Include string.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
ecd75fc8 2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
771b4502
UW
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "objfiles.h"
37#include "language.h"
38#include "regcache.h"
39#include "reggroups.h"
40#include "floatformat.h"
3285f3fe 41#include "block.h"
dcf52cd8 42#include "observer.h"
ff1a52c6 43#include "infcall.h"
54fcddd0 44#include "dwarf2.h"
7ce16bd4
UW
45#include "dwarf2-frame.h"
46#include "ax.h"
8dccd430 47#include "exceptions.h"
771b4502
UW
48#include "spu-tdep.h"
49
794ac428 50
3285f3fe
UW
51/* The list of available "set spu " and "show spu " commands. */
52static struct cmd_list_element *setspucmdlist = NULL;
53static struct cmd_list_element *showspucmdlist = NULL;
54
55/* Whether to stop for new SPE contexts. */
56static int spu_stop_on_load_p = 0;
ff1a52c6
UW
57/* Whether to automatically flush the SW-managed cache. */
58static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
59
60
794ac428
UW
61/* The tdep structure. */
62struct gdbarch_tdep
63{
85e747d2
UW
64 /* The spufs ID identifying our address space. */
65 int id;
66
794ac428
UW
67 /* SPU-specific vector type. */
68 struct type *spu_builtin_type_vec128;
69};
70
71
f2d43c2c 72/* SPU-specific vector type. */
794ac428
UW
73static struct type *
74spu_builtin_type_vec128 (struct gdbarch *gdbarch)
75{
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->spu_builtin_type_vec128)
79 {
df4df182 80 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
81 struct type *t;
82
e9bb382b
UW
83 t = arch_composite_type (gdbarch,
84 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 85 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 86 append_composite_type_field (t, "v2_int64",
df4df182 87 init_vector_type (bt->builtin_int64, 2));
794ac428 88 append_composite_type_field (t, "v4_int32",
df4df182 89 init_vector_type (bt->builtin_int32, 4));
794ac428 90 append_composite_type_field (t, "v8_int16",
df4df182 91 init_vector_type (bt->builtin_int16, 8));
794ac428 92 append_composite_type_field (t, "v16_int8",
df4df182 93 init_vector_type (bt->builtin_int8, 16));
794ac428 94 append_composite_type_field (t, "v2_double",
df4df182 95 init_vector_type (bt->builtin_double, 2));
794ac428 96 append_composite_type_field (t, "v4_float",
df4df182 97 init_vector_type (bt->builtin_float, 4));
794ac428 98
876cecd0 99 TYPE_VECTOR (t) = 1;
794ac428
UW
100 TYPE_NAME (t) = "spu_builtin_type_vec128";
101
102 tdep->spu_builtin_type_vec128 = t;
103 }
104
105 return tdep->spu_builtin_type_vec128;
106}
107
771b4502 108
23d964e7
UW
109/* The list of available "info spu " commands. */
110static struct cmd_list_element *infospucmdlist = NULL;
111
771b4502
UW
112/* Registers. */
113
114static const char *
d93859e2 115spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502
UW
116{
117 static char *register_names[] =
118 {
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
124 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
125 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
126 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
127 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
128 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
129 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
130 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
131 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
132 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
133 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
134 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 135 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
136 };
137
138 if (reg_nr < 0)
139 return NULL;
140 if (reg_nr >= sizeof register_names / sizeof *register_names)
141 return NULL;
142
143 return register_names[reg_nr];
144}
145
146static struct type *
147spu_register_type (struct gdbarch *gdbarch, int reg_nr)
148{
149 if (reg_nr < SPU_NUM_GPRS)
794ac428 150 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
151
152 switch (reg_nr)
153 {
154 case SPU_ID_REGNUM:
df4df182 155 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
156
157 case SPU_PC_REGNUM:
0dfff4cb 158 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
159
160 case SPU_SP_REGNUM:
0dfff4cb 161 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 162
23d964e7 163 case SPU_FPSCR_REGNUM:
df4df182 164 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
165
166 case SPU_SRR0_REGNUM:
df4df182 167 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
168
169 case SPU_LSLR_REGNUM:
df4df182 170 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
171
172 case SPU_DECR_REGNUM:
df4df182 173 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
174
175 case SPU_DECR_STATUS_REGNUM:
df4df182 176 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 177
771b4502 178 default:
a73c6dcd 179 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
180 }
181}
182
183/* Pseudo registers for preferred slots - stack pointer. */
184
05d1431c 185static enum register_status
23d964e7
UW
186spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
187 gdb_byte *buf)
188{
e17a4113
UW
189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 191 enum register_status status;
23d964e7
UW
192 gdb_byte reg[32];
193 char annex[32];
194 ULONGEST id;
001f13d8 195 ULONGEST ul;
23d964e7 196
05d1431c
PA
197 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
198 if (status != REG_VALID)
199 return status;
23d964e7
UW
200 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
201 memset (reg, 0, sizeof reg);
202 target_read (&current_target, TARGET_OBJECT_SPU, annex,
203 reg, 0, sizeof reg);
204
001f13d8
PA
205 ul = strtoulst ((char *) reg, NULL, 16);
206 store_unsigned_integer (buf, 4, byte_order, ul);
05d1431c 207 return REG_VALID;
23d964e7
UW
208}
209
05d1431c 210static enum register_status
771b4502
UW
211spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
212 int regnum, gdb_byte *buf)
213{
214 gdb_byte reg[16];
23d964e7
UW
215 char annex[32];
216 ULONGEST id;
05d1431c 217 enum register_status status;
771b4502
UW
218
219 switch (regnum)
220 {
221 case SPU_SP_REGNUM:
05d1431c
PA
222 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
223 if (status != REG_VALID)
224 return status;
771b4502 225 memcpy (buf, reg, 4);
05d1431c 226 return status;
771b4502 227
23d964e7 228 case SPU_FPSCR_REGNUM:
05d1431c
PA
229 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
230 if (status != REG_VALID)
231 return status;
23d964e7
UW
232 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
233 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 234 return status;
23d964e7
UW
235
236 case SPU_SRR0_REGNUM:
05d1431c 237 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
238
239 case SPU_LSLR_REGNUM:
05d1431c 240 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
241
242 case SPU_DECR_REGNUM:
05d1431c 243 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
244
245 case SPU_DECR_STATUS_REGNUM:
05d1431c 246 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 247
771b4502
UW
248 default:
249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
250 }
251}
252
23d964e7
UW
253static void
254spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
255 const gdb_byte *buf)
256{
e17a4113
UW
257 struct gdbarch *gdbarch = get_regcache_arch (regcache);
258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
001f13d8 259 char reg[32];
23d964e7
UW
260 char annex[32];
261 ULONGEST id;
262
263 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
264 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
265 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 266 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7 267 target_write (&current_target, TARGET_OBJECT_SPU, annex,
001f13d8 268 (gdb_byte *) reg, 0, strlen (reg));
23d964e7
UW
269}
270
771b4502
UW
271static void
272spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
273 int regnum, const gdb_byte *buf)
274{
275 gdb_byte reg[16];
23d964e7
UW
276 char annex[32];
277 ULONGEST id;
771b4502
UW
278
279 switch (regnum)
280 {
281 case SPU_SP_REGNUM:
282 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
283 memcpy (reg, buf, 4);
284 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
285 break;
286
23d964e7
UW
287 case SPU_FPSCR_REGNUM:
288 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
289 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
290 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
291 break;
292
293 case SPU_SRR0_REGNUM:
294 spu_pseudo_register_write_spu (regcache, "srr0", buf);
295 break;
296
297 case SPU_LSLR_REGNUM:
298 spu_pseudo_register_write_spu (regcache, "lslr", buf);
299 break;
300
301 case SPU_DECR_REGNUM:
302 spu_pseudo_register_write_spu (regcache, "decr", buf);
303 break;
304
305 case SPU_DECR_STATUS_REGNUM:
306 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
307 break;
308
771b4502
UW
309 default:
310 internal_error (__FILE__, __LINE__, _("invalid regnum"));
311 }
312}
313
7ce16bd4
UW
314static int
315spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
316 struct agent_expr *ax, int regnum)
317{
318 switch (regnum)
319 {
320 case SPU_SP_REGNUM:
321 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
322 return 0;
323
324 case SPU_FPSCR_REGNUM:
325 case SPU_SRR0_REGNUM:
326 case SPU_LSLR_REGNUM:
327 case SPU_DECR_REGNUM:
328 case SPU_DECR_STATUS_REGNUM:
329 return -1;
330
331 default:
332 internal_error (__FILE__, __LINE__, _("invalid regnum"));
333 }
334}
335
336static int
337spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
338 struct agent_expr *ax, int regnum)
339{
340 switch (regnum)
341 {
342 case SPU_SP_REGNUM:
343 ax_reg (ax, SPU_RAW_SP_REGNUM);
344 return 0;
345
346 case SPU_FPSCR_REGNUM:
347 case SPU_SRR0_REGNUM:
348 case SPU_LSLR_REGNUM:
349 case SPU_DECR_REGNUM:
350 case SPU_DECR_STATUS_REGNUM:
351 return -1;
352
353 default:
354 internal_error (__FILE__, __LINE__, _("invalid regnum"));
355 }
356}
357
358
771b4502
UW
359/* Value conversion -- access scalar values at the preferred slot. */
360
9acbedc0 361static struct value *
2ed3c037
UW
362spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
363 int regnum, struct frame_id frame_id)
771b4502 364{
2ed3c037
UW
