order);
dcf52cd8
UW
1744 osect->ovly_mapped = (val == ovly_table->mapped_val);
1745}
1746
1747/* If OSECT is NULL, then update all sections' mapped state.
1748 If OSECT is non-NULL, then update only OSECT's mapped state. */
1749static void
1750spu_overlay_update (struct obj_section *osect)
1751{
1752 /* Just one section. */
1753 if (osect)
1754 spu_overlay_update_osect (osect);
1755
1756 /* All sections. */
1757 else
1758 {
1759 struct objfile *objfile;
1760
1761 ALL_OBJSECTIONS (objfile, osect)
714835d5 1762 if (section_is_overlay (osect))
dcf52cd8
UW
1763 spu_overlay_update_osect (osect);
1764 }
1765}
1766
1767/* Whenever a new objfile is loaded, read the target's _ovly_table.
1768 If there is one, go through all sections and make sure for non-
1769 overlay sections LMA equals VMA, while for overlay sections LMA
1770 is larger than local store size. */
1771static void
1772spu_overlay_new_objfile (struct objfile *objfile)
1773{
1774 struct spu_overlay_table *ovly_table;
1775 struct obj_section *osect;
1776
1777 /* If we've already touched this file, do nothing. */
1778 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1779 return;
1780
0391f248
UW
1781 /* Consider only SPU objfiles. */
1782 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1783 return;
1784
dcf52cd8
UW
1785 /* Check if this objfile has overlays. */
1786 ovly_table = spu_get_overlay_table (objfile);
1787 if (!ovly_table)
1788 return;
1789
1790 /* Now go and fiddle with all the LMAs. */
1791 ALL_OBJFILE_OSECTIONS (objfile, osect)
1792 {
1793 bfd *obfd = objfile->obfd;
1794 asection *bsect = osect->the_bfd_section;
1795 int ndx = osect - objfile->sections;
1796
1797 if (ovly_table[ndx].mapped_ptr == 0)
1798 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1799 else
1800 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1801 }
1802}
1803
771b4502 1804
3285f3fe
UW
1805/* Insert temporary breakpoint on "main" function of newly loaded
1806 SPE context OBJFILE. */
1807static void
1808spu_catch_start (struct objfile *objfile)
1809{
1810 struct minimal_symbol *minsym;
1811 struct symtab *symtab;
1812 CORE_ADDR pc;
1813 char buf[32];
1814
1815 /* Do this only if requested by "set spu stop-on-load on". */
1816 if (!spu_stop_on_load_p)
1817 return;
1818
1819 /* Consider only SPU objfiles. */
1820 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1821 return;
1822
1823 /* The main objfile is handled differently. */
1824 if (objfile == symfile_objfile)
1825 return;
1826
1827 /* There can be multiple symbols named "main". Search for the
1828 "main" in *this* objfile. */
1829 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1830 if (!minsym)
1831 return;
1832
1833 /* If we have debugging information, try to use it -- this
1834 will allow us to properly skip the prologue. */
1835 pc = SYMBOL_VALUE_ADDRESS (minsym);
1836 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1837 if (symtab != NULL)
1838 {
1839 struct blockvector *bv = BLOCKVECTOR (symtab);
1840 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1841 struct symbol *sym;
1842 struct symtab_and_line sal;
1843
1844 sym = lookup_block_symbol (block, "main", NULL, VAR_DOMAIN);
1845 if (sym)
1846 {
1847 fixup_symbol_section (sym, objfile);
1848 sal = find_function_start_sal (sym, 1);
1849 pc = sal.pc;
1850 }
1851 }
1852
1853 /* Use a numerical address for the set_breakpoint command to avoid having
1854 the breakpoint re-set incorrectly. */
1855 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1856 set_breakpoint (get_objfile_arch (objfile),
1857 buf, NULL /* condition */,
1858 0 /* hardwareflag */, 1 /* tempflag */,
1859 -1 /* thread */, 0 /* ignore_count */,
1860 0 /* pending */, 1 /* enabled */);
1861}
1862
1863
ff1a52c6
UW
1864/* Look up OBJFILE loaded into FRAME's SPU context. */
1865static struct objfile *
1866spu_objfile_from_frame (struct frame_info *frame)
1867{
1868 struct gdbarch *gdbarch = get_frame_arch (frame);
1869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1870 struct objfile *obj;
1871
1872 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1873 return NULL;
1874
1875 ALL_OBJFILES (obj)
1876 {
1877 if (obj->sections != obj->sections_end
1878 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1879 return obj;
1880 }
1881
1882 return NULL;
1883}
1884
1885/* Flush cache for ea pointer access if available. */
1886static void
1887flush_ea_cache (void)
1888{
1889 struct minimal_symbol *msymbol;
1890 struct objfile *obj;
1891
1892 if (!has_stack_frames ())
1893 return;
1894
1895 obj = spu_objfile_from_frame (get_current_frame ());
1896 if (obj == NULL)
1897 return;
1898
1899 /* Lookup inferior function __cache_flush. */
1900 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1901 if (msymbol != NULL)
1902 {
1903 struct type *type;
1904 CORE_ADDR addr;
1905
1906 type = objfile_type (obj)->builtin_void;
