gdbarch software_single_step returns VEC (CORE_ADDR) *
[deliverable/binutils-gdb.git] / gdb / spu-tdep.c
CommitLineData
771b4502 1/* SPU target-dependent code for GDB, the GNU debugger.
618f726f 2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
771b4502
UW
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
771b4502
UW
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
771b4502
UW
21
22#include "defs.h"
23#include "arch-utils.h"
24#include "gdbtypes.h"
25#include "gdbcmd.h"
26#include "gdbcore.h"
771b4502
UW
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "value.h"
34#include "inferior.h"
35#include "dis-asm.h"
36#include "objfiles.h"
37#include "language.h"
38#include "regcache.h"
39#include "reggroups.h"
40#include "floatformat.h"
3285f3fe 41#include "block.h"
dcf52cd8 42#include "observer.h"
ff1a52c6 43#include "infcall.h"
54fcddd0 44#include "dwarf2.h"
7ce16bd4
UW
45#include "dwarf2-frame.h"
46#include "ax.h"
771b4502 47#include "spu-tdep.h"
f00aae0f 48#include "location.h"
794ac428 49
3285f3fe
UW
50/* The list of available "set spu " and "show spu " commands. */
51static struct cmd_list_element *setspucmdlist = NULL;
52static struct cmd_list_element *showspucmdlist = NULL;
53
54/* Whether to stop for new SPE contexts. */
55static int spu_stop_on_load_p = 0;
ff1a52c6
UW
56/* Whether to automatically flush the SW-managed cache. */
57static int spu_auto_flush_cache_p = 1;
3285f3fe
UW
58
59
794ac428
UW
60/* The tdep structure. */
61struct gdbarch_tdep
62{
85e747d2
UW
63 /* The spufs ID identifying our address space. */
64 int id;
65
794ac428
UW
66 /* SPU-specific vector type. */
67 struct type *spu_builtin_type_vec128;
68};
69
70
f2d43c2c 71/* SPU-specific vector type. */
794ac428
UW
72static struct type *
73spu_builtin_type_vec128 (struct gdbarch *gdbarch)
74{
75 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
76
77 if (!tdep->spu_builtin_type_vec128)
78 {
df4df182 79 const struct builtin_type *bt = builtin_type (gdbarch);
794ac428
UW
80 struct type *t;
81
e9bb382b
UW
82 t = arch_composite_type (gdbarch,
83 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 84 append_composite_type_field (t, "uint128", bt->builtin_int128);
794ac428 85 append_composite_type_field (t, "v2_int64",
df4df182 86 init_vector_type (bt->builtin_int64, 2));
794ac428 87 append_composite_type_field (t, "v4_int32",
df4df182 88 init_vector_type (bt->builtin_int32, 4));
794ac428 89 append_composite_type_field (t, "v8_int16",
df4df182 90 init_vector_type (bt->builtin_int16, 8));
794ac428 91 append_composite_type_field (t, "v16_int8",
df4df182 92 init_vector_type (bt->builtin_int8, 16));
794ac428 93 append_composite_type_field (t, "v2_double",
df4df182 94 init_vector_type (bt->builtin_double, 2));
794ac428 95 append_composite_type_field (t, "v4_float",
df4df182 96 init_vector_type (bt->builtin_float, 4));
794ac428 97
876cecd0 98 TYPE_VECTOR (t) = 1;
794ac428
UW
99 TYPE_NAME (t) = "spu_builtin_type_vec128";
100
101 tdep->spu_builtin_type_vec128 = t;
102 }
103
104 return tdep->spu_builtin_type_vec128;
105}
106
771b4502 107
23d964e7
UW
108/* The list of available "info spu " commands. */
109static struct cmd_list_element *infospucmdlist = NULL;
110
771b4502
UW
111/* Registers. */
112
113static const char *
d93859e2 114spu_register_name (struct gdbarch *gdbarch, int reg_nr)
771b4502
UW
115{
116 static char *register_names[] =
117 {
118 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
119 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
120 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
121 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
122 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
123 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
124 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
125 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
126 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
127 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
128 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
129 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
130 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
131 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
132 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
133 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
23d964e7 134 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
771b4502
UW
135 };
136
137 if (reg_nr < 0)
138 return NULL;
139 if (reg_nr >= sizeof register_names / sizeof *register_names)
140 return NULL;
141
142 return register_names[reg_nr];
143}
144
145static struct type *
146spu_register_type (struct gdbarch *gdbarch, int reg_nr)
147{
148 if (reg_nr < SPU_NUM_GPRS)
794ac428 149 return spu_builtin_type_vec128 (gdbarch);
771b4502
UW
150
151 switch (reg_nr)
152 {
153 case SPU_ID_REGNUM:
df4df182 154 return builtin_type (gdbarch)->builtin_uint32;
771b4502
UW
155
156 case SPU_PC_REGNUM:
0dfff4cb 157 return builtin_type (gdbarch)->builtin_func_ptr;
771b4502
UW
158
159 case SPU_SP_REGNUM:
0dfff4cb 160 return builtin_type (gdbarch)->builtin_data_ptr;
771b4502 161
23d964e7 162 case SPU_FPSCR_REGNUM:
df4df182 163 return builtin_type (gdbarch)->builtin_uint128;
23d964e7
UW
164
165 case SPU_SRR0_REGNUM:
df4df182 166 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
167
168 case SPU_LSLR_REGNUM:
df4df182 169 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
170
171 case SPU_DECR_REGNUM:
df4df182 172 return builtin_type (gdbarch)->builtin_uint32;
23d964e7
UW
173
174 case SPU_DECR_STATUS_REGNUM:
df4df182 175 return builtin_type (gdbarch)->builtin_uint32;
23d964e7 176
771b4502 177 default:
a73c6dcd 178 internal_error (__FILE__, __LINE__, _("invalid regnum"));
771b4502
UW
179 }
180}
181
182/* Pseudo registers for preferred slots - stack pointer. */
183
05d1431c 184static enum register_status
23d964e7
UW
185spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
186 gdb_byte *buf)
187{
e17a4113
UW
188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
05d1431c 190 enum register_status status;
23d964e7
UW
191 gdb_byte reg[32];
192 char annex[32];
193 ULONGEST id;
001f13d8 194 ULONGEST ul;
23d964e7 195
05d1431c
PA
196 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
197 if (status != REG_VALID)
198 return status;
23d964e7
UW
199 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
200 memset (reg, 0, sizeof reg);
201 target_read (&current_target, TARGET_OBJECT_SPU, annex,
202 reg, 0, sizeof reg);
203
001f13d8
PA
204 ul = strtoulst ((char *) reg, NULL, 16);
205 store_unsigned_integer (buf, 4, byte_order, ul);
05d1431c 206 return REG_VALID;
23d964e7
UW
207}
208
05d1431c 209static enum register_status
771b4502
UW
210spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
211 int regnum, gdb_byte *buf)
212{
213 gdb_byte reg[16];
23d964e7
UW
214 char annex[32];
215 ULONGEST id;
05d1431c 216 enum register_status status;
771b4502
UW
217
218 switch (regnum)
219 {
220 case SPU_SP_REGNUM:
05d1431c
PA
221 status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
222 if (status != REG_VALID)
223 return status;
771b4502 224 memcpy (buf, reg, 4);
05d1431c 225 return status;
771b4502 226
23d964e7 227 case SPU_FPSCR_REGNUM:
05d1431c
PA
228 status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
229 if (status != REG_VALID)
230 return status;
23d964e7
UW
231 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
232 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
05d1431c 233 return status;
23d964e7
UW
234
235 case SPU_SRR0_REGNUM:
05d1431c 236 return spu_pseudo_register_read_spu (regcache, "srr0", buf);
23d964e7
UW
237
238 case SPU_LSLR_REGNUM:
05d1431c 239 return spu_pseudo_register_read_spu (regcache, "lslr", buf);
23d964e7
UW
240
241 case SPU_DECR_REGNUM:
05d1431c 242 return spu_pseudo_register_read_spu (regcache, "decr", buf);
23d964e7
UW
243
244 case SPU_DECR_STATUS_REGNUM:
05d1431c 245 return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
23d964e7 246
771b4502
UW
247 default:
248 internal_error (__FILE__, __LINE__, _("invalid regnum"));
249 }
250}
251
23d964e7
UW
252static void
253spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
254 const gdb_byte *buf)
255{
e17a4113
UW
256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
001f13d8 258 char reg[32];
23d964e7
UW
259 char annex[32];
260 ULONGEST id;
261
262 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
263 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
264 xsnprintf (reg, sizeof reg, "0x%s",
e17a4113 265 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
23d964e7 266 target_write (&current_target, TARGET_OBJECT_SPU, annex,
001f13d8 267 (gdb_byte *) reg, 0, strlen (reg));
23d964e7
UW
268}
269
771b4502
UW
270static void
271spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
272 int regnum, const gdb_byte *buf)
273{
274 gdb_byte reg[16];
23d964e7
UW
275 char annex[32];
276 ULONGEST id;
771b4502
UW
277
278 switch (regnum)
279 {
280 case SPU_SP_REGNUM:
281 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
282 memcpy (reg, buf, 4);
283 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
284 break;
285
23d964e7
UW
286 case SPU_FPSCR_REGNUM:
287 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
288 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
289 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
290 break;
291
292 case SPU_SRR0_REGNUM:
293 spu_pseudo_register_write_spu (regcache, "srr0", buf);
294 break;
295
296 case SPU_LSLR_REGNUM:
297 spu_pseudo_register_write_spu (regcache, "lslr", buf);
298 break;
299
300 case SPU_DECR_REGNUM:
301 spu_pseudo_register_write_spu (regcache, "decr", buf);
302 break;
303
304 case SPU_DECR_STATUS_REGNUM:
305 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
306 break;
307
771b4502
UW
308 default:
309 internal_error (__FILE__, __LINE__, _("invalid regnum"));
310 }
311}
312
7ce16bd4
UW
313static int
314spu_ax_pseudo_register_collect (struct gdbarch *gdbarch,
315 struct agent_expr *ax, int regnum)
316{
317 switch (regnum)
318 {
319 case SPU_SP_REGNUM:
320 ax_reg_mask (ax, SPU_RAW_SP_REGNUM);
321 return 0;
322
323 case SPU_FPSCR_REGNUM:
324 case SPU_SRR0_REGNUM:
325 case SPU_LSLR_REGNUM:
326 case SPU_DECR_REGNUM:
327 case SPU_DECR_STATUS_REGNUM:
328 return -1;
329
330 default:
331 internal_error (__FILE__, __LINE__, _("invalid regnum"));
332 }
333}
334
335static int
336spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
337 struct agent_expr *ax, int regnum)
338{
339 switch (regnum)
340 {
341 case SPU_SP_REGNUM:
342 ax_reg (ax, SPU_RAW_SP_REGNUM);
343 return 0;
344
345 case SPU_FPSCR_REGNUM:
346 case SPU_SRR0_REGNUM:
347 case SPU_LSLR_REGNUM:
348 case SPU_DECR_REGNUM:
349 case SPU_DECR_STATUS_REGNUM:
350 return -1;
351
