Commit | Line | Data |
---|---|---|
771b4502 | 1 | /* SPU target-dependent code for GDB, the GNU debugger. |
0b302171 | 2 | Copyright (C) 2006-2012 Free Software Foundation, Inc. |
771b4502 UW |
3 | |
4 | Contributed by Ulrich Weigand <uweigand@de.ibm.com>. | |
5 | Based on a port by Sid Manning <sid@us.ibm.com>. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
771b4502 UW |
12 | (at your option) any later version. |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
771b4502 UW |
21 | |
22 | #include "defs.h" | |
23 | #include "arch-utils.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcmd.h" | |
26 | #include "gdbcore.h" | |
27 | #include "gdb_string.h" | |
28 | #include "gdb_assert.h" | |
29 | #include "frame.h" | |
30 | #include "frame-unwind.h" | |
31 | #include "frame-base.h" | |
32 | #include "trad-frame.h" | |
33 | #include "symtab.h" | |
34 | #include "symfile.h" | |
35 | #include "value.h" | |
36 | #include "inferior.h" | |
37 | #include "dis-asm.h" | |
38 | #include "objfiles.h" | |
39 | #include "language.h" | |
40 | #include "regcache.h" | |
41 | #include "reggroups.h" | |
42 | #include "floatformat.h" | |
3285f3fe | 43 | #include "block.h" |
dcf52cd8 | 44 | #include "observer.h" |
ff1a52c6 | 45 | #include "infcall.h" |
54fcddd0 | 46 | #include "dwarf2.h" |
8dccd430 | 47 | #include "exceptions.h" |
771b4502 UW |
48 | #include "spu-tdep.h" |
49 | ||
794ac428 | 50 | |
3285f3fe UW |
51 | /* The list of available "set spu " and "show spu " commands. */ |
52 | static struct cmd_list_element *setspucmdlist = NULL; | |
53 | static struct cmd_list_element *showspucmdlist = NULL; | |
54 | ||
55 | /* Whether to stop for new SPE contexts. */ | |
56 | static int spu_stop_on_load_p = 0; | |
ff1a52c6 UW |
57 | /* Whether to automatically flush the SW-managed cache. */ |
58 | static int spu_auto_flush_cache_p = 1; | |
3285f3fe UW |
59 | |
60 | ||
794ac428 UW |
61 | /* The tdep structure. */ |
62 | struct gdbarch_tdep | |
63 | { | |
85e747d2 UW |
64 | /* The spufs ID identifying our address space. */ |
65 | int id; | |
66 | ||
794ac428 UW |
67 | /* SPU-specific vector type. */ |
68 | struct type *spu_builtin_type_vec128; | |
69 | }; | |
70 | ||
71 | ||
f2d43c2c | 72 | /* SPU-specific vector type. */ |
794ac428 UW |
73 | static struct type * |
74 | spu_builtin_type_vec128 (struct gdbarch *gdbarch) | |
75 | { | |
76 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
77 | ||
78 | if (!tdep->spu_builtin_type_vec128) | |
79 | { | |
df4df182 | 80 | const struct builtin_type *bt = builtin_type (gdbarch); |
794ac428 UW |
81 | struct type *t; |
82 | ||
e9bb382b UW |
83 | t = arch_composite_type (gdbarch, |
84 | "__spu_builtin_type_vec128", TYPE_CODE_UNION); | |
df4df182 | 85 | append_composite_type_field (t, "uint128", bt->builtin_int128); |
794ac428 | 86 | append_composite_type_field (t, "v2_int64", |
df4df182 | 87 | init_vector_type (bt->builtin_int64, 2)); |
794ac428 | 88 | append_composite_type_field (t, "v4_int32", |
df4df182 | 89 | init_vector_type (bt->builtin_int32, 4)); |
794ac428 | 90 | append_composite_type_field (t, "v8_int16", |
df4df182 | 91 | init_vector_type (bt->builtin_int16, 8)); |
794ac428 | 92 | append_composite_type_field (t, "v16_int8", |
df4df182 | 93 | init_vector_type (bt->builtin_int8, 16)); |
794ac428 | 94 | append_composite_type_field (t, "v2_double", |
df4df182 | 95 | init_vector_type (bt->builtin_double, 2)); |
794ac428 | 96 | append_composite_type_field (t, "v4_float", |
df4df182 | 97 | init_vector_type (bt->builtin_float, 4)); |
794ac428 | 98 | |
876cecd0 | 99 | TYPE_VECTOR (t) = 1; |
794ac428 UW |
100 | TYPE_NAME (t) = "spu_builtin_type_vec128"; |
101 | ||
102 | tdep->spu_builtin_type_vec128 = t; | |
103 | } | |
104 | ||
105 | return tdep->spu_builtin_type_vec128; | |
106 | } | |
107 | ||
771b4502 | 108 | |
23d964e7 UW |
109 | /* The list of available "info spu " commands. */ |
110 | static struct cmd_list_element *infospucmdlist = NULL; | |
111 | ||
771b4502 UW |
112 | /* Registers. */ |
113 | ||
114 | static const char * | |
d93859e2 | 115 | spu_register_name (struct gdbarch *gdbarch, int reg_nr) |
771b4502 UW |
116 | { |
117 | static char *register_names[] = | |
118 | { | |
119 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
120 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
121 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
122 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
123 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
124 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
125 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
126 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
127 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
128 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
129 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
130 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
131 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
132 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
133 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
134 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
23d964e7 | 135 | "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status" |
771b4502 UW |
136 | }; |
137 | ||
138 | if (reg_nr < 0) | |
139 | return NULL; | |
140 | if (reg_nr >= sizeof register_names / sizeof *register_names) | |
141 | return NULL; | |
142 | ||
143 | return register_names[reg_nr]; | |
144 | } | |
145 | ||
146 | static struct type * | |
147 | spu_register_type (struct gdbarch *gdbarch, int reg_nr) | |
148 | { | |
149 | if (reg_nr < SPU_NUM_GPRS) | |
794ac428 | 150 | return spu_builtin_type_vec128 (gdbarch); |
771b4502 UW |
151 | |
152 | switch (reg_nr) | |
153 | { | |
154 | case SPU_ID_REGNUM: | |
df4df182 | 155 | return builtin_type (gdbarch)->builtin_uint32; |
771b4502 UW |
156 | |
157 | case SPU_PC_REGNUM: | |
0dfff4cb | 158 | return builtin_type (gdbarch)->builtin_func_ptr; |
771b4502 UW |
159 | |
160 | case SPU_SP_REGNUM: | |
0dfff4cb | 161 | return builtin_type (gdbarch)->builtin_data_ptr; |
771b4502 | 162 | |
23d964e7 | 163 | case SPU_FPSCR_REGNUM: |
df4df182 | 164 | return builtin_type (gdbarch)->builtin_uint128; |
23d964e7 UW |
165 | |
166 | case SPU_SRR0_REGNUM: | |
df4df182 | 167 | return builtin_type (gdbarch)->builtin_uint32; |
23d964e7 UW |
168 | |
169 | case SPU_LSLR_REGNUM: | |
df4df182 | 170 | return builtin_type (gdbarch)->builtin_uint32; |
23d964e7 UW |
171 | |
172 | case SPU_DECR_REGNUM: | |
df4df182 | 173 | return builtin_type (gdbarch)->builtin_uint32; |
23d964e7 UW |
174 | |
175 | case SPU_DECR_STATUS_REGNUM: | |
df4df182 | 176 | return builtin_type (gdbarch)->builtin_uint32; |
23d964e7 | 177 | |
771b4502 | 178 | default: |
a73c6dcd | 179 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
771b4502 UW |
180 | } |
181 | } | |
182 | ||
183 | /* Pseudo registers for preferred slots - stack pointer. */ | |
184 | ||
05d1431c | 185 | static enum register_status |
23d964e7 UW |
186 | spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname, |
187 | gdb_byte *buf) | |
188 | { | |
e17a4113 UW |
189 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
190 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
05d1431c | 191 | enum register_status status; |
23d964e7 UW |
192 | gdb_byte reg[32]; |
193 | char annex[32]; | |
194 | ULONGEST id; | |
195 | ||
05d1431c PA |
196 | status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); |
197 | if (status != REG_VALID) | |
198 | return status; | |
23d964e7 UW |
199 | xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname); |
200 | memset (reg, 0, sizeof reg); | |
201 | target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
202 | reg, 0, sizeof reg); | |
203 | ||
e17a4113 | 204 | store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16)); |
05d1431c | 205 | return REG_VALID; |
23d964e7 UW |
206 | } |
207 | ||
05d1431c | 208 | static enum register_status |
771b4502 UW |
209 | spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, |
210 | int regnum, gdb_byte *buf) | |
211 | { | |
212 | gdb_byte reg[16]; | |
23d964e7 UW |
213 | char annex[32]; |
214 | ULONGEST id; | |
05d1431c | 215 | enum register_status status; |
771b4502 UW |
216 | |
217 | switch (regnum) | |
218 | { | |
219 | case SPU_SP_REGNUM: | |
05d1431c PA |
220 | status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); |
221 | if (status != REG_VALID) | |
222 | return status; | |
771b4502 | 223 | memcpy (buf, reg, 4); |
05d1431c | 224 | return status; |
771b4502 | 225 | |
23d964e7 | 226 | case SPU_FPSCR_REGNUM: |
05d1431c PA |
227 | status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); |
228 | if (status != REG_VALID) | |
229 | return status; | |
23d964e7 UW |
230 | xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id); |
231 | target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16); | |
05d1431c | 232 | return status; |
23d964e7 UW |
233 | |
234 | case SPU_SRR0_REGNUM: | |
05d1431c | 235 | return spu_pseudo_register_read_spu (regcache, "srr0", buf); |
23d964e7 UW |
236 | |
237 | case SPU_LSLR_REGNUM: | |
05d1431c | 238 | return spu_pseudo_register_read_spu (regcache, "lslr", buf); |
23d964e7 UW |
239 | |
240 | case SPU_DECR_REGNUM: | |
05d1431c | 241 | return spu_pseudo_register_read_spu (regcache, "decr", buf); |
23d964e7 UW |
242 | |
243 | case SPU_DECR_STATUS_REGNUM: | |
05d1431c | 244 | return spu_pseudo_register_read_spu (regcache, "decr_status", buf); |
23d964e7 | 245 | |
771b4502 UW |
246 | default: |
247 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
248 | } | |
249 | } | |
250 | ||
23d964e7 UW |
251 | static void |
252 | spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname, | |
253 | const gdb_byte *buf) | |
254 | { | |
e17a4113 UW |
255 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
256 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
23d964e7 UW |
257 | gdb_byte reg[32]; |
258 | char annex[32]; | |
259 | ULONGEST id; | |
260 | ||
261 | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | |
262 | xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname); | |
263 | xsnprintf (reg, sizeof reg, "0x%s", | |
e17a4113 | 264 | phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4)); |
23d964e7 UW |
265 | target_write (¤t_target, TARGET_OBJECT_SPU, annex, |
266 | reg, 0, strlen (reg)); | |
267 | } | |
268 | ||
771b4502 UW |
269 | static void |
270 | spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
271 | int regnum, const gdb_byte *buf) | |
272 | { | |
273 | gdb_byte reg[16]; | |
23d964e7 UW |
274 | char annex[32]; |
275 | ULONGEST id; | |
771b4502 UW |
276 | |
277 | switch (regnum) | |
278 | { | |
279 | case SPU_SP_REGNUM: | |
280 | regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); | |
281 | memcpy (reg, buf, 4); | |
282 | regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg); | |
283 | break; | |
284 | ||
23d964e7 UW |
285 | case SPU_FPSCR_REGNUM: |
286 | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | |
287 | xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id); | |
288 | target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16); | |
289 | break; | |
290 | ||
291 | case SPU_SRR0_REGNUM: | |
292 | spu_pseudo_register_write_spu (regcache, "srr0", buf); | |
293 | break; | |
294 | ||
295 | case SPU_LSLR_REGNUM: | |
296 | spu_pseudo_register_write_spu (regcache, "lslr", buf); | |
297 | break; | |
298 | ||
299 | case SPU_DECR_REGNUM: | |
300 | spu_pseudo_register_write_spu (regcache, "decr", buf); | |
301 | break; | |
302 | ||
303 | case SPU_DECR_STATUS_REGNUM: | |
304 | spu_pseudo_register_write_spu (regcache, "decr_status", buf); | |
305 | break; | |
306 | ||
771b4502 UW |
307 | default: |
308 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
309 | } | |
310 | } | |
311 | ||
312 | /* Value conversion -- access scalar values at the preferred slot. */ | |
313 | ||
9acbedc0 UW |
314 | static struct value * |
315 | spu_value_from_register (struct type *type, int regnum, | |
316 | struct frame_info *frame) | |
771b4502 | 317 | { |
9acbedc0 UW |
318 | struct value *value = default_value_from_register (type, regnum, frame); |
319 | int len = TYPE_LENGTH (type); | |
771b4502 | 320 | |
9acbedc0 UW |
321 | if (regnum < SPU_NUM_GPRS && len < 16) |
322 | { | |
323 | int preferred_slot = len < 4 ? 4 - len : 0; | |
324 | set_value_offset (value, preferred_slot); | |
325 | } | |
771b4502 | 326 | |
9acbedc0 | 327 | return value; |
771b4502 UW |
328 | } |
329 | ||
330 | /* Register groups. */ | |
331 | ||
332 | static int | |
333 | spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
334 | struct reggroup *group) | |
335 | { | |
336 | /* Registers displayed via 'info regs'. */ | |
337 | if (group == general_reggroup) | |
338 | return 1; | |
339 | ||
340 | /* Registers displayed via 'info float'. */ | |
341 | if (group == float_reggroup) | |
342 | return 0; | |
343 | ||
344 | /* Registers that need to be saved/restored in order to | |
345 | push or pop frames. */ | |
346 | if (group == save_reggroup || group == restore_reggroup) | |
347 | return 1; | |
348 | ||
349 | return default_register_reggroup_p (gdbarch, regnum, group); | |
350 | } | |
351 | ||
ff1a52c6 UW |
352 | |
353 | /* Address handling. */ | |
36acd84e | 354 | |
85e747d2 UW |
355 | static int |
356 | spu_gdbarch_id (struct gdbarch *gdbarch) | |
357 | { | |
358 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
359 | int id = tdep->id; | |
360 | ||
361 | /* The objfile architecture of a standalone SPU executable does not | |
b021a221 | 362 | provide an SPU ID. Retrieve it from the objfile's relocated |
85e747d2 UW |
363 | address range in this special case. */ |
364 | if (id == -1 | |
365 | && symfile_objfile && symfile_objfile->obfd | |