1907 type = lookup_function_type (type);
1908 type = lookup_pointer_type (type);
1909 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1910
1911 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1912 }
1913}
1914
1915/* This handler is called when the inferior has stopped. If it is stopped in
1916 SPU architecture then flush the ea cache if used. */
1917static void
1918spu_attach_normal_stop (struct bpstats *bs, int print_frame)
1919{
1920 if (!spu_auto_flush_cache_p)
1921 return;
1922
1923 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
1924 re-entering this function when __cache_flush stops. */
1925 spu_auto_flush_cache_p = 0;
1926 flush_ea_cache ();
1927 spu_auto_flush_cache_p = 1;
1928}
1929
1930
23d964e7
UW
1931/* "info spu" commands. */
1932
1933static void
1934info_spu_event_command (char *args, int from_tty)
1935{
1936 struct frame_info *frame = get_selected_frame (NULL);
1937 ULONGEST event_status = 0;
1938 ULONGEST event_mask = 0;
1939 struct cleanup *chain;
1940 gdb_byte buf[100];
1941 char annex[32];
1942 LONGEST len;
1943 int rc, id;
1944
0391f248
UW
1945 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1946 error (_("\"info spu\" is only supported on the SPU architecture."));
1947
23d964e7
UW
1948 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1949
1950 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1951 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 1952 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
1953 if (len <= 0)
1954 error (_("Could not read event_status."));
9971ac47 1955 buf[len] = '\0';
23d964e7
UW
1956 event_status = strtoulst (buf, NULL, 16);
1957
1958 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1959 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 1960 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
1961 if (len <= 0)
1962 error (_("Could not read event_mask."));
9971ac47 1963 buf[len] = '\0';
23d964e7
UW
1964 event_mask = strtoulst (buf, NULL, 16);
1965
1966 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1967
1968 if (ui_out_is_mi_like_p (uiout))
1969 {
1970 ui_out_field_fmt (uiout, "event_status",
1971 "0x%s", phex_nz (event_status, 4));
1972 ui_out_field_fmt (uiout, "event_mask",
1973 "0x%s", phex_nz (event_mask, 4));
1974 }
1975 else
1976 {
1977 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1978 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1979 }
1980
1981 do_cleanups (chain);
1982}
1983
1984static void
1985info_spu_signal_command (char *args, int from_tty)
1986{
1987 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
1988 struct gdbarch *gdbarch = get_frame_arch (frame);
1989 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
1990 ULONGEST signal1 = 0;
1991 ULONGEST signal1_type = 0;
1992 int signal1_pending = 0;
1993 ULONGEST signal2 = 0;
1994 ULONGEST signal2_type = 0;
1995 int signal2_pending = 0;
1996 struct cleanup *chain;
1997 char annex[32];
1998 gdb_byte buf[100];
1999 LONGEST len;
2000 int rc, id;
2001
e17a4113 2002 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2003 error (_("\"info spu\" is only supported on the SPU architecture."));
2004
23d964e7
UW
2005 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2006
2007 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2008 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2009 if (len < 0)
2010 error (_("Could not read signal1."));
2011 else if (len == 4)
2012 {
e17a4113 2013 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2014 signal1_pending = 1;
2015 }
2016
2017 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2018 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2019 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2020 if (len <= 0)
2021 error (_("Could not read signal1_type."));
9971ac47 2022 buf[len] = '\0';
23d964e7
UW
2023 signal1_type = strtoulst (buf, NULL, 16);
2024
2025 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2026 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2027 if (len < 0)
2028 error (_("Could not read signal2."));
2029 else if (len == 4)
2030 {
e17a4113 2031 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2032 signal2_pending = 1;
2033 }
2034
2035 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2036 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2037 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2038 if (len <= 0)
2039 error (_("Could not read signal2_type."));
9971ac47 2040 buf[len] = '\0';
23d964e7
UW
2041 signal2_type = strtoulst (buf, NULL, 16);
2042
2043 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
2044
2045 if (ui_out_is_mi_like_p (uiout))
2046 {
2047 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
2048 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2049 ui_out_field_int (uiout, "signal1_type", signal1_type);
2050 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