365 struct value *value = default_value_from_register (gdbarch, type,
366 regnum, frame_id);
bad43aa5 367 int len = TYPE_LENGTH (type);
771b4502 368
bad43aa5 369 if (regnum < SPU_NUM_GPRS && len < 16)
9acbedc0 370 {
bad43aa5 371 int preferred_slot = len < 4 ? 4 - len : 0;
9acbedc0
UW
372 set_value_offset (value, preferred_slot);
373 }
771b4502 374
9acbedc0 375 return value;
771b4502
UW
376}
377
378/* Register groups. */
379
380static int
381spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
382 struct reggroup *group)
383{
384 /* Registers displayed via 'info regs'. */
385 if (group == general_reggroup)
386 return 1;
387
388 /* Registers displayed via 'info float'. */
389 if (group == float_reggroup)
390 return 0;
391
392 /* Registers that need to be saved/restored in order to
393 push or pop frames. */
394 if (group == save_reggroup || group == restore_reggroup)
395 return 1;
396
397 return default_register_reggroup_p (gdbarch, regnum, group);
398}
399
7ce16bd4
UW
400/* DWARF-2 register numbers. */
401
402static int
403spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
404{
405 /* Use cooked instead of raw SP. */
406 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
407}
408
ff1a52c6
UW
409
410/* Address handling. */
36acd84e 411
85e747d2
UW
412static int
413spu_gdbarch_id (struct gdbarch *gdbarch)
414{
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416 int id = tdep->id;
417
418 /* The objfile architecture of a standalone SPU executable does not
b021a221 419 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
420 address range in this special case. */
421 if (id == -1
422 && symfile_objfile && symfile_objfile->obfd
423 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
424 && symfile_objfile->sections != symfile_objfile->sections_end)
425 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
426
427 return id;
428}
429
ff1a52c6
UW
430static int
431spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
432{
433 if (dwarf2_addr_class == 1)
434 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
435 else
436 return 0;
437}
438
439static const char *
440spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
441{
442 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
443 return "__ea";
444 else
445 return NULL;
446}
447
448static int
449spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
450 const char *name, int *type_flags_ptr)
451{
452 if (strcmp (name, "__ea") == 0)
453 {
454 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
455 return 1;
456 }
457 else
458 return 0;
459}
460
85e747d2
UW
461static void
462spu_address_to_pointer (struct gdbarch *gdbarch,
463 struct type *type, gdb_byte *buf, CORE_ADDR addr)
464{
465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
466 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
467 SPUADDR_ADDR (addr));
468}
469
36acd84e 470static CORE_ADDR
9898f801
UW
471spu_pointer_to_address (struct gdbarch *gdbarch,
472 struct type *type, const gdb_byte *buf)
36acd84e 473{
85e747d2 474 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
476 ULONGEST addr
477 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 478
ff1a52c6
UW
479 /* Do not convert __ea pointers. */
480 if (TYPE_ADDRESS_CLASS_1 (type))
481 return addr;
482
d2ed6730 483 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
484}
485
486static CORE_ADDR
487spu_integer_to_address (struct gdbarch *gdbarch,
488 struct type *type, const gdb_byte *buf)
489{
85e747d2 490 int id = spu_gdbarch_id (gdbarch);
36acd84e 491 ULONGEST addr = unpack_long (type, buf);
36acd84e 492
d2ed6730 493 return SPUADDR (id, addr);
36acd84e
UW
494}
495
771b4502
UW
496
497/* Decoding SPU instructions. */
498
499enum
500 {
501 op_lqd = 0x34,
502 op_lqx = 0x3c4,
503 op_lqa = 0x61,
504 op_lqr = 0x67,
505 op_stqd = 0x24,
506 op_stqx = 0x144,
507 op_stqa = 0x41,
508 op_stqr = 0x47,
509
510 op_il = 0x081,
511 op_ila = 0x21,
512 op_a = 0x0c0,
513 op_ai = 0x1c,
514
a536c6d7 515 op_selb = 0x8,
771b4502
UW
516
517 op_br = 0x64,
518 op_bra = 0x60,
519 op_brsl = 0x66,
520 op_brasl = 0x62,
521 op_brnz = 0x42,
522 op_brz = 0x40,
523 op_brhnz = 0x46,
524 op_brhz = 0x44,
525 op_bi = 0x1a8,
526 op_bisl = 0x1a9,
527 op_biz = 0x128,
528 op_binz = 0x129,
529 op_bihz = 0x12a,
530 op_bihnz = 0x12b,
531 };
532
533static int
534is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
535{
536 if ((insn >> 21) == op)
537 {
538 *rt = insn & 127;
539 *ra = (insn >> 7) & 127;
540 *rb = (insn >> 14) & 127;
541 return 1;
542 }
543
544 return 0;
545}
546
547static int
548is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
549{
550 if ((insn >> 28) == op)
551 {
552 *rt = (insn >> 21) & 127;
553 *ra = (insn >> 7) & 127;
554 *rb = (insn >> 14) & 127;
555 *rc = insn & 127;
556 return 1;
557 }
558
559 return 0;
560}
561
562static int
563is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
564{
565 if ((insn >> 21) == op)
566 {
567 *rt = insn & 127;
568 *ra = (insn >> 7) & 127;
569 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
570 return 1;
571 }
572
573 return 0;
574}
575
576static int
577is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
578{
579 if ((insn >> 24) == op)
580 {
581 *rt = insn & 127;
582 *ra = (insn >> 7) & 127;
583 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
584 return 1;
585 }
586
587 return 0;
588}
589
590static int
591is_ri16 (unsigned int insn, int op, int *rt, int *i16)
592{
593 if ((insn >> 23) == op)
594 {
595 *rt = insn & 127;
596 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
597 return 1;
598 }
599
600 return 0;
601}
602
603static int
604is_ri18 (unsigned int insn, int op, int *rt, int *i18)
605{
606 if ((insn >> 25) == op)
607 {
608 *rt = insn & 127;
609 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
610 return 1;
611 }
612
613 return 0;
614}
615
616static int
617is_branch (unsigned int insn, int *offset, int *reg)
618{
619 int rt, i7, i16;
620
621 if (is_ri16 (insn, op_br, &rt, &i16)
622 || is_ri16 (insn, op_brsl, &rt, &i16)
623 || is_ri16 (insn, op_brnz, &rt, &i16)
624 || is_ri16 (insn, op_brz, &rt, &i16)
625 || is_ri16 (insn, op_brhnz, &rt, &i16)
626 || is_ri16 (insn, op_brhz, &rt, &i16))
627 {
628 *reg = SPU_PC_REGNUM;
629 *offset = i16 << 2;
630 return 1;
631 }
632
633 if (is_ri16 (insn, op_bra, &rt, &i16)
634 || is_ri16 (insn, op_brasl, &rt, &i16))
635 {
636 *reg = -1;
637 *offset = i16 << 2;
638 return 1;
639 }
640
641 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
642 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
643 || is_ri7 (insn, op_biz, &rt, reg, &i7)
644 || is_ri7 (insn, op_binz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
646 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
647 {
648 *offset = 0;
649 return 1;
650 }
651
652 return 0;
653}
654
655
656/* Prolog parsing. */
657
658struct spu_prologue_data
659 {
660 /* Stack frame size. -1 if analysis was unsuccessful. */
661 int size;
662
663 /* How to find the CFA. The CFA is equal to SP at function entry. */
664 int cfa_reg;
665 int cfa_offset;
666
667 /* Offset relative to CFA where a register is saved. -1 if invalid. */
668 int reg_offset[SPU_NUM_GPRS];
669 };
670
671static CORE_ADDR
e17a4113
UW
672spu_analyze_prologue (struct gdbarch *gdbarch,
673 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
674 struct spu_prologue_data *data)
675{
e17a4113 676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
677 int found_sp = 0;
678 int found_fp = 0;
679 int found_lr = 0;
ce50d78b 680 int found_bc = 0;
771b4502
UW
681 int reg_immed[SPU_NUM_GPRS];
682 gdb_byte buf[16];
683 CORE_ADDR prolog_pc = start_pc;
684 CORE_ADDR pc;
685 int i;
686
687
688 /* Initialize DATA to default values. */
689 data->size = -1;
690
691 data->cfa_reg = SPU_RAW_SP_REGNUM;
692 data->cfa_offset = 0;
693
694 for (i = 0; i < SPU_NUM_GPRS; i++)
695 data->reg_offset[i] = -1;
696
697 /* Set up REG_IMMED array. This is non-zero for a register if we know its
698 preferred slot currently holds this immediate value. */
699 for (i = 0; i < SPU_NUM_GPRS; i++)
700 reg_immed[i] = 0;
701
702 /* Scan instructions until the first branch.
703
704 The following instructions are important prolog components:
705
706 - The first instruction to set up the stack pointer.
707 - The first instruction to set up the frame pointer.
708 - The first instruction to save the link register.
ce50d78b 709 - The first instruction to save the backchain.
771b4502 710
ce50d78b 711 We return the instruction after the latest of these four,
771b4502
UW
712 or the incoming PC if none is found. The first instruction
713 to set up the stack pointer also defines the frame size.
714
715 Note that instructions saving incoming arguments to their stack
716 slots are not counted as important, because they are hard to
717 identify with certainty. This should not matter much, because
718 arguments are relevant only in code compiled with debug data,
719 and in such code the GDB core will advance until the first source
720 line anyway, using SAL data.
721
722 For purposes of stack unwinding, we analyze the following types
723 of instructions in addition:
724
725 - Any instruction adding to the current frame pointer.
726 - Any instruction loading an immediate constant into a register.
727 - Any instruction storing a register onto the stack.
728
729 These are used to compute the CFA and REG_OFFSET output. */
730
731 for (pc = start_pc; pc < end_pc; pc += 4)
732 {
733 unsigned int insn;
734 int rt, ra, rb, rc, immed;
735
736 if (target_read_memory (pc, buf, 4))
737 break;
e17a4113 738 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
739
740 /* AI is the typical instruction to set up a stack frame.
741 It is also used to initialize the frame pointer. */
742 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
743 {
744 if (rt == data->cfa_reg && ra == data->cfa_reg)
745 data->cfa_offset -= immed;
746
747 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
748 && !found_sp)
749 {
750 found_sp = 1;
751 prolog_pc = pc + 4;
752
753 data->size = -immed;
754 }
755 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
756 && !found_fp)
757 {
758 found_fp = 1;
759 prolog_pc = pc + 4;
760
761 data->cfa_reg = SPU_FP_REGNUM;
762 data->cfa_offset -= immed;
763 }
764 }
765
766 /* A is used to set up stack frames of size >= 512 bytes.