352 default:
353 internal_error (__FILE__, __LINE__, _("invalid regnum"));
354 }
355}
356
357
771b4502
UW
358/* Value conversion -- access scalar values at the preferred slot. */
359
9acbedc0 360static struct value *
2ed3c037
UW
361spu_value_from_register (struct gdbarch *gdbarch, struct type *type,
362 int regnum, struct frame_id frame_id)
771b4502 363{
2ed3c037
UW
364 struct value *value = default_value_from_register (gdbarch, type,
365 regnum, frame_id);
6b850546 366 LONGEST len = TYPE_LENGTH (type);
771b4502 367
bad43aa5 368 if (regnum < SPU_NUM_GPRS && len < 16)
9acbedc0 369 {
bad43aa5 370 int preferred_slot = len < 4 ? 4 - len : 0;
9acbedc0
UW
371 set_value_offset (value, preferred_slot);
372 }
771b4502 373
9acbedc0 374 return value;
771b4502
UW
375}
376
377/* Register groups. */
378
379static int
380spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
381 struct reggroup *group)
382{
383 /* Registers displayed via 'info regs'. */
384 if (group == general_reggroup)
385 return 1;
386
387 /* Registers displayed via 'info float'. */
388 if (group == float_reggroup)
389 return 0;
390
391 /* Registers that need to be saved/restored in order to
392 push or pop frames. */
393 if (group == save_reggroup || group == restore_reggroup)
394 return 1;
395
396 return default_register_reggroup_p (gdbarch, regnum, group);
397}
398
7ce16bd4
UW
399/* DWARF-2 register numbers. */
400
401static int
402spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
403{
404 /* Use cooked instead of raw SP. */
405 return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg;
406}
407
ff1a52c6
UW
408
409/* Address handling. */
36acd84e 410
85e747d2
UW
411static int
412spu_gdbarch_id (struct gdbarch *gdbarch)
413{
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int id = tdep->id;
416
417 /* The objfile architecture of a standalone SPU executable does not
b021a221 418 provide an SPU ID. Retrieve it from the objfile's relocated
85e747d2
UW
419 address range in this special case. */
420 if (id == -1
421 && symfile_objfile && symfile_objfile->obfd
422 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
423 && symfile_objfile->sections != symfile_objfile->sections_end)
424 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
425
426 return id;
427}
428
ff1a52c6
UW
429static int
430spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
431{
432 if (dwarf2_addr_class == 1)
433 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
434 else
435 return 0;
436}
437
438static const char *
439spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
440{
441 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
442 return "__ea";
443 else
444 return NULL;
445}
446
447static int
448spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
449 const char *name, int *type_flags_ptr)
450{
451 if (strcmp (name, "__ea") == 0)
452 {
453 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
454 return 1;
455 }
456 else
457 return 0;
458}
459
85e747d2
UW
460static void
461spu_address_to_pointer (struct gdbarch *gdbarch,
462 struct type *type, gdb_byte *buf, CORE_ADDR addr)
463{
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
466 SPUADDR_ADDR (addr));
467}
468
36acd84e 469static CORE_ADDR
9898f801
UW
470spu_pointer_to_address (struct gdbarch *gdbarch,
471 struct type *type, const gdb_byte *buf)
36acd84e 472{
85e747d2 473 int id = spu_gdbarch_id (gdbarch);
e17a4113
UW
474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
475 ULONGEST addr
476 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
36acd84e 477
ff1a52c6
UW
478 /* Do not convert __ea pointers. */
479 if (TYPE_ADDRESS_CLASS_1 (type))
480 return addr;
481
d2ed6730 482 return addr? SPUADDR (id, addr) : 0;
36acd84e
UW
483}
484
485static CORE_ADDR
486spu_integer_to_address (struct gdbarch *gdbarch,
487 struct type *type, const gdb_byte *buf)
488{
85e747d2 489 int id = spu_gdbarch_id (gdbarch);
36acd84e 490 ULONGEST addr = unpack_long (type, buf);
36acd84e 491
d2ed6730 492 return SPUADDR (id, addr);
36acd84e
UW
493}
494
771b4502
UW
495
496/* Decoding SPU instructions. */
497
498enum
499 {
500 op_lqd = 0x34,
501 op_lqx = 0x3c4,
502 op_lqa = 0x61,
503 op_lqr = 0x67,
504 op_stqd = 0x24,
505 op_stqx = 0x144,
506 op_stqa = 0x41,
507 op_stqr = 0x47,
508
509 op_il = 0x081,
510 op_ila = 0x21,
511 op_a = 0x0c0,
512 op_ai = 0x1c,
513
a536c6d7 514 op_selb = 0x8,
771b4502
UW
515
516 op_br = 0x64,
517 op_bra = 0x60,
518 op_brsl = 0x66,
519 op_brasl = 0x62,
520 op_brnz = 0x42,
521 op_brz = 0x40,
522 op_brhnz = 0x46,
523 op_brhz = 0x44,
524 op_bi = 0x1a8,
525 op_bisl = 0x1a9,
526 op_biz = 0x128,
527 op_binz = 0x129,
528 op_bihz = 0x12a,
529 op_bihnz = 0x12b,
530 };
531
532static int
533is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
534{
535 if ((insn >> 21) == op)
536 {
537 *rt = insn & 127;
538 *ra = (insn >> 7) & 127;
539 *rb = (insn >> 14) & 127;
540 return 1;
541 }
542
543 return 0;
544}
545
546static int
547is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
548{
549 if ((insn >> 28) == op)
550 {
551 *rt = (insn >> 21) & 127;
552 *ra = (insn >> 7) & 127;
553 *rb = (insn >> 14) & 127;
554 *rc = insn & 127;
555 return 1;
556 }
557
558 return 0;
559}
560
561static int
562is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
563{
564 if ((insn >> 21) == op)
565 {
566 *rt = insn & 127;
567 *ra = (insn >> 7) & 127;
568 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
569 return 1;
570 }
571
572 return 0;
573}
574
575static int
576is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
577{
578 if ((insn >> 24) == op)
579 {
580 *rt = insn & 127;
581 *ra = (insn >> 7) & 127;
582 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
583 return 1;
584 }
585
586 return 0;
587}
588
589static int
590is_ri16 (unsigned int insn, int op, int *rt, int *i16)
591{
592 if ((insn >> 23) == op)
593 {
594 *rt = insn & 127;
595 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
596 return 1;
597 }
598
599 return 0;
600}
601
602static int
603is_ri18 (unsigned int insn, int op, int *rt, int *i18)
604{
605 if ((insn >> 25) == op)
606 {
607 *rt = insn & 127;
608 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
609 return 1;
610 }
611
612 return 0;
613}
614
615static int
616is_branch (unsigned int insn, int *offset, int *reg)
617{
618 int rt, i7, i16;
619
620 if (is_ri16 (insn, op_br, &rt, &i16)
621 || is_ri16 (insn, op_brsl, &rt, &i16)
622 || is_ri16 (insn, op_brnz, &rt, &i16)
623 || is_ri16 (insn, op_brz, &rt, &i16)
624 || is_ri16 (insn, op_brhnz, &rt, &i16)
625 || is_ri16 (insn, op_brhz, &rt, &i16))
626 {
627 *reg = SPU_PC_REGNUM;
628 *offset = i16 << 2;
629 return 1;
630 }
631
632 if (is_ri16 (insn, op_bra, &rt, &i16)
633 || is_ri16 (insn, op_brasl, &rt, &i16))
634 {
635 *reg = -1;
636 *offset = i16 << 2;
637 return 1;
638 }
639
640 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
641 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
642 || is_ri7 (insn, op_biz, &rt, reg, &i7)
643 || is_ri7 (insn, op_binz, &rt, reg, &i7)
644 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
645 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
646 {
647 *offset = 0;
648 return 1;
649 }
650
651 return 0;
652}
653
654
655/* Prolog parsing. */
656
657struct spu_prologue_data
658 {
659 /* Stack frame size. -1 if analysis was unsuccessful. */
660 int size;
661
662 /* How to find the CFA. The CFA is equal to SP at function entry. */
663 int cfa_reg;
664 int cfa_offset;
665
666 /* Offset relative to CFA where a register is saved. -1 if invalid. */
667 int reg_offset[SPU_NUM_GPRS];
668 };
669
670static CORE_ADDR
e17a4113
UW
671spu_analyze_prologue (struct gdbarch *gdbarch,
672 CORE_ADDR start_pc, CORE_ADDR end_pc,
771b4502
UW
673 struct spu_prologue_data *data)
674{
e17a4113 675 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
676 int found_sp = 0;
677 int found_fp = 0;
678 int found_lr = 0;
ce50d78b 679 int found_bc = 0;
771b4502
UW
680 int reg_immed[SPU_NUM_GPRS];
681 gdb_byte buf[16];
682 CORE_ADDR prolog_pc = start_pc;
683 CORE_ADDR pc;
684 int i;
685
686
687 /* Initialize DATA to default values. */
688 data->size = -1;
689
690 data->cfa_reg = SPU_RAW_SP_REGNUM;
691 data->cfa_offset = 0;
692
693 for (i = 0; i < SPU_NUM_GPRS; i++)
694 data->reg_offset[i] = -1;
695
696 /* Set up REG_IMMED array. This is non-zero for a register if we know its
697 preferred slot currently holds this immediate value. */
698 for (i = 0; i < SPU_NUM_GPRS; i++)
699 reg_immed[i] = 0;
700
701 /* Scan instructions until the first branch.
702
703 The following instructions are important prolog components:
704
705 - The first instruction to set up the stack pointer.
706 - The first instruction to set up the frame pointer.
707 - The first instruction to save the link register.
ce50d78b 708 - The first instruction to save the backchain.
771b4502 709
ce50d78b 710 We return the instruction after the latest of these four,
771b4502
UW
711 or the incoming PC if none is found. The first instruction
712 to set up the stack pointer also defines the frame size.
713
714 Note that instructions saving incoming arguments to their stack
715 slots are not counted as important, because they are hard to
716 identify with certainty. This should not matter much, because
717 arguments are relevant only in code compiled with debug data,
718 and in such code the GDB core will advance until the first source
719 line anyway, using SAL data.
720
721 For purposes of stack unwinding, we analyze the following types
722 of instructions in addition:
723
724 - Any instruction adding to the current frame pointer.
725 - Any instruction loading an immediate constant into a register.
726 - Any instruction storing a register onto the stack.
727
728 These are used to compute the CFA and REG_OFFSET output. */
729
730 for (pc = start_pc; pc < end_pc; pc += 4)
731 {
732 unsigned int insn;
733 int rt, ra, rb, rc, immed;
734
735 if (target_read_memory (pc, buf, 4))
736 break;
e17a4113 737 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502
UW
738
739 /* AI is the typical instruction to set up a stack frame.
740 It is also used to initialize the frame pointer. */
741 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
742 {
743 if (rt == data->cfa_reg && ra == data->cfa_reg)
744 data->cfa_offset -= immed;
745
746 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
747 && !found_sp)
748 {
749 found_sp = 1;
750 prolog_pc = pc + 4;
751
752 data->size = -immed;
753 }
754 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
755 && !found_fp)
756 {
757 found_fp = 1;
758 prolog_pc = pc + 4;
759
760 data->cfa_reg = SPU_FP_REGNUM;
761 data->cfa_offset -= immed;
762 }
763 }
764
765 /* A is used to set up stack frames of size >= 512 bytes.