2051 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2052 ui_out_field_int (uiout, "signal2_type", signal2_type);
2053 }
2054 else
2055 {
2056 if (signal1_pending)
2057 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2058 else
2059 printf_filtered (_("Signal 1 not pending "));
2060
2061 if (signal1_type)
23d964e7 2062 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2063 else
2064 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2065
2066 if (signal2_pending)
2067 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2068 else
2069 printf_filtered (_("Signal 2 not pending "));
2070
2071 if (signal2_type)
23d964e7 2072 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2073 else
2074 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2075 }
2076
2077 do_cleanups (chain);
2078}
2079
2080static void
e17a4113 2081info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2082 const char *field, const char *msg)
2083{
2084 struct cleanup *chain;
2085 int i;
2086
2087 if (nr <= 0)
2088 return;
2089
2090 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
2091
2092 ui_out_table_header (uiout, 32, ui_left, field, msg);
2093 ui_out_table_body (uiout);
2094
2095 for (i = 0; i < nr; i++)
2096 {
2097 struct cleanup *val_chain;
2098 ULONGEST val;
2099 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
e17a4113 2100 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
23d964e7
UW
2101 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
2102 do_cleanups (val_chain);
2103
2104 if (!ui_out_is_mi_like_p (uiout))
2105 printf_filtered ("\n");
2106 }
2107
2108 do_cleanups (chain);
2109}
2110
2111static void
2112info_spu_mailbox_command (char *args, int from_tty)
2113{
2114 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2115 struct gdbarch *gdbarch = get_frame_arch (frame);
2116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2117 struct cleanup *chain;
2118 char annex[32];
2119 gdb_byte buf[1024];
2120 LONGEST len;
2121 int i, id;
2122
e17a4113 2123 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2124 error (_("\"info spu\" is only supported on the SPU architecture."));
2125
23d964e7
UW
2126 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2127
2128 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2129
2130 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2131 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2132 buf, 0, sizeof buf);
2133 if (len < 0)
2134 error (_("Could not read mbox_info."));
2135
e17a4113
UW
2136 info_spu_mailbox_list (buf, len / 4, byte_order,
2137 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2138
2139 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2140 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2141 buf, 0, sizeof buf);
2142 if (len < 0)
2143 error (_("Could not read ibox_info."));
2144
e17a4113
UW
2145 info_spu_mailbox_list (buf, len / 4, byte_order,
2146 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2147
2148 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2149 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2150 buf, 0, sizeof buf);
2151 if (len < 0)
2152 error (_("Could not read wbox_info."));
2153
e17a4113
UW
2154 info_spu_mailbox_list (buf, len / 4, byte_order,
2155 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2156
2157 do_cleanups (chain);
2158}
2159
2160static ULONGEST
2161spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2162{
2163 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2164 return (word >> (63 - last)) & mask;
2165}
2166
2167static void
e17a4113 2168info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7
UW
2169{
2170 static char *spu_mfc_opcode[256] =
2171 {
2172 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2173 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2174 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2175 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2176 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2177 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2178 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2179 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2180 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2181 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2182 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2183 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2184 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2185 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2186 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2187 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2188 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2189 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2190 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2191 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2192 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2193 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2194 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2195 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2196 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2197 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2198 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2199 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2200 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2201 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2202 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2203 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2204 };