366 | && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu | |
367 | && symfile_objfile->sections != symfile_objfile->sections_end) | |
368 | id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections)); | |
369 | ||
370 | return id; | |
371 | } | |
372 | ||
ff1a52c6 UW |
373 | static int |
374 | spu_address_class_type_flags (int byte_size, int dwarf2_addr_class) | |
375 | { | |
376 | if (dwarf2_addr_class == 1) | |
377 | return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | |
378 | else | |
379 | return 0; | |
380 | } | |
381 | ||
382 | static const char * | |
383 | spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) | |
384 | { | |
385 | if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) | |
386 | return "__ea"; | |
387 | else | |
388 | return NULL; | |
389 | } | |
390 | ||
391 | static int | |
392 | spu_address_class_name_to_type_flags (struct gdbarch *gdbarch, | |
393 | const char *name, int *type_flags_ptr) | |
394 | { | |
395 | if (strcmp (name, "__ea") == 0) | |
396 | { | |
397 | *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | |
398 | return 1; | |
399 | } | |
400 | else | |
401 | return 0; | |
402 | } | |
403 | ||
85e747d2 UW |
404 | static void |
405 | spu_address_to_pointer (struct gdbarch *gdbarch, | |
406 | struct type *type, gdb_byte *buf, CORE_ADDR addr) | |
407 | { | |
408 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
409 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, | |
410 | SPUADDR_ADDR (addr)); | |
411 | } | |
412 | ||
36acd84e | 413 | static CORE_ADDR |
9898f801 UW |
414 | spu_pointer_to_address (struct gdbarch *gdbarch, |
415 | struct type *type, const gdb_byte *buf) | |
36acd84e | 416 | { |
85e747d2 | 417 | int id = spu_gdbarch_id (gdbarch); |
e17a4113 UW |
418 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
419 | ULONGEST addr | |
420 | = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | |
36acd84e | 421 | |
ff1a52c6 UW |
422 | /* Do not convert __ea pointers. */ |
423 | if (TYPE_ADDRESS_CLASS_1 (type)) | |
424 | return addr; | |
425 | ||
d2ed6730 | 426 | return addr? SPUADDR (id, addr) : 0; |
36acd84e UW |
427 | } |
428 | ||
429 | static CORE_ADDR | |
430 | spu_integer_to_address (struct gdbarch *gdbarch, | |
431 | struct type *type, const gdb_byte *buf) | |
432 | { | |
85e747d2 | 433 | int id = spu_gdbarch_id (gdbarch); |
36acd84e | 434 | ULONGEST addr = unpack_long (type, buf); |
36acd84e | 435 | |
d2ed6730 | 436 | return SPUADDR (id, addr); |
36acd84e UW |
437 | } |
438 | ||
771b4502 UW |
439 | |
440 | /* Decoding SPU instructions. */ | |
441 | ||
442 | enum | |
443 | { | |
444 | op_lqd = 0x34, | |
445 | op_lqx = 0x3c4, | |
446 | op_lqa = 0x61, | |
447 | op_lqr = 0x67, | |
448 | op_stqd = 0x24, | |
449 | op_stqx = 0x144, | |
450 | op_stqa = 0x41, | |
451 | op_stqr = 0x47, | |
452 | ||
453 | op_il = 0x081, | |
454 | op_ila = 0x21, | |
455 | op_a = 0x0c0, | |
456 | op_ai = 0x1c, | |
457 | ||
a536c6d7 | 458 | op_selb = 0x8, |
771b4502 UW |
459 | |
460 | op_br = 0x64, | |
461 | op_bra = 0x60, | |
462 | op_brsl = 0x66, | |
463 | op_brasl = 0x62, | |
464 | op_brnz = 0x42, | |
465 | op_brz = 0x40, | |
466 | op_brhnz = 0x46, | |
467 | op_brhz = 0x44, | |
468 | op_bi = 0x1a8, | |
469 | op_bisl = 0x1a9, | |
470 | op_biz = 0x128, | |
471 | op_binz = 0x129, | |
472 | op_bihz = 0x12a, | |
473 | op_bihnz = 0x12b, | |
474 | }; | |
475 | ||
476 | static int | |
477 | is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb) | |
478 | { | |
479 | if ((insn >> 21) == op) | |
480 | { | |
481 | *rt = insn & 127; | |
482 | *ra = (insn >> 7) & 127; | |
483 | *rb = (insn >> 14) & 127; | |
484 | return 1; | |
485 | } | |
486 | ||
487 | return 0; | |
488 | } | |
489 | ||
490 | static int | |
491 | is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc) | |
492 | { | |
493 | if ((insn >> 28) == op) | |
494 | { | |
495 | *rt = (insn >> 21) & 127; | |
496 | *ra = (insn >> 7) & 127; | |
497 | *rb = (insn >> 14) & 127; | |
498 | *rc = insn & 127; | |
499 | return 1; | |
500 | } | |
501 | ||
502 | return 0; | |
503 | } | |
504 | ||
505 | static int | |
506 | is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7) | |
507 | { | |
508 | if ((insn >> 21) == op) | |
509 | { | |
510 | *rt = insn & 127; | |
511 | *ra = (insn >> 7) & 127; | |
512 | *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40; | |
513 | return 1; | |
514 | } | |
515 | ||
516 | return 0; | |
517 | } | |
518 | ||
519 | static int | |
520 | is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10) | |
521 | { | |
522 | if ((insn >> 24) == op) | |
523 | { | |
524 | *rt = insn & 127; | |
525 | *ra = (insn >> 7) & 127; | |
526 | *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200; | |
527 | return 1; | |
528 | } | |
529 | ||
530 | return 0; | |
531 | } | |
532 | ||
533 | static int | |
534 | is_ri16 (unsigned int insn, int op, int *rt, int *i16) | |
535 | { | |
536 | if ((insn >> 23) == op) | |
537 | { | |
538 | *rt = insn & 127; | |
539 | *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000; | |
540 | return 1; | |
541 | } | |
542 | ||
543 | return 0; | |
544 | } | |
545 | ||
546 | static int | |
547 | is_ri18 (unsigned int insn, int op, int *rt, int *i18) | |
548 | { | |
549 | if ((insn >> 25) == op) | |
550 | { | |
551 | *rt = insn & 127; | |
552 | *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000; | |
553 | return 1; | |
554 | } | |
555 | ||
556 | return 0; | |
557 | } | |
558 | ||
559 | static int | |
560 | is_branch (unsigned int insn, int *offset, int *reg) | |
561 | { | |
562 | int rt, i7, i16; | |
563 | ||
564 | if (is_ri16 (insn, op_br, &rt, &i16) | |
565 | || is_ri16 (insn, op_brsl, &rt, &i16) | |
566 | || is_ri16 (insn, op_brnz, &rt, &i16) | |
567 | || is_ri16 (insn, op_brz, &rt, &i16) | |
568 | || is_ri16 (insn, op_brhnz, &rt, &i16) | |
569 | || is_ri16 (insn, op_brhz, &rt, &i16)) | |
570 | { | |
571 | *reg = SPU_PC_REGNUM; | |
572 | *offset = i16 << 2; | |
573 | return 1; | |
574 | } | |
575 | ||
576 | if (is_ri16 (insn, op_bra, &rt, &i16) | |
577 | || is_ri16 (insn, op_brasl, &rt, &i16)) | |
578 | { | |
579 | *reg = -1; | |
580 | *offset = i16 << 2; | |
581 | return 1; | |
582 | } | |
583 | ||
584 | if (is_ri7 (insn, op_bi, &rt, reg, &i7) | |
585 | || is_ri7 (insn, op_bisl, &rt, reg, &i7) | |
586 | || is_ri7 (insn, op_biz, &rt, reg, &i7) | |
587 | || is_ri7 (insn, op_binz, &rt, reg, &i7) | |
588 | || is_ri7 (insn, op_bihz, &rt, reg, &i7) | |
589 | || is_ri7 (insn, op_bihnz, &rt, reg, &i7)) | |
590 | { | |
591 | *offset = 0; | |
592 | return 1; | |
593 | } | |
594 | ||
595 | return 0; | |
596 | } | |
597 | ||
598 | ||
599 | /* Prolog parsing. */ | |
600 | ||
601 | struct spu_prologue_data | |
602 | { | |
603 | /* Stack frame size. -1 if analysis was unsuccessful. */ | |
604 | int size; | |
605 | ||
606 | /* How to find the CFA. The CFA is equal to SP at function entry. */ | |
607 | int cfa_reg; | |
608 | int cfa_offset; | |
609 | ||
610 | /* Offset relative to CFA where a register is saved. -1 if invalid. */ | |
611 | int reg_offset[SPU_NUM_GPRS]; | |
612 | }; | |
613 | ||
614 | static CORE_ADDR | |
e17a4113 UW |
615 | spu_analyze_prologue (struct gdbarch *gdbarch, |
616 | CORE_ADDR start_pc, CORE_ADDR end_pc, | |
771b4502 UW |
617 | struct spu_prologue_data *data) |
618 | { | |
e17a4113 | 619 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
771b4502 UW |
620 | int found_sp = 0; |
621 | int found_fp = 0; | |
622 | int found_lr = 0; | |
ce50d78b | 623 | int found_bc = 0; |
771b4502 UW |
624 | int reg_immed[SPU_NUM_GPRS]; |
625 | gdb_byte buf[16]; | |
626 | CORE_ADDR prolog_pc = start_pc; | |
627 | CORE_ADDR pc; | |
628 | int i; | |
629 | ||
630 | ||
631 | /* Initialize DATA to default values. */ | |
632 | data->size = -1; | |
633 | ||
634 | data->cfa_reg = SPU_RAW_SP_REGNUM; | |
635 | data->cfa_offset = 0; | |
636 | ||
637 | for (i = 0; i < SPU_NUM_GPRS; i++) | |
638 | data->reg_offset[i] = -1; | |
639 | ||
640 | /* Set up REG_IMMED array. This is non-zero for a register if we know its | |
641 | preferred slot currently holds this immediate value. */ | |
642 | for (i = 0; i < SPU_NUM_GPRS; i++) | |
643 | reg_immed[i] = 0; | |
644 | ||
645 | /* Scan instructions until the first branch. | |
646 | ||
647 | The following instructions are important prolog components: | |
648 | ||
649 | - The first instruction to set up the stack pointer. | |
650 | - The first instruction to set up the frame pointer. | |
651 | - The first instruction to save the link register. | |
ce50d78b | 652 | - The first instruction to save the backchain. |
771b4502 | 653 | |
ce50d78b | 654 | We return the instruction after the latest of these four, |
771b4502 UW |
655 | or the incoming PC if none is found. The first instruction |
656 | to set up the stack pointer also defines the frame size. | |
657 | ||
658 | Note that instructions saving incoming arguments to their stack | |
659 | slots are not counted as important, because they are hard to | |
660 | identify with certainty. This should not matter much, because | |
661 | arguments are relevant only in code compiled with debug data, | |
662 | and in such code the GDB core will advance until the first source | |
663 | line anyway, using SAL data. | |
664 | ||
665 | For purposes of stack unwinding, we analyze the following types | |
666 | of instructions in addition: | |
667 | ||
668 | - Any instruction adding to the current frame pointer. | |
669 | - Any instruction loading an immediate constant into a register. | |
670 | - Any instruction storing a register onto the stack. | |
671 | ||
672 | These are used to compute the CFA and REG_OFFSET output. */ | |
673 | ||
674 | for (pc = start_pc; pc < end_pc; pc += 4) | |
675 | { | |
676 | unsigned int insn; | |
677 | int rt, ra, rb, rc, immed; | |
678 | ||
679 | if (target_read_memory (pc, buf, 4)) | |
680 | break; | |
e17a4113 | 681 | insn = extract_unsigned_integer (buf, 4, byte_order); |
771b4502 UW |
682 | |
683 | /* AI is the typical instruction to set up a stack frame. | |
684 | It is also used to initialize the frame pointer. */ | |
685 | if (is_ri10 (insn, op_ai, &rt, &ra, &immed)) | |
686 | { | |
687 | if (rt == data->cfa_reg && ra == data->cfa_reg) | |
688 | data->cfa_offset -= immed; | |
689 | ||
690 | if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM | |
691 | && !found_sp) | |
692 | { | |
693 | found_sp = 1; | |
694 | prolog_pc = pc + 4; | |
695 | ||
696 | data->size = -immed; | |
697 | } | |
698 | else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM | |
699 | && !found_fp) | |
700 | { | |
701 | found_fp = 1; | |
702 | prolog_pc = pc + 4; | |
703 | ||
704 | data->cfa_reg = SPU_FP_REGNUM; | |
705 | data->cfa_offset -= immed; | |
706 | } | |
707 | } | |
708 | ||
709 | /* A is used to set up stack frames of size >= 512 bytes. | |
710 | If we have tracked the contents of the addend register, | |
711 | we can handle this as well. */ | |
712 | else if (is_rr (insn, op_a, &rt, &ra, &rb)) | |
713 | { | |
714 | if (rt == data->cfa_reg && ra == data->cfa_reg) | |
715 | { | |
716 | if (reg_immed[rb] != 0) | |
717 | data->cfa_offset -= reg_immed[rb]; | |
718 | else | |
719 | data->cfa_reg = -1; /* We don't know the CFA any more. */ | |
720 | } | |
721 | ||
722 | if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM | |
723 | && !found_sp) | |
724 | { | |
725 | found_sp = 1; | |
726 | prolog_pc = pc + 4; | |
727 | ||
728 | if (reg_immed[rb] != 0) | |
729 | data->size = -reg_immed[rb]; | |
730 | } | |
731 | } | |
732 | ||
733 | /* We need to track IL and ILA used to load immediate constants | |
734 | in case they are later used as input to an A instruction. */ | |
735 | else if (is_ri16 (insn, op_il, &rt, &immed)) | |
736 | { | |
737 | reg_immed[rt] = immed; | |
12102450 UW |
738 | |
739 | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | |
740 | found_sp = 1; | |
771b4502 UW |
741 | } |
742 | ||
743 | else if (is_ri18 (insn, op_ila, &rt, &immed)) | |
744 | { | |
745 | reg_immed[rt] = immed & 0x3ffff; | |
12102450 UW |
746 | |
747 | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | |
748 | found_sp = 1; | |
771b4502 UW |
749 | } |
750 | ||
751 | /* STQD is used to save registers to the stack. */ | |
752 | else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed)) | |
753 | { | |
754 | if (ra == data->cfa_reg) | |
755 | data->reg_offset[rt] = data->cfa_offset - (immed << 4); | |
756 | ||
757 | if (ra == data->cfa_reg && rt == SPU_LR_REGNUM | |
758 | && !found_lr) | |
759 | { | |
760 | found_lr = 1; | |
761 | prolog_pc = pc + 4; | |
762 | } | |
ce50d78b UW |
763 | |
764 | if (ra == SPU_RAW_SP_REGNUM | |
765 | && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM) | |
766 | && !found_bc) | |
767 | { | |
768 | found_bc = 1; | |
769 | prolog_pc = pc + 4; | |
770 | } | |
771b4502 UW |
771 | } |
772 | ||
773 | /* _start uses SELB to set up the stack pointer. */ | |
774 | else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc)) | |
775 | { | |
776 | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | |
777 | found_sp = 1; | |
778 | } | |
779 | ||
780 | /* We terminate if we find a branch. */ | |
781 | else if (is_branch (insn, &immed, &ra)) | |
782 | break; | |
783 | } | |
784 | ||
785 | ||
786 | /* If we successfully parsed until here, and didn't find any instruction | |
787 | modifying SP, we assume we have a frameless function. */ | |
788 | if (!found_sp) | |
789 | data->size = 0; | |
790 | ||
791 | /* Return cooked instead of raw SP. */ | |
792 | if (data->cfa_reg == SPU_RAW_SP_REGNUM) | |
793 | data->cfa_reg = SPU_SP_REGNUM; | |
794 | ||
795 | return prolog_pc; | |
796 | } | |
797 | ||
798 | /* Return the first instruction after the prologue starting at PC. */ | |
799 | static CORE_ADDR | |
6093d2eb | 800 | spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