767 If we have tracked the contents of the addend register,
768 we can handle this as well. */
769 else if (is_rr (insn, op_a, &rt, &ra, &rb))
770 {
771 if (rt == data->cfa_reg && ra == data->cfa_reg)
772 {
773 if (reg_immed[rb] != 0)
774 data->cfa_offset -= reg_immed[rb];
775 else
776 data->cfa_reg = -1; /* We don't know the CFA any more. */
777 }
778
779 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
780 && !found_sp)
781 {
782 found_sp = 1;
783 prolog_pc = pc + 4;
784
785 if (reg_immed[rb] != 0)
786 data->size = -reg_immed[rb];
787 }
788 }
789
790 /* We need to track IL and ILA used to load immediate constants
791 in case they are later used as input to an A instruction. */
792 else if (is_ri16 (insn, op_il, &rt, &immed))
793 {
794 reg_immed[rt] = immed;
12102450
UW
795
796 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
797 found_sp = 1;
771b4502
UW
798 }
799
800 else if (is_ri18 (insn, op_ila, &rt, &immed))
801 {
802 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
803
804 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
805 found_sp = 1;
771b4502
UW
806 }
807
808 /* STQD is used to save registers to the stack. */
809 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
810 {
811 if (ra == data->cfa_reg)
812 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
813
814 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
815 && !found_lr)
816 {
817 found_lr = 1;
818 prolog_pc = pc + 4;
819 }
ce50d78b
UW
820
821 if (ra == SPU_RAW_SP_REGNUM
822 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
823 && !found_bc)
824 {
825 found_bc = 1;
826 prolog_pc = pc + 4;
827 }
771b4502
UW
828 }
829
830 /* _start uses SELB to set up the stack pointer. */
831 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
832 {
833 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
834 found_sp = 1;
835 }
836
837 /* We terminate if we find a branch. */
838 else if (is_branch (insn, &immed, &ra))
839 break;
840 }
841
842
843 /* If we successfully parsed until here, and didn't find any instruction
844 modifying SP, we assume we have a frameless function. */
845 if (!found_sp)
846 data->size = 0;
847
848 /* Return cooked instead of raw SP. */
849 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
850 data->cfa_reg = SPU_SP_REGNUM;
851
852 return prolog_pc;
853}
854
855/* Return the first instruction after the prologue starting at PC. */
856static CORE_ADDR
6093d2eb 857spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
858{
859 struct spu_prologue_data data;
e17a4113 860 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
861}
862
863/* Return the frame pointer in use at address PC. */
864static void
a54fba4c
MD
865spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
866 int *reg, LONGEST *offset)
771b4502
UW
867{
868 struct spu_prologue_data data;
e17a4113 869 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
870
871 if (data.size != -1 && data.cfa_reg != -1)
872 {
873 /* The 'frame pointer' address is CFA minus frame size. */
874 *reg = data.cfa_reg;
875 *offset = data.cfa_offset - data.size;
876 }
877 else
878 {
c378eb4e 879 /* ??? We don't really know ... */
771b4502
UW
880 *reg = SPU_SP_REGNUM;
881 *offset = 0;
882 }
883}
884
fe5febed
UW
885/* Return true if we are in the function's epilogue, i.e. after the
886 instruction that destroyed the function's stack frame.
887
888 1) scan forward from the point of execution:
889 a) If you find an instruction that modifies the stack pointer
890 or transfers control (except a return), execution is not in
891 an epilogue, return.
892 b) Stop scanning if you find a return instruction or reach the
893 end of the function or reach the hard limit for the size of
894 an epilogue.
895 2) scan backward from the point of execution:
896 a) If you find an instruction that modifies the stack pointer,
897 execution *is* in an epilogue, return.
898 b) Stop scanning if you reach an instruction that transfers
899 control or the beginning of the function or reach the hard
900 limit for the size of an epilogue. */
901
902static int
903spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
904{
e17a4113 905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
906 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
907 bfd_byte buf[4];
908 unsigned int insn;
22e048c9 909 int rt, ra, rb, immed;
fe5febed
UW
910
911 /* Find the search limits based on function boundaries and hard limit.
912 We assume the epilogue can be up to 64 instructions long. */
913
914 const int spu_max_epilogue_size = 64 * 4;
915
916 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
917 return 0;
918
919 if (pc - func_start < spu_max_epilogue_size)
920 epilogue_start = func_start;
921 else
922 epilogue_start = pc - spu_max_epilogue_size;
923
924 if (func_end - pc < spu_max_epilogue_size)
925 epilogue_end = func_end;
926 else
927 epilogue_end = pc + spu_max_epilogue_size;
928
929 /* Scan forward until next 'bi $0'. */
930
931 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
932 {
933 if (target_read_memory (scan_pc, buf, 4))
934 return 0;
e17a4113 935 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
936
937 if (is_branch (insn, &immed, &ra))
938 {
939 if (immed == 0 && ra == SPU_LR_REGNUM)
940 break;
941
942 return 0;
943 }
944
945 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
946 || is_rr (insn, op_a, &rt, &ra, &rb)
947 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
948 {
949 if (rt == SPU_RAW_SP_REGNUM)
950 return 0;
951 }
952 }
953
954 if (scan_pc >= epilogue_end)
955 return 0;
956
957 /* Scan backward until adjustment to stack pointer (R1). */
958
959 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
960 {
961 if (target_read_memory (scan_pc, buf, 4))
962 return 0;
e17a4113 963 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
964
965 if (is_branch (insn, &immed, &ra))
966 return 0;
967
968 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
969 || is_rr (insn, op_a, &rt, &ra, &rb)
970 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
971 {
972 if (rt == SPU_RAW_SP_REGNUM)
973 return 1;
974 }
975 }
976
977 return 0;
978}
979
980
771b4502
UW
981/* Normal stack frames. */
982
983struct spu_unwind_cache
984{
985 CORE_ADDR func;
986 CORE_ADDR frame_base;
987 CORE_ADDR local_base;
988
989 struct trad_frame_saved_reg *saved_regs;
990};
991
992static struct spu_unwind_cache *
8d998b8f 993spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
994 void **this_prologue_cache)
995{
e17a4113 996 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 998 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
999 struct spu_unwind_cache *info;
1000 struct spu_prologue_data data;
85e747d2 1001 CORE_ADDR id = tdep->id;
dcf52cd8 1002 gdb_byte buf[16];
771b4502
UW
1003
1004 if (*this_prologue_cache)
1005 return *this_prologue_cache;
1006
1007 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1008 *this_prologue_cache = info;
8d998b8f 1009 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
1010 info->frame_base = 0;
1011 info->local_base = 0;
1012
1013 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 1014 info->func = get_frame_func (this_frame);
771b4502
UW
1015 if (info->func == 0)
1016 {
1017 /* Fall back to using the current PC as frame ID. */
8d998b8f 1018 info->func = get_frame_pc (this_frame);
771b4502
UW
1019 data.size = -1;
1020 }
1021 else
e17a4113
UW
1022 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1023 &data);
771b4502
UW
1024
1025 /* If successful, use prologue analysis data. */
1026 if (data.size != -1 && data.cfa_reg != -1)
1027 {
1028 CORE_ADDR cfa;
1029 int i;
771b4502
UW
1030
1031 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 1032 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 1033 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 1034 cfa = SPUADDR (id, cfa);
771b4502
UW
1035
1036 /* Call-saved register slots. */
1037 for (i = 0; i < SPU_NUM_GPRS; i++)
1038 if (i == SPU_LR_REGNUM
1039 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1040 if (data.reg_offset[i] != -1)
1041 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1042
771b4502
UW
1043 /* Frame bases. */
1044 info->frame_base = cfa;
1045 info->local_base = cfa - data.size;
1046 }
1047
1048 /* Otherwise, fall back to reading the backchain link. */
1049 else
1050 {
cdc9523a
UW
1051 CORE_ADDR reg;
1052 LONGEST backchain;
13def385 1053 ULONGEST lslr;
cdc9523a 1054 int status;
771b4502 1055
13def385
UW
1056 /* Get local store limit. */
1057 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1058 if (!lslr)
1059 lslr = (ULONGEST) -1;
1060
771b4502 1061 /* Get the backchain. */
8d998b8f 1062 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1063 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1064 &backchain);
771b4502
UW
1065
1066 /* A zero backchain terminates the frame chain. Also, sanity
1067 check against the local store size limit. */
13def385 1068 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1069 {
1070 /* Assume the link register is saved into its slot. */
13def385 1071 if (backchain + 16 <= lslr)
c378eb4e
MS
1072 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1073 backchain + 16);
771b4502 1074
771b4502 1075 /* Frame bases. */
85e747d2
UW
1076 info->frame_base = SPUADDR (id, backchain);
1077 info->local_base = SPUADDR (id, reg);
771b4502
UW
1078 }
1079 }
dcf52cd8 1080
c4891da7
UW
1081 /* If we didn't find a frame, we cannot determine SP / return address. */
1082 if (info->frame_base == 0)
1083 return info;
1084
dcf52cd8 1085 /* The previous SP is equal to the CFA. */
85e747d2
UW
1086 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1087 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1088
0a44cb36
UW
1089 /* Read full contents of the unwound link register in order to
1090 be able to determine the return address. */
dcf52cd8
UW
1091 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1092 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1093 else
8d998b8f 1094 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1095
0a44cb36
UW
1096 /* Normally, the return address is contained in the slot 0 of the
1097 link register, and slots 1-3 are zero. For an overlay return,
1098 slot 0 contains the address of the overlay manager return stub,
1099 slot 1 contains the partition number of the overlay section to
1100 be returned to, and slot 2 contains the return address within
1101 that section. Return the latter address in that case. */
e17a4113 1102 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1103 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1104 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1105 else
1106 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1107 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1108
1109 return info;
1110}
1111
1112static void
8d998b8f 1113spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1114 void **this_prologue_cache, struct frame_id *this_id)
1115{
1116 struct spu_unwind_cache *info =
8d998b8f 1117 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1118
1119 if (info->frame_base == 0)
1120 return;
1121
1122 *this_id = frame_id_build (info->frame_base, info->func);
1123}
1124
8d998b8f
UW
1125static struct value *
1126spu_frame_prev_register (struct frame_info *this_frame,
1127 void **this_prologue_cache, int regnum)
771b4502
UW
1128{
1129 struct spu_unwind_cache *info
8d998b8f 1130 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1131
1132 /* Special-case the stack pointer. */
1133 if (regnum == SPU_RAW_SP_REGNUM)
1134 regnum = SPU_SP_REGNUM;
1135
8d998b8f 1136 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1137}
1138
1139static const struct frame_unwind spu_frame_unwind = {
1140 NORMAL_FRAME,
8fbca658 1141 default_frame_unwind_stop_reason,
771b4502 1142 spu_frame_this_id,
8d998b8f
UW
1143 spu_frame_prev_register,
1144 NULL,
1145 default_frame_sniffer
771b4502
UW
1146};
1147
771b4502 1148static CORE_ADDR
8d998b8f 1149spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1150{
1151 struct spu_unwind_cache *info
8d998b8f 1152 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1153 return info->local_base;
1154}
1155
1156static const struct frame_base spu_frame_base = {
1157 &spu_frame_unwind,
1158 spu_frame_base_address,
1159 spu_frame_base_address,
1160 spu_frame_base_address
1161};
1162
1163static CORE_ADDR
1164spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1165{
85e747d2 1166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1167 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1168 /* Mask off interrupt enable bit. */