2205
12ab8a60
UW
2206 int *seq = alloca (nr * sizeof (int));
2207 int done = 0;
23d964e7 2208 struct cleanup *chain;
12ab8a60
UW
2209 int i, j;
2210
2211
2212 /* Determine sequence in which to display (valid) entries. */
2213 for (i = 0; i < nr; i++)
2214 {
2215 /* Search for the first valid entry all of whose
2216 dependencies are met. */
2217 for (j = 0; j < nr; j++)
2218 {
2219 ULONGEST mfc_cq_dw3;
2220 ULONGEST dependencies;
2221
2222 if (done & (1 << (nr - 1 - j)))
2223 continue;
2224
e17a4113
UW
2225 mfc_cq_dw3
2226 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2227 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2228 continue;
2229
2230 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2231 if ((dependencies & done) != dependencies)
2232 continue;
2233
2234 seq[i] = j;
2235 done |= 1 << (nr - 1 - j);
2236 break;
2237 }
2238
2239 if (j == nr)
2240 break;
2241 }
2242
2243 nr = i;
2244
23d964e7
UW
2245
2246 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2247
2248 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2249 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2250 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2251 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2252 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2253 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2254 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2255 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2256 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2257 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2258
2259 ui_out_table_body (uiout);
2260
2261 for (i = 0; i < nr; i++)
2262 {
2263 struct cleanup *cmd_chain;
2264 ULONGEST mfc_cq_dw0;
2265 ULONGEST mfc_cq_dw1;
2266 ULONGEST mfc_cq_dw2;
23d964e7
UW
2267 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2268 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2269 ULONGEST mfc_ea;
2270 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2271
2272 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2273 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2274
e17a4113
UW
2275 mfc_cq_dw0
2276 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2277 mfc_cq_dw1
2278 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2279 mfc_cq_dw2
2280 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2281
2282 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2283 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2284 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2285 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2286 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2287 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2288 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2289
2290 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2291 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2292
2293 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2294 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2295 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2296 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2297 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2298 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2299
2300 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2301
2302 if (spu_mfc_opcode[mfc_cmd_opcode])
2303 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2304 else
2305 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2306
2307 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2308 ui_out_field_int (uiout, "tid", tclass_id);
2309 ui_out_field_int (uiout, "rid", rclass_id);
2310
2311 if (ea_valid_p)
2312 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2313 else
2314 ui_out_field_skip (uiout, "ea");
2315
2316 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2317 if (qw_valid_p)
2318 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2319 else
2320 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2321
2322 if (list_valid_p)
2323 {
2324 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2325 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2326 }
2327 else
2328 {
2329 ui_out_field_skip (uiout, "lstaddr");