771b4502 UW |
801 | { |
802 | struct spu_prologue_data data; | |
e17a4113 | 803 | return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); |
771b4502 UW |
804 | } |
805 | ||
806 | /* Return the frame pointer in use at address PC. */ | |
807 | static void | |
a54fba4c MD |
808 | spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc, |
809 | int *reg, LONGEST *offset) | |
771b4502 UW |
810 | { |
811 | struct spu_prologue_data data; | |
e17a4113 | 812 | spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); |
771b4502 UW |
813 | |
814 | if (data.size != -1 && data.cfa_reg != -1) | |
815 | { | |
816 | /* The 'frame pointer' address is CFA minus frame size. */ | |
817 | *reg = data.cfa_reg; | |
818 | *offset = data.cfa_offset - data.size; | |
819 | } | |
820 | else | |
821 | { | |
c378eb4e | 822 | /* ??? We don't really know ... */ |
771b4502 UW |
823 | *reg = SPU_SP_REGNUM; |
824 | *offset = 0; | |
825 | } | |
826 | } | |
827 | ||
fe5febed UW |
828 | /* Return true if we are in the function's epilogue, i.e. after the |
829 | instruction that destroyed the function's stack frame. | |
830 | ||
831 | 1) scan forward from the point of execution: | |
832 | a) If you find an instruction that modifies the stack pointer | |
833 | or transfers control (except a return), execution is not in | |
834 | an epilogue, return. | |
835 | b) Stop scanning if you find a return instruction or reach the | |
836 | end of the function or reach the hard limit for the size of | |
837 | an epilogue. | |
838 | 2) scan backward from the point of execution: | |
839 | a) If you find an instruction that modifies the stack pointer, | |
840 | execution *is* in an epilogue, return. | |
841 | b) Stop scanning if you reach an instruction that transfers | |
842 | control or the beginning of the function or reach the hard | |
843 | limit for the size of an epilogue. */ | |
844 | ||
845 | static int | |
846 | spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
847 | { | |
e17a4113 | 848 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
fe5febed UW |
849 | CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; |
850 | bfd_byte buf[4]; | |
851 | unsigned int insn; | |
22e048c9 | 852 | int rt, ra, rb, immed; |
fe5febed UW |
853 | |
854 | /* Find the search limits based on function boundaries and hard limit. | |
855 | We assume the epilogue can be up to 64 instructions long. */ | |
856 | ||
857 | const int spu_max_epilogue_size = 64 * 4; | |
858 | ||
859 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
860 | return 0; | |
861 | ||
862 | if (pc - func_start < spu_max_epilogue_size) | |
863 | epilogue_start = func_start; | |
864 | else | |
865 | epilogue_start = pc - spu_max_epilogue_size; | |
866 | ||
867 | if (func_end - pc < spu_max_epilogue_size) | |
868 | epilogue_end = func_end; | |
869 | else | |
870 | epilogue_end = pc + spu_max_epilogue_size; | |
871 | ||
872 | /* Scan forward until next 'bi $0'. */ | |
873 | ||
874 | for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4) | |
875 | { | |
876 | if (target_read_memory (scan_pc, buf, 4)) | |
877 | return 0; | |
e17a4113 | 878 | insn = extract_unsigned_integer (buf, 4, byte_order); |
fe5febed UW |
879 | |
880 | if (is_branch (insn, &immed, &ra)) | |
881 | { | |
882 | if (immed == 0 && ra == SPU_LR_REGNUM) | |
883 | break; | |
884 | ||
885 | return 0; | |
886 | } | |
887 | ||
888 | if (is_ri10 (insn, op_ai, &rt, &ra, &immed) | |
889 | || is_rr (insn, op_a, &rt, &ra, &rb) | |
890 | || is_ri10 (insn, op_lqd, &rt, &ra, &immed)) | |
891 | { | |
892 | if (rt == SPU_RAW_SP_REGNUM) | |
893 | return 0; | |
894 | } | |
895 | } | |
896 | ||
897 | if (scan_pc >= epilogue_end) | |
898 | return 0; | |
899 | ||
900 | /* Scan backward until adjustment to stack pointer (R1). */ | |
901 | ||
902 | for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4) | |
903 | { | |
904 | if (target_read_memory (scan_pc, buf, 4)) | |
905 | return 0; | |
e17a4113 | 906 | insn = extract_unsigned_integer (buf, 4, byte_order); |
fe5febed UW |
907 | |
908 | if (is_branch (insn, &immed, &ra)) | |
909 | return 0; | |
910 | ||
911 | if (is_ri10 (insn, op_ai, &rt, &ra, &immed) | |
912 | || is_rr (insn, op_a, &rt, &ra, &rb) | |
913 | || is_ri10 (insn, op_lqd, &rt, &ra, &immed)) | |
914 | { | |
915 | if (rt == SPU_RAW_SP_REGNUM) | |
916 | return 1; | |
917 | } | |
918 | } | |
919 | ||
920 | return 0; | |
921 | } | |
922 | ||
923 | ||
771b4502 UW |
924 | /* Normal stack frames. */ |
925 | ||
926 | struct spu_unwind_cache | |
927 | { | |
928 | CORE_ADDR func; | |
929 | CORE_ADDR frame_base; | |
930 | CORE_ADDR local_base; | |
931 | ||
932 | struct trad_frame_saved_reg *saved_regs; | |
933 | }; | |
934 | ||
935 | static struct spu_unwind_cache * | |
8d998b8f | 936 | spu_frame_unwind_cache (struct frame_info *this_frame, |
771b4502 UW |
937 | void **this_prologue_cache) |
938 | { | |
e17a4113 | 939 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
85e747d2 | 940 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 941 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
771b4502 UW |
942 | struct spu_unwind_cache *info; |
943 | struct spu_prologue_data data; | |
85e747d2 | 944 | CORE_ADDR id = tdep->id; |
dcf52cd8 | 945 | gdb_byte buf[16]; |
771b4502 UW |
946 | |
947 | if (*this_prologue_cache) | |
948 | return *this_prologue_cache; | |
949 | ||
950 | info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache); | |
951 | *this_prologue_cache = info; | |
8d998b8f | 952 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
771b4502 UW |
953 | info->frame_base = 0; |
954 | info->local_base = 0; | |
955 | ||
956 | /* Find the start of the current function, and analyze its prologue. */ | |
8d998b8f | 957 | info->func = get_frame_func (this_frame); |
771b4502 UW |
958 | if (info->func == 0) |
959 | { | |
960 | /* Fall back to using the current PC as frame ID. */ | |
8d998b8f | 961 | info->func = get_frame_pc (this_frame); |
771b4502 UW |
962 | data.size = -1; |
963 | } | |
964 | else | |
e17a4113 UW |
965 | spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame), |
966 | &data); | |
771b4502 UW |
967 | |
968 | /* If successful, use prologue analysis data. */ | |
969 | if (data.size != -1 && data.cfa_reg != -1) | |
970 | { | |
971 | CORE_ADDR cfa; | |
972 | int i; | |
771b4502 UW |
973 | |
974 | /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */ | |
8d998b8f | 975 | get_frame_register (this_frame, data.cfa_reg, buf); |
e17a4113 | 976 | cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset; |
85e747d2 | 977 | cfa = SPUADDR (id, cfa); |
771b4502 UW |
978 | |
979 | /* Call-saved register slots. */ | |
980 | for (i = 0; i < SPU_NUM_GPRS; i++) | |
981 | if (i == SPU_LR_REGNUM | |
982 | || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM)) | |
983 | if (data.reg_offset[i] != -1) | |
984 | info->saved_regs[i].addr = cfa - data.reg_offset[i]; | |
985 | ||
771b4502 UW |
986 | /* Frame bases. */ |
987 | info->frame_base = cfa; | |
988 | info->local_base = cfa - data.size; | |
989 | } | |
990 | ||
991 | /* Otherwise, fall back to reading the backchain link. */ | |
992 | else | |
993 | { | |
cdc9523a UW |
994 | CORE_ADDR reg; |
995 | LONGEST backchain; | |
13def385 | 996 | ULONGEST lslr; |
cdc9523a | 997 | int status; |
771b4502 | 998 | |
13def385 UW |
999 | /* Get local store limit. */ |
1000 | lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM); | |
1001 | if (!lslr) | |
1002 | lslr = (ULONGEST) -1; | |
1003 | ||
771b4502 | 1004 | /* Get the backchain. */ |
8d998b8f | 1005 | reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM); |
85e747d2 UW |
1006 | status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order, |
1007 | &backchain); | |
771b4502 UW |
1008 | |
1009 | /* A zero backchain terminates the frame chain. Also, sanity | |
1010 | check against the local store size limit. */ | |
13def385 | 1011 | if (status && backchain > 0 && backchain <= lslr) |
771b4502 UW |
1012 | { |
1013 | /* Assume the link register is saved into its slot. */ | |
13def385 | 1014 | if (backchain + 16 <= lslr) |
c378eb4e MS |
1015 | info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, |
1016 | backchain + 16); | |
771b4502 | 1017 | |
771b4502 | 1018 | /* Frame bases. */ |
85e747d2 UW |
1019 | info->frame_base = SPUADDR (id, backchain); |
1020 | info->local_base = SPUADDR (id, reg); | |
771b4502 UW |
1021 | } |
1022 | } | |
dcf52cd8 | 1023 | |
c4891da7 UW |
1024 | /* If we didn't find a frame, we cannot determine SP / return address. */ |
1025 | if (info->frame_base == 0) | |
1026 | return info; | |
1027 | ||
dcf52cd8 | 1028 | /* The previous SP is equal to the CFA. */ |
85e747d2 UW |
1029 | trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, |
1030 | SPUADDR_ADDR (info->frame_base)); | |
dcf52cd8 | 1031 | |
0a44cb36 UW |
1032 | /* Read full contents of the unwound link register in order to |
1033 | be able to determine the return address. */ | |
dcf52cd8 UW |
1034 | if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM)) |
1035 | target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16); | |
1036 | else | |
8d998b8f | 1037 | get_frame_register (this_frame, SPU_LR_REGNUM, buf); |
dcf52cd8 | 1038 | |
0a44cb36 UW |
1039 | /* Normally, the return address is contained in the slot 0 of the |
1040 | link register, and slots 1-3 are zero. For an overlay return, | |
1041 | slot 0 contains the address of the overlay manager return stub, | |
1042 | slot 1 contains the partition number of the overlay section to | |
1043 | be returned to, and slot 2 contains the return address within | |
1044 | that section. Return the latter address in that case. */ | |
e17a4113 | 1045 | if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0) |
dcf52cd8 | 1046 | trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM, |
e17a4113 | 1047 | extract_unsigned_integer (buf + 8, 4, byte_order)); |
dcf52cd8 UW |
1048 | else |
1049 | trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM, | |
e17a4113 | 1050 | extract_unsigned_integer (buf, 4, byte_order)); |
771b4502 UW |
1051 | |
1052 | return info; | |
1053 | } | |
1054 | ||
1055 | static void | |
8d998b8f | 1056 | spu_frame_this_id (struct frame_info *this_frame, |
771b4502 UW |
1057 | void **this_prologue_cache, struct frame_id *this_id) |
1058 | { | |
1059 | struct spu_unwind_cache *info = | |
8d998b8f | 1060 | spu_frame_unwind_cache (this_frame, this_prologue_cache); |
771b4502 UW |
1061 | |
1062 | if (info->frame_base == 0) | |
1063 | return; | |
1064 | ||
1065 | *this_id = frame_id_build (info->frame_base, info->func); | |
1066 | } | |
1067 | ||
8d998b8f UW |
1068 | static struct value * |
1069 | spu_frame_prev_register (struct frame_info *this_frame, | |
1070 | void **this_prologue_cache, int regnum) | |
771b4502 UW |
1071 | { |
1072 | struct spu_unwind_cache *info | |
8d998b8f | 1073 | = spu_frame_unwind_cache (this_frame, this_prologue_cache); |
771b4502 UW |
1074 | |
1075 | /* Special-case the stack pointer. */ | |
1076 | if (regnum == SPU_RAW_SP_REGNUM) | |
1077 | regnum = SPU_SP_REGNUM; | |
1078 | ||
8d998b8f | 1079 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); |
771b4502 UW |
1080 | } |
1081 | ||
1082 | static const struct frame_unwind spu_frame_unwind = { | |
1083 | NORMAL_FRAME, | |
8fbca658 | 1084 | default_frame_unwind_stop_reason, |
771b4502 | 1085 | spu_frame_this_id, |
8d998b8f UW |
1086 | spu_frame_prev_register, |
1087 | NULL, | |
1088 | default_frame_sniffer | |
771b4502 UW |
1089 | }; |
1090 | ||
771b4502 | 1091 | static CORE_ADDR |
8d998b8f | 1092 | spu_frame_base_address (struct frame_info *this_frame, void **this_cache) |
771b4502 UW |
1093 | { |
1094 | struct spu_unwind_cache *info | |
8d998b8f | 1095 | = spu_frame_unwind_cache (this_frame, this_cache); |
771b4502 UW |
1096 | return info->local_base; |
1097 | } | |
1098 | ||
1099 | static const struct frame_base spu_frame_base = { | |
1100 | &spu_frame_unwind, | |
1101 | spu_frame_base_address, | |
1102 | spu_frame_base_address, | |
1103 | spu_frame_base_address | |
1104 | }; | |
1105 | ||
1106 | static CORE_ADDR | |
1107 | spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1108 | { | |
85e747d2 | 1109 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
118dfbaf UW |
1110 | CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM); |
1111 | /* Mask off interrupt enable bit. */ | |
85e747d2 | 1112 | return SPUADDR (tdep->id, pc & -4); |
771b4502 UW |
1113 | } |
1114 | ||
1115 | static CORE_ADDR | |
1116 | spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1117 | { | |
85e747d2 UW |
1118 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1119 | CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM); | |
1120 | return SPUADDR (tdep->id, sp); | |
771b4502 UW |
1121 | } |
1122 | ||
118dfbaf | 1123 | static CORE_ADDR |
61a1198a | 1124 | spu_read_pc (struct regcache *regcache) |
118dfbaf | 1125 | { |
85e747d2 | 1126 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); |
61a1198a UW |
1127 | ULONGEST pc; |
1128 | regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc); | |
118dfbaf | 1129 | /* Mask off interrupt enable bit. */ |
85e747d2 | 1130 | return SPUADDR (tdep->id, pc & -4); |
118dfbaf UW |
1131 | } |
1132 | ||
1133 | static void | |
61a1198a | 1134 | spu_write_pc (struct regcache *regcache, CORE_ADDR pc) |
118dfbaf UW |
1135 | { |
1136 | /* Keep interrupt enabled state unchanged. */ | |
61a1198a UW |
1137 | ULONGEST old_pc; |
1138 | regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc); | |
1139 | regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM, | |
85e747d2 | 1140 | (SPUADDR_ADDR (pc) & -4) | (old_pc & 3)); |
118dfbaf UW |
1141 | } |
1142 | ||
771b4502 | 1143 | |
cc5f0d61 UW |