85e747d2 1169 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1170}
1171
1172static CORE_ADDR
1173spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1174{
85e747d2
UW
1175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1176 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1177 return SPUADDR (tdep->id, sp);
771b4502
UW
1178}
1179
118dfbaf 1180static CORE_ADDR
61a1198a 1181spu_read_pc (struct regcache *regcache)
118dfbaf 1182{
85e747d2 1183 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1184 ULONGEST pc;
1185 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1186 /* Mask off interrupt enable bit. */
85e747d2 1187 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1188}
1189
1190static void
61a1198a 1191spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1192{
1193 /* Keep interrupt enabled state unchanged. */
61a1198a 1194 ULONGEST old_pc;
30bcb456 1195
61a1198a
UW
1196 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1197 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1198 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1199}
1200
771b4502 1201
cc5f0d61
UW
1202/* Cell/B.E. cross-architecture unwinder support. */
1203
1204struct spu2ppu_cache
1205{
1206 struct frame_id frame_id;
1207 struct regcache *regcache;
1208};
1209
1210static struct gdbarch *
1211spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1212{
1213 struct spu2ppu_cache *cache = *this_cache;
1214 return get_regcache_arch (cache->regcache);
1215}
1216
1217static void
1218spu2ppu_this_id (struct frame_info *this_frame,
1219 void **this_cache, struct frame_id *this_id)
1220{
1221 struct spu2ppu_cache *cache = *this_cache;
1222 *this_id = cache->frame_id;
1223}
1224
1225static struct value *
1226spu2ppu_prev_register (struct frame_info *this_frame,
1227 void **this_cache, int regnum)
1228{
1229 struct spu2ppu_cache *cache = *this_cache;
1230 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1231 gdb_byte *buf;
1232
1233 buf = alloca (register_size (gdbarch, regnum));
1234 regcache_cooked_read (cache->regcache, regnum, buf);
1235 return frame_unwind_got_bytes (this_frame, regnum, buf);
1236}
1237
1238static int
1239spu2ppu_sniffer (const struct frame_unwind *self,
1240 struct frame_info *this_frame, void **this_prologue_cache)
1241{
1242 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1243 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1244 CORE_ADDR base, func, backchain;
1245 gdb_byte buf[4];
1246
f5656ead 1247 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
cc5f0d61
UW
1248 return 0;
1249
1250 base = get_frame_sp (this_frame);
1251 func = get_frame_pc (this_frame);
1252 if (target_read_memory (base, buf, 4))
1253 return 0;
1254 backchain = extract_unsigned_integer (buf, 4, byte_order);
1255
1256 if (!backchain)
1257 {
1258 struct frame_info *fi;
1259
1260 struct spu2ppu_cache *cache
1261 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1262
1263 cache->frame_id = frame_id_build (base + 16, func);
1264
1265 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1266 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1267 break;
1268
1269 if (fi)
1270 {
1271 cache->regcache = frame_save_as_regcache (fi);
1272 *this_prologue_cache = cache;
1273 return 1;
1274 }
1275 else
1276 {
1277 struct regcache *regcache;
f5656ead 1278 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
cc5f0d61
UW
1279 cache->regcache = regcache_dup (regcache);
1280 *this_prologue_cache = cache;
1281 return 1;
1282 }
1283 }
1284
1285 return 0;
1286}
1287
1288static void
1289spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1290{
1291 struct spu2ppu_cache *cache = this_cache;
1292 regcache_xfree (cache->regcache);
1293}
1294
1295static const struct frame_unwind spu2ppu_unwind = {
1296 ARCH_FRAME,
8fbca658 1297 default_frame_unwind_stop_reason,
cc5f0d61
UW
1298 spu2ppu_this_id,
1299 spu2ppu_prev_register,
1300 NULL,
1301 spu2ppu_sniffer,
1302 spu2ppu_dealloc_cache,
1303 spu2ppu_prev_arch,
1304};
1305
1306
771b4502
UW
1307/* Function calling convention. */
1308
7b3dc0b7
UW
1309static CORE_ADDR
1310spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1311{
1312 return sp & ~15;
1313}
1314
87805e63
UW
1315static CORE_ADDR
1316spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1317 struct value **args, int nargs, struct type *value_type,
1318 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1319 struct regcache *regcache)
1320{
1321 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1322 sp = (sp - 4) & ~15;
1323 /* Store the address of that breakpoint */
1324 *bp_addr = sp;
1325 /* The call starts at the callee's entry point. */
1326 *real_pc = funaddr;
1327
1328 return sp;
1329}
1330
771b4502
UW
1331static int
1332spu_scalar_value_p (struct type *type)
1333{
1334 switch (TYPE_CODE (type))
1335 {
1336 case TYPE_CODE_INT:
1337 case TYPE_CODE_ENUM:
1338 case TYPE_CODE_RANGE:
1339 case TYPE_CODE_CHAR:
1340 case TYPE_CODE_BOOL:
1341 case TYPE_CODE_PTR:
1342 case TYPE_CODE_REF:
1343 return TYPE_LENGTH (type) <= 16;
1344
1345 default:
1346 return 0;
1347 }
1348}
1349
1350static void
1351spu_value_to_regcache (struct regcache *regcache, int regnum,
1352 struct type *type, const gdb_byte *in)
1353{
1354 int len = TYPE_LENGTH (type);
1355
1356 if (spu_scalar_value_p (type))
1357 {
1358 int preferred_slot = len < 4 ? 4 - len : 0;
1359 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1360 }
1361 else
1362 {
1363 while (len >= 16)
1364 {
1365 regcache_cooked_write (regcache, regnum++, in);
1366 in += 16;
1367 len -= 16;
1368 }
1369
1370 if (len > 0)
1371 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1372 }
1373}
1374
1375static void
1376spu_regcache_to_value (struct regcache *regcache, int regnum,
1377 struct type *type, gdb_byte *out)
1378{
1379 int len = TYPE_LENGTH (type);
1380
1381 if (spu_scalar_value_p (type))
1382 {
1383 int preferred_slot = len < 4 ? 4 - len : 0;
1384 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1385 }
1386 else
1387 {
1388 while (len >= 16)
1389 {
1390 regcache_cooked_read (regcache, regnum++, out);
1391 out += 16;
1392 len -= 16;
1393 }
1394
1395 if (len > 0)
1396 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1397 }
1398}
1399
1400static CORE_ADDR
1401spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1402 struct regcache *regcache, CORE_ADDR bp_addr,
1403 int nargs, struct value **args, CORE_ADDR sp,
1404 int struct_return, CORE_ADDR struct_addr)
1405{
e17a4113 1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1407 CORE_ADDR sp_delta;
771b4502
UW
1408 int i;
1409 int regnum = SPU_ARG1_REGNUM;
1410 int stack_arg = -1;
1411 gdb_byte buf[16];
1412
1413 /* Set the return address. */
1414 memset (buf, 0, sizeof buf);
85e747d2 1415 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1416 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1417
1418 /* If STRUCT_RETURN is true, then the struct return address (in
1419 STRUCT_ADDR) will consume the first argument-passing register.
1420 Both adjust the register count and store that value. */
1421 if (struct_return)
1422 {
1423 memset (buf, 0, sizeof buf);
85e747d2 1424 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1425 regcache_cooked_write (regcache, regnum++, buf);
1426 }
1427
1428 /* Fill in argument registers. */
1429 for (i = 0; i < nargs; i++)
1430 {
1431 struct value *arg = args[i];
1432 struct type *type = check_typedef (value_type (arg));
1433 const gdb_byte *contents = value_contents (arg);
354ecfd5 1434 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
771b4502
UW
1435
1436 /* If the argument doesn't wholly fit into registers, it and
1437 all subsequent arguments go to the stack. */
1438 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1439 {
1440 stack_arg = i;
1441 break;
1442 }
1443
1444 spu_value_to_regcache (regcache, regnum, type, contents);
1445 regnum += n_regs;
1446 }
1447
1448 /* Overflow arguments go to the stack. */
1449 if (stack_arg != -1)
1450 {
1451 CORE_ADDR ap;
1452
1453 /* Allocate all required stack size. */
1454 for (i = stack_arg; i < nargs; i++)
1455 {
1456 struct type *type = check_typedef (value_type (args[i]));
1457 sp -= align_up (TYPE_LENGTH (type), 16);
1458 }
1459
1460 /* Fill in stack arguments. */
1461 ap = sp;
1462 for (i = stack_arg; i < nargs; i++)
1463 {
1464 struct value *arg = args[i];
1465 struct type *type = check_typedef (value_type (arg));
1466 int len = TYPE_LENGTH (type);
1467 int preferred_slot;
1468
1469 if (spu_scalar_value_p (type))
1470 preferred_slot = len < 4 ? 4 - len : 0;
1471 else
1472 preferred_slot = 0;
1473
1474 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1475 ap += align_up (TYPE_LENGTH (type), 16);
1476 }
1477 }
1478
1479 /* Allocate stack frame header. */
1480 sp -= 32;
1481
ee82e879
UW
1482 /* Store stack back chain. */
1483 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1484 target_write_memory (sp, buf, 16);
1485
9ff3afda 1486 /* Finally, update all slots of the SP register. */
e17a4113 1487 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1488 for (i = 0; i < 4; i++)
1489 {
e17a4113
UW
1490 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1491 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1492 }
1493 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1494
1495 return sp;
1496}
1497
1498static struct frame_id
8d998b8f 1499spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1500{
85e747d2 1501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1502 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1503 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1504 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1505}
1506
1507/* Function return value access. */
1508
1509static enum return_value_convention
6a3a010b 1510spu_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1511 struct type *type, struct regcache *regcache,
1512 gdb_byte *out, const gdb_byte *in)
771b4502 1513{
6a3a010b 1514 struct type *func_type = function ? value_type (function) : NULL;
771b4502 1515 enum return_value_convention rvc;
54fcddd0
UW
1516 int opencl_vector = 0;
1517
598cfb71
UW
1518 if (func_type)
1519 {
1520 func_type = check_typedef (func_type);
1521
1522 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1523 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1524
1525 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1526 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1527 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1528 && TYPE_VECTOR (type))
1529 opencl_vector = 1;
1530 }
771b4502
UW
1531
1532 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1533 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1534 else
1535 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1536
1537 if (in)
1538 {
1539 switch (rvc)
1540 {
1541 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1542 if (opencl_vector && TYPE_LENGTH (type) == 2)
1543 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1544 else
1545 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1546 break;
1547
1548 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1549 error (_("Cannot set function return value."));
771b4502
UW
1550 break;
1551 }
1552 }
1553 else if (out)
1554 {
1555 switch (rvc)
1556 {
1557 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1558 if (opencl_vector && TYPE_LENGTH (type) == 2)
1559 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1560 else
1561 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1562 break;
1563
1564 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1565 error (_("Function return value unknown."));
771b4502
UW
1566 break;
1567 }
1568 }
1569
1570 return rvc;
1571}
1572
1573
1574/* Breakpoints. */
1575
1576static const gdb_byte *
c378eb4e
MS
1577spu_breakpoint_from_pc (struct gdbarch *gdbarch,
1578 CORE_ADDR * pcptr, int *lenptr)
771b4502
UW
1579{
1580 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1581
1582 *lenptr = sizeof breakpoint;
1583 return breakpoint;
1584}
1585
d03285ec
UW
1586static int
1587spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1588 struct bp_target_info *bp_tgt)
1589{
1590 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1591 that in a combined application, we have some breakpoints inserted in SPU
1592 code, and now the application forks (on the PPU side). GDB common code
1593 will assume that the fork system call copied all breakpoints into the new
1594 process' address space, and that all those copies now need to be removed
1595 (see breakpoint.c:detach_breakpoints).
1596
1597 While this is certainly true for PPU side breakpoints, it is not true
1598 for SPU side breakpoints. fork will clone the SPU context file
1599 descriptors, so that all the existing SPU contexts are in accessible
1600 in the new process. However, the contents of the SPU contexts themselves
1601 are *not* cloned. Therefore the effect of detach_breakpoints is to
1602 remove SPU breakpoints from the *original* SPU context's local store
1603 -- this is not the correct behaviour.
1604
1605 The workaround is to check whether the PID we are asked to remove this
1606 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1607 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1608 true in the context of detach_breakpoints. If so, we simply do nothing.
1609 [ Note that for the fork child process, it does not matter if breakpoints
1610 remain inserted, because those SPU contexts are not runnable anyway --
1611 the Linux kernel allows only the original process to invoke spu_run. */
1612
1613 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1614 return 0;
1615
1616 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1617}
1618
771b4502
UW
1619
1620/* Software single-stepping support. */
1621
63807e1d 1622static int
0b1b3e42 1623spu_software_single_step (struct frame_info *frame)
771b4502 1624{
a6d9a66e 1625 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1626 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1628 CORE_ADDR pc, next_pc;
1629 unsigned int insn;
1630 int offset, reg;
1631 gdb_byte buf[4];
13def385 1632 ULONGEST lslr;
771b4502 1633
0b1b3e42 1634 pc = get_frame_pc (frame);
771b4502 1635
e0cd558a
UW
1636 if (target_read_memory (pc, buf, 4))
1637 return 1;
e17a4113 1638 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1639
13def385
UW
1640 /* Get local store limit. */
1641 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1642 if (!lslr)
1643 lslr = (ULONGEST) -1;
1644
e0cd558a
UW
1645 /* Next sequential instruction is at PC + 4, except if the current
1646 instruction is a PPE-assisted call, in which case it is at PC + 8.
1647 Wrap around LS limit to be on the safe side. */
1648 if ((insn & 0xffffff00) == 0x00002100)
13def385 1649 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1650 else
13def385 1651 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1652
6c95b8df
PA
1653 insert_single_step_breakpoint (gdbarch,
1654 aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1655
e0cd558a
UW
1656 if (is_branch (insn, &offset, &reg))
1657 {
1658 CORE_ADDR target = offset;
771b4502 1659
e0cd558a 1660 if (reg == SPU_PC_REGNUM)
85e747d2 1661 target += SPUADDR_ADDR (pc);
e0cd558a
UW
1662 else if (reg != -1)
1663 {
8dccd430
PA
1664 int optim, unavail;
1665
1666 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1667 &optim, &unavail))
1668 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1669 else
1670 {
1671 if (optim)
710409a2
PA
1672 throw_error (OPTIMIZED_OUT_ERROR,
1673 _("Could not determine address of "
1674 "single-step breakpoint."));
8dccd430
PA
1675 if (unavail)
1676 throw_error (NOT_AVAILABLE_ERROR,
1677 _("Could not determine address of "
1678 "single-step breakpoint."));
1679 }
771b4502 1680 }
e0cd558a 1681
13def385 1682 target = target & lslr;
e0cd558a 1683 if (target != next_pc)
6c95b8df 1684 insert_single_step_breakpoint (gdbarch, aspace,
85e747d2 1685 SPUADDR (SPUADDR_SPU (pc), target));
771b4502 1686 }
e6590a1b
UW
1687
1688 return 1;
771b4502
UW
1689}
1690
6e3f70d7
UW
1691
1692/* Longjmp support. */
1693
1694static int
1695spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1696{
e17a4113 1697 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1699 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1700 gdb_byte buf[4];
1701 CORE_ADDR jb_addr;
8dccd430 1702 int optim, unavail;
6e3f70d7
UW
1703
1704 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1705 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1706 &optim, &unavail))
1707 return 0;
1708
e17a4113 1709 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1710 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1711 return 0;
1712
e17a4113 1713 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1714 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1715 return 1;
1716}
1717
1718
85e747d2
UW
1719/* Disassembler. */
1720
1721struct spu_dis_asm_data
1722{
1723 struct gdbarch *gdbarch;
1724 int id;
1725};
1726
1727static void
1728spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1729{
1730 struct spu_dis_asm_data *data = info->application_data;
1731 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1732}
1733
1734static int
1735gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1736{
c378eb4e
MS
1737 /* The opcodes disassembler does 18-bit address arithmetic. Make
1738 sure the SPU ID encoded in the high bits is added back when we
1739 call print_address. */
85e747d2
UW
1740 struct disassemble_info spu_info = *info;
1741 struct spu_dis_asm_data data;
1742 data.gdbarch = info->application_data;
1743 data.id = SPUADDR_SPU (memaddr);
1744
1745 spu_info.application_data = &data;
1746 spu_info.print_address_func = spu_dis_asm_print_address;
1747 return print_insn_spu (memaddr, &spu_info);
1748}
1749
1750
dcf52cd8
UW
1751/* Target overlays for the SPU overlay manager.
1752
1753 See the documentation of simple_overlay_update for how the
1754 interface is supposed to work.
1755
1756 Data structures used by the overlay manager:
1757
1758 struct ovly_table
1759 {
1760 u32 vma;
1761 u32 size;
1762 u32 pos;
1763 u32 buf;
1764 } _ovly_table[]; -- one entry per overlay section
1765
1766 struct ovly_buf_table
1767 {
1768 u32 mapped;
1769 } _ovly_buf_table[]; -- one entry per overlay buffer
1770
1771 _ovly_table should never change.
1772
c378eb4e
MS
1773 Both tables are aligned to a 16-byte boundary, the symbols
1774 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1775 size set to the size of the respective array. buf in _ovly_table is
1776 an index into _ovly_buf_table.
dcf52cd8 1777
c378eb4e 1778 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1779 from one to reference the first entry in their respective tables. */
1780
1781/* Using the per-objfile private data mechanism, we store for each
1782 objfile an array of "struct spu_overlay_table" structures, one
1783 for each obj_section of the objfile. This structure holds two
1784 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1785 is *not* an overlay section. If it is non-zero, it represents
1786 a target address. The overlay section is mapped iff the target
1787 integer at this location equals MAPPED_VAL. */
1788
1789static const struct objfile_data *spu_overlay_data;
1790
1791struct spu_overlay_table
1792 {
1793 CORE_ADDR mapped_ptr;
1794 CORE_ADDR mapped_val;
1795 };
1796
1797/* Retrieve the overlay table for OBJFILE. If not already cached, read
1798 the _ovly_table data structure from the target and initialize the
1799 spu_overlay_table data structure from it. */
1800static struct spu_overlay_table *
1801spu_get_overlay_table (struct objfile *objfile)
1802{
e17a4113
UW
1803 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1804 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3b7344d5 1805 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
dcf52cd8
UW
1806 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1807 unsigned ovly_table_size, ovly_buf_table_size;
1808 struct spu_overlay_table *tbl;
1809 struct obj_section *osect;
948f8e3d 1810 gdb_byte *ovly_table;
dcf52cd8
UW
1811 int i;
1812
1813 tbl = objfile_data (objfile, spu_overlay_data);
1814 if (tbl)
1815 return tbl;
1816
1817 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
3b7344d5 1818 if (!ovly_table_msym.minsym)
dcf52cd8
UW
1819 return NULL;
1820
c378eb4e
MS
1821 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1822 NULL, objfile);
3b7344d5 1823 if (!ovly_buf_table_msym.minsym)
dcf52cd8
UW
1824 return NULL;
1825
77e371c0 1826 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3b7344d5 1827 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
dcf52cd8 1828
77e371c0 1829 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
3b7344d5 1830 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
dcf52cd8
UW
1831
1832 ovly_table = xmalloc (ovly_table_size);
1833 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1834
1835 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1836 objfile->sections_end - objfile->sections,
1837 struct spu_overlay_table);
1838
1839 for (i = 0; i < ovly_table_size / 16; i++)
1840 {
e17a4113
UW
1841 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1842 4, byte_order);
1843 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1844 4, byte_order);
1845 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1846 4, byte_order);
1847 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1848 4, byte_order);
dcf52cd8
UW
1849
1850 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1851 continue;
1852
1853 ALL_OBJFILE_OSECTIONS (objfile, osect)
1854 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1855 && pos == osect->the_bfd_section->filepos)
1856 {
1857 int ndx = osect - objfile->sections;
1858 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1859 tbl[ndx].mapped_val = i + 1;
1860 break;
1861 }
1862 }
1863
1864 xfree (ovly_table);
1865 set_objfile_data (objfile, spu_overlay_data, tbl);
1866 return tbl;
1867}
1868
1869/* Read _ovly_buf_table entry from the target to dermine whether
1870 OSECT is currently mapped, and update the mapped state. */
1871static void
1872spu_overlay_update_osect (struct obj_section *osect)
1873{
e17a4113
UW
1874 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1875 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1876 struct spu_overlay_table *ovly_table;
85e747d2 1877 CORE_ADDR id, val;
dcf52cd8
UW
1878
1879 ovly_table = spu_get_overlay_table (osect->objfile);
1880 if (!ovly_table)
1881 return;
1882
1883 ovly_table += osect - osect->objfile->sections;
1884 if (ovly_table->mapped_ptr == 0)
1885 return;
1886
85e747d2
UW
1887 id = SPUADDR_SPU (obj_section_addr (osect));
1888 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1889 4, byte_order);
dcf52cd8
UW
1890 osect->ovly_mapped = (val == ovly_table->mapped_val);
1891}
1892
1893/* If OSECT is NULL, then update all sections' mapped state.
1894 If OSECT is non-NULL, then update only OSECT's mapped state. */
1895static void
1896spu_overlay_update (struct obj_section *osect)
1897{
1898 /* Just one section. */
1899 if (osect)
1900 spu_overlay_update_osect (osect);
1901
1902 /* All sections. */
1903 else
1904 {
1905 struct objfile *objfile;
1906
1907 ALL_OBJSECTIONS (objfile, osect)
714835d5 1908 if (section_is_overlay (osect))
dcf52cd8
UW
1909 spu_overlay_update_osect (osect);
1910 }
1911}
1912
1913/* Whenever a new objfile is loaded, read the target's _ovly_table.
1914 If there is one, go through all sections and make sure for non-
1915 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1916 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1917static void
1918spu_overlay_new_objfile (struct objfile *objfile)
1919{
1920 struct spu_overlay_table *ovly_table;
1921 struct obj_section *osect;
1922
1923 /* If we've already touched this file, do nothing. */
1924 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1925 return;
1926
0391f248
UW
1927 /* Consider only SPU objfiles. */
1928 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1929 return;
1930
dcf52cd8
UW
1931 /* Check if this objfile has overlays. */
1932 ovly_table = spu_get_overlay_table (objfile);
1933 if (!ovly_table)
1934 return;
1935
1936 /* Now go and fiddle with all the LMAs. */
1937 ALL_OBJFILE_OSECTIONS (objfile, osect)
1938 {
1939 bfd *obfd = objfile->obfd;
1940 asection *bsect = osect->the_bfd_section;
1941 int ndx = osect - objfile->sections;
1942
1943 if (ovly_table[ndx].mapped_ptr == 0)
1944 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1945 else
d2ed6730 1946 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1947 }
1948}
1949
771b4502 1950
3285f3fe
UW
1951/* Insert temporary breakpoint on "main" function of newly loaded
1952 SPE context OBJFILE. */
1953static void
1954spu_catch_start (struct objfile *objfile)
1955{
3b7344d5 1956 struct bound_minimal_symbol minsym;
3285f3fe
UW
1957 struct symtab *symtab;
1958 CORE_ADDR pc;
1959 char buf[32];
1960
1961 /* Do this only if requested by "set spu stop-on-load on". */
1962 if (!spu_stop_on_load_p)
1963 return;
1964
1965 /* Consider only SPU objfiles. */
1966 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1967 return;
1968
1969 /* The main objfile is handled differently. */
1970 if (objfile == symfile_objfile)
1971 return;
1972
1973 /* There can be multiple symbols named "main". Search for the
1974 "main" in *this* objfile. */
1975 minsym = lookup_minimal_symbol ("main", NULL, objfile);
3b7344d5 1976 if (!minsym.minsym)
3285f3fe
UW
1977 return;
1978
1979 /* If we have debugging information, try to use it -- this
1980 will allow us to properly skip the prologue. */
77e371c0 1981 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
3b7344d5
TT
1982 symtab = find_pc_sect_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1983 minsym.minsym));
3285f3fe
UW
1984 if (symtab != NULL)
1985 {
346d1dfe 1986 const struct blockvector *bv = BLOCKVECTOR (symtab);
3285f3fe
UW
1987 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1988 struct symbol *sym;
1989 struct symtab_and_line sal;
1990
94af9270 1991 sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
3285f3fe
UW
1992 if (sym)
1993 {
1994 fixup_symbol_section (sym, objfile);
1995 sal = find_function_start_sal (sym, 1);
1996 pc = sal.pc;
1997 }
1998 }
1999
2000 /* Use a numerical address for the set_breakpoint command to avoid having
2001 the breakpoint re-set incorrectly. */
2002 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
d8c09fb5
JK
2003 create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
2004 NULL /* cond_string */, -1 /* thread */,
6a609e58 2005 NULL /* extra_string */,
d8c09fb5 2006 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 2007 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
2008 0 /* ignore_count */,
2009 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 2010 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 2011 1 /* enabled */, 0 /* internal */, 0);
3285f3fe
UW
2012}
2013
2014
ff1a52c6
UW
2015/* Look up OBJFILE loaded into FRAME's SPU context. */
2016static struct objfile *
2017spu_objfile_from_frame (struct frame_info *frame)
2018{
2019 struct gdbarch *gdbarch = get_frame_arch (frame);
2020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2021 struct objfile *obj;
2022
2023 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2024 return NULL;
2025
2026 ALL_OBJFILES (obj)
2027 {
2028 if (obj->sections != obj->sections_end
2029 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2030 return obj;
2031 }
2032
2033 return NULL;
2034}
2035
2036/* Flush cache for ea pointer access if available. */
2037static void
2038flush_ea_cache (void)
2039{
3b7344d5 2040 struct bound_minimal_symbol msymbol;
ff1a52c6
UW
2041 struct objfile *obj;
2042
2043 if (!has_stack_frames ())
2044 return;
2045
2046 obj = spu_objfile_from_frame (get_current_frame ());
2047 if (obj == NULL)
2048 return;
2049
2050 /* Lookup inferior function __cache_flush. */
2051 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
3b7344d5 2052 if (msymbol.minsym != NULL)
ff1a52c6
UW
2053 {
2054 struct type *type;
2055 CORE_ADDR addr;
2056
2057 type = objfile_type (obj)->builtin_void;
2058 type = lookup_function_type (type);
2059 type = lookup_pointer_type (type);
77e371c0 2060 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
ff1a52c6
UW
2061
2062 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2063 }
2064}
2065
2066/* This handler is called when the inferior has stopped. If it is stopped in
2067 SPU architecture then flush the ea cache if used. */
2068static void
2069spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2070{
2071 if (!spu_auto_flush_cache_p)
2072 return;
2073
2074 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2075 re-entering this function when __cache_flush stops. */
2076 spu_auto_flush_cache_p = 0;
2077 flush_ea_cache ();
2078 spu_auto_flush_cache_p = 1;
2079}
2080
2081
23d964e7
UW
2082/* "info spu" commands. */
2083
2084static void
2085info_spu_event_command (char *args, int from_tty)
2086{
2087 struct frame_info *frame = get_selected_frame (NULL);
2088 ULONGEST event_status = 0;
2089 ULONGEST event_mask = 0;
2090 struct cleanup *chain;
2091 gdb_byte buf[100];
2092 char annex[32];
2093 LONGEST len;
22e048c9 2094 int id;
23d964e7 2095
0391f248
UW
2096 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2097 error (_("\"info spu\" is only supported on the SPU architecture."));
2098
23d964e7
UW
2099 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2100
2101 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2102 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2103 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2104 if (len <= 0)
2105 error (_("Could not read event_status."));
9971ac47 2106 buf[len] = '\0';
001f13d8 2107 event_status = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2108
2109 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2110 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2111 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2112 if (len <= 0)
2113 error (_("Could not read event_mask."));
9971ac47 2114 buf[len] = '\0';
001f13d8 2115 event_mask = strtoulst ((char *) buf, NULL, 16);
23d964e7 2116
31a0ae49 2117 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
23d964e7 2118
31a0ae49 2119 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2120 {
31a0ae49 2121 ui_out_field_fmt (current_uiout, "event_status",
23d964e7 2122 "0x%s", phex_nz (event_status, 4));
31a0ae49 2123 ui_out_field_fmt (current_uiout, "event_mask",
23d964e7
UW
2124 "0x%s", phex_nz (event_mask, 4));
2125 }
2126 else
2127 {
2128 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2129 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2130 }
2131
2132 do_cleanups (chain);
2133}
2134
2135static void
2136info_spu_signal_command (char *args, int from_tty)
2137{
2138 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2139 struct gdbarch *gdbarch = get_frame_arch (frame);
2140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2141 ULONGEST signal1 = 0;
2142 ULONGEST signal1_type = 0;
2143 int signal1_pending = 0;
2144 ULONGEST signal2 = 0;
2145 ULONGEST signal2_type = 0;
2146 int signal2_pending = 0;
2147 struct cleanup *chain;
2148 char annex[32];
2149 gdb_byte buf[100];
2150 LONGEST len;
22e048c9 2151 int id;
23d964e7 2152
e17a4113 2153 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2154 error (_("\"info spu\" is only supported on the SPU architecture."));
2155
23d964e7
UW
2156 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2157
2158 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2159 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2160 if (len < 0)
2161 error (_("Could not read signal1."));
2162 else if (len == 4)
2163 {
e17a4113 2164 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2165 signal1_pending = 1;
2166 }
2167
2168 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2169 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2170 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2171 if (len <= 0)
2172 error (_("Could not read signal1_type."));
9971ac47 2173 buf[len] = '\0';
001f13d8 2174 signal1_type = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2175
2176 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2177 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2178 if (len < 0)
2179 error (_("Could not read signal2."));
2180 else if (len == 4)
2181 {
e17a4113 2182 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2183 signal2_pending = 1;
2184 }
2185
2186 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2187 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2188 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2189 if (len <= 0)
2190 error (_("Could not read signal2_type."));
9971ac47 2191 buf[len] = '\0';
001f13d8 2192 signal2_type = strtoulst ((char *) buf, NULL, 16);
23d964e7 2193
31a0ae49 2194 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
23d964e7 2195
31a0ae49 2196 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2197 {
31a0ae49
JK
2198 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2199 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2200 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2201 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2202 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2203 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
23d964e7
UW
2204 }
2205 else
2206 {
2207 if (signal1_pending)
2208 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2209 else
2210 printf_filtered (_("Signal 1 not pending "));
2211
2212 if (signal1_type)
23d964e7 2213 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2214 else
2215 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2216
2217 if (signal2_pending)
2218 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2219 else
2220 printf_filtered (_("Signal 2 not pending "));
2221
2222 if (signal2_type)
23d964e7 2223 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2224 else
2225 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2226 }
2227
2228 do_cleanups (chain);
2229}
2230
2231static void
e17a4113 2232info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2233 const char *field, const char *msg)
2234{
2235 struct cleanup *chain;
2236 int i;
2237
2238 if (nr <= 0)
2239 return;
2240
31a0ae49 2241 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
23d964e7 2242
31a0ae49
JK
2243 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2244 ui_out_table_body (current_uiout);
23d964e7
UW
2245
2246 for (i = 0; i < nr; i++)
2247 {
2248 struct cleanup *val_chain;
2249 ULONGEST val;
31a0ae49 2250 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
e17a4113 2251 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
31a0ae49 2252 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
23d964e7
UW
2253 do_cleanups (val_chain);
2254
31a0ae49 2255 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2256 printf_filtered ("\n");
2257 }
2258
2259 do_cleanups (chain);
2260}
2261
2262static void
2263info_spu_mailbox_command (char *args, int from_tty)
2264{
2265 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2266 struct gdbarch *gdbarch = get_frame_arch (frame);
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2268 struct cleanup *chain;
2269 char annex[32];
2270 gdb_byte buf[1024];
2271 LONGEST len;
22e048c9 2272 int id;
23d964e7 2273
e17a4113 2274 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2275 error (_("\"info spu\" is only supported on the SPU architecture."));
2276
23d964e7
UW
2277 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2278
31a0ae49 2279 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2280
2281 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2282 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2283 buf, 0, sizeof buf);
2284 if (len < 0)
2285 error (_("Could not read mbox_info."));
2286
e17a4113
UW
2287 info_spu_mailbox_list (buf, len / 4, byte_order,
2288 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2289
2290 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2291 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2292 buf, 0, sizeof buf);
2293 if (len < 0)
2294 error (_("Could not read ibox_info."));
2295
e17a4113
UW
2296 info_spu_mailbox_list (buf, len / 4, byte_order,
2297 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2298
2299 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2300 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2301 buf, 0, sizeof buf);
2302 if (len < 0)
2303 error (_("Could not read wbox_info."));
2304
e17a4113
UW
2305 info_spu_mailbox_list (buf, len / 4, byte_order,
2306 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2307
2308 do_cleanups (chain);
2309}
2310
2311static ULONGEST
2312spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2313{
2314 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2315 return (word >> (63 - last)) & mask;
2316}
2317
2318static void
e17a4113 2319info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7
UW
2320{
2321 static char *spu_mfc_opcode[256] =
2322 {
2323 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2326 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2327 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2328 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2329 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2332 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2333 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2341 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2344 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2346 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2349 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2354 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2355 };
2356
12ab8a60
UW
2357 int *seq = alloca (nr * sizeof (int));
2358 int done = 0;
23d964e7 2359 struct cleanup *chain;
12ab8a60
UW
2360 int i, j;
2361
2362
2363 /* Determine sequence in which to display (valid) entries. */
2364 for (i = 0; i < nr; i++)
2365 {
2366 /* Search for the first valid entry all of whose
2367 dependencies are met. */
2368 for (j = 0; j < nr; j++)
2369 {
2370 ULONGEST mfc_cq_dw3;
2371 ULONGEST dependencies;
2372
2373 if (done & (1 << (nr - 1 - j)))
2374 continue;
2375
e17a4113
UW
2376 mfc_cq_dw3
2377 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2378 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2379 continue;
2380
2381 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2382 if ((dependencies & done) != dependencies)
2383 continue;
2384
2385 seq[i] = j;
2386 done |= 1 << (nr - 1 - j);
2387 break;
2388 }
2389
2390 if (j == nr)
2391 break;
2392 }
2393
2394 nr = i;
2395
23d964e7 2396
31a0ae49
JK
2397 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2398 "dma_cmd");
23d964e7 2399
31a0ae49
JK
2400 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2401 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2402 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2403 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2404 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2405 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2406 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2407 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2408 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2409 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
23d964e7 2410
31a0ae49 2411 ui_out_table_body (current_uiout);
23d964e7
UW
2412
2413 for (i = 0; i < nr; i++)
2414 {
2415 struct cleanup *cmd_chain;
2416 ULONGEST mfc_cq_dw0;
2417 ULONGEST mfc_cq_dw1;
2418 ULONGEST mfc_cq_dw2;
23d964e7 2419 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
22e048c9 2420 int list_lsa, list_size, mfc_lsa, mfc_size;
23d964e7
UW
2421 ULONGEST mfc_ea;
2422 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2423
2424 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2425 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2426
e17a4113
UW
2427 mfc_cq_dw0
2428 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2429 mfc_cq_dw1
2430 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2431 mfc_cq_dw2
2432 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2433
2434 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2435 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2436 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2437 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2438 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2439 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2440 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2441
2442 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2443 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2444
2445 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2446 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2447 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2448 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2449 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2450 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2451
31a0ae49 2452 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
23d964e7
UW
2453
2454 if (spu_mfc_opcode[mfc_cmd_opcode])
31a0ae49 2455 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
23d964e7 2456 else
31a0ae49 2457 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
23d964e7 2458
31a0ae49
JK
2459 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2460 ui_out_field_int (current_uiout, "tid", tclass_id);
2461 ui_out_field_int (current_uiout, "rid", rclass_id);
23d964e7
UW
2462
2463 if (ea_valid_p)
31a0ae49 2464 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
23d964e7 2465 else
31a0ae49 2466 ui_out_field_skip (current_uiout, "ea");
23d964e7 2467
31a0ae49 2468 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
23d964e7 2469 if (qw_valid_p)
31a0ae49 2470 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
23d964e7 2471 else
31a0ae49 2472 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
23d964e7
UW
2473
2474 if (list_valid_p)
2475 {
31a0ae49
JK
2476 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2477 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
23d964e7
UW
2478 }
2479 else
2480 {
31a0ae49
JK
2481 ui_out_field_skip (current_uiout, "lstaddr");
2482 ui_out_field_skip (current_uiout, "lstsize");
23d964e7
UW
2483 }
2484
2485 if (cmd_error_p)
31a0ae49 2486 ui_out_field_string (current_uiout, "error_p", "*");
23d964e7 2487 else
31a0ae49 2488 ui_out_field_skip (current_uiout, "error_p");
23d964e7
UW
2489
2490 do_cleanups (cmd_chain);
2491
31a0ae49 2492 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2493 printf_filtered ("\n");
2494 }
2495
2496 do_cleanups (chain);
2497}
2498
2499static void
2500info_spu_dma_command (char *args, int from_tty)
2501{
2502 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2503 struct gdbarch *gdbarch = get_frame_arch (frame);
2504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2505 ULONGEST dma_info_type;
2506 ULONGEST dma_info_mask;
2507 ULONGEST dma_info_status;
2508 ULONGEST dma_info_stall_and_notify;
2509 ULONGEST dma_info_atomic_command_status;
2510 struct cleanup *chain;
2511 char annex[32];
2512 gdb_byte buf[1024];
2513 LONGEST len;
22e048c9 2514 int id;
23d964e7 2515
0391f248
UW
2516 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2517 error (_("\"info spu\" is only supported on the SPU architecture."));
2518
23d964e7
UW
2519 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2520
2521 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2522 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2523 buf, 0, 40 + 16 * 32);
2524 if (len <= 0)
2525 error (_("Could not read dma_info."));
2526
e17a4113
UW
2527 dma_info_type
2528 = extract_unsigned_integer (buf, 8, byte_order);
2529 dma_info_mask
2530 = extract_unsigned_integer (buf + 8, 8, byte_order);
2531 dma_info_status
2532 = extract_unsigned_integer (buf + 16, 8, byte_order);
2533 dma_info_stall_and_notify
2534 = extract_unsigned_integer (buf + 24, 8, byte_order);
2535 dma_info_atomic_command_status
2536 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2537
31a0ae49 2538 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
23d964e7 2539
31a0ae49 2540 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2541 {
31a0ae49 2542 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
23d964e7 2543 phex_nz (dma_info_type, 4));
31a0ae49 2544 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
23d964e7 2545 phex_nz (dma_info_mask, 4));
31a0ae49 2546 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
23d964e7 2547 phex_nz (dma_info_status, 4));
31a0ae49 2548 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
23d964e7 2549 phex_nz (dma_info_stall_and_notify, 4));
31a0ae49 2550 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
23d964e7
UW
2551 phex_nz (dma_info_atomic_command_status, 4));
2552 }
2553 else
2554 {
8fbde58b 2555 const char *query_msg = _("no query pending");
23d964e7 2556
8fbde58b
UW
2557 if (dma_info_type & 4)
2558 switch (dma_info_type & 3)
2559 {
2560 case 1: query_msg = _("'any' query pending"); break;
2561 case 2: query_msg = _("'all' query pending"); break;
2562 default: query_msg = _("undefined query type"); break;
2563 }
23d964e7
UW
2564
2565 printf_filtered (_("Tag-Group Status 0x%s\n"),
2566 phex (dma_info_status, 4));
2567 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2568 phex (dma_info_mask, 4), query_msg);
2569 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2570 phex (dma_info_stall_and_notify, 4));
2571 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2572 phex (dma_info_atomic_command_status, 4));
2573 printf_filtered ("\n");
2574 }
2575
e17a4113 2576 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2577 do_cleanups (chain);
2578}
2579
2580static void
2581info_spu_proxydma_command (char *args, int from_tty)
2582{
2583 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2584 struct gdbarch *gdbarch = get_frame_arch (frame);
2585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2586 ULONGEST dma_info_type;
2587 ULONGEST dma_info_mask;
2588 ULONGEST dma_info_status;
2589 struct cleanup *chain;
2590 char annex[32];
2591 gdb_byte buf[1024];
2592 LONGEST len;
22e048c9 2593 int id;
23d964e7 2594
e17a4113 2595 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2596 error (_("\"info spu\" is only supported on the SPU architecture."));
2597
23d964e7
UW
2598 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2599
2600 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2601 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2602 buf, 0, 24 + 8 * 32);
2603 if (len <= 0)
2604 error (_("Could not read proxydma_info."));
2605
e17a4113
UW
2606 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2607 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2608 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2609
31a0ae49
JK
2610 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2611 "SPUInfoProxyDMA");
23d964e7 2612
31a0ae49 2613 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2614 {
31a0ae49 2615 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
23d964e7 2616 phex_nz (dma_info_type, 4));
31a0ae49 2617 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
23d964e7 2618 phex_nz (dma_info_mask, 4));
31a0ae49 2619 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
23d964e7
UW
2620 phex_nz (dma_info_status, 4));
2621 }
2622 else
2623 {
2624 const char *query_msg;
2625
8fbde58b 2626 switch (dma_info_type & 3)
23d964e7
UW
2627 {
2628 case 0: query_msg = _("no query pending"); break;
2629 case 1: query_msg = _("'any' query pending"); break;
2630 case 2: query_msg = _("'all' query pending"); break;
2631 default: query_msg = _("undefined query type"); break;
2632 }
2633
2634 printf_filtered (_("Tag-Group Status 0x%s\n"),
2635 phex (dma_info_status, 4));
2636 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2637 phex (dma_info_mask, 4), query_msg);
2638 printf_filtered ("\n");
2639 }
2640
e17a4113 2641 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2642 do_cleanups (chain);
2643}
2644
2645static void
2646info_spu_command (char *args, int from_tty)
2647{
c378eb4e
MS
2648 printf_unfiltered (_("\"info spu\" must be followed by "
2649 "the name of an SPU facility.\n"));
635c7e8a 2650 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
23d964e7
UW
2651}
2652
2653
3285f3fe
UW
2654/* Root of all "set spu "/"show spu " commands. */
2655
2656static void
2657show_spu_command (char *args, int from_tty)
2658{
2659 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2660}
2661
2662static void
2663set_spu_command (char *args, int from_tty)
2664{
2665 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2666}
2667
2668static void
2669show_spu_stop_on_load (struct ui_file *file, int from_tty,
2670 struct cmd_list_element *c, const char *value)
2671{
2672 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2673 value);
2674}
2675
ff1a52c6
UW
2676static void
2677show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2678 struct cmd_list_element *c, const char *value)
2679{
2680 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2681 value);
2682}
2683
3285f3fe 2684
771b4502
UW
2685/* Set up gdbarch struct. */
2686
2687static struct gdbarch *
2688spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2689{
2690 struct gdbarch *gdbarch;
794ac428 2691 struct gdbarch_tdep *tdep;
85e747d2
UW
2692 int id = -1;
2693
2694 /* Which spufs ID was requested as address space? */
2695 if (info.tdep_info)
2696 id = *(int *)info.tdep_info;
2697 /* For objfile architectures of SPU solibs, decode the ID from the name.
2698 This assumes the filename convention employed by solib-spu.c. */
2699 else if (info.abfd)
2700 {
2701 char *name = strrchr (info.abfd->filename, '@');
2702 if (name)
2703 sscanf (name, "@0x%*x <%d>", &id);
2704 }
771b4502 2705
85e747d2
UW
2706 /* Find a candidate among extant architectures. */
2707 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2708 arches != NULL;
2709 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2710 {
2711 tdep = gdbarch_tdep (arches->gdbarch);
2712 if (tdep && tdep->id == id)
2713 return arches->gdbarch;
2714 }
771b4502 2715
85e747d2 2716 /* None found, so create a new architecture. */
fc270c35 2717 tdep = XCNEW (struct gdbarch_tdep);
85e747d2 2718 tdep->id = id;
794ac428 2719 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2720
2721 /* Disassembler. */
85e747d2 2722 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2723
2724 /* Registers. */
2725 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2726 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2727 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2728 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2729 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2730 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2731 set_gdbarch_register_name (gdbarch, spu_register_name);
2732 set_gdbarch_register_type (gdbarch, spu_register_type);
2733 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2734 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2735 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502 2736 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
7ce16bd4
UW
2737 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2738 set_gdbarch_ax_pseudo_register_collect
2739 (gdbarch, spu_ax_pseudo_register_collect);
2740 set_gdbarch_ax_pseudo_register_push_stack
2741 (gdbarch, spu_ax_pseudo_register_push_stack);
771b4502
UW
2742
2743 /* Data types. */
2744 set_gdbarch_char_signed (gdbarch, 0);
2745 set_gdbarch_ptr_bit (gdbarch, 32);
2746 set_gdbarch_addr_bit (gdbarch, 32);
2747 set_gdbarch_short_bit (gdbarch, 16);
2748 set_gdbarch_int_bit (gdbarch, 32);
2749 set_gdbarch_long_bit (gdbarch, 32);
2750 set_gdbarch_long_long_bit (gdbarch, 64);
2751 set_gdbarch_float_bit (gdbarch, 32);
2752 set_gdbarch_double_bit (gdbarch, 64);
2753 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2754 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2755 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2756 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2757
ff1a52c6 2758 /* Address handling. */
85e747d2 2759 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2760 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2761 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2762 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2763 set_gdbarch_address_class_type_flags_to_name
2764 (gdbarch, spu_address_class_type_flags_to_name);
2765 set_gdbarch_address_class_name_to_type_flags
2766 (gdbarch, spu_address_class_name_to_type_flags);
2767
36acd84e 2768
771b4502 2769 /* Inferior function calls. */
7b3dc0b7
UW
2770 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2771 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2772 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2773 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2774 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2775 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2776 set_gdbarch_return_value (gdbarch, spu_return_value);
2777
2778 /* Frame handling. */
2779 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7ce16bd4 2780 dwarf2_append_unwinders (gdbarch);
8d998b8f 2781 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2782 frame_base_set_default (gdbarch, &spu_frame_base);
2783 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2784 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2785 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2786 set_gdbarch_frame_args_skip (gdbarch, 0);
2787 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
fe5febed 2788 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
771b4502 2789
cc5f0d61
UW
2790 /* Cell/B.E. cross-architecture unwinder support. */
2791 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2792
771b4502
UW
2793 /* Breakpoints. */
2794 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2795 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
d03285ec 2796 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502
UW
2797 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2798 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2799 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2800
dcf52cd8
UW
2801 /* Overlays. */
2802 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2803
771b4502
UW
2804 return gdbarch;
2805}
2806
63807e1d
PA
2807/* Provide a prototype to silence -Wmissing-prototypes. */
2808extern initialize_file_ftype _initialize_spu_tdep;
2809
771b4502
UW
2810void
2811_initialize_spu_tdep (void)
2812{
2813 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2814
dcf52cd8
UW
2815 /* Add ourselves to objfile event chain. */
2816 observer_attach_new_objfile (spu_overlay_new_objfile);
2817 spu_overlay_data = register_objfile_data ();
23d964e7 2818
3285f3fe
UW
2819 /* Install spu stop-on-load handler. */
2820 observer_attach_new_objfile (spu_catch_start);
2821
ff1a52c6
UW
2822 /* Add ourselves to normal_stop event chain. */
2823 observer_attach_normal_stop (spu_attach_normal_stop);
2824
3285f3fe
UW
2825 /* Add root prefix command for all "set spu"/"show spu" commands. */
2826 add_prefix_cmd ("spu", no_class, set_spu_command,
2827 _("Various SPU specific commands."),
2828 &setspucmdlist, "set spu ", 0, &setlist);
2829 add_prefix_cmd ("spu", no_class, show_spu_command,
2830 _("Various SPU specific commands."),
2831 &showspucmdlist, "show spu ", 0, &showlist);
2832
2833 /* Toggle whether or not to add a temporary breakpoint at the "main"
2834 function of new SPE contexts. */
2835 add_setshow_boolean_cmd ("stop-on-load", class_support,
2836 &spu_stop_on_load_p, _("\
2837Set whether to stop for new SPE threads."),
2838 _("\
2839Show whether to stop for new SPE threads."),
2840 _("\
2841Use \"on\" to give control to the user when a new SPE thread\n\
2842enters its \"main\" function.\n\
2843Use \"off\" to disable stopping for new SPE threads."),
2844 NULL,
2845 show_spu_stop_on_load,
2846 &setspucmdlist, &showspucmdlist);
2847
ff1a52c6
UW
2848 /* Toggle whether or not to automatically flush the software-managed
2849 cache whenever SPE execution stops. */
2850 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2851 &spu_auto_flush_cache_p, _("\
2852Set whether to automatically flush the software-managed cache."),
2853 _("\
2854Show whether to automatically flush the software-managed cache."),
2855 _("\
2856Use \"on\" to automatically flush the software-managed cache\n\
2857whenever SPE execution stops.\n\
2858Use \"off\" to never automatically flush the software-managed cache."),
2859 NULL,
2860 show_spu_auto_flush_cache,
2861 &setspucmdlist, &showspucmdlist);
2862
23d964e7
UW
2863 /* Add root prefix command for all "info spu" commands. */
2864 add_prefix_cmd ("spu", class_info, info_spu_command,
2865 _("Various SPU specific commands."),
2866 &infospucmdlist, "info spu ", 0, &infolist);
2867
2868 /* Add various "info spu" commands. */
2869 add_cmd ("event", class_info, info_spu_event_command,
2870 _("Display SPU event facility status.\n"),
2871 &infospucmdlist);
2872 add_cmd ("signal", class_info, info_spu_signal_command,
2873 _("Display SPU signal notification facility status.\n"),
2874 &infospucmdlist);
2875 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2876 _("Display SPU mailbox facility status.\n"),
2877 &infospucmdlist);
2878 add_cmd ("dma", class_info, info_spu_dma_command,
2879 _("Display MFC DMA status.\n"),
2880 &infospucmdlist);
2881 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2882 _("Display MFC Proxy-DMA status.\n"),
2883 &infospucmdlist);
771b4502 2884}
This page took 1.103692 seconds and 4 git commands to generate.