2330 ui_out_field_skip (uiout, "lstsize");
2331 }
2332
2333 if (cmd_error_p)
2334 ui_out_field_string (uiout, "error_p", "*");
2335 else
2336 ui_out_field_skip (uiout, "error_p");
2337
2338 do_cleanups (cmd_chain);
2339
2340 if (!ui_out_is_mi_like_p (uiout))
2341 printf_filtered ("\n");
2342 }
2343
2344 do_cleanups (chain);
2345}
2346
2347static void
2348info_spu_dma_command (char *args, int from_tty)
2349{
2350 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2351 struct gdbarch *gdbarch = get_frame_arch (frame);
2352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2353 ULONGEST dma_info_type;
2354 ULONGEST dma_info_mask;
2355 ULONGEST dma_info_status;
2356 ULONGEST dma_info_stall_and_notify;
2357 ULONGEST dma_info_atomic_command_status;
2358 struct cleanup *chain;
2359 char annex[32];
2360 gdb_byte buf[1024];
2361 LONGEST len;
2362 int i, id;
2363
0391f248
UW
2364 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2365 error (_("\"info spu\" is only supported on the SPU architecture."));
2366
23d964e7
UW
2367 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2368
2369 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2370 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2371 buf, 0, 40 + 16 * 32);
2372 if (len <= 0)
2373 error (_("Could not read dma_info."));
2374
e17a4113
UW
2375 dma_info_type
2376 = extract_unsigned_integer (buf, 8, byte_order);
2377 dma_info_mask
2378 = extract_unsigned_integer (buf + 8, 8, byte_order);
2379 dma_info_status
2380 = extract_unsigned_integer (buf + 16, 8, byte_order);
2381 dma_info_stall_and_notify
2382 = extract_unsigned_integer (buf + 24, 8, byte_order);
2383 dma_info_atomic_command_status
2384 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7
UW
2385
2386 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2387
2388 if (ui_out_is_mi_like_p (uiout))
2389 {
2390 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2391 phex_nz (dma_info_type, 4));
2392 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2393 phex_nz (dma_info_mask, 4));
2394 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2395 phex_nz (dma_info_status, 4));
2396 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2397 phex_nz (dma_info_stall_and_notify, 4));
2398 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2399 phex_nz (dma_info_atomic_command_status, 4));
2400 }
2401 else
2402 {
8fbde58b 2403 const char *query_msg = _("no query pending");
23d964e7 2404
8fbde58b
UW
2405 if (dma_info_type & 4)
2406 switch (dma_info_type & 3)
2407 {
2408 case 1: query_msg = _("'any' query pending"); break;
2409 case 2: query_msg = _("'all' query pending"); break;
2410 default: query_msg = _("undefined query type"); break;
2411 }
23d964e7
UW
2412
2413 printf_filtered (_("Tag-Group Status 0x%s\n"),
2414 phex (dma_info_status, 4));
2415 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2416 phex (dma_info_mask, 4), query_msg);
2417 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2418 phex (dma_info_stall_and_notify, 4));
2419 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2420 phex (dma_info_atomic_command_status, 4));
2421 printf_filtered ("\n");
2422 }
2423
e17a4113 2424 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2425 do_cleanups (chain);
2426}
2427
2428static void
2429info_spu_proxydma_command (char *args, int from_tty)
2430{
2431 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2432 struct gdbarch *gdbarch = get_frame_arch (frame);
2433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2434 ULONGEST dma_info_type;
2435 ULONGEST dma_info_mask;
2436 ULONGEST dma_info_status;
2437 struct cleanup *chain;
2438 char annex[32];
2439 gdb_byte buf[1024];
2440 LONGEST len;
2441 int i, id;
2442
e17a4113 2443 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2444 error (_("\"info spu\" is only supported on the SPU architecture."));
2445
23d964e7
UW
2446 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2447
2448 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2449 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2450 buf, 0, 24 + 8 * 32);
2451 if (len <= 0)
2452 error (_("Could not read proxydma_info."));
2453
e17a4113
UW
2454 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2455 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2456 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7
UW
2457
2458 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2459
2460 if (ui_out_is_mi_like_p (uiout))
2461 {
2462 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2463 phex_nz (dma_info_type, 4));
2464 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2465 phex_nz (dma_info_mask, 4));
2466 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2467 phex_nz (dma_info_status, 4));
2468 }
2469 else
2470 {
2471 const char *query_msg;
2472
8fbde58b 2473 switch (dma_info_type & 3)
23d964e7
UW
2474 {
2475 case 0: query_msg = _("no query pending"); break;
2476 case 1: query_msg = _("'any' query pending"); break;
2477 case 2: query_msg = _("'all' query pending"); break;
2478 default: query_msg = _("undefined query type"); break;
2479 }
2480
2481 printf_filtered (_("Tag-Group Status 0x%s\n"),
2482 phex (dma_info_status, 4));
2483 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2484 phex (dma_info_mask, 4), query_msg);
2485 printf_filtered ("\n");
2486 }
2487
e17a4113 2488 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2489 do_cleanups (chain);
2490}
2491
2492static void
2493info_spu_command (char *args, int from_tty)
2494{
2495 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2496 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2497}
2498
2499
3285f3fe
UW
2500/* Root of all "set spu "/"show spu " commands. */
2501
2502static void
2503show_spu_command (char *args, int from_tty)
2504{
2505 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2506}
2507
2508static void
2509set_spu_command (char *args, int from_tty)
2510{
2511 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2512}
2513
2514static void
2515show_spu_stop_on_load (struct ui_file *file, int from_tty,
2516 struct cmd_list_element *c, const char *value)
2517{
2518 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2519 value);
2520}
2521
ff1a52c6
UW
2522static void
2523show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2524 struct cmd_list_element *c, const char *value)
2525{
2526 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2527 value);
2528}
2529
3285f3fe 2530
771b4502
UW
2531/* Set up gdbarch struct. */
2532
2533static struct gdbarch *
2534spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2535{
2536 struct gdbarch *gdbarch;
794ac428 2537 struct gdbarch_tdep *tdep;
85e747d2
UW
2538 int id = -1;
2539
2540 /* Which spufs ID was requested as address space? */
2541 if (info.tdep_info)
2542 id = *(int *)info.tdep_info;
2543 /* For objfile architectures of SPU solibs, decode the ID from the name.
2544 This assumes the filename convention employed by solib-spu.c. */
2545 else if (info.abfd)
2546 {
2547 char *name = strrchr (info.abfd->filename, '@');
2548 if (name)
2549 sscanf (name, "@0x%*x <%d>", &id);
2550 }
771b4502 2551
85e747d2
UW
2552 /* Find a candidate among extant architectures. */
2553 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2554 arches != NULL;
2555 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2556 {
2557 tdep = gdbarch_tdep (arches->gdbarch);
2558 if (tdep && tdep->id == id)
2559 return arches->gdbarch;
2560 }
771b4502 2561
85e747d2 2562 /* None found, so create a new architecture. */
794ac428 2563 tdep = XCALLOC (1, struct gdbarch_tdep);
85e747d2 2564 tdep->id = id;
794ac428 2565 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2566
2567 /* Disassembler. */
85e747d2 2568 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2569
2570 /* Registers. */
2571 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2572 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2573 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2574 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2575 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2576 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2577 set_gdbarch_register_name (gdbarch, spu_register_name);
2578 set_gdbarch_register_type (gdbarch, spu_register_type);
2579 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2580 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2581 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502
UW
2582 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2583
2584 /* Data types. */
2585 set_gdbarch_char_signed (gdbarch, 0);
2586 set_gdbarch_ptr_bit (gdbarch, 32);
2587 set_gdbarch_addr_bit (gdbarch, 32);
2588 set_gdbarch_short_bit (gdbarch, 16);
2589 set_gdbarch_int_bit (gdbarch, 32);
2590 set_gdbarch_long_bit (gdbarch, 32);
2591 set_gdbarch_long_long_bit (gdbarch, 64);
2592 set_gdbarch_float_bit (gdbarch, 32);
2593 set_gdbarch_double_bit (gdbarch, 64);
2594 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2595 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2596 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2597 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2598
ff1a52c6 2599 /* Address handling. */
85e747d2 2600 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2601 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2602 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2603 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2604 set_gdbarch_address_class_type_flags_to_name
2605 (gdbarch, spu_address_class_type_flags_to_name);
2606 set_gdbarch_address_class_name_to_type_flags
2607 (gdbarch, spu_address_class_name_to_type_flags);
2608
36acd84e 2609
771b4502 2610 /* Inferior function calls. */
7b3dc0b7
UW
2611 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2612 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2613 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2614 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2615 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2616 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2617 set_gdbarch_return_value (gdbarch, spu_return_value);
2618
2619 /* Frame handling. */
2620 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8d998b8f 2621 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2622 frame_base_set_default (gdbarch, &spu_frame_base);
2623 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2624 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2625 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2626 set_gdbarch_frame_args_skip (gdbarch, 0);
2627 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
fe5febed 2628 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
771b4502 2629
cc5f0d61
UW
2630 /* Cell/B.E. cross-architecture unwinder support. */
2631 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2632
771b4502
UW
2633 /* Breakpoints. */
2634 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2635 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2636 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2637 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2638 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2639
dcf52cd8
UW
2640 /* Overlays. */
2641 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2642
771b4502
UW
2643 return gdbarch;
2644}
2645
63807e1d
PA
2646/* Provide a prototype to silence -Wmissing-prototypes. */
2647extern initialize_file_ftype _initialize_spu_tdep;
2648
771b4502
UW
2649void
2650_initialize_spu_tdep (void)
2651{
2652 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2653
dcf52cd8
UW
2654 /* Add ourselves to objfile event chain. */
2655 observer_attach_new_objfile (spu_overlay_new_objfile);
2656 spu_overlay_data = register_objfile_data ();
23d964e7 2657
3285f3fe
UW
2658 /* Install spu stop-on-load handler. */
2659 observer_attach_new_objfile (spu_catch_start);
2660
ff1a52c6
UW
2661 /* Add ourselves to normal_stop event chain. */
2662 observer_attach_normal_stop (spu_attach_normal_stop);
2663
3285f3fe
UW
2664 /* Add root prefix command for all "set spu"/"show spu" commands. */
2665 add_prefix_cmd ("spu", no_class, set_spu_command,
2666 _("Various SPU specific commands."),
2667 &setspucmdlist, "set spu ", 0, &setlist);
2668 add_prefix_cmd ("spu", no_class, show_spu_command,
2669 _("Various SPU specific commands."),
2670 &showspucmdlist, "show spu ", 0, &showlist);
2671
2672 /* Toggle whether or not to add a temporary breakpoint at the "main"
2673 function of new SPE contexts. */
2674 add_setshow_boolean_cmd ("stop-on-load", class_support,
2675 &spu_stop_on_load_p, _("\
2676Set whether to stop for new SPE threads."),
2677 _("\
2678Show whether to stop for new SPE threads."),
2679 _("\
2680Use \"on\" to give control to the user when a new SPE thread\n\
2681enters its \"main\" function.\n\
2682Use \"off\" to disable stopping for new SPE threads."),
2683 NULL,
2684 show_spu_stop_on_load,
2685 &setspucmdlist, &showspucmdlist);
2686
ff1a52c6
UW
2687 /* Toggle whether or not to automatically flush the software-managed
2688 cache whenever SPE execution stops. */
2689 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2690 &spu_auto_flush_cache_p, _("\
2691Set whether to automatically flush the software-managed cache."),
2692 _("\
2693Show whether to automatically flush the software-managed cache."),
2694 _("\
2695Use \"on\" to automatically flush the software-managed cache\n\
2696whenever SPE execution stops.\n\
2697Use \"off\" to never automatically flush the software-managed cache."),
2698 NULL,
2699 show_spu_auto_flush_cache,
2700 &setspucmdlist, &showspucmdlist);
2701
23d964e7
UW
2702 /* Add root prefix command for all "info spu" commands. */
2703 add_prefix_cmd ("spu", class_info, info_spu_command,
2704 _("Various SPU specific commands."),
2705 &infospucmdlist, "info spu ", 0, &infolist);
2706
2707 /* Add various "info spu" commands. */
2708 add_cmd ("event", class_info, info_spu_event_command,
2709 _("Display SPU event facility status.\n"),
2710 &infospucmdlist);
2711 add_cmd ("signal", class_info, info_spu_signal_command,
2712 _("Display SPU signal notification facility status.\n"),
2713 &infospucmdlist);
2714 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2715 _("Display SPU mailbox facility status.\n"),
2716 &infospucmdlist);
2717 add_cmd ("dma", class_info, info_spu_dma_command,
2718 _("Display MFC DMA status.\n"),
2719 &infospucmdlist);
2720 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2721 _("Display MFC Proxy-DMA status.\n"),
2722 &infospucmdlist);
771b4502 2723}
This page took 0.437028 seconds and 4 git commands to generate.