1144 | /* Cell/B.E. cross-architecture unwinder support. */ |
1145 | ||
1146 | struct spu2ppu_cache | |
1147 | { | |
1148 | struct frame_id frame_id; | |
1149 | struct regcache *regcache; | |
1150 | }; | |
1151 | ||
1152 | static struct gdbarch * | |
1153 | spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache) | |
1154 | { | |
1155 | struct spu2ppu_cache *cache = *this_cache; | |
1156 | return get_regcache_arch (cache->regcache); | |
1157 | } | |
1158 | ||
1159 | static void | |
1160 | spu2ppu_this_id (struct frame_info *this_frame, | |
1161 | void **this_cache, struct frame_id *this_id) | |
1162 | { | |
1163 | struct spu2ppu_cache *cache = *this_cache; | |
1164 | *this_id = cache->frame_id; | |
1165 | } | |
1166 | ||
1167 | static struct value * | |
1168 | spu2ppu_prev_register (struct frame_info *this_frame, | |
1169 | void **this_cache, int regnum) | |
1170 | { | |
1171 | struct spu2ppu_cache *cache = *this_cache; | |
1172 | struct gdbarch *gdbarch = get_regcache_arch (cache->regcache); | |
1173 | gdb_byte *buf; | |
1174 | ||
1175 | buf = alloca (register_size (gdbarch, regnum)); | |
1176 | regcache_cooked_read (cache->regcache, regnum, buf); | |
1177 | return frame_unwind_got_bytes (this_frame, regnum, buf); | |
1178 | } | |
1179 | ||
1180 | static int | |
1181 | spu2ppu_sniffer (const struct frame_unwind *self, | |
1182 | struct frame_info *this_frame, void **this_prologue_cache) | |
1183 | { | |
1184 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1185 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1186 | CORE_ADDR base, func, backchain; | |
1187 | gdb_byte buf[4]; | |
1188 | ||
1189 | if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu) | |
1190 | return 0; | |
1191 | ||
1192 | base = get_frame_sp (this_frame); | |
1193 | func = get_frame_pc (this_frame); | |
1194 | if (target_read_memory (base, buf, 4)) | |
1195 | return 0; | |
1196 | backchain = extract_unsigned_integer (buf, 4, byte_order); | |
1197 | ||
1198 | if (!backchain) | |
1199 | { | |
1200 | struct frame_info *fi; | |
1201 | ||
1202 | struct spu2ppu_cache *cache | |
1203 | = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache); | |
1204 | ||
1205 | cache->frame_id = frame_id_build (base + 16, func); | |
1206 | ||
1207 | for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi)) | |
1208 | if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu) | |
1209 | break; | |
1210 | ||
1211 | if (fi) | |
1212 | { | |
1213 | cache->regcache = frame_save_as_regcache (fi); | |
1214 | *this_prologue_cache = cache; | |
1215 | return 1; | |
1216 | } | |
1217 | else | |
1218 | { | |
1219 | struct regcache *regcache; | |
1220 | regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch); | |
1221 | cache->regcache = regcache_dup (regcache); | |
1222 | *this_prologue_cache = cache; | |
1223 | return 1; | |
1224 | } | |
1225 | } | |
1226 | ||
1227 | return 0; | |
1228 | } | |
1229 | ||
1230 | static void | |
1231 | spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache) | |
1232 | { | |
1233 | struct spu2ppu_cache *cache = this_cache; | |
1234 | regcache_xfree (cache->regcache); | |
1235 | } | |
1236 | ||
1237 | static const struct frame_unwind spu2ppu_unwind = { | |
1238 | ARCH_FRAME, | |
8fbca658 | 1239 | default_frame_unwind_stop_reason, |
cc5f0d61 UW |
1240 | spu2ppu_this_id, |
1241 | spu2ppu_prev_register, | |
1242 | NULL, | |
1243 | spu2ppu_sniffer, | |
1244 | spu2ppu_dealloc_cache, | |
1245 | spu2ppu_prev_arch, | |
1246 | }; | |
1247 | ||
1248 | ||
771b4502 UW |
1249 | /* Function calling convention. */ |
1250 | ||
7b3dc0b7 UW |
1251 | static CORE_ADDR |
1252 | spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
1253 | { | |
1254 | return sp & ~15; | |
1255 | } | |
1256 | ||
87805e63 UW |
1257 | static CORE_ADDR |
1258 | spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr, | |
1259 | struct value **args, int nargs, struct type *value_type, | |
1260 | CORE_ADDR *real_pc, CORE_ADDR *bp_addr, | |
1261 | struct regcache *regcache) | |
1262 | { | |
1263 | /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */ | |
1264 | sp = (sp - 4) & ~15; | |
1265 | /* Store the address of that breakpoint */ | |
1266 | *bp_addr = sp; | |
1267 | /* The call starts at the callee's entry point. */ | |
1268 | *real_pc = funaddr; | |
1269 | ||
1270 | return sp; | |
1271 | } | |
1272 | ||
771b4502 UW |
1273 | static int |
1274 | spu_scalar_value_p (struct type *type) | |
1275 | { | |
1276 | switch (TYPE_CODE (type)) | |
1277 | { | |
1278 | case TYPE_CODE_INT: | |
1279 | case TYPE_CODE_ENUM: | |
1280 | case TYPE_CODE_RANGE: | |
1281 | case TYPE_CODE_CHAR: | |
1282 | case TYPE_CODE_BOOL: | |
1283 | case TYPE_CODE_PTR: | |
1284 | case TYPE_CODE_REF: | |
1285 | return TYPE_LENGTH (type) <= 16; | |
1286 | ||
1287 | default: | |
1288 | return 0; | |
1289 | } | |
1290 | } | |
1291 | ||
1292 | static void | |
1293 | spu_value_to_regcache (struct regcache *regcache, int regnum, | |
1294 | struct type *type, const gdb_byte *in) | |
1295 | { | |
1296 | int len = TYPE_LENGTH (type); | |
1297 | ||
1298 | if (spu_scalar_value_p (type)) | |
1299 | { | |
1300 | int preferred_slot = len < 4 ? 4 - len : 0; | |
1301 | regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in); | |
1302 | } | |
1303 | else | |
1304 | { | |
1305 | while (len >= 16) | |
1306 | { | |
1307 | regcache_cooked_write (regcache, regnum++, in); | |
1308 | in += 16; | |
1309 | len -= 16; | |
1310 | } | |
1311 | ||
1312 | if (len > 0) | |
1313 | regcache_cooked_write_part (regcache, regnum, 0, len, in); | |
1314 | } | |
1315 | } | |
1316 | ||
1317 | static void | |
1318 | spu_regcache_to_value (struct regcache *regcache, int regnum, | |
1319 | struct type *type, gdb_byte *out) | |
1320 | { | |
1321 | int len = TYPE_LENGTH (type); | |
1322 | ||
1323 | if (spu_scalar_value_p (type)) | |
1324 | { | |
1325 | int preferred_slot = len < 4 ? 4 - len : 0; | |
1326 | regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out); | |
1327 | } | |
1328 | else | |
1329 | { | |
1330 | while (len >= 16) | |
1331 | { | |
1332 | regcache_cooked_read (regcache, regnum++, out); | |
1333 | out += 16; | |
1334 | len -= 16; | |
1335 | } | |
1336 | ||
1337 | if (len > 0) | |
1338 | regcache_cooked_read_part (regcache, regnum, 0, len, out); | |
1339 | } | |
1340 | } | |
1341 | ||
1342 | static CORE_ADDR | |
1343 | spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1344 | struct regcache *regcache, CORE_ADDR bp_addr, | |
1345 | int nargs, struct value **args, CORE_ADDR sp, | |
1346 | int struct_return, CORE_ADDR struct_addr) | |
1347 | { | |
e17a4113 | 1348 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
9ff3afda | 1349 | CORE_ADDR sp_delta; |
771b4502 UW |
1350 | int i; |
1351 | int regnum = SPU_ARG1_REGNUM; | |
1352 | int stack_arg = -1; | |
1353 | gdb_byte buf[16]; | |
1354 | ||
1355 | /* Set the return address. */ | |
1356 | memset (buf, 0, sizeof buf); | |
85e747d2 | 1357 | store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr)); |
771b4502 UW |
1358 | regcache_cooked_write (regcache, SPU_LR_REGNUM, buf); |
1359 | ||
1360 | /* If STRUCT_RETURN is true, then the struct return address (in | |
1361 | STRUCT_ADDR) will consume the first argument-passing register. | |
1362 | Both adjust the register count and store that value. */ | |
1363 | if (struct_return) | |
1364 | { | |
1365 | memset (buf, 0, sizeof buf); | |
85e747d2 | 1366 | store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr)); |
771b4502 UW |
1367 | regcache_cooked_write (regcache, regnum++, buf); |
1368 | } | |
1369 | ||
1370 | /* Fill in argument registers. */ | |
1371 | for (i = 0; i < nargs; i++) | |
1372 | { | |
1373 | struct value *arg = args[i]; | |
1374 | struct type *type = check_typedef (value_type (arg)); | |
1375 | const gdb_byte *contents = value_contents (arg); | |
1376 | int len = TYPE_LENGTH (type); | |
1377 | int n_regs = align_up (len, 16) / 16; | |
1378 | ||
1379 | /* If the argument doesn't wholly fit into registers, it and | |
1380 | all subsequent arguments go to the stack. */ | |
1381 | if (regnum + n_regs - 1 > SPU_ARGN_REGNUM) | |
1382 | { | |
1383 | stack_arg = i; | |
1384 | break; | |
1385 | } | |
1386 | ||
1387 | spu_value_to_regcache (regcache, regnum, type, contents); | |
1388 | regnum += n_regs; | |
1389 | } | |
1390 | ||
1391 | /* Overflow arguments go to the stack. */ | |
1392 | if (stack_arg != -1) | |
1393 | { | |
1394 | CORE_ADDR ap; | |
1395 | ||
1396 | /* Allocate all required stack size. */ | |
1397 | for (i = stack_arg; i < nargs; i++) | |
1398 | { | |
1399 | struct type *type = check_typedef (value_type (args[i])); | |
1400 | sp -= align_up (TYPE_LENGTH (type), 16); | |
1401 | } | |
1402 | ||
1403 | /* Fill in stack arguments. */ | |
1404 | ap = sp; | |
1405 | for (i = stack_arg; i < nargs; i++) | |
1406 | { | |
1407 | struct value *arg = args[i]; | |
1408 | struct type *type = check_typedef (value_type (arg)); | |
1409 | int len = TYPE_LENGTH (type); | |
1410 | int preferred_slot; | |
1411 | ||
1412 | if (spu_scalar_value_p (type)) | |
1413 | preferred_slot = len < 4 ? 4 - len : 0; | |
1414 | else | |
1415 | preferred_slot = 0; | |
1416 | ||
1417 | target_write_memory (ap + preferred_slot, value_contents (arg), len); | |
1418 | ap += align_up (TYPE_LENGTH (type), 16); | |
1419 | } | |
1420 | } | |
1421 | ||
1422 | /* Allocate stack frame header. */ | |
1423 | sp -= 32; | |
1424 | ||
ee82e879 UW |
1425 | /* Store stack back chain. */ |
1426 | regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf); | |
1427 | target_write_memory (sp, buf, 16); | |
1428 | ||
9ff3afda | 1429 | /* Finally, update all slots of the SP register. */ |
e17a4113 | 1430 | sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order); |
9ff3afda UW |
1431 | for (i = 0; i < 4; i++) |
1432 | { | |
e17a4113 UW |
1433 | CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order); |
1434 | store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta); | |
9ff3afda UW |
1435 | } |
1436 | regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf); | |
771b4502 UW |
1437 | |
1438 | return sp; | |
1439 | } | |
1440 | ||
1441 | static struct frame_id | |
8d998b8f | 1442 | spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
771b4502 | 1443 | { |
85e747d2 | 1444 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
8d998b8f UW |
1445 | CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM); |
1446 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM); | |
85e747d2 | 1447 | return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4)); |
771b4502 UW |
1448 | } |
1449 | ||
1450 | /* Function return value access. */ | |
1451 | ||
1452 | static enum return_value_convention | |
6a3a010b | 1453 | spu_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
1454 | struct type *type, struct regcache *regcache, |
1455 | gdb_byte *out, const gdb_byte *in) | |
771b4502 | 1456 | { |
6a3a010b | 1457 | struct type *func_type = function ? value_type (function) : NULL; |
771b4502 | 1458 | enum return_value_convention rvc; |
54fcddd0 UW |
1459 | int opencl_vector = 0; |
1460 | ||
598cfb71 UW |
1461 | if (func_type) |
1462 | { | |
1463 | func_type = check_typedef (func_type); | |
1464 | ||
1465 | if (TYPE_CODE (func_type) == TYPE_CODE_PTR) | |
1466 | func_type = check_typedef (TYPE_TARGET_TYPE (func_type)); | |
1467 | ||
1468 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC | |
1469 | && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL | |
1470 | && TYPE_CODE (type) == TYPE_CODE_ARRAY | |
1471 | && TYPE_VECTOR (type)) | |
1472 | opencl_vector = 1; | |
1473 | } | |
771b4502 UW |
1474 | |
1475 | if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16) | |
1476 | rvc = RETURN_VALUE_REGISTER_CONVENTION; | |
1477 | else | |
1478 | rvc = RETURN_VALUE_STRUCT_CONVENTION; | |
1479 | ||
1480 | if (in) | |
1481 | { | |
1482 | switch (rvc) | |
1483 | { | |
1484 | case RETURN_VALUE_REGISTER_CONVENTION: | |
54fcddd0 UW |
1485 | if (opencl_vector && TYPE_LENGTH (type) == 2) |
1486 | regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in); | |
1487 | else | |
1488 | spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in); | |
771b4502 UW |
1489 | break; |
1490 | ||
1491 | case RETURN_VALUE_STRUCT_CONVENTION: | |
a73c6dcd | 1492 | error (_("Cannot set function return value.")); |
771b4502 UW |
1493 | break; |
1494 | } | |
1495 | } | |
1496 | else if (out) | |
1497 | { | |
1498 | switch (rvc) | |
1499 | { | |
1500 | case RETURN_VALUE_REGISTER_CONVENTION: | |
54fcddd0 UW |
1501 | if (opencl_vector && TYPE_LENGTH (type) == 2) |
1502 | regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out); | |
1503 | else | |
1504 | spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out); | |
771b4502 UW |
1505 | break; |
1506 | ||
1507 | case RETURN_VALUE_STRUCT_CONVENTION: | |
a73c6dcd | 1508 | error (_("Function return value unknown.")); |
771b4502 UW |
1509 | break; |
1510 | } | |
1511 | } | |
1512 | ||
1513 | return rvc; | |
1514 | } | |
1515 | ||
1516 | ||
1517 | /* Breakpoints. */ | |
1518 | ||
1519 | static const gdb_byte * | |
c378eb4e MS |
1520 | spu_breakpoint_from_pc (struct gdbarch *gdbarch, |
1521 | CORE_ADDR * pcptr, int *lenptr) | |
771b4502 UW |
1522 | { |
1523 | static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff }; | |
1524 | ||
1525 | *lenptr = sizeof breakpoint; | |
1526 | return breakpoint; | |
1527 | } | |
1528 | ||
d03285ec UW |
1529 | static int |
1530 | spu_memory_remove_breakpoint (struct gdbarch *gdbarch, | |
1531 | struct bp_target_info *bp_tgt) | |
1532 | { | |
1533 | /* We work around a problem in combined Cell/B.E. debugging here. Consider | |
1534 | that in a combined application, we have some breakpoints inserted in SPU | |