766 If we have tracked the contents of the addend register,
767 we can handle this as well. */
768 else if (is_rr (insn, op_a, &rt, &ra, &rb))
769 {
770 if (rt == data->cfa_reg && ra == data->cfa_reg)
771 {
772 if (reg_immed[rb] != 0)
773 data->cfa_offset -= reg_immed[rb];
774 else
775 data->cfa_reg = -1; /* We don't know the CFA any more. */
776 }
777
778 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
779 && !found_sp)
780 {
781 found_sp = 1;
782 prolog_pc = pc + 4;
783
784 if (reg_immed[rb] != 0)
785 data->size = -reg_immed[rb];
786 }
787 }
788
789 /* We need to track IL and ILA used to load immediate constants
790 in case they are later used as input to an A instruction. */
791 else if (is_ri16 (insn, op_il, &rt, &immed))
792 {
793 reg_immed[rt] = immed;
12102450
UW
794
795 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
796 found_sp = 1;
771b4502
UW
797 }
798
799 else if (is_ri18 (insn, op_ila, &rt, &immed))
800 {
801 reg_immed[rt] = immed & 0x3ffff;
12102450
UW
802
803 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
804 found_sp = 1;
771b4502
UW
805 }
806
807 /* STQD is used to save registers to the stack. */
808 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
809 {
810 if (ra == data->cfa_reg)
811 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
812
813 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
814 && !found_lr)
815 {
816 found_lr = 1;
817 prolog_pc = pc + 4;
818 }
ce50d78b
UW
819
820 if (ra == SPU_RAW_SP_REGNUM
821 && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
822 && !found_bc)
823 {
824 found_bc = 1;
825 prolog_pc = pc + 4;
826 }
771b4502
UW
827 }
828
829 /* _start uses SELB to set up the stack pointer. */
830 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
831 {
832 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
833 found_sp = 1;
834 }
835
836 /* We terminate if we find a branch. */
837 else if (is_branch (insn, &immed, &ra))
838 break;
839 }
840
841
842 /* If we successfully parsed until here, and didn't find any instruction
843 modifying SP, we assume we have a frameless function. */
844 if (!found_sp)
845 data->size = 0;
846
847 /* Return cooked instead of raw SP. */
848 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
849 data->cfa_reg = SPU_SP_REGNUM;
850
851 return prolog_pc;
852}
853
854/* Return the first instruction after the prologue starting at PC. */
855static CORE_ADDR
6093d2eb 856spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
771b4502
UW
857{
858 struct spu_prologue_data data;
e17a4113 859 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
860}
861
862/* Return the frame pointer in use at address PC. */
863static void
a54fba4c
MD
864spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
865 int *reg, LONGEST *offset)
771b4502
UW
866{
867 struct spu_prologue_data data;
e17a4113 868 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
771b4502
UW
869
870 if (data.size != -1 && data.cfa_reg != -1)
871 {
872 /* The 'frame pointer' address is CFA minus frame size. */
873 *reg = data.cfa_reg;
874 *offset = data.cfa_offset - data.size;
875 }
876 else
877 {
c378eb4e 878 /* ??? We don't really know ... */
771b4502
UW
879 *reg = SPU_SP_REGNUM;
880 *offset = 0;
881 }
882}
883
c9cf6e20 884/* Implement the stack_frame_destroyed_p gdbarch method.
fe5febed
UW
885
886 1) scan forward from the point of execution:
887 a) If you find an instruction that modifies the stack pointer
888 or transfers control (except a return), execution is not in
889 an epilogue, return.
890 b) Stop scanning if you find a return instruction or reach the
891 end of the function or reach the hard limit for the size of
892 an epilogue.
893 2) scan backward from the point of execution:
894 a) If you find an instruction that modifies the stack pointer,
895 execution *is* in an epilogue, return.
896 b) Stop scanning if you reach an instruction that transfers
897 control or the beginning of the function or reach the hard
898 limit for the size of an epilogue. */
899
900static int
c9cf6e20 901spu_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
fe5febed 902{
e17a4113 903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
fe5febed
UW
904 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
905 bfd_byte buf[4];
906 unsigned int insn;
22e048c9 907 int rt, ra, rb, immed;
fe5febed
UW
908
909 /* Find the search limits based on function boundaries and hard limit.
910 We assume the epilogue can be up to 64 instructions long. */
911
912 const int spu_max_epilogue_size = 64 * 4;
913
914 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
915 return 0;
916
917 if (pc - func_start < spu_max_epilogue_size)
918 epilogue_start = func_start;
919 else
920 epilogue_start = pc - spu_max_epilogue_size;
921
922 if (func_end - pc < spu_max_epilogue_size)
923 epilogue_end = func_end;
924 else
925 epilogue_end = pc + spu_max_epilogue_size;
926
927 /* Scan forward until next 'bi $0'. */
928
929 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
930 {
931 if (target_read_memory (scan_pc, buf, 4))
932 return 0;
e17a4113 933 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
934
935 if (is_branch (insn, &immed, &ra))
936 {
937 if (immed == 0 && ra == SPU_LR_REGNUM)
938 break;
939
940 return 0;
941 }
942
943 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
944 || is_rr (insn, op_a, &rt, &ra, &rb)
945 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
946 {
947 if (rt == SPU_RAW_SP_REGNUM)
948 return 0;
949 }
950 }
951
952 if (scan_pc >= epilogue_end)
953 return 0;
954
955 /* Scan backward until adjustment to stack pointer (R1). */
956
957 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
958 {
959 if (target_read_memory (scan_pc, buf, 4))
960 return 0;
e17a4113 961 insn = extract_unsigned_integer (buf, 4, byte_order);
fe5febed
UW
962
963 if (is_branch (insn, &immed, &ra))
964 return 0;
965
966 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
967 || is_rr (insn, op_a, &rt, &ra, &rb)
968 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
969 {
970 if (rt == SPU_RAW_SP_REGNUM)
971 return 1;
972 }
973 }
974
975 return 0;
976}
977
978
771b4502
UW
979/* Normal stack frames. */
980
981struct spu_unwind_cache
982{
983 CORE_ADDR func;
984 CORE_ADDR frame_base;
985 CORE_ADDR local_base;
986
987 struct trad_frame_saved_reg *saved_regs;
988};
989
990static struct spu_unwind_cache *
8d998b8f 991spu_frame_unwind_cache (struct frame_info *this_frame,
771b4502
UW
992 void **this_prologue_cache)
993{
e17a4113 994 struct gdbarch *gdbarch = get_frame_arch (this_frame);
85e747d2 995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
771b4502
UW
997 struct spu_unwind_cache *info;
998 struct spu_prologue_data data;
85e747d2 999 CORE_ADDR id = tdep->id;
dcf52cd8 1000 gdb_byte buf[16];
771b4502
UW
1001
1002 if (*this_prologue_cache)
19ba03f4 1003 return (struct spu_unwind_cache *) *this_prologue_cache;
771b4502
UW
1004
1005 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
1006 *this_prologue_cache = info;
8d998b8f 1007 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
771b4502
UW
1008 info->frame_base = 0;
1009 info->local_base = 0;
1010
1011 /* Find the start of the current function, and analyze its prologue. */
8d998b8f 1012 info->func = get_frame_func (this_frame);
771b4502
UW
1013 if (info->func == 0)
1014 {
1015 /* Fall back to using the current PC as frame ID. */
8d998b8f 1016 info->func = get_frame_pc (this_frame);
771b4502
UW
1017 data.size = -1;
1018 }
1019 else
e17a4113
UW
1020 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
1021 &data);
771b4502
UW
1022
1023 /* If successful, use prologue analysis data. */
1024 if (data.size != -1 && data.cfa_reg != -1)
1025 {
1026 CORE_ADDR cfa;
1027 int i;
771b4502
UW
1028
1029 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
8d998b8f 1030 get_frame_register (this_frame, data.cfa_reg, buf);
e17a4113 1031 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
85e747d2 1032 cfa = SPUADDR (id, cfa);
771b4502
UW
1033
1034 /* Call-saved register slots. */
1035 for (i = 0; i < SPU_NUM_GPRS; i++)
1036 if (i == SPU_LR_REGNUM
1037 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
1038 if (data.reg_offset[i] != -1)
1039 info->saved_regs[i].addr = cfa - data.reg_offset[i];
1040
771b4502
UW
1041 /* Frame bases. */
1042 info->frame_base = cfa;
1043 info->local_base = cfa - data.size;
1044 }
1045
1046 /* Otherwise, fall back to reading the backchain link. */
1047 else
1048 {
cdc9523a
UW
1049 CORE_ADDR reg;
1050 LONGEST backchain;
13def385 1051 ULONGEST lslr;
cdc9523a 1052 int status;
771b4502 1053
13def385
UW
1054 /* Get local store limit. */
1055 lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
1056 if (!lslr)
1057 lslr = (ULONGEST) -1;
1058
771b4502 1059 /* Get the backchain. */
8d998b8f 1060 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2
UW
1061 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
1062 &backchain);
771b4502
UW
1063
1064 /* A zero backchain terminates the frame chain. Also, sanity
1065 check against the local store size limit. */
13def385 1066 if (status && backchain > 0 && backchain <= lslr)
771b4502
UW
1067 {
1068 /* Assume the link register is saved into its slot. */
13def385 1069 if (backchain + 16 <= lslr)
c378eb4e
MS
1070 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
1071 backchain + 16);
771b4502 1072
771b4502 1073 /* Frame bases. */
85e747d2
UW
1074 info->frame_base = SPUADDR (id, backchain);
1075 info->local_base = SPUADDR (id, reg);
771b4502
UW
1076 }
1077 }
dcf52cd8 1078
c4891da7
UW
1079 /* If we didn't find a frame, we cannot determine SP / return address. */
1080 if (info->frame_base == 0)
1081 return info;
1082
dcf52cd8 1083 /* The previous SP is equal to the CFA. */
85e747d2
UW
1084 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
1085 SPUADDR_ADDR (info->frame_base));
dcf52cd8 1086
0a44cb36
UW
1087 /* Read full contents of the unwound link register in order to
1088 be able to determine the return address. */
dcf52cd8
UW
1089 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
1090 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
1091 else
8d998b8f 1092 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
dcf52cd8 1093
0a44cb36
UW
1094 /* Normally, the return address is contained in the slot 0 of the
1095 link register, and slots 1-3 are zero. For an overlay return,
1096 slot 0 contains the address of the overlay manager return stub,
1097 slot 1 contains the partition number of the overlay section to
1098 be returned to, and slot 2 contains the return address within
1099 that section. Return the latter address in that case. */
e17a4113 1100 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
dcf52cd8 1101 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1102 extract_unsigned_integer (buf + 8, 4, byte_order));
dcf52cd8
UW
1103 else
1104 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
e17a4113 1105 extract_unsigned_integer (buf, 4, byte_order));
771b4502
UW
1106
1107 return info;
1108}
1109
1110static void
8d998b8f 1111spu_frame_this_id (struct frame_info *this_frame,
771b4502
UW
1112 void **this_prologue_cache, struct frame_id *this_id)
1113{
1114 struct spu_unwind_cache *info =
8d998b8f 1115 spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1116
1117 if (info->frame_base == 0)
1118 return;
1119
1120 *this_id = frame_id_build (info->frame_base, info->func);
1121}
1122
8d998b8f
UW
1123static struct value *
1124spu_frame_prev_register (struct frame_info *this_frame,
1125 void **this_prologue_cache, int regnum)
771b4502
UW
1126{
1127 struct spu_unwind_cache *info
8d998b8f 1128 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
771b4502
UW
1129
1130 /* Special-case the stack pointer. */
1131 if (regnum == SPU_RAW_SP_REGNUM)
1132 regnum = SPU_SP_REGNUM;
1133
8d998b8f 1134 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
771b4502
UW
1135}
1136
1137static const struct frame_unwind spu_frame_unwind = {
1138 NORMAL_FRAME,
8fbca658 1139 default_frame_unwind_stop_reason,
771b4502 1140 spu_frame_this_id,
8d998b8f
UW
1141 spu_frame_prev_register,
1142 NULL,
1143 default_frame_sniffer
771b4502
UW
1144};
1145
771b4502 1146static CORE_ADDR
8d998b8f 1147spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
771b4502
UW
1148{
1149 struct spu_unwind_cache *info
8d998b8f 1150 = spu_frame_unwind_cache (this_frame, this_cache);
771b4502
UW
1151 return info->local_base;
1152}
1153
1154static const struct frame_base spu_frame_base = {
1155 &spu_frame_unwind,
1156 spu_frame_base_address,
1157 spu_frame_base_address,
1158 spu_frame_base_address
1159};
1160
1161static CORE_ADDR
1162spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1163{
85e747d2 1164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
118dfbaf
UW
1165 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1166 /* Mask off interrupt enable bit. */
85e747d2 1167 return SPUADDR (tdep->id, pc & -4);
771b4502
UW
1168}
1169
1170static CORE_ADDR
1171spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1172{
85e747d2
UW
1173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1174 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1175 return SPUADDR (tdep->id, sp);
771b4502
UW
1176}
1177
118dfbaf 1178static CORE_ADDR
61a1198a 1179spu_read_pc (struct regcache *regcache)
118dfbaf 1180{
85e747d2 1181 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
61a1198a
UW
1182 ULONGEST pc;
1183 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
118dfbaf 1184 /* Mask off interrupt enable bit. */
85e747d2 1185 return SPUADDR (tdep->id, pc & -4);
118dfbaf
UW
1186}
1187
1188static void
61a1198a 1189spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
118dfbaf
UW
1190{
1191 /* Keep interrupt enabled state unchanged. */
61a1198a 1192 ULONGEST old_pc;
30bcb456 1193
61a1198a
UW
1194 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1195 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
85e747d2 1196 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
118dfbaf
UW
1197}
1198
771b4502 1199
cc5f0d61
UW
1200/* Cell/B.E. cross-architecture unwinder support. */
1201
1202struct spu2ppu_cache
1203{
1204 struct frame_id frame_id;
1205 struct regcache *regcache;
1206};
1207
1208static struct gdbarch *
1209spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1210{
19ba03f4 1211 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1212 return get_regcache_arch (cache->regcache);
1213}
1214
1215static void
1216spu2ppu_this_id (struct frame_info *this_frame,
1217 void **this_cache, struct frame_id *this_id)
1218{
19ba03f4 1219 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1220 *this_id = cache->frame_id;
1221}
1222
1223static struct value *
1224spu2ppu_prev_register (struct frame_info *this_frame,
1225 void **this_cache, int regnum)
1226{
19ba03f4 1227 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) *this_cache;
cc5f0d61
UW
1228 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1229 gdb_byte *buf;
1230
224c3ddb 1231 buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
cc5f0d61
UW
1232 regcache_cooked_read (cache->regcache, regnum, buf);
1233 return frame_unwind_got_bytes (this_frame, regnum, buf);
1234}
1235
1236static int
1237spu2ppu_sniffer (const struct frame_unwind *self,
1238 struct frame_info *this_frame, void **this_prologue_cache)
1239{
1240 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1242 CORE_ADDR base, func, backchain;
1243 gdb_byte buf[4];
1244
f5656ead 1245 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
cc5f0d61
UW
1246 return 0;
1247
1248 base = get_frame_sp (this_frame);
1249 func = get_frame_pc (this_frame);
1250 if (target_read_memory (base, buf, 4))
1251 return 0;
1252 backchain = extract_unsigned_integer (buf, 4, byte_order);
1253
1254 if (!backchain)
1255 {
1256 struct frame_info *fi;
1257
1258 struct spu2ppu_cache *cache
1259 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1260
1261 cache->frame_id = frame_id_build (base + 16, func);
1262
1263 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1264 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1265 break;
1266
1267 if (fi)
1268 {
1269 cache->regcache = frame_save_as_regcache (fi);
1270 *this_prologue_cache = cache;
1271 return 1;
1272 }
1273 else
1274 {
1275 struct regcache *regcache;
f5656ead 1276 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
cc5f0d61
UW
1277 cache->regcache = regcache_dup (regcache);
1278 *this_prologue_cache = cache;
1279 return 1;
1280 }
1281 }
1282
1283 return 0;
1284}
1285
1286static void
1287spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1288{
19ba03f4 1289 struct spu2ppu_cache *cache = (struct spu2ppu_cache *) this_cache;
cc5f0d61
UW
1290 regcache_xfree (cache->regcache);
1291}
1292
1293static const struct frame_unwind spu2ppu_unwind = {
1294 ARCH_FRAME,
8fbca658 1295 default_frame_unwind_stop_reason,
cc5f0d61
UW
1296 spu2ppu_this_id,
1297 spu2ppu_prev_register,
1298 NULL,
1299 spu2ppu_sniffer,
1300 spu2ppu_dealloc_cache,
1301 spu2ppu_prev_arch,
1302};
1303
1304
771b4502
UW
1305/* Function calling convention. */
1306
7b3dc0b7
UW
1307static CORE_ADDR
1308spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1309{
1310 return sp & ~15;
1311}
1312
87805e63
UW
1313static CORE_ADDR
1314spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1315 struct value **args, int nargs, struct type *value_type,
1316 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1317 struct regcache *regcache)
1318{
1319 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1320 sp = (sp - 4) & ~15;
1321 /* Store the address of that breakpoint */
1322 *bp_addr = sp;
1323 /* The call starts at the callee's entry point. */
1324 *real_pc = funaddr;
1325
1326 return sp;
1327}
1328
771b4502
UW
1329static int
1330spu_scalar_value_p (struct type *type)
1331{
1332 switch (TYPE_CODE (type))
1333 {
1334 case TYPE_CODE_INT:
1335 case TYPE_CODE_ENUM:
1336 case TYPE_CODE_RANGE:
1337 case TYPE_CODE_CHAR:
1338 case TYPE_CODE_BOOL:
1339 case TYPE_CODE_PTR:
1340 case TYPE_CODE_REF:
1341 return TYPE_LENGTH (type) <= 16;
1342
1343 default:
1344 return 0;
1345 }
1346}
1347
1348static void
1349spu_value_to_regcache (struct regcache *regcache, int regnum,
1350 struct type *type, const gdb_byte *in)
1351{
1352 int len = TYPE_LENGTH (type);
1353
1354 if (spu_scalar_value_p (type))
1355 {
1356 int preferred_slot = len < 4 ? 4 - len : 0;
1357 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1358 }
1359 else
1360 {
1361 while (len >= 16)
1362 {
1363 regcache_cooked_write (regcache, regnum++, in);
1364 in += 16;
1365 len -= 16;
1366 }
1367
1368 if (len > 0)
1369 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1370 }
1371}
1372
1373static void
1374spu_regcache_to_value (struct regcache *regcache, int regnum,
1375 struct type *type, gdb_byte *out)
1376{
1377 int len = TYPE_LENGTH (type);
1378
1379 if (spu_scalar_value_p (type))
1380 {
1381 int preferred_slot = len < 4 ? 4 - len : 0;
1382 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1383 }
1384 else
1385 {
1386 while (len >= 16)
1387 {
1388 regcache_cooked_read (regcache, regnum++, out);
1389 out += 16;
1390 len -= 16;
1391 }
1392
1393 if (len > 0)
1394 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1395 }
1396}
1397
1398static CORE_ADDR
1399spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1400 struct regcache *regcache, CORE_ADDR bp_addr,
1401 int nargs, struct value **args, CORE_ADDR sp,
1402 int struct_return, CORE_ADDR struct_addr)
1403{
e17a4113 1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9ff3afda 1405 CORE_ADDR sp_delta;
771b4502
UW
1406 int i;
1407 int regnum = SPU_ARG1_REGNUM;
1408 int stack_arg = -1;
1409 gdb_byte buf[16];
1410
1411 /* Set the return address. */
1412 memset (buf, 0, sizeof buf);
85e747d2 1413 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
771b4502
UW
1414 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1415
1416 /* If STRUCT_RETURN is true, then the struct return address (in
1417 STRUCT_ADDR) will consume the first argument-passing register.
1418 Both adjust the register count and store that value. */
1419 if (struct_return)
1420 {
1421 memset (buf, 0, sizeof buf);
85e747d2 1422 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
771b4502
UW
1423 regcache_cooked_write (regcache, regnum++, buf);
1424 }
1425
1426 /* Fill in argument registers. */
1427 for (i = 0; i < nargs; i++)
1428 {
1429 struct value *arg = args[i];
1430 struct type *type = check_typedef (value_type (arg));
1431 const gdb_byte *contents = value_contents (arg);
354ecfd5 1432 int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
771b4502
UW
1433
1434 /* If the argument doesn't wholly fit into registers, it and
1435 all subsequent arguments go to the stack. */
1436 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1437 {
1438 stack_arg = i;
1439 break;
1440 }
1441
1442 spu_value_to_regcache (regcache, regnum, type, contents);
1443 regnum += n_regs;
1444 }
1445
1446 /* Overflow arguments go to the stack. */
1447 if (stack_arg != -1)
1448 {
1449 CORE_ADDR ap;
1450
1451 /* Allocate all required stack size. */
1452 for (i = stack_arg; i < nargs; i++)
1453 {
1454 struct type *type = check_typedef (value_type (args[i]));
1455 sp -= align_up (TYPE_LENGTH (type), 16);
1456 }
1457
1458 /* Fill in stack arguments. */
1459 ap = sp;
1460 for (i = stack_arg; i < nargs; i++)
1461 {
1462 struct value *arg = args[i];
1463 struct type *type = check_typedef (value_type (arg));
1464 int len = TYPE_LENGTH (type);
1465 int preferred_slot;
1466
1467 if (spu_scalar_value_p (type))
1468 preferred_slot = len < 4 ? 4 - len : 0;
1469 else
1470 preferred_slot = 0;
1471
1472 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1473 ap += align_up (TYPE_LENGTH (type), 16);
1474 }
1475 }
1476
1477 /* Allocate stack frame header. */
1478 sp -= 32;
1479
ee82e879
UW
1480 /* Store stack back chain. */
1481 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1482 target_write_memory (sp, buf, 16);
1483
9ff3afda 1484 /* Finally, update all slots of the SP register. */
e17a4113 1485 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
9ff3afda
UW
1486 for (i = 0; i < 4; i++)
1487 {
e17a4113
UW
1488 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1489 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
9ff3afda
UW
1490 }
1491 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
771b4502
UW
1492
1493 return sp;
1494}
1495
1496static struct frame_id
8d998b8f 1497spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
771b4502 1498{
85e747d2 1499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d998b8f
UW
1500 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1501 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
85e747d2 1502 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
771b4502
UW
1503}
1504
1505/* Function return value access. */
1506
1507static enum return_value_convention
6a3a010b 1508spu_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1509 struct type *type, struct regcache *regcache,
1510 gdb_byte *out, const gdb_byte *in)
771b4502 1511{
6a3a010b 1512 struct type *func_type = function ? value_type (function) : NULL;
771b4502 1513 enum return_value_convention rvc;
54fcddd0
UW
1514 int opencl_vector = 0;
1515
598cfb71
UW
1516 if (func_type)
1517 {
1518 func_type = check_typedef (func_type);
1519
1520 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
1521 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
1522
1523 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
1524 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
1525 && TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 && TYPE_VECTOR (type))
1527 opencl_vector = 1;
1528 }
771b4502
UW
1529
1530 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1531 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1532 else
1533 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1534
1535 if (in)
1536 {
1537 switch (rvc)
1538 {
1539 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1540 if (opencl_vector && TYPE_LENGTH (type) == 2)
1541 regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
1542 else
1543 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
771b4502
UW
1544 break;
1545
1546 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1547 error (_("Cannot set function return value."));
771b4502
UW
1548 break;
1549 }
1550 }
1551 else if (out)
1552 {
1553 switch (rvc)
1554 {
1555 case RETURN_VALUE_REGISTER_CONVENTION:
54fcddd0
UW
1556 if (opencl_vector && TYPE_LENGTH (type) == 2)
1557 regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
1558 else
1559 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
771b4502
UW
1560 break;
1561
1562 case RETURN_VALUE_STRUCT_CONVENTION:
a73c6dcd 1563 error (_("Function return value unknown."));
771b4502
UW
1564 break;
1565 }
1566 }
1567
1568 return rvc;
1569}
1570
1571
1572/* Breakpoints. */
04180708 1573constexpr gdb_byte spu_break_insn[] = { 0x00, 0x00, 0x3f, 0xff };
771b4502 1574
04180708 1575typedef BP_MANIPULATION (spu_break_insn) spu_breakpoint;
771b4502 1576
d03285ec
UW
1577static int
1578spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
1579 struct bp_target_info *bp_tgt)
1580{
1581 /* We work around a problem in combined Cell/B.E. debugging here. Consider
1582 that in a combined application, we have some breakpoints inserted in SPU
1583 code, and now the application forks (on the PPU side). GDB common code
1584 will assume that the fork system call copied all breakpoints into the new
1585 process' address space, and that all those copies now need to be removed
1586 (see breakpoint.c:detach_breakpoints).
1587
1588 While this is certainly true for PPU side breakpoints, it is not true
1589 for SPU side breakpoints. fork will clone the SPU context file
1590 descriptors, so that all the existing SPU contexts are in accessible
1591 in the new process. However, the contents of the SPU contexts themselves
1592 are *not* cloned. Therefore the effect of detach_breakpoints is to
1593 remove SPU breakpoints from the *original* SPU context's local store
1594 -- this is not the correct behaviour.
1595
1596 The workaround is to check whether the PID we are asked to remove this
1597 breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
1598 PID of the current inferior (i.e. current_inferior ()->pid). This is only
1599 true in the context of detach_breakpoints. If so, we simply do nothing.
1600 [ Note that for the fork child process, it does not matter if breakpoints
1601 remain inserted, because those SPU contexts are not runnable anyway --
1602 the Linux kernel allows only the original process to invoke spu_run. */
1603
1604 if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid)
1605 return 0;
1606
1607 return default_memory_remove_breakpoint (gdbarch, bp_tgt);
1608}
1609
771b4502
UW
1610
1611/* Software single-stepping support. */
1612
93f9a11f 1613static VEC (CORE_ADDR) *
0b1b3e42 1614spu_software_single_step (struct frame_info *frame)
771b4502 1615{
a6d9a66e 1616 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 1617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e0cd558a
UW
1618 CORE_ADDR pc, next_pc;
1619 unsigned int insn;
1620 int offset, reg;
1621 gdb_byte buf[4];
13def385 1622 ULONGEST lslr;
93f9a11f 1623 VEC (CORE_ADDR) *next_pcs = NULL;
771b4502 1624
0b1b3e42 1625 pc = get_frame_pc (frame);
771b4502 1626
e0cd558a 1627 if (target_read_memory (pc, buf, 4))
941319d1
YQ
1628 throw_error (MEMORY_ERROR, _("Could not read instruction at %s."),
1629 paddress (gdbarch, pc));
1630
e17a4113 1631 insn = extract_unsigned_integer (buf, 4, byte_order);
771b4502 1632
13def385
UW
1633 /* Get local store limit. */
1634 lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
1635 if (!lslr)
1636 lslr = (ULONGEST) -1;
1637
e0cd558a
UW
1638 /* Next sequential instruction is at PC + 4, except if the current
1639 instruction is a PPE-assisted call, in which case it is at PC + 8.
1640 Wrap around LS limit to be on the safe side. */
1641 if ((insn & 0xffffff00) == 0x00002100)
13def385 1642 next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
e0cd558a 1643 else
13def385 1644 next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
771b4502 1645
93f9a11f 1646 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc), next_pc));
771b4502 1647
e0cd558a
UW
1648 if (is_branch (insn, &offset, &reg))
1649 {
1650 CORE_ADDR target = offset;
771b4502 1651
e0cd558a 1652 if (reg == SPU_PC_REGNUM)
85e747d2 1653 target += SPUADDR_ADDR (pc);
e0cd558a
UW
1654 else if (reg != -1)
1655 {
8dccd430
PA
1656 int optim, unavail;
1657
1658 if (get_frame_register_bytes (frame, reg, 0, 4, buf,
1659 &optim, &unavail))
1660 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1661 else
1662 {
1663 if (optim)
710409a2
PA
1664 throw_error (OPTIMIZED_OUT_ERROR,
1665 _("Could not determine address of "
1666 "single-step breakpoint."));
8dccd430
PA
1667 if (unavail)
1668 throw_error (NOT_AVAILABLE_ERROR,
1669 _("Could not determine address of "
1670 "single-step breakpoint."));
1671 }
771b4502 1672 }
e0cd558a 1673
13def385 1674 target = target & lslr;
e0cd558a 1675 if (target != next_pc)
93f9a11f
YQ
1676 VEC_safe_push (CORE_ADDR, next_pcs, SPUADDR (SPUADDR_SPU (pc),
1677 target));
771b4502 1678 }
e6590a1b 1679
93f9a11f 1680 return next_pcs;
771b4502
UW
1681}
1682
6e3f70d7
UW
1683
1684/* Longjmp support. */
1685
1686static int
1687spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1688{
e17a4113 1689 struct gdbarch *gdbarch = get_frame_arch (frame);
85e747d2 1690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6e3f70d7
UW
1692 gdb_byte buf[4];
1693 CORE_ADDR jb_addr;
8dccd430 1694 int optim, unavail;
6e3f70d7
UW
1695
1696 /* Jump buffer is pointed to by the argument register $r3. */
8dccd430
PA
1697 if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
1698 &optim, &unavail))
1699 return 0;
1700
e17a4113 1701 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1702 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
6e3f70d7
UW
1703 return 0;
1704
e17a4113 1705 *pc = extract_unsigned_integer (buf, 4, byte_order);
85e747d2 1706 *pc = SPUADDR (tdep->id, *pc);
6e3f70d7
UW
1707 return 1;
1708}
1709
1710
85e747d2
UW
1711/* Disassembler. */
1712
1713struct spu_dis_asm_data
1714{
1715 struct gdbarch *gdbarch;
1716 int id;
1717};
1718
1719static void
1720spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1721{
19ba03f4
SM
1722 struct spu_dis_asm_data *data
1723 = (struct spu_dis_asm_data *) info->application_data;
1724 print_address (data->gdbarch, SPUADDR (data->id, addr),
1725 (struct ui_file *) info->stream);
85e747d2
UW
1726}
1727
1728static int
1729gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1730{
c378eb4e
MS
1731 /* The opcodes disassembler does 18-bit address arithmetic. Make
1732 sure the SPU ID encoded in the high bits is added back when we
1733 call print_address. */
85e747d2
UW
1734 struct disassemble_info spu_info = *info;
1735 struct spu_dis_asm_data data;
19ba03f4 1736 data.gdbarch = (struct gdbarch *) info->application_data;
85e747d2
UW
1737 data.id = SPUADDR_SPU (memaddr);
1738
1739 spu_info.application_data = &data;
1740 spu_info.print_address_func = spu_dis_asm_print_address;
1741 return print_insn_spu (memaddr, &spu_info);
1742}
1743
1744
dcf52cd8
UW
1745/* Target overlays for the SPU overlay manager.
1746
1747 See the documentation of simple_overlay_update for how the
1748 interface is supposed to work.
1749
1750 Data structures used by the overlay manager:
1751
1752 struct ovly_table
1753 {
1754 u32 vma;
1755 u32 size;
1756 u32 pos;
1757 u32 buf;
1758 } _ovly_table[]; -- one entry per overlay section
1759
1760 struct ovly_buf_table
1761 {
1762 u32 mapped;
1763 } _ovly_buf_table[]; -- one entry per overlay buffer
1764
1765 _ovly_table should never change.
1766
c378eb4e
MS
1767 Both tables are aligned to a 16-byte boundary, the symbols
1768 _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
1769 size set to the size of the respective array. buf in _ovly_table is
1770 an index into _ovly_buf_table.
dcf52cd8 1771
c378eb4e 1772 mapped is an index into _ovly_table. Both the mapped and buf indices start
dcf52cd8
UW
1773 from one to reference the first entry in their respective tables. */
1774
1775/* Using the per-objfile private data mechanism, we store for each
1776 objfile an array of "struct spu_overlay_table" structures, one
1777 for each obj_section of the objfile. This structure holds two
1778 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1779 is *not* an overlay section. If it is non-zero, it represents
1780 a target address. The overlay section is mapped iff the target
1781 integer at this location equals MAPPED_VAL. */
1782
1783static const struct objfile_data *spu_overlay_data;
1784
1785struct spu_overlay_table
1786 {
1787 CORE_ADDR mapped_ptr;
1788 CORE_ADDR mapped_val;
1789 };
1790
1791/* Retrieve the overlay table for OBJFILE. If not already cached, read
1792 the _ovly_table data structure from the target and initialize the
1793 spu_overlay_table data structure from it. */
1794static struct spu_overlay_table *
1795spu_get_overlay_table (struct objfile *objfile)
1796{
e17a4113
UW
1797 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1798 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3b7344d5 1799 struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym;
dcf52cd8
UW
1800 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1801 unsigned ovly_table_size, ovly_buf_table_size;
1802 struct spu_overlay_table *tbl;
1803 struct obj_section *osect;
948f8e3d 1804 gdb_byte *ovly_table;
dcf52cd8
UW
1805 int i;
1806
19ba03f4 1807 tbl = (struct spu_overlay_table *) objfile_data (objfile, spu_overlay_data);
dcf52cd8
UW
1808 if (tbl)
1809 return tbl;
1810
1811 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
3b7344d5 1812 if (!ovly_table_msym.minsym)
dcf52cd8
UW
1813 return NULL;
1814
c378eb4e
MS
1815 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
1816 NULL, objfile);
3b7344d5 1817 if (!ovly_buf_table_msym.minsym)
dcf52cd8
UW
1818 return NULL;
1819
77e371c0 1820 ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3b7344d5 1821 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym);
dcf52cd8 1822
77e371c0 1823 ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
3b7344d5 1824 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym);
dcf52cd8 1825
224c3ddb 1826 ovly_table = (gdb_byte *) xmalloc (ovly_table_size);
dcf52cd8
UW
1827 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1828
1829 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1830 objfile->sections_end - objfile->sections,
1831 struct spu_overlay_table);
1832
1833 for (i = 0; i < ovly_table_size / 16; i++)
1834 {
e17a4113
UW
1835 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1836 4, byte_order);
1837 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1838 4, byte_order);
1839 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1840 4, byte_order);
1841 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1842 4, byte_order);
dcf52cd8
UW
1843
1844 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1845 continue;
1846
1847 ALL_OBJFILE_OSECTIONS (objfile, osect)
1848 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1849 && pos == osect->the_bfd_section->filepos)
1850 {
1851 int ndx = osect - objfile->sections;
1852 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1853 tbl[ndx].mapped_val = i + 1;
1854 break;
1855 }
1856 }
1857
1858 xfree (ovly_table);
1859 set_objfile_data (objfile, spu_overlay_data, tbl);
1860 return tbl;
1861}
1862
1863/* Read _ovly_buf_table entry from the target to dermine whether
1864 OSECT is currently mapped, and update the mapped state. */
1865static void
1866spu_overlay_update_osect (struct obj_section *osect)
1867{
e17a4113
UW
1868 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1869 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
dcf52cd8 1870 struct spu_overlay_table *ovly_table;
85e747d2 1871 CORE_ADDR id, val;
dcf52cd8
UW
1872
1873 ovly_table = spu_get_overlay_table (osect->objfile);
1874 if (!ovly_table)
1875 return;
1876
1877 ovly_table += osect - osect->objfile->sections;
1878 if (ovly_table->mapped_ptr == 0)
1879 return;
1880
85e747d2
UW
1881 id = SPUADDR_SPU (obj_section_addr (osect));
1882 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1883 4, byte_order);
dcf52cd8
UW
1884 osect->ovly_mapped = (val == ovly_table->mapped_val);
1885}
1886
1887/* If OSECT is NULL, then update all sections' mapped state.
1888 If OSECT is non-NULL, then update only OSECT's mapped state. */
1889static void
1890spu_overlay_update (struct obj_section *osect)
1891{
1892 /* Just one section. */
1893 if (osect)
1894 spu_overlay_update_osect (osect);
1895
1896 /* All sections. */
1897 else
1898 {
1899 struct objfile *objfile;
1900
1901 ALL_OBJSECTIONS (objfile, osect)
714835d5 1902 if (section_is_overlay (osect))
dcf52cd8
UW
1903 spu_overlay_update_osect (osect);
1904 }
1905}
1906
1907/* Whenever a new objfile is loaded, read the target's _ovly_table.
1908 If there is one, go through all sections and make sure for non-
1909 overlay sections LMA equals VMA, while for overlay sections LMA
d2ed6730 1910 is larger than SPU_OVERLAY_LMA. */
dcf52cd8
UW
1911static void
1912spu_overlay_new_objfile (struct objfile *objfile)
1913{
1914 struct spu_overlay_table *ovly_table;
1915 struct obj_section *osect;
1916
1917 /* If we've already touched this file, do nothing. */
1918 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1919 return;
1920
0391f248
UW
1921 /* Consider only SPU objfiles. */
1922 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1923 return;
1924
dcf52cd8
UW
1925 /* Check if this objfile has overlays. */
1926 ovly_table = spu_get_overlay_table (objfile);
1927 if (!ovly_table)
1928 return;
1929
1930 /* Now go and fiddle with all the LMAs. */
1931 ALL_OBJFILE_OSECTIONS (objfile, osect)
1932 {
1933 bfd *obfd = objfile->obfd;
1934 asection *bsect = osect->the_bfd_section;
1935 int ndx = osect - objfile->sections;
1936
1937 if (ovly_table[ndx].mapped_ptr == 0)
1938 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1939 else
d2ed6730 1940 bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
dcf52cd8
UW
1941 }
1942}
1943
771b4502 1944
3285f3fe
UW
1945/* Insert temporary breakpoint on "main" function of newly loaded
1946 SPE context OBJFILE. */
1947static void
1948spu_catch_start (struct objfile *objfile)
1949{
3b7344d5 1950 struct bound_minimal_symbol minsym;
43f3e411 1951 struct compunit_symtab *cust;
3285f3fe 1952 CORE_ADDR pc;
f00aae0f
KS
1953 struct event_location *location;
1954 struct cleanup *back_to;
3285f3fe
UW
1955
1956 /* Do this only if requested by "set spu stop-on-load on". */
1957 if (!spu_stop_on_load_p)
1958 return;
1959
1960 /* Consider only SPU objfiles. */
1961 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1962 return;
1963
1964 /* The main objfile is handled differently. */
1965 if (objfile == symfile_objfile)
1966 return;
1967
1968 /* There can be multiple symbols named "main". Search for the
1969 "main" in *this* objfile. */
1970 minsym = lookup_minimal_symbol ("main", NULL, objfile);
3b7344d5 1971 if (!minsym.minsym)
3285f3fe
UW
1972 return;
1973
1974 /* If we have debugging information, try to use it -- this
1975 will allow us to properly skip the prologue. */
77e371c0 1976 pc = BMSYMBOL_VALUE_ADDRESS (minsym);
43f3e411
DE
1977 cust
1978 = find_pc_sect_compunit_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile,
1979 minsym.minsym));
1980 if (cust != NULL)
3285f3fe 1981 {
43f3e411 1982 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
3285f3fe
UW
1983 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1984 struct symbol *sym;
1985 struct symtab_and_line sal;
1986
16b2eaa1 1987 sym = block_lookup_symbol (block, "main", VAR_DOMAIN);
3285f3fe
UW
1988 if (sym)
1989 {
1990 fixup_symbol_section (sym, objfile);
1991 sal = find_function_start_sal (sym, 1);
1992 pc = sal.pc;
1993 }
1994 }
1995
1996 /* Use a numerical address for the set_breakpoint command to avoid having
1997 the breakpoint re-set incorrectly. */
305e13e6 1998 location = new_address_location (pc, NULL, 0);
f00aae0f
KS
1999 back_to = make_cleanup_delete_event_location (location);
2000 create_breakpoint (get_objfile_arch (objfile), location,
d8c09fb5 2001 NULL /* cond_string */, -1 /* thread */,
6a609e58 2002 NULL /* extra_string */,
d8c09fb5 2003 0 /* parse_condition_and_thread */, 1 /* tempflag */,
bddaafad 2004 bp_breakpoint /* type_wanted */,
d8c09fb5
JK
2005 0 /* ignore_count */,
2006 AUTO_BOOLEAN_FALSE /* pending_break_support */,
931bb47f 2007 &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
44f238bb 2008 1 /* enabled */, 0 /* internal */, 0);
f00aae0f 2009 do_cleanups (back_to);
3285f3fe
UW
2010}
2011
2012
ff1a52c6
UW
2013/* Look up OBJFILE loaded into FRAME's SPU context. */
2014static struct objfile *
2015spu_objfile_from_frame (struct frame_info *frame)
2016{
2017 struct gdbarch *gdbarch = get_frame_arch (frame);
2018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2019 struct objfile *obj;
2020
2021 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2022 return NULL;
2023
2024 ALL_OBJFILES (obj)
2025 {
2026 if (obj->sections != obj->sections_end
2027 && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
2028 return obj;
2029 }
2030
2031 return NULL;
2032}
2033
2034/* Flush cache for ea pointer access if available. */
2035static void
2036flush_ea_cache (void)
2037{
3b7344d5 2038 struct bound_minimal_symbol msymbol;
ff1a52c6
UW
2039 struct objfile *obj;
2040
2041 if (!has_stack_frames ())
2042 return;
2043
2044 obj = spu_objfile_from_frame (get_current_frame ());
2045 if (obj == NULL)
2046 return;
2047
2048 /* Lookup inferior function __cache_flush. */
2049 msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
3b7344d5 2050 if (msymbol.minsym != NULL)
ff1a52c6
UW
2051 {
2052 struct type *type;
2053 CORE_ADDR addr;
2054
2055 type = objfile_type (obj)->builtin_void;
2056 type = lookup_function_type (type);
2057 type = lookup_pointer_type (type);
77e371c0 2058 addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
ff1a52c6
UW
2059
2060 call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
2061 }
2062}
2063
2064/* This handler is called when the inferior has stopped. If it is stopped in
2065 SPU architecture then flush the ea cache if used. */
2066static void
2067spu_attach_normal_stop (struct bpstats *bs, int print_frame)
2068{
2069 if (!spu_auto_flush_cache_p)
2070 return;
2071
2072 /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
2073 re-entering this function when __cache_flush stops. */
2074 spu_auto_flush_cache_p = 0;
2075 flush_ea_cache ();
2076 spu_auto_flush_cache_p = 1;
2077}
2078
2079
23d964e7
UW
2080/* "info spu" commands. */
2081
2082static void
2083info_spu_event_command (char *args, int from_tty)
2084{
2085 struct frame_info *frame = get_selected_frame (NULL);
2086 ULONGEST event_status = 0;
2087 ULONGEST event_mask = 0;
2088 struct cleanup *chain;
2089 gdb_byte buf[100];
2090 char annex[32];
2091 LONGEST len;
22e048c9 2092 int id;
23d964e7 2093
0391f248
UW
2094 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2095 error (_("\"info spu\" is only supported on the SPU architecture."));
2096
23d964e7
UW
2097 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2098
2099 xsnprintf (annex, sizeof annex, "%d/event_status", id);
2100 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2101 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2102 if (len <= 0)
2103 error (_("Could not read event_status."));
9971ac47 2104 buf[len] = '\0';
001f13d8 2105 event_status = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2106
2107 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
2108 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2109 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2110 if (len <= 0)
2111 error (_("Could not read event_mask."));
9971ac47 2112 buf[len] = '\0';
001f13d8 2113 event_mask = strtoulst ((char *) buf, NULL, 16);
23d964e7 2114
31a0ae49 2115 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
23d964e7 2116
31a0ae49 2117 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2118 {
31a0ae49 2119 ui_out_field_fmt (current_uiout, "event_status",
23d964e7 2120 "0x%s", phex_nz (event_status, 4));
31a0ae49 2121 ui_out_field_fmt (current_uiout, "event_mask",
23d964e7
UW
2122 "0x%s", phex_nz (event_mask, 4));
2123 }
2124 else
2125 {
2126 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
2127 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
2128 }
2129
2130 do_cleanups (chain);
2131}
2132
2133static void
2134info_spu_signal_command (char *args, int from_tty)
2135{
2136 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2137 struct gdbarch *gdbarch = get_frame_arch (frame);
2138 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2139 ULONGEST signal1 = 0;
2140 ULONGEST signal1_type = 0;
2141 int signal1_pending = 0;
2142 ULONGEST signal2 = 0;
2143 ULONGEST signal2_type = 0;
2144 int signal2_pending = 0;
2145 struct cleanup *chain;
2146 char annex[32];
2147 gdb_byte buf[100];
2148 LONGEST len;
22e048c9 2149 int id;
23d964e7 2150
e17a4113 2151 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2152 error (_("\"info spu\" is only supported on the SPU architecture."));
2153
23d964e7
UW
2154 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2155
2156 xsnprintf (annex, sizeof annex, "%d/signal1", id);
2157 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2158 if (len < 0)
2159 error (_("Could not read signal1."));
2160 else if (len == 4)
2161 {
e17a4113 2162 signal1 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2163 signal1_pending = 1;
2164 }
2165
2166 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
2167 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2168 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2169 if (len <= 0)
2170 error (_("Could not read signal1_type."));
9971ac47 2171 buf[len] = '\0';
001f13d8 2172 signal1_type = strtoulst ((char *) buf, NULL, 16);
23d964e7
UW
2173
2174 xsnprintf (annex, sizeof annex, "%d/signal2", id);
2175 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
2176 if (len < 0)
2177 error (_("Could not read signal2."));
2178 else if (len == 4)
2179 {
e17a4113 2180 signal2 = extract_unsigned_integer (buf, 4, byte_order);
23d964e7
UW
2181 signal2_pending = 1;
2182 }
2183
2184 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
2185 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
9971ac47 2186 buf, 0, (sizeof (buf) - 1));
23d964e7
UW
2187 if (len <= 0)
2188 error (_("Could not read signal2_type."));
9971ac47 2189 buf[len] = '\0';
001f13d8 2190 signal2_type = strtoulst ((char *) buf, NULL, 16);
23d964e7 2191
31a0ae49 2192 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
23d964e7 2193
31a0ae49 2194 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2195 {
31a0ae49
JK
2196 ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
2197 ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
2198 ui_out_field_int (current_uiout, "signal1_type", signal1_type);
2199 ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
2200 ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
2201 ui_out_field_int (current_uiout, "signal2_type", signal2_type);
23d964e7
UW
2202 }
2203 else
2204 {
2205 if (signal1_pending)
2206 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
2207 else
2208 printf_filtered (_("Signal 1 not pending "));
2209
2210 if (signal1_type)
23d964e7 2211 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2212 else
2213 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2214
2215 if (signal2_pending)
2216 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
2217 else
2218 printf_filtered (_("Signal 2 not pending "));
2219
2220 if (signal2_type)
23d964e7 2221 printf_filtered (_("(Type Or)\n"));
b94c4f7d
UW
2222 else
2223 printf_filtered (_("(Type Overwrite)\n"));
23d964e7
UW
2224 }
2225
2226 do_cleanups (chain);
2227}
2228
2229static void
e17a4113 2230info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
23d964e7
UW
2231 const char *field, const char *msg)
2232{
2233 struct cleanup *chain;
2234 int i;
2235
2236 if (nr <= 0)
2237 return;
2238
31a0ae49 2239 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
23d964e7 2240
31a0ae49
JK
2241 ui_out_table_header (current_uiout, 32, ui_left, field, msg);
2242 ui_out_table_body (current_uiout);
23d964e7
UW
2243
2244 for (i = 0; i < nr; i++)
2245 {
2246 struct cleanup *val_chain;
2247 ULONGEST val;
31a0ae49 2248 val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
e17a4113 2249 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
31a0ae49 2250 ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
23d964e7
UW
2251 do_cleanups (val_chain);
2252
31a0ae49 2253 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2254 printf_filtered ("\n");
2255 }
2256
2257 do_cleanups (chain);
2258}
2259
2260static void
2261info_spu_mailbox_command (char *args, int from_tty)
2262{
2263 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2264 struct gdbarch *gdbarch = get_frame_arch (frame);
2265 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2266 struct cleanup *chain;
2267 char annex[32];
2268 gdb_byte buf[1024];
2269 LONGEST len;
22e048c9 2270 int id;
23d964e7 2271
e17a4113 2272 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2273 error (_("\"info spu\" is only supported on the SPU architecture."));
2274
23d964e7
UW
2275 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2276
31a0ae49 2277 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
23d964e7
UW
2278
2279 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2280 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2281 buf, 0, sizeof buf);
2282 if (len < 0)
2283 error (_("Could not read mbox_info."));
2284
e17a4113
UW
2285 info_spu_mailbox_list (buf, len / 4, byte_order,
2286 "mbox", "SPU Outbound Mailbox");
23d964e7
UW
2287
2288 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2289 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2290 buf, 0, sizeof buf);
2291 if (len < 0)
2292 error (_("Could not read ibox_info."));
2293
e17a4113
UW
2294 info_spu_mailbox_list (buf, len / 4, byte_order,
2295 "ibox", "SPU Outbound Interrupt Mailbox");
23d964e7
UW
2296
2297 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2298 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2299 buf, 0, sizeof buf);
2300 if (len < 0)
2301 error (_("Could not read wbox_info."));
2302
e17a4113
UW
2303 info_spu_mailbox_list (buf, len / 4, byte_order,
2304 "wbox", "SPU Inbound Mailbox");
23d964e7
UW
2305
2306 do_cleanups (chain);
2307}
2308
2309static ULONGEST
2310spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2311{
2312 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2313 return (word >> (63 - last)) & mask;
2314}
2315
2316static void
e17a4113 2317info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
23d964e7
UW
2318{
2319 static char *spu_mfc_opcode[256] =
2320 {
2321 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2322 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2323 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2324 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2325 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2326 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2327 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2328 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2329 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2330 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2331 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2333 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2334 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2335 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2336 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2337 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2338 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2339 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2341 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2342 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2343 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2344 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2345 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2346 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2347 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2348 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2349 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2350 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2351 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2352 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2353 };
2354
8d749320 2355 int *seq = XALLOCAVEC (int, nr);
12ab8a60 2356 int done = 0;
23d964e7 2357 struct cleanup *chain;
12ab8a60
UW
2358 int i, j;
2359
2360
2361 /* Determine sequence in which to display (valid) entries. */
2362 for (i = 0; i < nr; i++)
2363 {
2364 /* Search for the first valid entry all of whose
2365 dependencies are met. */
2366 for (j = 0; j < nr; j++)
2367 {
2368 ULONGEST mfc_cq_dw3;
2369 ULONGEST dependencies;
2370
2371 if (done & (1 << (nr - 1 - j)))
2372 continue;
2373
e17a4113
UW
2374 mfc_cq_dw3
2375 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
12ab8a60
UW
2376 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2377 continue;
2378
2379 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2380 if ((dependencies & done) != dependencies)
2381 continue;
2382
2383 seq[i] = j;
2384 done |= 1 << (nr - 1 - j);
2385 break;
2386 }
2387
2388 if (j == nr)
2389 break;
2390 }
2391
2392 nr = i;
2393
23d964e7 2394
31a0ae49
JK
2395 chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
2396 "dma_cmd");
23d964e7 2397
31a0ae49
JK
2398 ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
2399 ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
2400 ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
2401 ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
2402 ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
2403 ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
2404 ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
2405 ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
2406 ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
2407 ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
23d964e7 2408
31a0ae49 2409 ui_out_table_body (current_uiout);
23d964e7
UW
2410
2411 for (i = 0; i < nr; i++)
2412 {
2413 struct cleanup *cmd_chain;
2414 ULONGEST mfc_cq_dw0;
2415 ULONGEST mfc_cq_dw1;
2416 ULONGEST mfc_cq_dw2;
23d964e7 2417 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
22e048c9 2418 int list_lsa, list_size, mfc_lsa, mfc_size;
23d964e7 2419 ULONGEST mfc_ea;
870f88f7 2420 int list_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
23d964e7
UW
2421
2422 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2423 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2424
e17a4113
UW
2425 mfc_cq_dw0
2426 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2427 mfc_cq_dw1
2428 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2429 mfc_cq_dw2
2430 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
23d964e7
UW
2431
2432 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2433 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2434 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2435 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2436 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2437 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2438 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2439
2440 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2441 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2442
2443 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2444 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
23d964e7
UW
2445 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2446 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2447 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2448
31a0ae49 2449 cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
23d964e7
UW
2450
2451 if (spu_mfc_opcode[mfc_cmd_opcode])
31a0ae49 2452 ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
23d964e7 2453 else
31a0ae49 2454 ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
23d964e7 2455
31a0ae49
JK
2456 ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
2457 ui_out_field_int (current_uiout, "tid", tclass_id);
2458 ui_out_field_int (current_uiout, "rid", rclass_id);
23d964e7
UW
2459
2460 if (ea_valid_p)
31a0ae49 2461 ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
23d964e7 2462 else
31a0ae49 2463 ui_out_field_skip (current_uiout, "ea");
23d964e7 2464
31a0ae49 2465 ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
23d964e7 2466 if (qw_valid_p)
31a0ae49 2467 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
23d964e7 2468 else
31a0ae49 2469 ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
23d964e7
UW
2470
2471 if (list_valid_p)
2472 {
31a0ae49
JK
2473 ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
2474 ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
23d964e7
UW
2475 }
2476 else
2477 {
31a0ae49
JK
2478 ui_out_field_skip (current_uiout, "lstaddr");
2479 ui_out_field_skip (current_uiout, "lstsize");
23d964e7
UW
2480 }
2481
2482 if (cmd_error_p)
31a0ae49 2483 ui_out_field_string (current_uiout, "error_p", "*");
23d964e7 2484 else
31a0ae49 2485 ui_out_field_skip (current_uiout, "error_p");
23d964e7
UW
2486
2487 do_cleanups (cmd_chain);
2488
31a0ae49 2489 if (!ui_out_is_mi_like_p (current_uiout))
23d964e7
UW
2490 printf_filtered ("\n");
2491 }
2492
2493 do_cleanups (chain);
2494}
2495
2496static void
2497info_spu_dma_command (char *args, int from_tty)
2498{
2499 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2500 struct gdbarch *gdbarch = get_frame_arch (frame);
2501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2502 ULONGEST dma_info_type;
2503 ULONGEST dma_info_mask;
2504 ULONGEST dma_info_status;
2505 ULONGEST dma_info_stall_and_notify;
2506 ULONGEST dma_info_atomic_command_status;
2507 struct cleanup *chain;
2508 char annex[32];
2509 gdb_byte buf[1024];
2510 LONGEST len;
22e048c9 2511 int id;
23d964e7 2512
0391f248
UW
2513 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2514 error (_("\"info spu\" is only supported on the SPU architecture."));
2515
23d964e7
UW
2516 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2517
2518 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2519 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2520 buf, 0, 40 + 16 * 32);
2521 if (len <= 0)
2522 error (_("Could not read dma_info."));
2523
e17a4113
UW
2524 dma_info_type
2525 = extract_unsigned_integer (buf, 8, byte_order);
2526 dma_info_mask
2527 = extract_unsigned_integer (buf + 8, 8, byte_order);
2528 dma_info_status
2529 = extract_unsigned_integer (buf + 16, 8, byte_order);
2530 dma_info_stall_and_notify
2531 = extract_unsigned_integer (buf + 24, 8, byte_order);
2532 dma_info_atomic_command_status
2533 = extract_unsigned_integer (buf + 32, 8, byte_order);
23d964e7 2534
31a0ae49 2535 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
23d964e7 2536
31a0ae49 2537 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2538 {
31a0ae49 2539 ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
23d964e7 2540 phex_nz (dma_info_type, 4));
31a0ae49 2541 ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
23d964e7 2542 phex_nz (dma_info_mask, 4));
31a0ae49 2543 ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
23d964e7 2544 phex_nz (dma_info_status, 4));
31a0ae49 2545 ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
23d964e7 2546 phex_nz (dma_info_stall_and_notify, 4));
31a0ae49 2547 ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
23d964e7
UW
2548 phex_nz (dma_info_atomic_command_status, 4));
2549 }
2550 else
2551 {
8fbde58b 2552 const char *query_msg = _("no query pending");
23d964e7 2553
8fbde58b
UW
2554 if (dma_info_type & 4)
2555 switch (dma_info_type & 3)
2556 {
2557 case 1: query_msg = _("'any' query pending"); break;
2558 case 2: query_msg = _("'all' query pending"); break;
2559 default: query_msg = _("undefined query type"); break;
2560 }
23d964e7
UW
2561
2562 printf_filtered (_("Tag-Group Status 0x%s\n"),
2563 phex (dma_info_status, 4));
2564 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2565 phex (dma_info_mask, 4), query_msg);
2566 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2567 phex (dma_info_stall_and_notify, 4));
2568 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2569 phex (dma_info_atomic_command_status, 4));
2570 printf_filtered ("\n");
2571 }
2572
e17a4113 2573 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
23d964e7
UW
2574 do_cleanups (chain);
2575}
2576
2577static void
2578info_spu_proxydma_command (char *args, int from_tty)
2579{
2580 struct frame_info *frame = get_selected_frame (NULL);
e17a4113
UW
2581 struct gdbarch *gdbarch = get_frame_arch (frame);
2582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
23d964e7
UW
2583 ULONGEST dma_info_type;
2584 ULONGEST dma_info_mask;
2585 ULONGEST dma_info_status;
2586 struct cleanup *chain;
2587 char annex[32];
2588 gdb_byte buf[1024];
2589 LONGEST len;
22e048c9 2590 int id;
23d964e7 2591
e17a4113 2592 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
0391f248
UW
2593 error (_("\"info spu\" is only supported on the SPU architecture."));
2594
23d964e7
UW
2595 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2596
2597 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2598 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2599 buf, 0, 24 + 8 * 32);
2600 if (len <= 0)
2601 error (_("Could not read proxydma_info."));
2602
e17a4113
UW
2603 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2604 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2605 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
23d964e7 2606
31a0ae49
JK
2607 chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
2608 "SPUInfoProxyDMA");
23d964e7 2609
31a0ae49 2610 if (ui_out_is_mi_like_p (current_uiout))
23d964e7 2611 {
31a0ae49 2612 ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
23d964e7 2613 phex_nz (dma_info_type, 4));
31a0ae49 2614 ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
23d964e7 2615 phex_nz (dma_info_mask, 4));
31a0ae49 2616 ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
23d964e7
UW
2617 phex_nz (dma_info_status, 4));
2618 }
2619 else
2620 {
2621 const char *query_msg;
2622
8fbde58b 2623 switch (dma_info_type & 3)
23d964e7
UW
2624 {
2625 case 0: query_msg = _("no query pending"); break;
2626 case 1: query_msg = _("'any' query pending"); break;
2627 case 2: query_msg = _("'all' query pending"); break;
2628 default: query_msg = _("undefined query type"); break;
2629 }
2630
2631 printf_filtered (_("Tag-Group Status 0x%s\n"),
2632 phex (dma_info_status, 4));
2633 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2634 phex (dma_info_mask, 4), query_msg);
2635 printf_filtered ("\n");
2636 }
2637
e17a4113 2638 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
23d964e7
UW
2639 do_cleanups (chain);
2640}
2641
2642static void
2643info_spu_command (char *args, int from_tty)
2644{
c378eb4e
MS
2645 printf_unfiltered (_("\"info spu\" must be followed by "
2646 "the name of an SPU facility.\n"));
635c7e8a 2647 help_list (infospucmdlist, "info spu ", all_commands, gdb_stdout);
23d964e7
UW
2648}
2649
2650
3285f3fe
UW
2651/* Root of all "set spu "/"show spu " commands. */
2652
2653static void
2654show_spu_command (char *args, int from_tty)
2655{
2656 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2657}
2658
2659static void
2660set_spu_command (char *args, int from_tty)
2661{
2662 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2663}
2664
2665static void
2666show_spu_stop_on_load (struct ui_file *file, int from_tty,
2667 struct cmd_list_element *c, const char *value)
2668{
2669 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2670 value);
2671}
2672
ff1a52c6
UW
2673static void
2674show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
2675 struct cmd_list_element *c, const char *value)
2676{
2677 fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
2678 value);
2679}
2680
3285f3fe 2681
771b4502
UW
2682/* Set up gdbarch struct. */
2683
2684static struct gdbarch *
2685spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2686{
2687 struct gdbarch *gdbarch;
794ac428 2688 struct gdbarch_tdep *tdep;
85e747d2
UW
2689 int id = -1;
2690
2691 /* Which spufs ID was requested as address space? */
2692 if (info.tdep_info)
2693 id = *(int *)info.tdep_info;
2694 /* For objfile architectures of SPU solibs, decode the ID from the name.
2695 This assumes the filename convention employed by solib-spu.c. */
2696 else if (info.abfd)
2697 {
53e78085 2698 const char *name = strrchr (info.abfd->filename, '@');
85e747d2
UW
2699 if (name)
2700 sscanf (name, "@0x%*x <%d>", &id);
2701 }
771b4502 2702
85e747d2
UW
2703 /* Find a candidate among extant architectures. */
2704 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2705 arches != NULL;
2706 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2707 {
2708 tdep = gdbarch_tdep (arches->gdbarch);
2709 if (tdep && tdep->id == id)
2710 return arches->gdbarch;
2711 }
771b4502 2712
85e747d2 2713 /* None found, so create a new architecture. */
fc270c35 2714 tdep = XCNEW (struct gdbarch_tdep);
85e747d2 2715 tdep->id = id;
794ac428 2716 gdbarch = gdbarch_alloc (&info, tdep);
771b4502
UW
2717
2718 /* Disassembler. */
85e747d2 2719 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
771b4502
UW
2720
2721 /* Registers. */
2722 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2723 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2724 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2725 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
118dfbaf
UW
2726 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2727 set_gdbarch_write_pc (gdbarch, spu_write_pc);
771b4502
UW
2728 set_gdbarch_register_name (gdbarch, spu_register_name);
2729 set_gdbarch_register_type (gdbarch, spu_register_type);
2730 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2731 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
9acbedc0 2732 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
771b4502 2733 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
7ce16bd4
UW
2734 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum);
2735 set_gdbarch_ax_pseudo_register_collect
2736 (gdbarch, spu_ax_pseudo_register_collect);
2737 set_gdbarch_ax_pseudo_register_push_stack
2738 (gdbarch, spu_ax_pseudo_register_push_stack);
771b4502
UW
2739
2740 /* Data types. */
2741 set_gdbarch_char_signed (gdbarch, 0);
2742 set_gdbarch_ptr_bit (gdbarch, 32);
2743 set_gdbarch_addr_bit (gdbarch, 32);
2744 set_gdbarch_short_bit (gdbarch, 16);
2745 set_gdbarch_int_bit (gdbarch, 32);
2746 set_gdbarch_long_bit (gdbarch, 32);
2747 set_gdbarch_long_long_bit (gdbarch, 64);
2748 set_gdbarch_float_bit (gdbarch, 32);
2749 set_gdbarch_double_bit (gdbarch, 64);
2750 set_gdbarch_long_double_bit (gdbarch, 64);
8da61cc4
DJ
2751 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2752 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2753 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
771b4502 2754
ff1a52c6 2755 /* Address handling. */
85e747d2 2756 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
36acd84e
UW
2757 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2758 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
ff1a52c6
UW
2759 set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
2760 set_gdbarch_address_class_type_flags_to_name
2761 (gdbarch, spu_address_class_type_flags_to_name);
2762 set_gdbarch_address_class_name_to_type_flags
2763 (gdbarch, spu_address_class_name_to_type_flags);
2764
36acd84e 2765
771b4502 2766 /* Inferior function calls. */
7b3dc0b7
UW
2767 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2768 set_gdbarch_frame_align (gdbarch, spu_frame_align);
5141027d 2769 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
87805e63 2770 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
771b4502 2771 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
8d998b8f 2772 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
771b4502
UW
2773 set_gdbarch_return_value (gdbarch, spu_return_value);
2774
2775 /* Frame handling. */
2776 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7ce16bd4 2777 dwarf2_append_unwinders (gdbarch);
8d998b8f 2778 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
771b4502
UW
2779 frame_base_set_default (gdbarch, &spu_frame_base);
2780 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2781 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2782 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2783 set_gdbarch_frame_args_skip (gdbarch, 0);
2784 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
c9cf6e20 2785 set_gdbarch_stack_frame_destroyed_p (gdbarch, spu_stack_frame_destroyed_p);
771b4502 2786
cc5f0d61
UW
2787 /* Cell/B.E. cross-architecture unwinder support. */
2788 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2789
771b4502
UW
2790 /* Breakpoints. */
2791 set_gdbarch_decr_pc_after_break (gdbarch, 4);
04180708
YQ
2792 set_gdbarch_breakpoint_kind_from_pc (gdbarch, spu_breakpoint::kind_from_pc);
2793 set_gdbarch_sw_breakpoint_from_kind (gdbarch, spu_breakpoint::bp_from_kind);
d03285ec 2794 set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
771b4502 2795 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
6e3f70d7 2796 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
771b4502 2797
dcf52cd8
UW
2798 /* Overlays. */
2799 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2800
771b4502
UW
2801 return gdbarch;
2802}
2803
63807e1d
PA
2804/* Provide a prototype to silence -Wmissing-prototypes. */
2805extern initialize_file_ftype _initialize_spu_tdep;
2806
771b4502
UW
2807void
2808_initialize_spu_tdep (void)
2809{
2810 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
f2d43c2c 2811
dcf52cd8
UW
2812 /* Add ourselves to objfile event chain. */
2813 observer_attach_new_objfile (spu_overlay_new_objfile);
2814 spu_overlay_data = register_objfile_data ();
23d964e7 2815
3285f3fe
UW
2816 /* Install spu stop-on-load handler. */
2817 observer_attach_new_objfile (spu_catch_start);
2818
ff1a52c6
UW
2819 /* Add ourselves to normal_stop event chain. */
2820 observer_attach_normal_stop (spu_attach_normal_stop);
2821
3285f3fe
UW
2822 /* Add root prefix command for all "set spu"/"show spu" commands. */
2823 add_prefix_cmd ("spu", no_class, set_spu_command,
2824 _("Various SPU specific commands."),
2825 &setspucmdlist, "set spu ", 0, &setlist);
2826 add_prefix_cmd ("spu", no_class, show_spu_command,
2827 _("Various SPU specific commands."),
2828 &showspucmdlist, "show spu ", 0, &showlist);
2829
2830 /* Toggle whether or not to add a temporary breakpoint at the "main"
2831 function of new SPE contexts. */
2832 add_setshow_boolean_cmd ("stop-on-load", class_support,
2833 &spu_stop_on_load_p, _("\
2834Set whether to stop for new SPE threads."),
2835 _("\
2836Show whether to stop for new SPE threads."),
2837 _("\
2838Use \"on\" to give control to the user when a new SPE thread\n\
2839enters its \"main\" function.\n\
2840Use \"off\" to disable stopping for new SPE threads."),
2841 NULL,
2842 show_spu_stop_on_load,
2843 &setspucmdlist, &showspucmdlist);
2844
ff1a52c6
UW
2845 /* