* gdb.threads/print-threads.exp: Extend timeout for slower
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
7b6bb8da
JB
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
771b4502
UW
4
5 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
6 Based on a port by Sid Manning <sid@us.ibm.com>.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
22
23#include "defs.h"
24#include "arch-utils.h"
25#include "gdbtypes.h"
26#include "gdbcmd.h"
27#include "gdbcore.h"
28#include "gdb_string.h"
29#include "gdb_assert.h"
30#include "frame.h"
31#include "frame-unwind.h"
32#include "frame-base.h"
33#include "trad-frame.h"
34#include "symtab.h"
35#include "symfile.h"
36#include "value.h"
37#include "inferior.h"
38#include "dis-asm.h"
39#include "objfiles.h"
40#include "language.h"
41#include "regcache.h"
42#include "reggroups.h"
43#include "floatformat.h"
3285f3fe 44#include "block.h"
dcf52cd8 45#include "observer.h"
ff1a52c6 46#include "infcall.h"
54fcddd0 47#include "dwarf2.h"
8dccd430 48#include "exceptions.h"
771b4502
UW
49#include "spu-tdep.h"
50
794ac428 51
3285f3fe
UW
52/* The list of available "set spu " and "show spu " commands. */
53static struct cmd_list_element *setspucmdlist = NULL;
54static struct cmd_list_element *showspucmdlist = NULL;
55
56/* Whether to stop for new SPE contexts. */
57static int spu_stop_on_load_p = 0;
ff1a52c6
UW
58/* Whether to automatically flush the SW-managed cache. */
59static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
60
61
794ac428
UW
62/* The tdep structure. */
63struct gdbarch_tdep
64{
85e747d2
UW
65 /* The spufs ID identifying our address space. */
66 int id;
67
794ac428
UW
68 /* SPU-specific vector type. */
69 struct type *spu_builtin_type_vec128;
70};
71
72
f2d43c2c 73/* SPU-specific vector type. */
794ac428
UW
74static struct type *
75spu_builtin_type_vec128 (struct gdbarch *gdbarch)
76{
77 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78
79 if (!tdep->spu_builtin_type_vec128)
80 {
df4df182 81 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
82 struct type *t;
83
e9bb382b
UW
84 t = arch_composite_type (gdbarch,
85 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 86 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 87 append_composite_type_field (t, "v2_int64",
df4df182 88 init_vector_type (bt->builtin_int64, 2));
794ac428 89 append_composite_type_field (t, "v4_int32",
df4df182 90 init_vector_type (bt->builtin_int32, 4));
794ac428 91 append_composite_type_field (t, "v8_int16",
df4df182 92 init_vector_type (bt->builtin_int16, 8));
794ac428 93 append_composite_type_field (t, "v16_int8",
df4df182 94 init_vector_type (bt->builtin_int8, 16));
794ac428 95 append_composite_type_field (t, "v2_double",
df4df182 96 init_vector_type (bt->builtin_double, 2));
794ac428 97 append_composite_type_field (t, "v4_float",
df4df182 98 init_vector_type (bt->builtin_float, 4));
794ac428 99
876cecd0 100 TYPE_VECTOR (t) = 1;
794ac428
UW
101 TYPE_NAME (t) = "spu_builtin_type_vec128";
102
103 tdep->spu_builtin_type_vec128 = t;
104 }
105
106 return tdep->spu_builtin_type_vec128;
107}
108
771b4502 109
23d964e7
UW
110/* The list of available "info spu " commands. */
111static struct cmd_list_element *infospucmdlist = NULL;
112
771b4502
UW
113/* Registers. */
114
115static const char *
d93859e2 116spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502
UW
117{
118 static char *register_names[] =
119 {
120 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
121 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
122 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
123 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
124 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
125 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
126 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
127 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
128 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
129 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
130 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
131 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
132 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
133 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
134 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
135 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 136 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
137 };
138
139 if (reg_nr < 0)
140 return NULL;
141 if (reg_nr >= sizeof register_names / sizeof *register_names)
142 return NULL;
143
144 return register_names[reg_nr];
145}
146
147static struct type *
148spu_register_type (struct gdbarch *gdbarch, int reg_nr)
149{
150 if (reg_nr < SPU_NUM_GPRS)
794ac428 151 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
152
153 switch (reg_nr)
154 {
155 case SPU_ID_REGNUM:
df4df182 156 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
157
158 case SPU_PC_REGNUM:
0dfff4cb 159 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
160
161 case SPU_SP_REGNUM:
0dfff4cb 162 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 163
23d964e7 164 case SPU_FPSCR_REGNUM:
df4df182 165 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
166
167 case SPU_SRR0_REGNUM:
df4df182 168 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
169
170 case SPU_LSLR_REGNUM:
df4df182 171 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
172
173 case SPU_DECR_REGNUM:
df4df182 174 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
175
176 case SPU_DECR_STATUS_REGNUM:
df4df182 177 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 178
771b4502 179 default:
a73c6dcd 180 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
181 }
182}
183
184/* Pseudo registers for preferred slots - stack pointer. */
185
05d1431c 186static enum register_status
23d964e7
UW
187spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
188 gdb_byte *buf)
189{
e17a4113
UW
190 struct gdbarch *gdbarch = get_regcache_arch (regcache);
191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 192 enum register_status status;
23d964e7
UW
193 gdb_byte reg[32];
194 char annex[32];
195 ULONGEST id;
196
05d1431c
PA
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
23d964e7
UW
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
e17a4113 205 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
05d1431c 206 return REG_VALID;
23d964e7
UW
207}
208
05d1431c 209static enum register_status
771b4502
UW
210spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212{
213 gdb_byte reg[16];
23d964e7
UW
214 char annex[32];
215 ULONGEST id;
05d1431c 216 enum register_status status;
771b4502
UW
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
05d1431c
PA
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
771b4502 224 memcpy (buf, reg, 4);
05d1431c 225 return status;
771b4502 226
23d964e7 227 case SPU_FPSCR_REGNUM:
05d1431c
PA
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
23d964e7
UW
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 233 return status;
23d964e7
UW
234
235 case SPU_SRR0_REGNUM:
05d1431c 236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
237
238 case SPU_LSLR_REGNUM:
05d1431c 239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
240
241 case SPU_DECR_REGNUM:
05d1431c 242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
243
244 case SPU_DECR_STATUS_REGNUM:
05d1431c 245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 246
771b4502
UW
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250}
251
23d964e7
UW
252static void
253spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255{
e17a4113
UW
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
258 gdb_byte reg[32];
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7
UW
266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
267 reg, 0, strlen (reg));
268}
269
771b4502
UW
270static void
271spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273{
274 gdb_byte reg[16];
23d964e7
UW
275 char annex[32];
276 ULONGEST id;
771b4502
UW
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
23d964e7
UW
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
771b4502
UW
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311}
312
313/* Value conversion -- access scalar values at the preferred slot. */
314
9acbedc0
UW
315static struct value *
316spu_value_from_register (struct type *type, int regnum,
317 struct frame_info *frame)
771b4502 318{
9acbedc0
UW
319 struct value *value = default_value_from_register (type, regnum, frame);
320 int len = TYPE_LENGTH (type);
771b4502 321
9acbedc0
UW
322 if (regnum < SPU_NUM_GPRS && len < 16)
323 {
324 int preferred_slot = len < 4 ? 4 - len : 0;
325 set_value_offset (value, preferred_slot);
326 }
771b4502 327
9acbedc0 328 return value;
771b4502
UW
329}
330
331/* Register groups. */
332
333static int
334spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
335 struct reggroup *group)
336{
337 /* Registers displayed via 'info regs'. */
338 if (group == general_reggroup)
339 return 1;
340
341 /* Registers displayed via 'info float'. */
342 if (group == float_reggroup)
343 return 0;
344
345 /* Registers that need to be saved/restored in order to
346 push or pop frames. */
347 if (group == save_reggroup || group == restore_reggroup)
348 return 1;
349
350 return default_register_reggroup_p (gdbarch, regnum, group);
351}
352
ff1a52c6
UW
353
354/* Address handling. */
36acd84e 355
85e747d2
UW
356static int
357spu_gdbarch_id (struct gdbarch *gdbarch)
358{
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360 int id = tdep->id;
361
362 /* The objfile architecture of a standalone SPU executable does not
b021a221 363 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
364 address range in this special case. */
365 if (id == -1
366 && symfile_objfile && symfile_objfile->obfd
367 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
368 && symfile_objfile->sections != symfile_objfile->sections_end)
369 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
370
371 return id;
372}
373
ff1a52c6
UW
374static int
375spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
376{
377 if (dwarf2_addr_class == 1)
378 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
379 else
380 return 0;
381}
382
383static const char *
384spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
385{
386 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
387 return "__ea";
388 else
389 return NULL;
390}
391
392static int
393spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
394 const char *name, int *type_flags_ptr)
395{
396 if (strcmp (name, "__ea") == 0)
397 {
398 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
399 return 1;
400 }
401 else
402 return 0;
403}
404
85e747d2
UW
405static void
406spu_address_to_pointer (struct gdbarch *gdbarch,
407 struct type *type, gdb_byte *buf, CORE_ADDR addr)
408{
409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
410 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
411 SPUADDR_ADDR (addr));
412}
413
36acd84e 414static CORE_ADDR
9898f801
UW
415spu_pointer_to_address (struct gdbarch *gdbarch,
416 struct type *type, const gdb_byte *buf)
36acd84e 417{
85e747d2 418 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420 ULONGEST addr
421 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 422
ff1a52c6
UW
423 /* Do not convert __ea pointers. */
424 if (TYPE_ADDRESS_CLASS_1 (type))
425 return addr;
426
d2ed6730 427 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
428}
429
430static CORE_ADDR
431spu_integer_to_address (struct gdbarch *gdbarch,
432 struct type *type, const gdb_byte *buf)
433{
85e747d2 434 int id = spu_gdbarch_id (gdbarch);
36acd84e 435 ULONGEST addr = unpack_long (type, buf);
36acd84e 436
d2ed6730 437 return SPUADDR (id, addr);
36acd84e
UW
438}
439
771b4502
UW
440
441/* Decoding SPU instructions. */
442
443enum
444 {
445 op_lqd = 0x34,
446 op_lqx = 0x3c4,
447 op_lqa = 0x61,
448 op_lqr = 0x67,
449 op_stqd = 0x24,
450 op_stqx = 0x144,
451 op_stqa = 0x41,
452 op_stqr = 0x47,
453
454 op_il = 0x081,
455 op_ila = 0x21,
456 op_a = 0x0c0,
457 op_ai = 0x1c,
458
a536c6d7 459 op_selb = 0x8,
771b4502
UW
460
461 op_br = 0x64,
462 op_bra = 0x60,
463 op_brsl = 0x66,
464 op_brasl = 0x62,
465 op_brnz = 0x42,
466 op_brz = 0x40,
467 op_brhnz = 0x46,
468 op_brhz = 0x44,
469 op_bi = 0x1a8,
470 op_bisl = 0x1a9,
471 op_biz = 0x128,
472 op_binz = 0x129,
473 op_bihz = 0x12a,
474 op_bihnz = 0x12b,
475 };
476
477static int
478is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
479{
480 if ((insn >> 21) == op)
481 {
482 *rt = insn & 127;
483 *ra = (insn >> 7) & 127;
484 *rb = (insn >> 14) & 127;
485 return 1;
486 }
487
488 return 0;
489}
490
491static int
492is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
493{
494 if ((insn >> 28) == op)
495 {
496 *rt = (insn >> 21) & 127;
497 *ra = (insn >> 7) & 127;
498 *rb = (insn >> 14) & 127;
499 *rc = insn & 127;
500 return 1;
501 }
502
503 return 0;
504}
505
506static int
507is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
508{
509 if ((insn >> 21) == op)
510 {
511 *rt = insn & 127;
512 *ra = (insn >> 7) & 127;
513 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
514 return 1;
515 }
516
517 return 0;
518}
519
520static int
521is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
522{
523 if ((insn >> 24) == op)
524 {
525 *rt = insn & 127;
526 *ra = (insn >> 7) & 127;
527 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
528 return 1;
529 }
530
531 return 0;
532}
533
534static int
535is_ri16 (unsigned int insn, int op, int *rt, int *i16)
536{
537 if ((insn >> 23) == op)
538 {
539 *rt = insn & 127;
540 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
541 return 1;
542 }
543
544 return 0;
545}
546
547static int
548is_ri18 (unsigned int insn, int op, int *rt, int *i18)
549{
550 if ((insn >> 25) == op)
551 {
552 *rt = insn & 127;
553 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
554 return 1;
555 }
556
557 return 0;
558}
559
560static int
561is_branch (unsigned int insn, int *offset, int *reg)
562{
563 int rt, i7, i16;
564
565 if (is_ri16 (insn, op_br, &rt, &i16)
566 || is_ri16 (insn, op_brsl, &rt, &i16)
567 || is_ri16 (insn, op_brnz, &rt, &i16)
568 || is_ri16 (insn, op_brz, &rt, &i16)
569 || is_ri16 (insn, op_brhnz, &rt, &i16)
570 || is_ri16 (insn, op_brhz, &rt, &i16))
571 {
572 *reg = SPU_PC_REGNUM;
573 *offset = i16 << 2;
574 return 1;
575 }
576
577 if (is_ri16 (insn, op_bra, &rt, &i16)
578 || is_ri16 (insn, op_brasl, &rt, &i16))
579 {
580 *reg = -1;
581 *offset = i16 << 2;
582 return 1;
583 }
584
585 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
586 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
587 || is_ri7 (insn, op_biz, &rt, reg, &i7)
588 || is_ri7 (insn, op_binz, &rt, reg, &i7)
589 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
590 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
591 {
592 *offset = 0;
593 return 1;
594 }
595
596 return 0;
597}
598
599
600/* Prolog parsing. */
601
602struct spu_prologue_data
603 {
604 /* Stack frame size. -1 if analysis was unsuccessful. */
605 int size;
606
607 /* How to find the CFA. The CFA is equal to SP at function entry. */
608 int cfa_reg;
609 int cfa_offset;
610
611 /* Offset relative to CFA where a register is saved. -1 if invalid. */
612 int reg_offset[SPU_NUM_GPRS];
613 };
614
615static CORE_ADDR
e17a4113
UW
616spu_analyze_prologue (struct gdbarch *gdbarch,
617 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
618 struct spu_prologue_data *data)
619{
e17a4113 620 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
621 int found_sp = 0;
622 int found_fp = 0;
623 int found_lr = 0;
ce50d78b 624 int found_bc = 0;
771b4502
UW
625 int reg_immed[SPU_NUM_GPRS];
626 gdb_byte buf[16];
627 CORE_ADDR prolog_pc = start_pc;
628 CORE_ADDR pc;
629 int i;
630
631
632 /* Initialize DATA to default values. */
633 data->size = -1;
634
635 data->cfa_reg = SPU_RAW_SP_REGNUM;
636 data->cfa_offset = 0;
637
638 for (i = 0; i < SPU_NUM_GPRS; i++)
639 data->reg_offset[i] = -1;
640
641 /* Set up REG_IMMED array. This is non-zero for a register if we know its
642 preferred slot currently holds this immediate value. */
643 for (i = 0; i < SPU_NUM_GPRS; i++)
644 reg_immed[i] = 0;
645
646 /* Scan instructions until the first branch.
647
648 The following instructions are important prolog components:
649
650 - The first instruction to set up the stack pointer.
651 - The first instruction to set up the frame pointer.
652 - The first instruction to save the link register.
ce50d78b 653 - The first instruction to save the backchain.
771b4502 654
ce50d78b 655 We return the instruction after the latest of these four,
771b4502
UW
656 or the incoming PC if none is found. The first instruction
657 to set up the stack pointer also defines the frame size.
658
659 Note that instructions saving incoming arguments to their stack
660 slots are not counted as important, because they are hard to
661 identify with certainty. This should not matter much, because
662 arguments are relevant only in code compiled with debug data,
663 and in such code the GDB core will advance until the first source
664 line anyway, using SAL data.
665
666 For purposes of stack unwinding, we analyze the following types
667 of instructions in addition:
668
669 - Any instruction adding to the current frame pointer.
670 - Any instruction loading an immediate constant into a register.
671 - Any instruction storing a register onto the stack.
672
673 These are used to compute the CFA and REG_OFFSET output. */
674
675 for (pc = start_pc; pc < end_pc; pc += 4)
676 {
677 unsigned int insn;
678 int rt, ra, rb, rc, immed;
679
680 if (target_read_memory (pc, buf, 4))
681 break;
e17a4113 682 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
683
684 /* AI is the typical instruction to set up a stack frame.
685 It is also used to initialize the frame pointer. */
686 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
687 {
688 if (rt == data->cfa_reg && ra == data->cfa_reg)
689 data->cfa_offset -= immed;
690
691 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
692 && !found_sp)
693 {
694 found_sp = 1;
695 prolog_pc = pc + 4;
696
697 data->size = -immed;
698 }
699 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
700 && !found_fp)
701 {
702 found_fp = 1;
703 prolog_pc = pc + 4;
704
705 data->cfa_reg = SPU_FP_REGNUM;
706 data->cfa_offset -= immed;
707 }
708 }
709
710 /* A is used to set up stack frames of size >= 512 bytes.
711 If we have tracked the contents of the addend register,
712 we can handle this as well. */
713 else if (is_rr (insn, op_a, &rt, &ra, &rb))
714 {
715 if (rt == data->cfa_reg && ra == data->cfa_reg)
716 {
717 if (reg_immed[rb] != 0)
718 data->cfa_offset -= reg_immed[rb];
719 else
720 data->cfa_reg = -1; /* We don't know the CFA any more. */
721 }
722
723 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
724 && !found_sp)
725 {
726 found_sp = 1;
727 prolog_pc = pc + 4;
728
729 if (reg_immed[rb] != 0)
730 data->size = -reg_immed[rb];
731 }
732 }
733
734 /* We need to track IL and ILA used to load immediate constants
735 in case they are later used as input to an A instruction. */
736 else if (is_ri16 (insn, op_il, &rt, &immed))
737 {
738 reg_immed[rt] = immed;
12102450
UW
739
740 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
741 found_sp = 1;
771b4502
UW
742 }
743
744 else if (is_ri18 (insn, op_ila, &rt, &immed))
745 {
746 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
747
748 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
749 found_sp = 1;
771b4502
UW
750 }
751
752 /* STQD is used to save registers to the stack. */
753 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
754 {
755 if (ra == data->cfa_reg)
756 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
757
758 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
759 && !found_lr)
760 {
761 found_lr = 1;
762 prolog_pc = pc + 4;
763 }
ce50d78b
UW
764
765 if (ra == SPU_RAW_SP_REGNUM
766 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
767 && !found_bc)
768 {
769 found_bc = 1;
770 prolog_pc = pc + 4;
771 }
771b4502
UW
772 }
773
774 /* _start uses SELB to set up the stack pointer. */
775 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
776 {
777 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
778 found_sp = 1;
779 }
780
781 /* We terminate if we find a branch. */
782 else if (is_branch (insn, &immed, &ra))
783 break;
784 }
785
786
787 /* If we successfully parsed until here, and didn't find any instruction
788 modifying SP, we assume we have a frameless function. */
789 if (!found_sp)
790 data->size = 0;
791
792 /* Return cooked instead of raw SP. */
793 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
794 data->cfa_reg = SPU_SP_REGNUM;
795
796 return prolog_pc;
797}
798
799/* Return the first instruction after the prologue starting at PC. */
800static CORE_ADDR
6093d2eb 801spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
802{
803 struct spu_prologue_data data;
e17a4113 804 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
805}
806
807/* Return the frame pointer in use at address PC. */
808static void
a54fba4c
MD
809spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
810 int *reg, LONGEST *offset)
771b4502
UW
811{
812 struct spu_prologue_data data;
e17a4113 813 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
814
815 if (data.size != -1 && data.cfa_reg != -1)
816 {
817 /* The 'frame pointer' address is CFA minus frame size. */
818 *reg = data.cfa_reg;
819 *offset = data.cfa_offset - data.size;
820 }
821 else
822 {
c378eb4e 823 /* ??? We don't really know ... */
771b4502
UW
824 *reg = SPU_SP_REGNUM;
825 *offset = 0;
826 }
827}
828
fe5febed
UW
829/* Return true if we are in the function's epilogue, i.e. after the
830 instruction that destroyed the function's stack frame.
831
832 1) scan forward from the point of execution:
833 a) If you find an instruction that modifies the stack pointer
834 or transfers control (except a return), execution is not in
835 an epilogue, return.
836 b) Stop scanning if you find a return instruction or reach the
837 end of the function or reach the hard limit for the size of
838 an epilogue.
839 2) scan backward from the point of execution:
840 a) If you find an instruction that modifies the stack pointer,
841 execution *is* in an epilogue, return.
842 b) Stop scanning if you reach an instruction that transfers
843 control or the beginning of the function or reach the hard
844 limit for the size of an epilogue. */
845
846static int
847spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
848{
e17a4113 849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
850 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
851 bfd_byte buf[4];
852 unsigned int insn;
853 int rt, ra, rb, rc, immed;
854
855 /* Find the search limits based on function boundaries and hard limit.
856 We assume the epilogue can be up to 64 instructions long. */
857
858 const int spu_max_epilogue_size = 64 * 4;
859
860 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
861 return 0;
862
863 if (pc - func_start < spu_max_epilogue_size)
864 epilogue_start = func_start;
865 else
866 epilogue_start = pc - spu_max_epilogue_size;
867
868 if (func_end - pc < spu_max_epilogue_size)
869 epilogue_end = func_end;
870 else
871 epilogue_end = pc + spu_max_epilogue_size;
872
873 /* Scan forward until next 'bi $0'. */
874
875 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
876 {
877 if (target_read_memory (scan_pc, buf, 4))
878 return 0;
e17a4113 879 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
880
881 if (is_branch (insn, &immed, &ra))
882 {
883 if (immed == 0 && ra == SPU_LR_REGNUM)
884 break;
885
886 return 0;
887 }
888
889 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
890 || is_rr (insn, op_a, &rt, &ra, &rb)
891 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
892 {
893 if (rt == SPU_RAW_SP_REGNUM)
894 return 0;
895 }
896 }
897
898 if (scan_pc >= epilogue_end)
899 return 0;
900
901 /* Scan backward until adjustment to stack pointer (R1). */
902
903 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
904 {
905 if (target_read_memory (scan_pc, buf, 4))
906 return 0;
e17a4113 907 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
908
909 if (is_branch (insn, &immed, &ra))
910 return 0;
911
912 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
913 || is_rr (insn, op_a, &rt, &ra, &rb)
914 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
915 {
916 if (rt == SPU_RAW_SP_REGNUM)
917 return 1;
918 }
919 }
920
921 return 0;
922}
923
924
771b4502
UW
925/* Normal stack frames. */
926
927struct spu_unwind_cache
928{
929 CORE_ADDR func;
930 CORE_ADDR frame_base;
931 CORE_ADDR local_base;
932
933 struct trad_frame_saved_reg *saved_regs;
934};
935
936static struct spu_unwind_cache *
8d998b8f 937spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
938 void **this_prologue_cache)
939{
e17a4113 940 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 942 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
943 struct spu_unwind_cache *info;
944 struct spu_prologue_data data;
85e747d2 945 CORE_ADDR id = tdep->id;
dcf52cd8 946 gdb_byte buf[16];
771b4502
UW
947
948 if (*this_prologue_cache)
949 return *this_prologue_cache;
950
951 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
952 *this_prologue_cache = info;
8d998b8f 953 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
954 info->frame_base = 0;
955 info->local_base = 0;
956
957 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 958 info->func = get_frame_func (this_frame);
771b4502
UW
959 if (info->func == 0)
960 {
961 /* Fall back to using the current PC as frame ID. */
8d998b8f 962 info->func = get_frame_pc (this_frame);
771b4502
UW
963 data.size = -1;
964 }
965 else
e17a4113
UW
966 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
967 &data);
771b4502
UW
968
969 /* If successful, use prologue analysis data. */
970 if (data.size != -1 && data.cfa_reg != -1)
971 {
972 CORE_ADDR cfa;
973 int i;
771b4502
UW
974
975 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 976 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 977 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 978 cfa = SPUADDR (id, cfa);
771b4502
UW
979
980 /* Call-saved register slots. */
981 for (i = 0; i < SPU_NUM_GPRS; i++)
982 if (i == SPU_LR_REGNUM
983 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
984 if (data.reg_offset[i] != -1)
985 info->saved_regs[i].addr = cfa - data.reg_offset[i];
986
771b4502
UW
987 /* Frame bases. */
988 info->frame_base = cfa;
989 info->local_base = cfa - data.size;
990 }
991
992 /* Otherwise, fall back to reading the backchain link. */
993 else
994 {
cdc9523a
UW
995 CORE_ADDR reg;
996 LONGEST backchain;
13def385 997 ULONGEST lslr;
cdc9523a 998 int status;
771b4502 999
13def385
UW
1000 /* Get local store limit. */
1001 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1002 if (!lslr)
1003 lslr = (ULONGEST) -1;
1004
771b4502 1005 /* Get the backchain. */
8d998b8f 1006 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1007 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1008 &backchain);
771b4502
UW
1009
1010 /* A zero backchain terminates the frame chain. Also, sanity
1011 check against the local store size limit. */
13def385 1012 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1013 {
1014 /* Assume the link register is saved into its slot. */
13def385 1015 if (backchain + 16 <= lslr)
c378eb4e
MS
1016 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1017 backchain + 16);
771b4502 1018
771b4502 1019 /* Frame bases. */
85e747d2
UW
1020 info->frame_base = SPUADDR (id, backchain);
1021 info->local_base = SPUADDR (id, reg);
771b4502
UW
1022 }
1023 }
dcf52cd8 1024
c4891da7
UW
1025 /* If we didn't find a frame, we cannot determine SP / return address. */
1026 if (info->frame_base == 0)
1027 return info;
1028
dcf52cd8 1029 /* The previous SP is equal to the CFA. */
85e747d2
UW
1030 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1031 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1032
0a44cb36
UW
1033 /* Read full contents of the unwound link register in order to
1034 be able to determine the return address. */
dcf52cd8
UW
1035 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1036 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1037 else
8d998b8f 1038 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1039
0a44cb36
UW
1040 /* Normally, the return address is contained in the slot 0 of the
1041 link register, and slots 1-3 are zero. For an overlay return,
1042 slot 0 contains the address of the overlay manager return stub,
1043 slot 1 contains the partition number of the overlay section to
1044 be returned to, and slot 2 contains the return address within
1045 that section. Return the latter address in that case. */
e17a4113 1046 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1047 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1048 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1049 else
1050 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1051 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1052
1053 return info;
1054}
1055
1056static void
8d998b8f 1057spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1058 void **this_prologue_cache, struct frame_id *this_id)
1059{
1060 struct spu_unwind_cache *info =
8d998b8f 1061 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1062
1063 if (info->frame_base == 0)
1064 return;
1065
1066 *this_id = frame_id_build (info->frame_base, info->func);
1067}
1068
8d998b8f
UW
1069static struct value *
1070spu_frame_prev_register (struct frame_info *this_frame,
1071 void **this_prologue_cache, int regnum)
771b4502
UW
1072{
1073 struct spu_unwind_cache *info
8d998b8f 1074 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1075
1076 /* Special-case the stack pointer. */
1077 if (regnum == SPU_RAW_SP_REGNUM)
1078 regnum = SPU_SP_REGNUM;
1079
8d998b8f 1080 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1081}
1082
1083static const struct frame_unwind spu_frame_unwind = {
1084 NORMAL_FRAME,
8fbca658 1085 default_frame_unwind_stop_reason,
771b4502 1086 spu_frame_this_id,
8d998b8f
UW
1087 spu_frame_prev_register,
1088 NULL,
1089 default_frame_sniffer
771b4502
UW
1090};
1091
771b4502 1092static CORE_ADDR
8d998b8f 1093spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1094{
1095 struct spu_unwind_cache *info
8d998b8f 1096 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1097 return info->local_base;
1098}
1099
1100static const struct frame_base spu_frame_base = {
1101 &spu_frame_unwind,
1102 spu_frame_base_address,
1103 spu_frame_base_address,
1104 spu_frame_base_address
1105};
1106
1107static CORE_ADDR
1108spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1109{
85e747d2 1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1111 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1112 /* Mask off interrupt enable bit. */
85e747d2 1113 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1114}
1115
1116static CORE_ADDR
1117spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1118{
85e747d2
UW
1119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1120 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1121 return SPUADDR (tdep->id, sp);
771b4502
UW
1122}
1123
118dfbaf 1124static CORE_ADDR
61a1198a 1125spu_read_pc (struct regcache *regcache)
118dfbaf 1126{
85e747d2 1127 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1128 ULONGEST pc;
1129 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1130 /* Mask off interrupt enable bit. */
85e747d2 1131 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1132}
1133
1134static void
61a1198a 1135spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1136{
1137 /* Keep interrupt enabled state unchanged. */
61a1198a
UW
1138 ULONGEST old_pc;
1139 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1140 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1141 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1142}
1143
771b4502 1144
cc5f0d61
UW
1145/* Cell/B.E. cross-architecture unwinder support. */
1146
1147struct spu2ppu_cache
1148{
1149 struct frame_id frame_id;
1150 struct regcache *regcache;
1151};
1152
1153static struct gdbarch *
1154spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1155{
1156 struct spu2ppu_cache *cache = *this_cache;
1157 return get_regcache_arch (cache->regcache);
1158}
1159
1160static void
1161spu2ppu_this_id (struct frame_info *this_frame,
1162 void **this_cache, struct frame_id *this_id)
1163{
1164 struct spu2ppu_cache *cache = *this_cache;
1165 *this_id = cache->frame_id;
1166}
1167
1168static struct value *
1169spu2ppu_prev_register (struct frame_info *this_frame,
1170 void **this_cache, int regnum)
1171{
1172 struct spu2ppu_cache *cache = *this_cache;
1173 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1174 gdb_byte *buf;
1175
1176 buf = alloca (register_size (gdbarch, regnum));
1177 regcache_cooked_read (cache->regcache, regnum, buf);
1178 return frame_unwind_got_bytes (this_frame, regnum, buf);
1179}
1180
1181static int
1182spu2ppu_sniffer (const struct frame_unwind *self,
1183 struct frame_info *this_frame, void **this_prologue_cache)
1184{
1185 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1187 CORE_ADDR base, func, backchain;
1188 gdb_byte buf[4];
1189
1190 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1191 return 0;
1192
1193 base = get_frame_sp (this_frame);
1194 func = get_frame_pc (this_frame);
1195 if (target_read_memory (base, buf, 4))
1196 return 0;
1197 backchain = extract_unsigned_integer (buf, 4, byte_order);
1198
1199 if (!backchain)
1200 {
1201 struct frame_info *fi;
1202
1203 struct spu2ppu_cache *cache
1204 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1205
1206 cache->frame_id = frame_id_build (base + 16, func);
1207
1208 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1209 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1210 break;
1211
1212 if (fi)
1213 {
1214 cache->regcache = frame_save_as_regcache (fi);
1215 *this_prologue_cache = cache;
1216 return 1;
1217 }
1218 else
1219 {
1220 struct regcache *regcache;
1221 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1222 cache->regcache = regcache_dup (regcache);
1223 *this_prologue_cache = cache;
1224 return 1;
1225 }
1226 }
1227
1228 return 0;
1229}
1230
1231static void
1232spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1233{
1234 struct spu2ppu_cache *cache = this_cache;
1235 regcache_xfree (cache->regcache);
1236}
1237
1238static const struct frame_unwind spu2ppu_unwind = {
1239 ARCH_FRAME,
8fbca658 1240 default_frame_unwind_stop_reason,
cc5f0d61
UW
1241 spu2ppu_this_id,
1242 spu2ppu_prev_register,
1243 NULL,
1244 spu2ppu_sniffer,
1245 spu2ppu_dealloc_cache,
1246 spu2ppu_prev_arch,
1247};
1248
1249
771b4502
UW
1250/* Function calling convention. */
1251
7b3dc0b7
UW
1252static CORE_ADDR
1253spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1254{
1255 return sp & ~15;
1256}
1257
87805e63
UW
1258static CORE_ADDR
1259spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1260 struct value **args, int nargs, struct type *value_type,
1261 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1262 struct regcache *regcache)
1263{
1264 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1265 sp = (sp - 4) & ~15;
1266 /* Store the address of that breakpoint */
1267 *bp_addr = sp;
1268 /* The call starts at the callee's entry point. */
1269 *real_pc = funaddr;
1270
1271 return sp;
1272}
1273
771b4502
UW
1274static int
1275spu_scalar_value_p (struct type *type)
1276{
1277 switch (TYPE_CODE (type))
1278 {
1279 case TYPE_CODE_INT:
1280 case TYPE_CODE_ENUM:
1281 case TYPE_CODE_RANGE:
1282 case TYPE_CODE_CHAR:
1283 case TYPE_CODE_BOOL:
1284 case TYPE_CODE_PTR:
1285 case TYPE_CODE_REF:
1286 return TYPE_LENGTH (type) <= 16;
1287
1288 default:
1289 return 0;
1290 }
1291}
1292
1293static void
1294spu_value_to_regcache (struct regcache *regcache, int regnum,
1295 struct type *type, const gdb_byte *in)
1296{
1297 int len = TYPE_LENGTH (type);
1298
1299 if (spu_scalar_value_p (type))
1300 {
1301 int preferred_slot = len < 4 ? 4 - len : 0;
1302 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1303 }
1304 else
1305 {
1306 while (len >= 16)
1307 {
1308 regcache_cooked_write (regcache, regnum++, in);
1309 in += 16;
1310 len -= 16;
1311 }
1312
1313 if (len > 0)
1314 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1315 }
1316}
1317
1318static void
1319spu_regcache_to_value (struct regcache *regcache, int regnum,
1320 struct type *type, gdb_byte *out)
1321{
1322 int len = TYPE_LENGTH (type);
1323
1324 if (spu_scalar_value_p (type))
1325 {
1326 int preferred_slot = len < 4 ? 4 - len : 0;
1327 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1328 }
1329 else
1330 {
1331 while (len >= 16)
1332 {
1333 regcache_cooked_read (regcache, regnum++, out);
1334 out += 16;
1335 len -= 16;
1336 }
1337
1338 if (len > 0)
1339 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1340 }
1341}
1342
1343static CORE_ADDR
1344spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1345 struct regcache *regcache, CORE_ADDR bp_addr,
1346 int nargs, struct value **args, CORE_ADDR sp,
1347 int struct_return, CORE_ADDR struct_addr)
1348{
e17a4113 1349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1350 CORE_ADDR sp_delta;
771b4502
UW
1351 int i;
1352 int regnum = SPU_ARG1_REGNUM;
1353 int stack_arg = -1;
1354 gdb_byte buf[16];
1355
1356 /* Set the return address. */
1357 memset (buf, 0, sizeof buf);
85e747d2 1358 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1359 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1360
1361 /* If STRUCT_RETURN is true, then the struct return address (in
1362 STRUCT_ADDR) will consume the first argument-passing register.
1363 Both adjust the register count and store that value. */
1364 if (struct_return)
1365 {
1366 memset (buf, 0, sizeof buf);
85e747d2 1367 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1368 regcache_cooked_write (regcache, regnum++, buf);
1369 }
1370
1371 /* Fill in argument registers. */
1372 for (i = 0; i < nargs; i++)
1373 {
1374 struct value *arg = args[i];
1375 struct type *type = check_typedef (value_type (arg));
1376 const gdb_byte *contents = value_contents (arg);
1377 int len = TYPE_LENGTH (type);
1378 int n_regs = align_up (len, 16) / 16;
1379
1380 /* If the argument doesn't wholly fit into registers, it and
1381 all subsequent arguments go to the stack. */
1382 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1383 {
1384 stack_arg = i;
1385 break;
1386 }
1387
1388 spu_value_to_regcache (regcache, regnum, type, contents);
1389 regnum += n_regs;
1390 }
1391
1392 /* Overflow arguments go to the stack. */
1393 if (stack_arg != -1)
1394 {
1395 CORE_ADDR ap;
1396
1397 /* Allocate all required stack size. */
1398 for (i = stack_arg; i < nargs; i++)
1399 {
1400 struct type *type = check_typedef (value_type (args[i]));
1401 sp -= align_up (TYPE_LENGTH (type), 16);
1402 }
1403
1404 /* Fill in stack arguments. */
1405 ap = sp;
1406 for (i = stack_arg; i < nargs; i++)
1407 {
1408 struct value *arg = args[i];
1409 struct type *type = check_typedef (value_type (arg));
1410 int len = TYPE_LENGTH (type);
1411 int preferred_slot;
1412
1413 if (spu_scalar_value_p (type))
1414 preferred_slot = len < 4 ? 4 - len : 0;
1415 else
1416 preferred_slot = 0;
1417
1418 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1419 ap += align_up (TYPE_LENGTH (type), 16);
1420 }
1421 }
1422
1423 /* Allocate stack frame header. */
1424 sp -= 32;
1425
ee82e879
UW
1426 /* Store stack back chain. */
1427 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1428 target_write_memory (sp, buf, 16);
1429
9ff3afda 1430 /* Finally, update all slots of the SP register. */
e17a4113 1431 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1432 for (i = 0; i < 4; i++)
1433 {
e17a4113
UW
1434 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1435 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1436 }
1437 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1438
1439 return sp;
1440}
1441
1442static struct frame_id
8d998b8f 1443spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1444{
85e747d2 1445 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1446 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1447 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1448 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1449}
1450
1451/* Function return value access. */
1452
1453static enum return_value_convention
c055b101
CV
1454spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1455 struct type *type, struct regcache *regcache,
1456 gdb_byte *out, const gdb_byte *in)
771b4502
UW
1457{
1458 enum return_value_convention rvc;
54fcddd0
UW
1459 int opencl_vector = 0;
1460
1461 if (func_type
1462 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1463 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1464 && TYPE_VECTOR (type))
1465 opencl_vector = 1;
771b4502
UW
1466
1467 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1468 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1469 else
1470 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1471
1472 if (in)
1473 {
1474 switch (rvc)
1475 {
1476 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1477 if (opencl_vector && TYPE_LENGTH (type) == 2)
1478 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1479 else
1480 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1481 break;
1482
1483 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1484 error (_("Cannot set function return value."));
771b4502
UW
1485 break;
1486 }
1487 }
1488 else if (out)
1489 {
1490 switch (rvc)
1491 {
1492 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1493 if (opencl_vector && TYPE_LENGTH (type) == 2)
1494 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1495 else
1496 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1497 break;
1498
1499 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1500 error (_("Function return value unknown."));
771b4502
UW
1501 break;
1502 }
1503 }
1504
1505 return rvc;
1506}
1507
1508
1509/* Breakpoints. */
1510
1511static const gdb_byte *
c378eb4e
MS
1512spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1513 CORE_ADDR * pcptr, int *lenptr)
771b4502
UW
1514{
1515 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1516
1517 *lenptr = sizeof breakpoint;
1518 return breakpoint;
1519}
1520
d03285ec
UW
1521static int
1522spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1523 struct bp_target_info *bp_tgt)
1524{
1525 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1526 that in a combined application, we have some breakpoints inserted in SPU
1527 code, and now the application forks (on the PPU side). GDB common code
1528 will assume that the fork system call copied all breakpoints into the new
1529 process' address space, and that all those copies now need to be removed
1530 (see breakpoint.c:detach_breakpoints).
1531
1532 While this is certainly true for PPU side breakpoints, it is not true
1533 for SPU side breakpoints. fork will clone the SPU context file
1534 descriptors, so that all the existing SPU contexts are in accessible
1535 in the new process. However, the contents of the SPU contexts themselves
1536 are *not* cloned. Therefore the effect of detach_breakpoints is to
1537 remove SPU breakpoints from the *original* SPU context's local store
1538 -- this is not the correct behaviour.
1539
1540 The workaround is to check whether the PID we are asked to remove this
1541 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1542 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1543 true in the context of detach_breakpoints. If so, we simply do nothing.
1544 [ Note that for the fork child process, it does not matter if breakpoints
1545 remain inserted, because those SPU contexts are not runnable anyway --
1546 the Linux kernel allows only the original process to invoke spu_run. */
1547
1548 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1549 return 0;
1550
1551 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1552}
1553
771b4502
UW
1554
1555/* Software single-stepping support. */
1556
63807e1d 1557static int
0b1b3e42 1558spu_software_single_step (struct frame_info *frame)
771b4502 1559{
a6d9a66e 1560 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1561 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1562 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1563 CORE_ADDR pc, next_pc;
1564 unsigned int insn;
1565 int offset, reg;
1566 gdb_byte buf[4];
13def385 1567 ULONGEST lslr;
771b4502 1568
0b1b3e42 1569 pc = get_frame_pc (frame);
771b4502 1570
e0cd558a
UW
1571 if (target_read_memory (pc, buf, 4))
1572 return 1;
e17a4113 1573 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1574
13def385
UW
1575 /* Get local store limit. */
1576 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1577 if (!lslr)
1578 lslr = (ULONGEST) -1;
1579
e0cd558a
UW
1580 /* Next sequential instruction is at PC + 4, except if the current
1581 instruction is a PPE-assisted call, in which case it is at PC + 8.
1582 Wrap around LS limit to be on the safe side. */
1583 if ((insn & 0xffffff00) == 0x00002100)
13def385 1584 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1585 else
13def385 1586 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1587
6c95b8df
PA
1588 insert_single_step_breakpoint (gdbarch,
1589 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1590
e0cd558a
UW
1591 if (is_branch (insn, &offset, &reg))
1592 {
1593 CORE_ADDR target = offset;
771b4502 1594
e0cd558a 1595 if (reg == SPU_PC_REGNUM)
85e747d2 1596 target += SPUADDR_ADDR (pc);
e0cd558a
UW
1597 else if (reg != -1)
1598 {
8dccd430
PA
1599 int optim, unavail;
1600
1601 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1602 &optim, &unavail))
1603 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1604 else
1605 {
1606 if (optim)
1607 error (_("Could not determine address of "
1608 "single-step breakpoint."));
1609 if (unavail)
1610 throw_error (NOT_AVAILABLE_ERROR,
1611 _("Could not determine address of "
1612 "single-step breakpoint."));
1613 }
771b4502 1614 }
e0cd558a 1615
13def385 1616 target = target & lslr;
e0cd558a 1617 if (target != next_pc)
6c95b8df 1618 insert_single_step_breakpoint (gdbarch, aspace,
85e747d2 1619 SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1620 }
e6590a1b
UW
1621
1622 return 1;
771b4502
UW
1623}
1624
6e3f70d7
UW
1625
1626/* Longjmp support. */
1627
1628static int
1629spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1630{
e17a4113 1631 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1634 gdb_byte buf[4];
1635 CORE_ADDR jb_addr;
8dccd430 1636 int optim, unavail;
6e3f70d7
UW
1637
1638 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1639 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1640 &optim, &unavail))
1641 return 0;
1642
e17a4113 1643 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1644 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1645 return 0;
1646
e17a4113 1647 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1648 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1649 return 1;
1650}
1651
1652
85e747d2
UW
1653/* Disassembler. */
1654
1655struct spu_dis_asm_data
1656{
1657 struct gdbarch *gdbarch;
1658 int id;
1659};
1660
1661static void
1662spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1663{
1664 struct spu_dis_asm_data *data = info->application_data;
1665 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1666}
1667
1668static int
1669gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1670{
c378eb4e
MS
1671 /* The opcodes disassembler does 18-bit address arithmetic. Make
1672 sure the SPU ID encoded in the high bits is added back when we
1673 call print_address. */
85e747d2
UW
1674 struct disassemble_info spu_info = *info;
1675 struct spu_dis_asm_data data;
1676 data.gdbarch = info->application_data;
1677 data.id = SPUADDR_SPU (memaddr);
1678
1679 spu_info.application_data = &data;
1680 spu_info.print_address_func = spu_dis_asm_print_address;
1681 return print_insn_spu (memaddr, &spu_info);
1682}
1683
1684
dcf52cd8
UW
1685/* Target overlays for the SPU overlay manager.
1686
1687 See the documentation of simple_overlay_update for how the
1688 interface is supposed to work.
1689
1690 Data structures used by the overlay manager:
1691
1692 struct ovly_table
1693 {
1694 u32 vma;
1695 u32 size;
1696 u32 pos;
1697 u32 buf;
1698 } _ovly_table[]; -- one entry per overlay section
1699
1700 struct ovly_buf_table
1701 {
1702 u32 mapped;
1703 } _ovly_buf_table[]; -- one entry per overlay buffer
1704
1705 _ovly_table should never change.
1706
c378eb4e
MS
1707 Both tables are aligned to a 16-byte boundary, the symbols
1708 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1709 size set to the size of the respective array. buf in _ovly_table is
1710 an index into _ovly_buf_table.
dcf52cd8 1711
c378eb4e 1712 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1713 from one to reference the first entry in their respective tables. */
1714
1715/* Using the per-objfile private data mechanism, we store for each
1716 objfile an array of "struct spu_overlay_table" structures, one
1717 for each obj_section of the objfile. This structure holds two
1718 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1719 is *not* an overlay section. If it is non-zero, it represents
1720 a target address. The overlay section is mapped iff the target
1721 integer at this location equals MAPPED_VAL. */
1722
1723static const struct objfile_data *spu_overlay_data;
1724
1725struct spu_overlay_table
1726 {
1727 CORE_ADDR mapped_ptr;
1728 CORE_ADDR mapped_val;
1729 };
1730
1731/* Retrieve the overlay table for OBJFILE. If not already cached, read
1732 the _ovly_table data structure from the target and initialize the
1733 spu_overlay_table data structure from it. */
1734static struct spu_overlay_table *
1735spu_get_overlay_table (struct objfile *objfile)
1736{
e17a4113
UW
1737 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1738 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8
UW
1739 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1740 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1741 unsigned ovly_table_size, ovly_buf_table_size;
1742 struct spu_overlay_table *tbl;
1743 struct obj_section *osect;
1744 char *ovly_table;
1745 int i;
1746
1747 tbl = objfile_data (objfile, spu_overlay_data);
1748 if (tbl)
1749 return tbl;
1750
1751 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1752 if (!ovly_table_msym)
1753 return NULL;
1754
c378eb4e
MS
1755 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1756 NULL, objfile);
dcf52cd8
UW
1757 if (!ovly_buf_table_msym)
1758 return NULL;
1759
1760 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1761 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1762
1763 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1764 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1765
1766 ovly_table = xmalloc (ovly_table_size);
1767 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1768
1769 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1770 objfile->sections_end - objfile->sections,
1771 struct spu_overlay_table);
1772
1773 for (i = 0; i < ovly_table_size / 16; i++)
1774 {
e17a4113
UW
1775 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1776 4, byte_order);
1777 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1778 4, byte_order);
1779 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1780 4, byte_order);
1781 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1782 4, byte_order);
dcf52cd8
UW
1783
1784 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1785 continue;
1786
1787 ALL_OBJFILE_OSECTIONS (objfile, osect)
1788 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1789 && pos == osect->the_bfd_section->filepos)
1790 {
1791 int ndx = osect - objfile->sections;
1792 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1793 tbl[ndx].mapped_val = i + 1;
1794 break;
1795 }
1796 }
1797
1798 xfree (ovly_table);
1799 set_objfile_data (objfile, spu_overlay_data, tbl);
1800 return tbl;
1801}
1802
1803/* Read _ovly_buf_table entry from the target to dermine whether
1804 OSECT is currently mapped, and update the mapped state. */
1805static void
1806spu_overlay_update_osect (struct obj_section *osect)
1807{
e17a4113
UW
1808 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1809 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1810 struct spu_overlay_table *ovly_table;
85e747d2 1811 CORE_ADDR id, val;
dcf52cd8
UW
1812
1813 ovly_table = spu_get_overlay_table (osect->objfile);
1814 if (!ovly_table)
1815 return;
1816
1817 ovly_table += osect - osect->objfile->sections;
1818 if (ovly_table->mapped_ptr == 0)
1819 return;
1820
85e747d2
UW
1821 id = SPUADDR_SPU (obj_section_addr (osect));
1822 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1823 4, byte_order);
dcf52cd8
UW
1824 osect->ovly_mapped = (val == ovly_table->mapped_val);
1825}
1826
1827/* If OSECT is NULL, then update all sections' mapped state.
1828 If OSECT is non-NULL, then update only OSECT's mapped state. */
1829static void
1830spu_overlay_update (struct obj_section *osect)
1831{
1832 /* Just one section. */
1833 if (osect)
1834 spu_overlay_update_osect (osect);
1835
1836 /* All sections. */
1837 else
1838 {
1839 struct objfile *objfile;
1840
1841 ALL_OBJSECTIONS (objfile, osect)
714835d5 1842 if (section_is_overlay (osect))
dcf52cd8
UW
1843 spu_overlay_update_osect (osect);
1844 }
1845}
1846
1847/* Whenever a new objfile is loaded, read the target's _ovly_table.
1848 If there is one, go through all sections and make sure for non-
1849 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1850 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1851static void
1852spu_overlay_new_objfile (struct objfile *objfile)
1853{
1854 struct spu_overlay_table *ovly_table;
1855 struct obj_section *osect;
1856
1857 /* If we've already touched this file, do nothing. */
1858 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1859 return;
1860
0391f248
UW
1861 /* Consider only SPU objfiles. */
1862 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1863 return;
1864
dcf52cd8
UW
1865 /* Check if this objfile has overlays. */
1866 ovly_table = spu_get_overlay_table (objfile);
1867 if (!ovly_table)
1868 return;
1869
1870 /* Now go and fiddle with all the LMAs. */
1871 ALL_OBJFILE_OSECTIONS (objfile, osect)
1872 {
1873 bfd *obfd = objfile->obfd;
1874 asection *bsect = osect->the_bfd_section;
1875 int ndx = osect - objfile->sections;
1876
1877 if (ovly_table[ndx].mapped_ptr == 0)
1878 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1879 else
d2ed6730 1880 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1881 }
1882}
1883
771b4502 1884
3285f3fe
UW
1885/* Insert temporary breakpoint on "main" function of newly loaded
1886 SPE context OBJFILE. */
1887static void
1888spu_catch_start (struct objfile *objfile)
1889{
1890 struct minimal_symbol *minsym;
1891 struct symtab *symtab;
1892 CORE_ADDR pc;
1893 char buf[32];
1894
1895 /* Do this only if requested by "set spu stop-on-load on". */
1896 if (!spu_stop_on_load_p)
1897 return;
1898
1899 /* Consider only SPU objfiles. */
1900 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1901 return;
1902
1903 /* The main objfile is handled differently. */
1904 if (objfile == symfile_objfile)
1905 return;
1906
1907 /* There can be multiple symbols named "main". Search for the
1908 "main" in *this* objfile. */
1909 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1910 if (!minsym)
1911 return;
1912
1913 /* If we have debugging information, try to use it -- this
1914 will allow us to properly skip the prologue. */
1915 pc = SYMBOL_VALUE_ADDRESS (minsym);
1916 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1917 if (symtab != NULL)
1918 {
1919 struct blockvector *bv = BLOCKVECTOR (symtab);
1920 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1921 struct symbol *sym;
1922 struct symtab_and_line sal;
1923
94af9270 1924 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
3285f3fe
UW
1925 if (sym)
1926 {
1927 fixup_symbol_section (sym, objfile);
1928 sal = find_function_start_sal (sym, 1);
1929 pc = sal.pc;
1930 }
1931 }
1932
1933 /* Use a numerical address for the set_breakpoint command to avoid having
1934 the breakpoint re-set incorrectly. */
1935 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
d8c09fb5
JK
1936 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
1937 NULL /* cond_string */, -1 /* thread */,
1938 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 1939 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
1940 0 /* ignore_count */,
1941 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f
UW
1942 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
1943 1 /* enabled */, 0 /* internal */);
3285f3fe
UW
1944}
1945
1946
ff1a52c6
UW
1947/* Look up OBJFILE loaded into FRAME's SPU context. */
1948static struct objfile *
1949spu_objfile_from_frame (struct frame_info *frame)
1950{
1951 struct gdbarch *gdbarch = get_frame_arch (frame);
1952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1953 struct objfile *obj;
1954
1955 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1956 return NULL;
1957
1958 ALL_OBJFILES (obj)
1959 {
1960 if (obj->sections != obj->sections_end
1961 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
1962 return obj;
1963 }
1964
1965 return NULL;
1966}
1967
1968/* Flush cache for ea pointer access if available. */
1969static void
1970flush_ea_cache (void)
1971{
1972 struct minimal_symbol *msymbol;
1973 struct objfile *obj;
1974
1975 if (!has_stack_frames ())
1976 return;
1977
1978 obj = spu_objfile_from_frame (get_current_frame ());
1979 if (obj == NULL)
1980 return;
1981
1982 /* Lookup inferior function __cache_flush. */
1983 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
1984 if (msymbol != NULL)
1985 {
1986 struct type *type;
1987 CORE_ADDR addr;
1988
1989 type = objfile_type (obj)->builtin_void;
1990 type = lookup_function_type (type);
1991 type = lookup_pointer_type (type);
1992 addr = SYMBOL_VALUE_ADDRESS (msymbol);
1993
1994 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
1995 }
1996}
1997
1998/* This handler is called when the inferior has stopped. If it is stopped in
1999 SPU architecture then flush the ea cache if used. */
2000static void
2001spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2002{
2003 if (!spu_auto_flush_cache_p)
2004 return;
2005
2006 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2007 re-entering this function when __cache_flush stops. */
2008 spu_auto_flush_cache_p = 0;
2009 flush_ea_cache ();
2010 spu_auto_flush_cache_p = 1;
2011}
2012
2013
23d964e7
UW
2014/* "info spu" commands. */
2015
2016static void
2017info_spu_event_command (char *args, int from_tty)
2018{
2019 struct frame_info *frame = get_selected_frame (NULL);
2020 ULONGEST event_status = 0;
2021 ULONGEST event_mask = 0;
2022 struct cleanup *chain;
2023 gdb_byte buf[100];
2024 char annex[32];
2025 LONGEST len;
2026 int rc, id;
2027
0391f248
UW
2028 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2029 error (_("\"info spu\" is only supported on the SPU architecture."));
2030
23d964e7
UW
2031 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2032
2033 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2034 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2035 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2036 if (len <= 0)
2037 error (_("Could not read event_status."));
9971ac47 2038 buf[len] = '\0';
23d964e7
UW
2039 event_status = strtoulst (buf, NULL, 16);
2040
2041 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2042 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2043 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2044 if (len <= 0)
2045 error (_("Could not read event_mask."));
9971ac47 2046 buf[len] = '\0';
23d964e7
UW
2047 event_mask = strtoulst (buf, NULL, 16);
2048
31a0ae49 2049 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
23d964e7 2050
31a0ae49 2051 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2052 {
31a0ae49 2053 ui_out_field_fmt (current_uiout, "event_status",
23d964e7 2054 "0x%s", phex_nz (event_status, 4));
31a0ae49 2055 ui_out_field_fmt (current_uiout, "event_mask",
23d964e7
UW
2056 "0x%s", phex_nz (event_mask, 4));
2057 }
2058 else
2059 {
2060 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2061 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2062 }
2063
2064 do_cleanups (chain);
2065}
2066
2067static void
2068info_spu_signal_command (char *args, int from_tty)
2069{
2070 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2071 struct gdbarch *gdbarch = get_frame_arch (frame);
2072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2073 ULONGEST signal1 = 0;
2074 ULONGEST signal1_type = 0;
2075 int signal1_pending = 0;
2076 ULONGEST signal2 = 0;
2077 ULONGEST signal2_type = 0;
2078 int signal2_pending = 0;
2079 struct cleanup *chain;
2080 char annex[32];
2081 gdb_byte buf[100];
2082 LONGEST len;
2083 int rc, id;
2084
e17a4113 2085 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2086 error (_("\"info spu\" is only supported on the SPU architecture."));
2087
23d964e7
UW
2088 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2089
2090 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2091 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2092 if (len < 0)
2093 error (_("Could not read signal1."));
2094 else if (len == 4)
2095 {
e17a4113 2096 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2097 signal1_pending = 1;
2098 }
2099
2100 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2101 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2102 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2103 if (len <= 0)
2104 error (_("Could not read signal1_type."));
9971ac47 2105 buf[len] = '\0';
23d964e7
UW
2106 signal1_type = strtoulst (buf, NULL, 16);
2107
2108 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2109 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2110 if (len < 0)
2111 error (_("Could not read signal2."));
2112 else if (len == 4)
2113 {
e17a4113 2114 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2115 signal2_pending = 1;
2116 }
2117
2118 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2119 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2120 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2121 if (len <= 0)
2122 error (_("Could not read signal2_type."));
9971ac47 2123 buf[len] = '\0';
23d964e7
UW
2124 signal2_type = strtoulst (buf, NULL, 16);
2125
31a0ae49 2126 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
23d964e7 2127
31a0ae49 2128 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2129 {
31a0ae49
JK
2130 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2131 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2132 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2133 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2134 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2135 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
23d964e7
UW
2136 }
2137 else
2138 {
2139 if (signal1_pending)
2140 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2141 else
2142 printf_filtered (_("Signal 1 not pending "));
2143
2144 if (signal1_type)
23d964e7 2145 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2146 else
2147 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2148
2149 if (signal2_pending)
2150 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2151 else
2152 printf_filtered (_("Signal 2 not pending "));
2153
2154 if (signal2_type)
23d964e7 2155 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2156 else
2157 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2158 }
2159
2160 do_cleanups (chain);
2161}
2162
2163static void
e17a4113 2164info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2165 const char *field, const char *msg)
2166{
2167 struct cleanup *chain;
2168 int i;
2169
2170 if (nr <= 0)
2171 return;
2172
31a0ae49 2173 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
23d964e7 2174
31a0ae49
JK
2175 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2176 ui_out_table_body (current_uiout);
23d964e7
UW
2177
2178 for (i = 0; i < nr; i++)
2179 {
2180 struct cleanup *val_chain;
2181 ULONGEST val;
31a0ae49 2182 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
e17a4113 2183 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
31a0ae49 2184 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
23d964e7
UW
2185 do_cleanups (val_chain);
2186
31a0ae49 2187 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2188 printf_filtered ("\n");
2189 }
2190
2191 do_cleanups (chain);
2192}
2193
2194static void
2195info_spu_mailbox_command (char *args, int from_tty)
2196{
2197 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2198 struct gdbarch *gdbarch = get_frame_arch (frame);
2199 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2200 struct cleanup *chain;
2201 char annex[32];
2202 gdb_byte buf[1024];
2203 LONGEST len;
2204 int i, id;
2205
e17a4113 2206 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2207 error (_("\"info spu\" is only supported on the SPU architecture."));
2208
23d964e7
UW
2209 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2210
31a0ae49 2211 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2212
2213 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2214 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2215 buf, 0, sizeof buf);
2216 if (len < 0)
2217 error (_("Could not read mbox_info."));
2218
e17a4113
UW
2219 info_spu_mailbox_list (buf, len / 4, byte_order,
2220 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2221
2222 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2223 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2224 buf, 0, sizeof buf);
2225 if (len < 0)
2226 error (_("Could not read ibox_info."));
2227
e17a4113
UW
2228 info_spu_mailbox_list (buf, len / 4, byte_order,
2229 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2230
2231 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2232 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2233 buf, 0, sizeof buf);
2234 if (len < 0)
2235 error (_("Could not read wbox_info."));
2236
e17a4113
UW
2237 info_spu_mailbox_list (buf, len / 4, byte_order,
2238 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2239
2240 do_cleanups (chain);
2241}
2242
2243static ULONGEST
2244spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2245{
2246 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2247 return (word >> (63 - last)) & mask;
2248}
2249
2250static void
e17a4113 2251info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7
UW
2252{
2253 static char *spu_mfc_opcode[256] =
2254 {
2255 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2256 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2257 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2258 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2259 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2260 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2261 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2262 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2263 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2264 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2265 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2266 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2267 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2268 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2269 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2270 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2271 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2272 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2273 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2274 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2275 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2276 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2277 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2278 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2279 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2280 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2281 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2282 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2283 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2284 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2285 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2286 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2287 };
2288
12ab8a60
UW
2289 int *seq = alloca (nr * sizeof (int));
2290 int done = 0;
23d964e7 2291 struct cleanup *chain;
12ab8a60
UW
2292 int i, j;
2293
2294
2295 /* Determine sequence in which to display (valid) entries. */
2296 for (i = 0; i < nr; i++)
2297 {
2298 /* Search for the first valid entry all of whose
2299 dependencies are met. */
2300 for (j = 0; j < nr; j++)
2301 {
2302 ULONGEST mfc_cq_dw3;
2303 ULONGEST dependencies;
2304
2305 if (done & (1 << (nr - 1 - j)))
2306 continue;
2307
e17a4113
UW
2308 mfc_cq_dw3
2309 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2310 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2311 continue;
2312
2313 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2314 if ((dependencies & done) != dependencies)
2315 continue;
2316
2317 seq[i] = j;
2318 done |= 1 << (nr - 1 - j);
2319 break;
2320 }
2321
2322 if (j == nr)
2323 break;
2324 }
2325
2326 nr = i;
2327
23d964e7 2328
31a0ae49
JK
2329 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2330 "dma_cmd");
23d964e7 2331
31a0ae49
JK
2332 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2333 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2334 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2335 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2336 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2337 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2338 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2339 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2340 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2341 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
23d964e7 2342
31a0ae49 2343 ui_out_table_body (current_uiout);
23d964e7
UW
2344
2345 for (i = 0; i < nr; i++)
2346 {
2347 struct cleanup *cmd_chain;
2348 ULONGEST mfc_cq_dw0;
2349 ULONGEST mfc_cq_dw1;
2350 ULONGEST mfc_cq_dw2;
23d964e7
UW
2351 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2352 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2353 ULONGEST mfc_ea;
2354 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2355
2356 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2357 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2358
e17a4113
UW
2359 mfc_cq_dw0
2360 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2361 mfc_cq_dw1
2362 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2363 mfc_cq_dw2
2364 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2365
2366 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2367 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2368 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2369 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2370 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2371 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2372 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2373
2374 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2375 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2376
2377 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2378 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2379 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2380 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2381 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2382 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2383
31a0ae49 2384 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
23d964e7
UW
2385
2386 if (spu_mfc_opcode[mfc_cmd_opcode])
31a0ae49 2387 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
23d964e7 2388 else
31a0ae49 2389 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
23d964e7 2390
31a0ae49
JK
2391 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2392 ui_out_field_int (current_uiout, "tid", tclass_id);
2393 ui_out_field_int (current_uiout, "rid", rclass_id);
23d964e7
UW
2394
2395 if (ea_valid_p)
31a0ae49 2396 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
23d964e7 2397 else
31a0ae49 2398 ui_out_field_skip (current_uiout, "ea");
23d964e7 2399
31a0ae49 2400 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
23d964e7 2401 if (qw_valid_p)
31a0ae49 2402 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
23d964e7 2403 else
31a0ae49 2404 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
23d964e7
UW
2405
2406 if (list_valid_p)
2407 {
31a0ae49
JK
2408 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2409 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
23d964e7
UW
2410 }
2411 else
2412 {
31a0ae49
JK
2413 ui_out_field_skip (current_uiout, "lstaddr");
2414 ui_out_field_skip (current_uiout, "lstsize");
23d964e7
UW
2415 }
2416
2417 if (cmd_error_p)
31a0ae49 2418 ui_out_field_string (current_uiout, "error_p", "*");
23d964e7 2419 else
31a0ae49 2420 ui_out_field_skip (current_uiout, "error_p");
23d964e7
UW
2421
2422 do_cleanups (cmd_chain);
2423
31a0ae49 2424 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2425 printf_filtered ("\n");
2426 }
2427
2428 do_cleanups (chain);
2429}
2430
2431static void
2432info_spu_dma_command (char *args, int from_tty)
2433{
2434 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2435 struct gdbarch *gdbarch = get_frame_arch (frame);
2436 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2437 ULONGEST dma_info_type;
2438 ULONGEST dma_info_mask;
2439 ULONGEST dma_info_status;
2440 ULONGEST dma_info_stall_and_notify;
2441 ULONGEST dma_info_atomic_command_status;
2442 struct cleanup *chain;
2443 char annex[32];
2444 gdb_byte buf[1024];
2445 LONGEST len;
2446 int i, id;
2447
0391f248
UW
2448 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2449 error (_("\"info spu\" is only supported on the SPU architecture."));
2450
23d964e7
UW
2451 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2452
2453 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2454 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2455 buf, 0, 40 + 16 * 32);
2456 if (len <= 0)
2457 error (_("Could not read dma_info."));
2458
e17a4113
UW
2459 dma_info_type
2460 = extract_unsigned_integer (buf, 8, byte_order);
2461 dma_info_mask
2462 = extract_unsigned_integer (buf + 8, 8, byte_order);
2463 dma_info_status
2464 = extract_unsigned_integer (buf + 16, 8, byte_order);
2465 dma_info_stall_and_notify
2466 = extract_unsigned_integer (buf + 24, 8, byte_order);
2467 dma_info_atomic_command_status
2468 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2469
31a0ae49 2470 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
23d964e7 2471
31a0ae49 2472 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2473 {
31a0ae49 2474 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
23d964e7 2475 phex_nz (dma_info_type, 4));
31a0ae49 2476 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
23d964e7 2477 phex_nz (dma_info_mask, 4));
31a0ae49 2478 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
23d964e7 2479 phex_nz (dma_info_status, 4));
31a0ae49 2480 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
23d964e7 2481 phex_nz (dma_info_stall_and_notify, 4));
31a0ae49 2482 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
23d964e7
UW
2483 phex_nz (dma_info_atomic_command_status, 4));
2484 }
2485 else
2486 {
8fbde58b 2487 const char *query_msg = _("no query pending");
23d964e7 2488
8fbde58b
UW
2489 if (dma_info_type & 4)
2490 switch (dma_info_type & 3)
2491 {
2492 case 1: query_msg = _("'any' query pending"); break;
2493 case 2: query_msg = _("'all' query pending"); break;
2494 default: query_msg = _("undefined query type"); break;
2495 }
23d964e7
UW
2496
2497 printf_filtered (_("Tag-Group Status 0x%s\n"),
2498 phex (dma_info_status, 4));
2499 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2500 phex (dma_info_mask, 4), query_msg);
2501 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2502 phex (dma_info_stall_and_notify, 4));
2503 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2504 phex (dma_info_atomic_command_status, 4));
2505 printf_filtered ("\n");
2506 }
2507
e17a4113 2508 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2509 do_cleanups (chain);
2510}
2511
2512static void
2513info_spu_proxydma_command (char *args, int from_tty)
2514{
2515 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2516 struct gdbarch *gdbarch = get_frame_arch (frame);
2517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2518 ULONGEST dma_info_type;
2519 ULONGEST dma_info_mask;
2520 ULONGEST dma_info_status;
2521 struct cleanup *chain;
2522 char annex[32];
2523 gdb_byte buf[1024];
2524 LONGEST len;
2525 int i, id;
2526
e17a4113 2527 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2528 error (_("\"info spu\" is only supported on the SPU architecture."));
2529
23d964e7
UW
2530 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2531
2532 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2533 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2534 buf, 0, 24 + 8 * 32);
2535 if (len <= 0)
2536 error (_("Could not read proxydma_info."));
2537
e17a4113
UW
2538 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2539 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2540 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2541
31a0ae49
JK
2542 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2543 "SPUInfoProxyDMA");
23d964e7 2544
31a0ae49 2545 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2546 {
31a0ae49 2547 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
23d964e7 2548 phex_nz (dma_info_type, 4));
31a0ae49 2549 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
23d964e7 2550 phex_nz (dma_info_mask, 4));
31a0ae49 2551 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
23d964e7
UW
2552 phex_nz (dma_info_status, 4));
2553 }
2554 else
2555 {
2556 const char *query_msg;
2557
8fbde58b 2558 switch (dma_info_type & 3)
23d964e7
UW
2559 {
2560 case 0: query_msg = _("no query pending"); break;
2561 case 1: query_msg = _("'any' query pending"); break;
2562 case 2: query_msg = _("'all' query pending"); break;
2563 default: query_msg = _("undefined query type"); break;
2564 }
2565
2566 printf_filtered (_("Tag-Group Status 0x%s\n"),
2567 phex (dma_info_status, 4));
2568 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2569 phex (dma_info_mask, 4), query_msg);
2570 printf_filtered ("\n");
2571 }
2572
e17a4113 2573 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2574 do_cleanups (chain);
2575}
2576
2577static void
2578info_spu_command (char *args, int from_tty)
2579{
c378eb4e
MS
2580 printf_unfiltered (_("\"info spu\" must be followed by "
2581 "the name of an SPU facility.\n"));
23d964e7
UW
2582 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2583}
2584
2585
3285f3fe
UW
2586/* Root of all "set spu "/"show spu " commands. */
2587
2588static void
2589show_spu_command (char *args, int from_tty)
2590{
2591 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2592}
2593
2594static void
2595set_spu_command (char *args, int from_tty)
2596{
2597 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2598}
2599
2600static void
2601show_spu_stop_on_load (struct ui_file *file, int from_tty,
2602 struct cmd_list_element *c, const char *value)
2603{
2604 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2605 value);
2606}
2607
ff1a52c6
UW
2608static void
2609show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2610 struct cmd_list_element *c, const char *value)
2611{
2612 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2613 value);
2614}
2615
3285f3fe 2616
771b4502
UW
2617/* Set up gdbarch struct. */
2618
2619static struct gdbarch *
2620spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2621{
2622 struct gdbarch *gdbarch;
794ac428 2623 struct gdbarch_tdep *tdep;
85e747d2
UW
2624 int id = -1;
2625
2626 /* Which spufs ID was requested as address space? */
2627 if (info.tdep_info)
2628 id = *(int *)info.tdep_info;
2629 /* For objfile architectures of SPU solibs, decode the ID from the name.
2630 This assumes the filename convention employed by solib-spu.c. */
2631 else if (info.abfd)
2632 {
2633 char *name = strrchr (info.abfd->filename, '@');
2634 if (name)
2635 sscanf (name, "@0x%*x <%d>", &id);
2636 }
771b4502 2637
85e747d2
UW
2638 /* Find a candidate among extant architectures. */
2639 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2640 arches != NULL;
2641 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2642 {
2643 tdep = gdbarch_tdep (arches->gdbarch);
2644 if (tdep && tdep->id == id)
2645 return arches->gdbarch;
2646 }
771b4502 2647
85e747d2 2648 /* None found, so create a new architecture. */
794ac428 2649 tdep = XCALLOC (1, struct gdbarch_tdep);
85e747d2 2650 tdep->id = id;
794ac428 2651 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2652
2653 /* Disassembler. */
85e747d2 2654 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2655
2656 /* Registers. */
2657 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2658 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2659 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2660 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2661 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2662 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2663 set_gdbarch_register_name (gdbarch, spu_register_name);
2664 set_gdbarch_register_type (gdbarch, spu_register_type);
2665 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2666 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2667 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502
UW
2668 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2669
2670 /* Data types. */
2671 set_gdbarch_char_signed (gdbarch, 0);
2672 set_gdbarch_ptr_bit (gdbarch, 32);
2673 set_gdbarch_addr_bit (gdbarch, 32);
2674 set_gdbarch_short_bit (gdbarch, 16);
2675 set_gdbarch_int_bit (gdbarch, 32);
2676 set_gdbarch_long_bit (gdbarch, 32);
2677 set_gdbarch_long_long_bit (gdbarch, 64);
2678 set_gdbarch_float_bit (gdbarch, 32);
2679 set_gdbarch_double_bit (gdbarch, 64);
2680 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2681 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2682 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2683 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2684
ff1a52c6 2685 /* Address handling. */
85e747d2 2686 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2687 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2688 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2689 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2690 set_gdbarch_address_class_type_flags_to_name
2691 (gdbarch, spu_address_class_type_flags_to_name);
2692 set_gdbarch_address_class_name_to_type_flags
2693 (gdbarch, spu_address_class_name_to_type_flags);
2694
36acd84e 2695
771b4502 2696 /* Inferior function calls. */
7b3dc0b7
UW
2697 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2698 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2699 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2700 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2701 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2702 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2703 set_gdbarch_return_value (gdbarch, spu_return_value);
2704
2705 /* Frame handling. */
2706 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8d998b8f 2707 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2708 frame_base_set_default (gdbarch, &spu_frame_base);
2709 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2710 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2711 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2712 set_gdbarch_frame_args_skip (gdbarch, 0);
2713 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
fe5febed 2714 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
771b4502 2715
cc5f0d61
UW
2716 /* Cell/B.E. cross-architecture unwinder support. */
2717 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2718
771b4502
UW
2719 /* Breakpoints. */
2720 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2721 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
d03285ec 2722 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502
UW
2723 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2724 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2725 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2726
dcf52cd8
UW
2727 /* Overlays. */
2728 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2729
771b4502
UW
2730 return gdbarch;
2731}
2732
63807e1d
PA
2733/* Provide a prototype to silence -Wmissing-prototypes. */
2734extern initialize_file_ftype _initialize_spu_tdep;
2735
771b4502
UW
2736void
2737_initialize_spu_tdep (void)
2738{
2739 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2740
dcf52cd8
UW
2741 /* Add ourselves to objfile event chain. */
2742 observer_attach_new_objfile (spu_overlay_new_objfile);
2743 spu_overlay_data = register_objfile_data ();
23d964e7 2744
3285f3fe
UW
2745 /* Install spu stop-on-load handler. */
2746 observer_attach_new_objfile (spu_catch_start);
2747
ff1a52c6
UW
2748 /* Add ourselves to normal_stop event chain. */
2749 observer_attach_normal_stop (spu_attach_normal_stop);
2750
3285f3fe
UW
2751 /* Add root prefix command for all "set spu"/"show spu" commands. */
2752 add_prefix_cmd ("spu", no_class, set_spu_command,
2753 _("Various SPU specific commands."),
2754 &setspucmdlist, "set spu ", 0, &setlist);
2755 add_prefix_cmd ("spu", no_class, show_spu_command,
2756 _("Various SPU specific commands."),
2757 &showspucmdlist, "show spu ", 0, &showlist);
2758
2759 /* Toggle whether or not to add a temporary breakpoint at the "main"
2760 function of new SPE contexts. */
2761 add_setshow_boolean_cmd ("stop-on-load", class_support,
2762 &spu_stop_on_load_p, _("\
2763Set whether to stop for new SPE threads."),
2764 _("\
2765Show whether to stop for new SPE threads."),
2766 _("\
2767Use \"on\" to give control to the user when a new SPE thread\n\
2768enters its \"main\" function.\n\
2769Use \"off\" to disable stopping for new SPE threads."),
2770 NULL,
2771 show_spu_stop_on_load,
2772 &setspucmdlist, &showspucmdlist);
2773
ff1a52c6
UW
2774 /* Toggle whether or not to automatically flush the software-managed
2775 cache whenever SPE execution stops. */
2776 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2777 &spu_auto_flush_cache_p, _("\
2778Set whether to automatically flush the software-managed cache."),
2779 _("\
2780Show whether to automatically flush the software-managed cache."),
2781 _("\
2782Use \"on\" to automatically flush the software-managed cache\n\
2783whenever SPE execution stops.\n\
2784Use \"off\" to never automatically flush the software-managed cache."),
2785 NULL,
2786 show_spu_auto_flush_cache,
2787 &setspucmdlist, &showspucmdlist);
2788
23d964e7
UW
2789 /* Add root prefix command for all "info spu" commands. */
2790 add_prefix_cmd ("spu", class_info, info_spu_command,
2791 _("Various SPU specific commands."),
2792 &infospucmdlist, "info spu ", 0, &infolist);
2793
2794 /* Add various "info spu" commands. */
2795 add_cmd ("event", class_info, info_spu_event_command,
2796 _("Display SPU event facility status.\n"),
2797 &infospucmdlist);
2798 add_cmd ("signal", class_info, info_spu_signal_command,
2799 _("Display SPU signal notification facility status.\n"),
2800 &infospucmdlist);
2801 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2802 _("Display SPU mailbox facility status.\n"),
2803 &infospucmdlist);
2804 add_cmd ("dma", class_info, info_spu_dma_command,
2805 _("Display MFC DMA status.\n"),
2806 &infospucmdlist);
2807 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2808 _("Display MFC Proxy-DMA status.\n"),
2809 &infospucmdlist);
771b4502 2810}
This page took 0.644044 seconds and 4 git commands to generate.