1535 | code, and now the application forks (on the PPU side). GDB common code | |
1536 | will assume that the fork system call copied all breakpoints into the new | |
1537 | process' address space, and that all those copies now need to be removed | |
1538 | (see breakpoint.c:detach_breakpoints). | |
1539 | ||
1540 | While this is certainly true for PPU side breakpoints, it is not true | |
1541 | for SPU side breakpoints. fork will clone the SPU context file | |
1542 | descriptors, so that all the existing SPU contexts are in accessible | |
1543 | in the new process. However, the contents of the SPU contexts themselves | |
1544 | are *not* cloned. Therefore the effect of detach_breakpoints is to | |
1545 | remove SPU breakpoints from the *original* SPU context's local store | |
1546 | -- this is not the correct behaviour. | |
1547 | ||
1548 | The workaround is to check whether the PID we are asked to remove this | |
1549 | breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the | |
1550 | PID of the current inferior (i.e. current_inferior ()->pid). This is only | |
1551 | true in the context of detach_breakpoints. If so, we simply do nothing. | |
1552 | [ Note that for the fork child process, it does not matter if breakpoints | |
1553 | remain inserted, because those SPU contexts are not runnable anyway -- | |
1554 | the Linux kernel allows only the original process to invoke spu_run. */ | |
1555 | ||
1556 | if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid) | |
1557 | return 0; | |
1558 | ||
1559 | return default_memory_remove_breakpoint (gdbarch, bp_tgt); | |
1560 | } | |
1561 | ||
771b4502 UW |
1562 | |
1563 | /* Software single-stepping support. */ | |
1564 | ||
63807e1d | 1565 | static int |
0b1b3e42 | 1566 | spu_software_single_step (struct frame_info *frame) |
771b4502 | 1567 | { |
a6d9a66e | 1568 | struct gdbarch *gdbarch = get_frame_arch (frame); |
6c95b8df | 1569 | struct address_space *aspace = get_frame_address_space (frame); |
e17a4113 | 1570 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
e0cd558a UW |
1571 | CORE_ADDR pc, next_pc; |
1572 | unsigned int insn; | |
1573 | int offset, reg; | |
1574 | gdb_byte buf[4]; | |
13def385 | 1575 | ULONGEST lslr; |
771b4502 | 1576 | |
0b1b3e42 | 1577 | pc = get_frame_pc (frame); |
771b4502 | 1578 | |
e0cd558a UW |
1579 | if (target_read_memory (pc, buf, 4)) |
1580 | return 1; | |
e17a4113 | 1581 | insn = extract_unsigned_integer (buf, 4, byte_order); |
771b4502 | 1582 | |
13def385 UW |
1583 | /* Get local store limit. */ |
1584 | lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM); | |
1585 | if (!lslr) | |
1586 | lslr = (ULONGEST) -1; | |
1587 | ||
e0cd558a UW |
1588 | /* Next sequential instruction is at PC + 4, except if the current |
1589 | instruction is a PPE-assisted call, in which case it is at PC + 8. | |
1590 | Wrap around LS limit to be on the safe side. */ | |
1591 | if ((insn & 0xffffff00) == 0x00002100) | |
13def385 | 1592 | next_pc = (SPUADDR_ADDR (pc) + 8) & lslr; |
e0cd558a | 1593 | else |
13def385 | 1594 | next_pc = (SPUADDR_ADDR (pc) + 4) & lslr; |
771b4502 | 1595 | |
6c95b8df PA |
1596 | insert_single_step_breakpoint (gdbarch, |
1597 | aspace, SPUADDR (SPUADDR_SPU (pc), next_pc)); | |
771b4502 | 1598 | |
e0cd558a UW |
1599 | if (is_branch (insn, &offset, ®)) |
1600 | { | |
1601 | CORE_ADDR target = offset; | |
771b4502 | 1602 | |
e0cd558a | 1603 | if (reg == SPU_PC_REGNUM) |
85e747d2 | 1604 | target += SPUADDR_ADDR (pc); |
e0cd558a UW |
1605 | else if (reg != -1) |
1606 | { | |
8dccd430 PA |
1607 | int optim, unavail; |
1608 | ||
1609 | if (get_frame_register_bytes (frame, reg, 0, 4, buf, | |
1610 | &optim, &unavail)) | |
1611 | target += extract_unsigned_integer (buf, 4, byte_order) & -4; | |
1612 | else | |
1613 | { | |
1614 | if (optim) | |
1615 | error (_("Could not determine address of " | |
1616 | "single-step breakpoint.")); | |
1617 | if (unavail) | |
1618 | throw_error (NOT_AVAILABLE_ERROR, | |
1619 | _("Could not determine address of " | |
1620 | "single-step breakpoint.")); | |
1621 | } | |
771b4502 | 1622 | } |
e0cd558a | 1623 | |
13def385 | 1624 | target = target & lslr; |
e0cd558a | 1625 | if (target != next_pc) |
6c95b8df | 1626 | insert_single_step_breakpoint (gdbarch, aspace, |
85e747d2 | 1627 | SPUADDR (SPUADDR_SPU (pc), target)); |
771b4502 | 1628 | } |
e6590a1b UW |
1629 | |
1630 | return 1; | |
771b4502 UW |
1631 | } |
1632 | ||
6e3f70d7 UW |
1633 | |
1634 | /* Longjmp support. */ | |
1635 | ||
1636 | static int | |
1637 | spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
1638 | { | |
e17a4113 | 1639 | struct gdbarch *gdbarch = get_frame_arch (frame); |
85e747d2 | 1640 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 1641 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
6e3f70d7 UW |
1642 | gdb_byte buf[4]; |
1643 | CORE_ADDR jb_addr; | |
8dccd430 | 1644 | int optim, unavail; |
6e3f70d7 UW |
1645 | |
1646 | /* Jump buffer is pointed to by the argument register $r3. */ | |
8dccd430 PA |
1647 | if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf, |
1648 | &optim, &unavail)) | |
1649 | return 0; | |
1650 | ||
e17a4113 | 1651 | jb_addr = extract_unsigned_integer (buf, 4, byte_order); |
85e747d2 | 1652 | if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4)) |
6e3f70d7 UW |
1653 | return 0; |
1654 | ||
e17a4113 | 1655 | *pc = extract_unsigned_integer (buf, 4, byte_order); |
85e747d2 | 1656 | *pc = SPUADDR (tdep->id, *pc); |
6e3f70d7 UW |
1657 | return 1; |
1658 | } | |
1659 | ||
1660 | ||
85e747d2 UW |
1661 | /* Disassembler. */ |
1662 | ||
1663 | struct spu_dis_asm_data | |
1664 | { | |
1665 | struct gdbarch *gdbarch; | |
1666 | int id; | |
1667 | }; | |
1668 | ||
1669 | static void | |
1670 | spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info) | |
1671 | { | |
1672 | struct spu_dis_asm_data *data = info->application_data; | |
1673 | print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream); | |
1674 | } | |
1675 | ||
1676 | static int | |
1677 | gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info) | |
1678 | { | |
c378eb4e MS |
1679 | /* The opcodes disassembler does 18-bit address arithmetic. Make |
1680 | sure the SPU ID encoded in the high bits is added back when we | |
1681 | call print_address. */ | |
85e747d2 UW |
1682 | struct disassemble_info spu_info = *info; |
1683 | struct spu_dis_asm_data data; | |
1684 | data.gdbarch = info->application_data; | |
1685 | data.id = SPUADDR_SPU (memaddr); | |
1686 | ||
1687 | spu_info.application_data = &data; | |
1688 | spu_info.print_address_func = spu_dis_asm_print_address; | |
1689 | return print_insn_spu (memaddr, &spu_info); | |
1690 | } | |
1691 | ||
1692 | ||
dcf52cd8 UW |
1693 | /* Target overlays for the SPU overlay manager. |
1694 | ||
1695 | See the documentation of simple_overlay_update for how the | |
1696 | interface is supposed to work. | |
1697 | ||
1698 | Data structures used by the overlay manager: | |
1699 | ||
1700 | struct ovly_table | |
1701 | { | |
1702 | u32 vma; | |
1703 | u32 size; | |
1704 | u32 pos; | |
1705 | u32 buf; | |
1706 | } _ovly_table[]; -- one entry per overlay section | |
1707 | ||
1708 | struct ovly_buf_table | |
1709 | { | |
1710 | u32 mapped; | |
1711 | } _ovly_buf_table[]; -- one entry per overlay buffer | |
1712 | ||
1713 | _ovly_table should never change. | |
1714 | ||
c378eb4e MS |
1715 | Both tables are aligned to a 16-byte boundary, the symbols |
1716 | _ovly_table and _ovly_buf_table are of type STT_OBJECT and their | |
1717 | size set to the size of the respective array. buf in _ovly_table is | |
1718 | an index into _ovly_buf_table. | |
dcf52cd8 | 1719 | |
c378eb4e | 1720 | mapped is an index into _ovly_table. Both the mapped and buf indices start |
dcf52cd8 UW |
1721 | from one to reference the first entry in their respective tables. */ |
1722 | ||
1723 | /* Using the per-objfile private data mechanism, we store for each | |
1724 | objfile an array of "struct spu_overlay_table" structures, one | |
1725 | for each obj_section of the objfile. This structure holds two | |
1726 | fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this | |
1727 | is *not* an overlay section. If it is non-zero, it represents | |
1728 | a target address. The overlay section is mapped iff the target | |
1729 | integer at this location equals MAPPED_VAL. */ | |
1730 | ||
1731 | static const struct objfile_data *spu_overlay_data; | |
1732 | ||
1733 | struct spu_overlay_table | |
1734 | { | |
1735 | CORE_ADDR mapped_ptr; | |
1736 | CORE_ADDR mapped_val; | |
1737 | }; | |
1738 | ||
1739 | /* Retrieve the overlay table for OBJFILE. If not already cached, read | |
1740 | the _ovly_table data structure from the target and initialize the | |
1741 | spu_overlay_table data structure from it. */ | |
1742 | static struct spu_overlay_table * | |
1743 | spu_get_overlay_table (struct objfile *objfile) | |
1744 | { | |
e17a4113 UW |
1745 | enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)? |
1746 | BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; | |
dcf52cd8 UW |
1747 | struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym; |
1748 | CORE_ADDR ovly_table_base, ovly_buf_table_base; | |
1749 | unsigned ovly_table_size, ovly_buf_table_size; | |
1750 | struct spu_overlay_table *tbl; | |
1751 | struct obj_section *osect; | |
1752 | char *ovly_table; | |
1753 | int i; | |
1754 | ||
1755 | tbl = objfile_data (objfile, spu_overlay_data); | |
1756 | if (tbl) | |
1757 | return tbl; | |
1758 | ||
1759 | ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile); | |
1760 | if (!ovly_table_msym) | |
1761 | return NULL; | |
1762 | ||
c378eb4e MS |
1763 | ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", |
1764 | NULL, objfile); | |
dcf52cd8 UW |
1765 | if (!ovly_buf_table_msym) |
1766 | return NULL; | |
1767 | ||
1768 | ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym); | |
1769 | ovly_table_size = MSYMBOL_SIZE (ovly_table_msym); | |
1770 | ||
1771 | ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym); | |
1772 | ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym); | |
1773 | ||
1774 | ovly_table = xmalloc (ovly_table_size); | |
1775 | read_memory (ovly_table_base, ovly_table, ovly_table_size); | |
1776 | ||
1777 | tbl = OBSTACK_CALLOC (&objfile->objfile_obstack, | |
1778 | objfile->sections_end - objfile->sections, | |
1779 | struct spu_overlay_table); | |
1780 | ||
1781 | for (i = 0; i < ovly_table_size / 16; i++) | |
1782 | { | |
e17a4113 UW |
1783 | CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0, |
1784 | 4, byte_order); | |
1785 | CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, | |
1786 | 4, byte_order); | |
1787 | CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8, | |
1788 | 4, byte_order); | |
1789 | CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12, | |
1790 | 4, byte_order); | |
dcf52cd8 UW |
1791 | |
1792 | if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size) | |
1793 | continue; | |
1794 | ||
1795 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
1796 | if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section) | |
1797 | && pos == osect->the_bfd_section->filepos) | |
1798 | { | |
1799 | int ndx = osect - objfile->sections; | |
1800 | tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4; | |
1801 | tbl[ndx].mapped_val = i + 1; | |
1802 | break; | |
1803 | } | |
1804 | } | |
1805 | ||
1806 | xfree (ovly_table); | |
1807 | set_objfile_data (objfile, spu_overlay_data, tbl); | |
1808 | return tbl; | |
1809 | } | |
1810 | ||
1811 | /* Read _ovly_buf_table entry from the target to dermine whether | |
1812 | OSECT is currently mapped, and update the mapped state. */ | |
1813 | static void | |
1814 | spu_overlay_update_osect (struct obj_section *osect) | |
1815 | { | |
e17a4113 UW |
1816 | enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)? |
1817 | BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; | |
dcf52cd8 | 1818 | struct spu_overlay_table *ovly_table; |
85e747d2 | 1819 | CORE_ADDR id, val; |
dcf52cd8 UW |
1820 | |
1821 | ovly_table = spu_get_overlay_table (osect->objfile); | |
1822 | if (!ovly_table) | |
1823 | return; | |
1824 | ||
1825 | ovly_table += osect - osect->objfile->sections; | |
1826 | if (ovly_table->mapped_ptr == 0) | |
1827 | return; | |
1828 | ||
85e747d2 UW |
1829 | id = SPUADDR_SPU (obj_section_addr (osect)); |
1830 | val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr), | |
1831 | 4, byte_order); | |
dcf52cd8 UW |
1832 | osect->ovly_mapped = (val == ovly_table->mapped_val); |
1833 | } | |
1834 | ||
1835 | /* If OSECT is NULL, then update all sections' mapped state. | |
1836 | If OSECT is non-NULL, then update only OSECT's mapped state. */ | |
1837 | static void | |
1838 | spu_overlay_update (struct obj_section *osect) | |
1839 | { | |
1840 | /* Just one section. */ | |
1841 | if (osect) | |
1842 | spu_overlay_update_osect (osect); | |
1843 | ||
1844 | /* All sections. */ | |
1845 | else | |
1846 | { | |
1847 | struct objfile *objfile; | |
1848 | ||
1849 | ALL_OBJSECTIONS (objfile, osect) | |
714835d5 | 1850 | if (section_is_overlay (osect)) |
dcf52cd8 UW |
1851 | spu_overlay_update_osect (osect); |
1852 | } | |
1853 | } | |
1854 | ||
1855 | /* Whenever a new objfile is loaded, read the target's _ovly_table. | |
1856 | If there is one, go through all sections and make sure for non- | |
1857 | overlay sections LMA equals VMA, while for overlay sections LMA | |
d2ed6730 | 1858 | is larger than SPU_OVERLAY_LMA. */ |
dcf52cd8 UW |
1859 | static void |
1860 | spu_overlay_new_objfile (struct objfile *objfile) | |
1861 | { | |
1862 | struct spu_overlay_table *ovly_table; | |
1863 | struct obj_section *osect; | |
1864 | ||
1865 | /* If we've already touched this file, do nothing. */ | |
1866 | if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL) | |
1867 | return; | |
1868 | ||
0391f248 UW |
1869 | /* Consider only SPU objfiles. */ |
1870 | if (bfd_get_arch (objfile->obfd) != bfd_arch_spu) | |
1871 | return; | |
1872 | ||
dcf52cd8 UW |
1873 | /* Check if this objfile has overlays. */ |
1874 | ovly_table = spu_get_overlay_table (objfile); | |
1875 | if (!ovly_table) | |
1876 | return; | |
1877 | ||
1878 | /* Now go and fiddle with all the LMAs. */ | |
1879 | ALL_OBJFILE_OSECTIONS (objfile, osect) | |
1880 | { | |
1881 | bfd *obfd = objfile->obfd; | |
1882 | asection *bsect = osect->the_bfd_section; | |
1883 | int ndx = osect - objfile->sections; | |
1884 | ||
1885 | if (ovly_table[ndx].mapped_ptr == 0) | |
1886 | bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect); | |
1887 | else | |
d2ed6730 | 1888 | bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos; |
dcf52cd8 UW |
1889 | } |
1890 | } | |
1891 | ||
771b4502 | 1892 | |
3285f3fe UW |
1893 | /* Insert temporary breakpoint on "main" function of newly loaded |
1894 | SPE context OBJFILE. */ | |
1895 | static void | |
1896 | spu_catch_start (struct objfile *objfile) | |
1897 | { | |
1898 | struct minimal_symbol *minsym; | |
1899 | struct symtab *symtab; | |
1900 | CORE_ADDR pc; | |
1901 | char buf[32]; | |
1902 | ||
1903 | /* Do this only if requested by "set spu stop-on-load on". */ | |
1904 | if (!spu_stop_on_load_p) | |
1905 | return; | |
1906 | ||
1907 | /* Consider only SPU objfiles. */ | |
1908 | if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu) | |
1909 | return; | |
1910 | ||
1911 | /* The main objfile is handled differently. */ | |
1912 | if (objfile == symfile_objfile) | |
1913 | return; | |
1914 | ||
1915 | /* There can be multiple symbols named "main". Search for the | |
1916 | "main" in *this* objfile. */ | |
1917 | minsym = lookup_minimal_symbol ("main", NULL, objfile); | |
1918 | if (!minsym) | |
1919 | return; | |
1920 | ||
1921 | /* If we have debugging information, try to use it -- this | |
1922 | will allow us to properly skip the prologue. */ | |
1923 | pc = SYMBOL_VALUE_ADDRESS (minsym); | |
1924 | symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym)); | |
1925 | if (symtab != NULL) | |
1926 | { | |
1927 | struct blockvector *bv = BLOCKVECTOR (symtab); | |
1928 | struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1929 | struct symbol *sym; | |
1930 | struct symtab_and_line sal; | |
1931 | ||
94af9270 | 1932 | sym = lookup_block_symbol (block, "main", VAR_DOMAIN); |
3285f3fe UW |
1933 | if (sym) |
1934 | { | |
1935 | fixup_symbol_section (sym, objfile); | |
1936 | sal = find_function_start_sal (sym, 1); | |
1937 | pc = sal.pc; | |
1938 | } | |
1939 | } | |
1940 | ||
1941 | /* Use a numerical address for the set_breakpoint command to avoid having | |
1942 | the breakpoint re-set incorrectly. */ | |
1943 | xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc)); | |
d8c09fb5 JK |
1944 | create_breakpoint (get_objfile_arch (objfile), buf /* arg */, |
1945 | NULL /* cond_string */, -1 /* thread */, | |
6a609e58 | 1946 | NULL /* extra_string */, |
d8c09fb5 | 1947 | 0 /* parse_condition_and_thread */, 1 /* tempflag */, |
bddaafad | 1948 | bp_breakpoint /* type_wanted */, |
d8c09fb5 JK |
1949 | 0 /* ignore_count */, |
1950 | AUTO_BOOLEAN_FALSE /* pending_break_support */, | |
931bb47f | 1951 | &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */, |
44f238bb | 1952 | 1 /* enabled */, 0 /* internal */, 0); |
3285f3fe UW |
1953 | } |
1954 | ||
1955 | ||
ff1a52c6 UW |
1956 | /* Look up OBJFILE loaded into FRAME's SPU context. */ |
1957 | static struct objfile * | |
1958 | spu_objfile_from_frame (struct frame_info *frame) | |
1959 | { | |
1960 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
1961 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1962 | struct objfile *obj; | |
1963 | ||
1964 | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) | |
1965 | return NULL; | |
1966 | ||
1967 | ALL_OBJFILES (obj) | |
1968 | { | |
1969 | if (obj->sections != obj->sections_end | |
1970 | && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id) | |
1971 | return obj; | |
1972 | } | |
1973 | ||
1974 | return NULL; | |
1975 | } | |
1976 | ||
1977 | /* Flush cache for ea pointer access if available. */ | |
1978 | static void | |
1979 | flush_ea_cache (void) | |
1980 | { | |
1981 | struct minimal_symbol *msymbol; | |
1982 | struct objfile *obj; | |
1983 | ||
1984 | if (!has_stack_frames ()) | |
1985 | return; | |
1986 | ||
1987 | obj = spu_objfile_from_frame (get_current_frame ()); | |
1988 | if (obj == NULL) | |
1989 | return; | |
1990 | ||
1991 | /* Lookup inferior function __cache_flush. */ | |
1992 | msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj); | |
1993 | if (msymbol != NULL) | |
1994 | { | |
1995 | struct type *type; | |
1996 | CORE_ADDR addr; | |
1997 | ||
1998 | type = objfile_type (obj)->builtin_void; | |
1999 | type = lookup_function_type (type); | |
2000 | type = lookup_pointer_type (type); | |
2001 | addr = SYMBOL_VALUE_ADDRESS (msymbol); | |
2002 | ||
2003 | call_function_by_hand (value_from_pointer (type, addr), 0, NULL); | |
2004 | } | |
2005 | } | |
2006 | ||
2007 | /* This handler is called when the inferior has stopped. If it is stopped in | |
2008 | SPU architecture then flush the ea cache if used. */ | |
2009 | static void | |
2010 | spu_attach_normal_stop (struct bpstats *bs, int print_frame) | |
2011 | { | |
2012 | if (!spu_auto_flush_cache_p) | |
2013 | return; | |
2014 | ||
2015 | /* Temporarily reset spu_auto_flush_cache_p to avoid recursively | |
2016 | re-entering this function when __cache_flush stops. */ | |
2017 | spu_auto_flush_cache_p = 0; | |
2018 | flush_ea_cache (); | |
2019 | spu_auto_flush_cache_p = 1; | |
2020 | } | |
2021 | ||
2022 | ||
23d964e7 UW |
2023 | /* "info spu" commands. */ |
2024 | ||
2025 | static void | |
2026 | info_spu_event_command (char *args, int from_tty) | |
2027 | { | |
2028 | struct frame_info *frame = get_selected_frame (NULL); | |
2029 | ULONGEST event_status = 0; | |
2030 | ULONGEST event_mask = 0; | |
2031 | struct cleanup *chain; | |
2032 | gdb_byte buf[100]; | |
2033 | char annex[32]; | |
2034 | LONGEST len; | |
22e048c9 | 2035 | int id; |
23d964e7 | 2036 | |
0391f248 UW |
2037 | if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu) |
2038 | error (_("\"info spu\" is only supported on the SPU architecture.")); | |
2039 | ||
23d964e7 UW |
2040 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); |
2041 | ||
2042 | xsnprintf (annex, sizeof annex, "%d/event_status", id); | |
2043 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
9971ac47 | 2044 | buf, 0, (sizeof (buf) - 1)); |
23d964e7 UW |
2045 | if (len <= 0) |
2046 | error (_("Could not read event_status.")); | |
9971ac47 | 2047 | buf[len] = '\0'; |
23d964e7 UW |
2048 | event_status = strtoulst (buf, NULL, 16); |
2049 | ||
2050 | xsnprintf (annex, sizeof annex, "%d/event_mask", id); | |
2051 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
9971ac47 | 2052 | buf, 0, (sizeof (buf) - 1)); |
23d964e7 UW |
2053 | if (len <= 0) |
2054 | error (_("Could not read event_mask.")); | |
9971ac47 | 2055 | buf[len] = '\0'; |
23d964e7 UW |
2056 | event_mask = strtoulst (buf, NULL, 16); |
2057 | ||
31a0ae49 | 2058 | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent"); |
23d964e7 | 2059 | |
31a0ae49 | 2060 | if (ui_out_is_mi_like_p (current_uiout)) |
23d964e7 | 2061 | { |
31a0ae49 | 2062 | ui_out_field_fmt (current_uiout, "event_status", |
23d964e7 | 2063 | "0x%s", phex_nz (event_status, 4)); |
31a0ae49 | 2064 | ui_out_field_fmt (current_uiout, "event_mask", |
23d964e7 UW |
2065 | "0x%s", phex_nz (event_mask, 4)); |
2066 | } | |
2067 | else | |
2068 | { | |
2069 | printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4)); | |
2070 | printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4)); | |
2071 | } | |
2072 | ||
2073 | do_cleanups (chain); | |
2074 | } | |
2075 | ||
2076 | static void | |
2077 | info_spu_signal_command (char *args, int from_tty) | |
2078 | { | |
2079 | struct frame_info *frame = get_selected_frame (NULL); | |
e17a4113 UW |
2080 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2081 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
23d964e7 UW |
2082 | ULONGEST signal1 = 0; |
2083 | ULONGEST signal1_type = 0; | |
2084 | int signal1_pending = 0; | |
2085 | ULONGEST signal2 = 0; | |
2086 | ULONGEST signal2_type = 0; | |
2087 | int signal2_pending = 0; | |
2088 | struct cleanup *chain; | |
2089 | char annex[32]; | |
2090 | gdb_byte buf[100]; | |
2091 | LONGEST len; | |
22e048c9 | 2092 | int id; |
23d964e7 | 2093 | |
e17a4113 | 2094 | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) |
0391f248 UW |
2095 | error (_("\"info spu\" is only supported on the SPU architecture.")); |
2096 | ||
23d964e7 UW |
2097 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); |
2098 | ||
2099 | xsnprintf (annex, sizeof annex, "%d/signal1", id); | |
2100 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4); | |
2101 | if (len < 0) | |
2102 | error (_("Could not read signal1.")); | |
2103 | else if (len == 4) | |
2104 | { | |
e17a4113 | 2105 | signal1 = extract_unsigned_integer (buf, 4, byte_order); |
23d964e7 UW |
2106 | signal1_pending = 1; |
2107 | } | |
2108 | ||
2109 | xsnprintf (annex, sizeof annex, "%d/signal1_type", id); | |
2110 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
9971ac47 | 2111 | buf, 0, (sizeof (buf) - 1)); |
23d964e7 UW |
2112 | if (len <= 0) |
2113 | error (_("Could not read signal1_type.")); | |
9971ac47 | 2114 | buf[len] = '\0'; |
23d964e7 UW |
2115 | signal1_type = strtoulst (buf, NULL, 16); |
2116 | ||
2117 | xsnprintf (annex, sizeof annex, "%d/signal2", id); | |
2118 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4); | |
2119 | if (len < 0) | |
2120 | error (_("Could not read signal2.")); | |
2121 | else if (len == 4) | |
2122 | { | |
e17a4113 | 2123 | signal2 = extract_unsigned_integer (buf, 4, byte_order); |
23d964e7 UW |
2124 | signal2_pending = 1; |
2125 | } | |
2126 | ||
2127 | xsnprintf (annex, sizeof annex, "%d/signal2_type", id); | |
2128 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
9971ac47 | 2129 | buf, 0, (sizeof (buf) - 1)); |
23d964e7 UW |
2130 | if (len <= 0) |
2131 | error (_("Could not read signal2_type.")); | |
9971ac47 | 2132 | buf[len] = '\0'; |
23d964e7 UW |
2133 | signal2_type = strtoulst (buf, NULL, 16); |
2134 | ||
31a0ae49 | 2135 | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal"); |
23d964e7 | 2136 | |
31a0ae49 | 2137 | if (ui_out_is_mi_like_p (current_uiout)) |
23d964e7 | 2138 | { |
31a0ae49 JK |
2139 | ui_out_field_int (current_uiout, "signal1_pending", signal1_pending); |
2140 | ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4)); | |
2141 | ui_out_field_int (current_uiout, "signal1_type", signal1_type); | |
2142 | ui_out_field_int (current_uiout, "signal2_pending", signal2_pending); | |
2143 | ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4)); | |
2144 | ui_out_field_int (current_uiout, "signal2_type", signal2_type); | |
23d964e7 UW |
2145 | } |
2146 | else | |
2147 | { | |
2148 | if (signal1_pending) | |
2149 | printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4)); | |
2150 | else | |
2151 | printf_filtered (_("Signal 1 not pending ")); | |
2152 | ||
2153 | if (signal1_type) | |
23d964e7 | 2154 | printf_filtered (_("(Type Or)\n")); |
b94c4f7d UW |
2155 | else |
2156 | printf_filtered (_("(Type Overwrite)\n")); | |
23d964e7 UW |
2157 | |
2158 | if (signal2_pending) | |
2159 | printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4)); | |
2160 | else | |
2161 | printf_filtered (_("Signal 2 not pending ")); | |
2162 | ||
2163 | if (signal2_type) | |
23d964e7 | 2164 | printf_filtered (_("(Type Or)\n")); |
b94c4f7d UW |
2165 | else |
2166 | printf_filtered (_("(Type Overwrite)\n")); | |
23d964e7 UW |
2167 | } |
2168 | ||
2169 | do_cleanups (chain); | |
2170 | } | |
2171 | ||
2172 | static void | |
e17a4113 | 2173 | info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order, |
23d964e7 UW |
2174 | const char *field, const char *msg) |
2175 | { | |
2176 | struct cleanup *chain; | |
2177 | int i; | |
2178 | ||
2179 | if (nr <= 0) | |
2180 | return; | |
2181 | ||
31a0ae49 | 2182 | chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox"); |
23d964e7 | 2183 | |
31a0ae49 JK |
2184 | ui_out_table_header (current_uiout, 32, ui_left, field, msg); |
2185 | ui_out_table_body (current_uiout); | |
23d964e7 UW |
2186 | |
2187 | for (i = 0; i < nr; i++) | |
2188 | { | |
2189 | struct cleanup *val_chain; | |
2190 | ULONGEST val; | |
31a0ae49 | 2191 | val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox"); |
e17a4113 | 2192 | val = extract_unsigned_integer (buf + 4*i, 4, byte_order); |
31a0ae49 | 2193 | ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4)); |
23d964e7 UW |
2194 | do_cleanups (val_chain); |
2195 | ||
31a0ae49 | 2196 | if (!ui_out_is_mi_like_p (current_uiout)) |
23d964e7 UW |
2197 | printf_filtered ("\n"); |
2198 | } | |
2199 | ||
2200 | do_cleanups (chain); | |
2201 | } | |
2202 | ||
2203 | static void | |
2204 | info_spu_mailbox_command (char *args, int from_tty) | |
2205 | { | |
2206 | struct frame_info *frame = get_selected_frame (NULL); | |
e17a4113 UW |
2207 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2208 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
23d964e7 UW |
2209 | struct cleanup *chain; |
2210 | char annex[32]; | |
2211 | gdb_byte buf[1024]; | |
2212 | LONGEST len; | |
22e048c9 | 2213 | int id; |
23d964e7 | 2214 | |
e17a4113 | 2215 | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) |
0391f248 UW |
2216 | error (_("\"info spu\" is only supported on the SPU architecture.")); |
2217 | ||
23d964e7 UW |
2218 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); |
2219 | ||
31a0ae49 | 2220 | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox"); |
23d964e7 UW |
2221 | |
2222 | xsnprintf (annex, sizeof annex, "%d/mbox_info", id); | |
2223 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
2224 | buf, 0, sizeof buf); | |
2225 | if (len < 0) | |
2226 | error (_("Could not read mbox_info.")); | |
2227 | ||
e17a4113 UW |
2228 | info_spu_mailbox_list (buf, len / 4, byte_order, |
2229 | "mbox", "SPU Outbound Mailbox"); | |
23d964e7 UW |
2230 | |
2231 | xsnprintf (annex, sizeof annex, "%d/ibox_info", id); | |
2232 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
2233 | buf, 0, sizeof buf); | |
2234 | if (len < 0) | |
2235 | error (_("Could not read ibox_info.")); | |
2236 | ||
e17a4113 UW |
2237 | info_spu_mailbox_list (buf, len / 4, byte_order, |
2238 | "ibox", "SPU Outbound Interrupt Mailbox"); | |
23d964e7 UW |
2239 | |
2240 | xsnprintf (annex, sizeof annex, "%d/wbox_info", id); | |
2241 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
2242 | buf, 0, sizeof buf); | |
2243 | if (len < 0) | |
2244 | error (_("Could not read wbox_info.")); | |
2245 | ||
e17a4113 UW |
2246 | info_spu_mailbox_list (buf, len / 4, byte_order, |
2247 | "wbox", "SPU Inbound Mailbox"); | |
23d964e7 UW |
2248 | |
2249 | do_cleanups (chain); | |
2250 | } | |
2251 | ||
2252 | static ULONGEST | |
2253 | spu_mfc_get_bitfield (ULONGEST word, int first, int last) | |
2254 | { | |
2255 | ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1)); | |
2256 | return (word >> (63 - last)) & mask; | |
2257 | } | |
2258 | ||
2259 | static void | |
e17a4113 | 2260 | info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order) |
23d964e7 UW |
2261 | { |
2262 | static char *spu_mfc_opcode[256] = | |
2263 | { | |
2264 | /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2265 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2266 | /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2267 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2268 | /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL, | |
2269 | "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL, | |
2270 | /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL, | |
2271 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2272 | /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL, | |
2273 | "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL, | |
2274 | /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2275 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2276 | /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2277 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2278 | /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2279 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2280 | /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL, | |
2281 | NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf", | |
2282 | /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2283 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2284 | /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL, | |
2285 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2286 | /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL, | |
2287 | "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2288 | /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2289 | "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL, | |
2290 | /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2291 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2292 | /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2293 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2294 | /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2295 | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | |
2296 | }; | |
2297 | ||
12ab8a60 UW |
2298 | int *seq = alloca (nr * sizeof (int)); |
2299 | int done = 0; | |
23d964e7 | 2300 | struct cleanup *chain; |
12ab8a60 UW |
2301 | int i, j; |
2302 | ||
2303 | ||
2304 | /* Determine sequence in which to display (valid) entries. */ | |
2305 | for (i = 0; i < nr; i++) | |
2306 | { | |
2307 | /* Search for the first valid entry all of whose | |
2308 | dependencies are met. */ | |
2309 | for (j = 0; j < nr; j++) | |
2310 | { | |
2311 | ULONGEST mfc_cq_dw3; | |
2312 | ULONGEST dependencies; | |
2313 | ||
2314 | if (done & (1 << (nr - 1 - j))) | |
2315 | continue; | |
2316 | ||
e17a4113 UW |
2317 | mfc_cq_dw3 |
2318 | = extract_unsigned_integer (buf + 32*j + 24,8, byte_order); | |
12ab8a60 UW |
2319 | if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16)) |
2320 | continue; | |
2321 | ||
2322 | dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1); | |
2323 | if ((dependencies & done) != dependencies) | |
2324 | continue; | |
2325 | ||
2326 | seq[i] = j; | |
2327 | done |= 1 << (nr - 1 - j); | |
2328 | break; | |
2329 | } | |
2330 | ||
2331 | if (j == nr) | |
2332 | break; | |
2333 | } | |
2334 | ||
2335 | nr = i; | |
2336 | ||
23d964e7 | 2337 | |
31a0ae49 JK |
2338 | chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr, |
2339 | "dma_cmd"); | |
23d964e7 | 2340 | |
31a0ae49 JK |
2341 | ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode"); |
2342 | ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag"); | |
2343 | ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId"); | |
2344 | ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId"); | |
2345 | ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA"); | |
2346 | ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA"); | |
2347 | ui_out_table_header (current_uiout, 7, ui_left, "size", "Size"); | |
2348 | ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr"); | |
2349 | ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize"); | |
2350 | ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E"); | |
23d964e7 | 2351 | |
31a0ae49 | 2352 | ui_out_table_body (current_uiout); |
23d964e7 UW |
2353 | |
2354 | for (i = 0; i < nr; i++) | |
2355 | { | |
2356 | struct cleanup *cmd_chain; | |
2357 | ULONGEST mfc_cq_dw0; | |
2358 | ULONGEST mfc_cq_dw1; | |
2359 | ULONGEST mfc_cq_dw2; | |
23d964e7 | 2360 | int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id; |
22e048c9 | 2361 | int list_lsa, list_size, mfc_lsa, mfc_size; |
23d964e7 UW |
2362 | ULONGEST mfc_ea; |
2363 | int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p; | |
2364 | ||
2365 | /* Decode contents of MFC Command Queue Context Save/Restore Registers. | |
2366 | See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */ | |
2367 | ||
e17a4113 UW |
2368 | mfc_cq_dw0 |
2369 | = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order); | |
2370 | mfc_cq_dw1 | |
2371 | = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order); | |
2372 | mfc_cq_dw2 | |
2373 | = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order); | |
23d964e7 UW |
2374 | |
2375 | list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14); | |
2376 | list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26); | |
2377 | mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34); | |
2378 | mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39); | |
2379 | list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40); | |
2380 | rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43); | |
2381 | tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46); | |
2382 | ||
2383 | mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12 | |
2384 | | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36); | |
2385 | ||
2386 | mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13); | |
2387 | mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24); | |
2388 | noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37); | |
2389 | qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38); | |
2390 | ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39); | |
2391 | cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40); | |
2392 | ||
31a0ae49 | 2393 | cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd"); |
23d964e7 UW |
2394 | |
2395 | if (spu_mfc_opcode[mfc_cmd_opcode]) | |
31a0ae49 | 2396 | ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]); |
23d964e7 | 2397 | else |
31a0ae49 | 2398 | ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode); |
23d964e7 | 2399 | |
31a0ae49 JK |
2400 | ui_out_field_int (current_uiout, "tag", mfc_cmd_tag); |
2401 | ui_out_field_int (current_uiout, "tid", tclass_id); | |
2402 | ui_out_field_int (current_uiout, "rid", rclass_id); | |
23d964e7 UW |
2403 | |
2404 | if (ea_valid_p) | |
31a0ae49 | 2405 | ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8)); |
23d964e7 | 2406 | else |
31a0ae49 | 2407 | ui_out_field_skip (current_uiout, "ea"); |
23d964e7 | 2408 | |
31a0ae49 | 2409 | ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4); |
23d964e7 | 2410 | if (qw_valid_p) |
31a0ae49 | 2411 | ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4); |
23d964e7 | 2412 | else |
31a0ae49 | 2413 | ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size); |
23d964e7 UW |
2414 | |
2415 | if (list_valid_p) | |
2416 | { | |
31a0ae49 JK |
2417 | ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3); |
2418 | ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3); | |
23d964e7 UW |
2419 | } |
2420 | else | |
2421 | { | |
31a0ae49 JK |
2422 | ui_out_field_skip (current_uiout, "lstaddr"); |
2423 | ui_out_field_skip (current_uiout, "lstsize"); | |
23d964e7 UW |
2424 | } |
2425 | ||
2426 | if (cmd_error_p) | |
31a0ae49 | 2427 | ui_out_field_string (current_uiout, "error_p", "*"); |
23d964e7 | 2428 | else |
31a0ae49 | 2429 | ui_out_field_skip (current_uiout, "error_p"); |
23d964e7 UW |
2430 | |
2431 | do_cleanups (cmd_chain); | |
2432 | ||
31a0ae49 | 2433 | if (!ui_out_is_mi_like_p (current_uiout)) |
23d964e7 UW |
2434 | printf_filtered ("\n"); |
2435 | } | |
2436 | ||
2437 | do_cleanups (chain); | |
2438 | } | |
2439 | ||
2440 | static void | |
2441 | info_spu_dma_command (char *args, int from_tty) | |
2442 | { | |
2443 | struct frame_info *frame = get_selected_frame (NULL); | |
e17a4113 UW |
2444 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2445 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
23d964e7 UW |
2446 | ULONGEST dma_info_type; |
2447 | ULONGEST dma_info_mask; | |
2448 | ULONGEST dma_info_status; | |
2449 | ULONGEST dma_info_stall_and_notify; | |
2450 | ULONGEST dma_info_atomic_command_status; | |
2451 | struct cleanup *chain; | |
2452 | char annex[32]; | |
2453 | gdb_byte buf[1024]; | |
2454 | LONGEST len; | |
22e048c9 | 2455 | int id; |
23d964e7 | 2456 | |
0391f248 UW |
2457 | if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu) |
2458 | error (_("\"info spu\" is only supported on the SPU architecture.")); | |
2459 | ||
23d964e7 UW |
2460 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); |
2461 | ||
2462 | xsnprintf (annex, sizeof annex, "%d/dma_info", id); | |
2463 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
2464 | buf, 0, 40 + 16 * 32); | |
2465 | if (len <= 0) | |
2466 | error (_("Could not read dma_info.")); | |
2467 | ||
e17a4113 UW |
2468 | dma_info_type |
2469 | = extract_unsigned_integer (buf, 8, byte_order); | |
2470 | dma_info_mask | |
2471 | = extract_unsigned_integer (buf + 8, 8, byte_order); | |
2472 | dma_info_status | |
2473 | = extract_unsigned_integer (buf + 16, 8, byte_order); | |
2474 | dma_info_stall_and_notify | |
2475 | = extract_unsigned_integer (buf + 24, 8, byte_order); | |
2476 | dma_info_atomic_command_status | |
2477 | = extract_unsigned_integer (buf + 32, 8, byte_order); | |
23d964e7 | 2478 | |
31a0ae49 | 2479 | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA"); |
23d964e7 | 2480 | |
31a0ae49 | 2481 | if (ui_out_is_mi_like_p (current_uiout)) |
23d964e7 | 2482 | { |
31a0ae49 | 2483 | ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s", |
23d964e7 | 2484 | phex_nz (dma_info_type, 4)); |
31a0ae49 | 2485 | ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s", |
23d964e7 | 2486 | phex_nz (dma_info_mask, 4)); |
31a0ae49 | 2487 | ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s", |
23d964e7 | 2488 | phex_nz (dma_info_status, 4)); |
31a0ae49 | 2489 | ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s", |
23d964e7 | 2490 | phex_nz (dma_info_stall_and_notify, 4)); |
31a0ae49 | 2491 | ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s", |
23d964e7 UW |
2492 | phex_nz (dma_info_atomic_command_status, 4)); |
2493 | } | |
2494 | else | |
2495 | { | |
8fbde58b | 2496 | const char *query_msg = _("no query pending"); |
23d964e7 | 2497 | |
8fbde58b UW |
2498 | if (dma_info_type & 4) |
2499 | switch (dma_info_type & 3) | |
2500 | { | |
2501 | case 1: query_msg = _("'any' query pending"); break; | |
2502 | case 2: query_msg = _("'all' query pending"); break; | |
2503 | default: query_msg = _("undefined query type"); break; | |
2504 | } | |
23d964e7 UW |
2505 | |
2506 | printf_filtered (_("Tag-Group Status 0x%s\n"), | |
2507 | phex (dma_info_status, 4)); | |
2508 | printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"), | |
2509 | phex (dma_info_mask, 4), query_msg); | |
2510 | printf_filtered (_("Stall-and-Notify 0x%s\n"), | |
2511 | phex (dma_info_stall_and_notify, 4)); | |
2512 | printf_filtered (_("Atomic Cmd Status 0x%s\n"), | |
2513 | phex (dma_info_atomic_command_status, 4)); | |
2514 | printf_filtered ("\n"); | |
2515 | } | |
2516 | ||
e17a4113 | 2517 | info_spu_dma_cmdlist (buf + 40, 16, byte_order); |
23d964e7 UW |
2518 | do_cleanups (chain); |
2519 | } | |
2520 | ||
2521 | static void | |
2522 | info_spu_proxydma_command (char *args, int from_tty) | |
2523 | { | |
2524 | struct frame_info *frame = get_selected_frame (NULL); | |
e17a4113 UW |
2525 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2526 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
23d964e7 UW |
2527 | ULONGEST dma_info_type; |
2528 | ULONGEST dma_info_mask; | |
2529 | ULONGEST dma_info_status; | |
2530 | struct cleanup *chain; | |
2531 | char annex[32]; | |
2532 | gdb_byte buf[1024]; | |
2533 | LONGEST len; | |
22e048c9 | 2534 | int id; |
23d964e7 | 2535 | |
e17a4113 | 2536 | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) |
0391f248 UW |
2537 | error (_("\"info spu\" is only supported on the SPU architecture.")); |
2538 | ||
23d964e7 UW |
2539 | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); |
2540 | ||
2541 | xsnprintf (annex, sizeof annex, "%d/proxydma_info", id); | |
2542 | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | |
2543 | buf, 0, 24 + 8 * 32); | |
2544 | if (len <= 0) | |
2545 | error (_("Could not read proxydma_info.")); | |
2546 | ||
e17a4113 UW |
2547 | dma_info_type = extract_unsigned_integer (buf, 8, byte_order); |
2548 | dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order); | |
2549 | dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order); | |
23d964e7 | 2550 | |
31a0ae49 JK |
2551 | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, |
2552 | "SPUInfoProxyDMA"); | |
23d964e7 | 2553 | |
31a0ae49 | 2554 | if (ui_out_is_mi_like_p (current_uiout)) |
23d964e7 | 2555 | { |
31a0ae49 | 2556 | ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s", |
23d964e7 | 2557 | phex_nz (dma_info_type, 4)); |
31a0ae49 | 2558 | ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s", |
23d964e7 | 2559 | phex_nz (dma_info_mask, 4)); |
31a0ae49 | 2560 | ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s", |
23d964e7 UW |
2561 | phex_nz (dma_info_status, 4)); |
2562 | } | |
2563 | else | |
2564 | { | |
2565 | const char *query_msg; | |
2566 | ||
8fbde58b | 2567 | switch (dma_info_type & 3) |
23d964e7 UW |
2568 | { |
2569 | case 0: query_msg = _("no query pending"); break; | |
2570 | case 1: query_msg = _("'any' query pending"); break; | |
2571 | case 2: query_msg = _("'all' query pending"); break; | |
2572 | default: query_msg = _("undefined query type"); break; | |
2573 | } | |
2574 | ||
2575 | printf_filtered (_("Tag-Group Status 0x%s\n"), | |
2576 | phex (dma_info_status, 4)); | |
2577 | printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"), | |
2578 | phex (dma_info_mask, 4), query_msg); | |
2579 | printf_filtered ("\n"); | |
2580 | } | |
2581 | ||
e17a4113 | 2582 | info_spu_dma_cmdlist (buf + 24, 8, byte_order); |
23d964e7 UW |
2583 | do_cleanups (chain); |
2584 | } | |
2585 | ||
2586 | static void | |
2587 | info_spu_command (char *args, int from_tty) | |
2588 | { | |
c378eb4e MS |
2589 | printf_unfiltered (_("\"info spu\" must be followed by " |
2590 | "the name of an SPU facility.\n")); | |
23d964e7 UW |
2591 | help_list (infospucmdlist, "info spu ", -1, gdb_stdout); |
2592 | } | |
2593 | ||
2594 | ||
3285f3fe UW |
2595 | /* Root of all "set spu "/"show spu " commands. */ |
2596 | ||
2597 | static void | |
2598 | show_spu_command (char *args, int from_tty) | |
2599 | { | |
2600 | help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout); | |
2601 | } | |
2602 | ||
2603 | static void | |
2604 | set_spu_command (char *args, int from_tty) | |
2605 | { | |
2606 | help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout); | |
2607 | } | |
2608 | ||
2609 | static void | |
2610 | show_spu_stop_on_load (struct ui_file *file, int from_tty, | |
2611 | struct cmd_list_element *c, const char *value) | |
2612 | { | |
2613 | fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"), | |
2614 | value); | |
2615 | } | |
2616 | ||
ff1a52c6 UW |
2617 | static void |
2618 | show_spu_auto_flush_cache (struct ui_file *file, int from_tty, | |
2619 | struct cmd_list_element *c, const char *value) | |
2620 | { | |
2621 | fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"), | |
2622 | value); | |
2623 | } | |
2624 | ||
3285f3fe | 2625 | |
771b4502 UW |
2626 | /* Set up gdbarch struct. */ |
2627 | ||
2628 | static struct gdbarch * | |
2629 | spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2630 | { | |
2631 | struct gdbarch *gdbarch; | |
794ac428 | 2632 | struct gdbarch_tdep *tdep; |
85e747d2 UW |
2633 | int id = -1; |
2634 | ||
2635 | /* Which spufs ID was requested as address space? */ | |
2636 | if (info.tdep_info) | |
2637 | id = *(int *)info.tdep_info; | |
2638 | /* For objfile architectures of SPU solibs, decode the ID from the name. | |
2639 | This assumes the filename convention employed by solib-spu.c. */ | |
2640 | else if (info.abfd) | |
2641 | { | |
2642 | char *name = strrchr (info.abfd->filename, '@'); | |
2643 | if (name) | |
2644 | sscanf (name, "@0x%*x <%d>", &id); | |
2645 | } | |
771b4502 | 2646 | |
85e747d2 UW |
2647 | /* Find a candidate among extant architectures. */ |
2648 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
2649 | arches != NULL; | |
2650 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2651 | { | |
2652 | tdep = gdbarch_tdep (arches->gdbarch); | |
2653 | if (tdep && tdep->id == id) | |
2654 | return arches->gdbarch; | |
2655 | } | |
771b4502 | 2656 | |
85e747d2 | 2657 | /* None found, so create a new architecture. */ |
794ac428 | 2658 | tdep = XCALLOC (1, struct gdbarch_tdep); |
85e747d2 | 2659 | tdep->id = id; |
794ac428 | 2660 | gdbarch = gdbarch_alloc (&info, tdep); |
771b4502 UW |
2661 | |
2662 | /* Disassembler. */ | |
85e747d2 | 2663 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu); |
771b4502 UW |
2664 | |
2665 | /* Registers. */ | |
2666 | set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS); | |
2667 | set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS); | |
2668 | set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM); | |
2669 | set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM); | |
118dfbaf UW |
2670 | set_gdbarch_read_pc (gdbarch, spu_read_pc); |
2671 | set_gdbarch_write_pc (gdbarch, spu_write_pc); | |
771b4502 UW |
2672 | set_gdbarch_register_name (gdbarch, spu_register_name); |
2673 | set_gdbarch_register_type (gdbarch, spu_register_type); | |
2674 | set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read); | |
2675 | set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write); | |
9acbedc0 | 2676 | set_gdbarch_value_from_register (gdbarch, spu_value_from_register); |
771b4502 UW |
2677 | set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p); |
2678 | ||
2679 | /* Data types. */ | |
2680 | set_gdbarch_char_signed (gdbarch, 0); | |
2681 | set_gdbarch_ptr_bit (gdbarch, 32); | |
2682 | set_gdbarch_addr_bit (gdbarch, 32); | |
2683 | set_gdbarch_short_bit (gdbarch, 16); | |
2684 | set_gdbarch_int_bit (gdbarch, 32); | |
2685 | set_gdbarch_long_bit (gdbarch, 32); | |
2686 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2687 | set_gdbarch_float_bit (gdbarch, 32); | |
2688 | set_gdbarch_double_bit (gdbarch, 64); | |
2689 | set_gdbarch_long_double_bit (gdbarch, 64); | |
8da61cc4 DJ |
2690 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
2691 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
2692 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
771b4502 | 2693 | |
ff1a52c6 | 2694 | /* Address handling. */ |
85e747d2 | 2695 | set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer); |
36acd84e UW |
2696 | set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address); |
2697 | set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address); | |
ff1a52c6 UW |
2698 | set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags); |
2699 | set_gdbarch_address_class_type_flags_to_name | |
2700 | (gdbarch, spu_address_class_type_flags_to_name); | |
2701 | set_gdbarch_address_class_name_to_type_flags | |
2702 | (gdbarch, spu_address_class_name_to_type_flags); | |
2703 | ||
36acd84e | 2704 | |
771b4502 | 2705 | /* Inferior function calls. */ |
7b3dc0b7 UW |
2706 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); |
2707 | set_gdbarch_frame_align (gdbarch, spu_frame_align); | |
5141027d | 2708 | set_gdbarch_frame_red_zone_size (gdbarch, 2000); |
87805e63 | 2709 | set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code); |
771b4502 | 2710 | set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call); |
8d998b8f | 2711 | set_gdbarch_dummy_id (gdbarch, spu_dummy_id); |
771b4502 UW |
2712 | set_gdbarch_return_value (gdbarch, spu_return_value); |
2713 | ||
2714 | /* Frame handling. */ | |
2715 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
8d998b8f | 2716 | frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind); |
771b4502 UW |
2717 | frame_base_set_default (gdbarch, &spu_frame_base); |
2718 | set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc); | |
2719 | set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp); | |
2720 | set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer); | |
2721 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
2722 | set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue); | |
fe5febed | 2723 | set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p); |
771b4502 | 2724 | |
cc5f0d61 UW |
2725 | /* Cell/B.E. cross-architecture unwinder support. */ |
2726 | frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind); | |
2727 | ||
771b4502 UW |
2728 | /* Breakpoints. */ |
2729 | set_gdbarch_decr_pc_after_break (gdbarch, 4); | |
2730 | set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc); | |
d03285ec | 2731 | set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint); |
771b4502 UW |
2732 | set_gdbarch_cannot_step_breakpoint (gdbarch, 1); |
2733 | set_gdbarch_software_single_step (gdbarch, spu_software_single_step); | |
6e3f70d7 | 2734 | set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target); |
771b4502 | 2735 | |
dcf52cd8 UW |
2736 | /* Overlays. */ |
2737 | set_gdbarch_overlay_update (gdbarch, spu_overlay_update); | |
2738 | ||
771b4502 UW |
2739 | return gdbarch; |
2740 | } | |
2741 | ||
63807e1d PA |
2742 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
2743 | extern initialize_file_ftype _initialize_spu_tdep; | |
2744 | ||
771b4502 UW |
2745 | void |
2746 | _initialize_spu_tdep (void) | |
2747 | { | |
2748 | register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init); | |
f2d43c2c | 2749 | |
dcf52cd8 UW |
2750 | /* Add ourselves to objfile event chain. */ |
2751 | observer_attach_new_objfile (spu_overlay_new_objfile); | |
2752 | spu_overlay_data = register_objfile_data (); | |
23d964e7 | 2753 | |
3285f3fe UW |
2754 | /* Install spu stop-on-load handler. */ |
2755 | observer_attach_new_objfile (spu_catch_start); | |
2756 | ||
ff1a52c6 UW |
2757 | /* Add ourselves to normal_stop event chain. */ |
2758 | observer_attach_normal_stop (spu_attach_normal_stop); | |
2759 | ||
3285f3fe UW |
2760 | /* Add root prefix command for all "set spu"/"show spu" commands. */ |
2761 | add_prefix_cmd ("spu", no_class, set_spu_command, | |
2762 | _("Various SPU specific commands."), | |
2763 | &setspucmdlist, "set spu ", 0, &setlist); | |
2764 | add_prefix_cmd ("spu", no_class, show_spu_command, | |
2765 | _("Various SPU specific commands."), | |
2766 | &showspucmdlist, "show spu ", 0, &showlist); | |
2767 | ||
2768 | /* Toggle whether or not to add a temporary breakpoint at the "main" | |
2769 | function of new SPE contexts. */ | |
2770 | add_setshow_boolean_cmd ("stop-on-load", class_support, | |
2771 | &spu_stop_on_load_p, _("\ | |
2772 | Set whether to stop for new SPE threads."), | |
2773 | _("\ | |
2774 | Show whether to stop for new SPE threads."), | |
2775 | _("\ | |
2776 | Use \"on\" to give control to the user when a new SPE thread\n\ | |
2777 | enters its \"main\" function.\n\ | |
2778 | Use \"off\" to disable stopping for new SPE threads."), | |
2779 | NULL, | |
2780 | show_spu_stop_on_load, | |
2781 | &setspucmdlist, &showspucmdlist); | |
2782 | ||
ff1a52c6 UW |
2783 | /* Toggle whether or not to automatically flush the software-managed |
2784 | cache whenever SPE execution stops. */ | |
2785 | add_setshow_boolean_cmd ("auto-flush-cache", class_support, | |
2786 | &spu_auto_flush_cache_p, _("\ | |
2787 | Set whether to automatically flush the software-managed cache."), | |
2788 | _("\ | |
2789 | Show whether to automatically flush the software-managed cache."), | |
2790 | _("\ | |
2791 | Use \"on\" to automatically flush the software-managed cache\n\ | |
2792 | whenever SPE execution stops.\n\ | |
2793 | Use \"off\" to never automatically flush the software-managed cache."), | |
2794 | NULL, | |
2795 | show_spu_auto_flush_cache, | |
2796 | &setspucmdlist, &showspucmdlist); | |
2797 | ||
23d964e7 UW |
2798 | /* Add root prefix command for all "info spu" commands. */ |
2799 | add_prefix_cmd ("spu", class_info, info_spu_command, | |
2800 | _("Various SPU specific commands."), | |
2801 | &infospucmdlist, "info spu ", 0, &infolist); | |
2802 | ||
2803 | /* Add various "info spu" commands. */ | |
2804 | add_cmd ("event", class_info, info_spu_event_command, | |
2805 | _("Display SPU event facility status.\n"), | |
2806 | &infospucmdlist); | |
2807 | add_cmd ("signal", class_info, info_spu_signal_command, | |
2808 | _("Display SPU signal notification facility status.\n"), | |
2809 | &infospucmdlist); | |
2810 | add_cmd ("mailbox", class_info, info_spu_mailbox_command, | |
2811 | _("Display SPU mailbox facility status.\n"), | |
2812 | &infospucmdlist); | |
2813 | add_cmd ("dma", class_info, info_spu_dma_command, | |
2814 | _("Display MFC DMA status.\n"), | |
2815 | &infospucmdlist); | |
2816 | add_cmd ("proxydma", class_info, info_spu_proxydma_command, | |
2817 | _("Display MFC Proxy-DMA status.\n"), | |
2818 | &infospucmdlist); | |
771b4502 | 2819 | } |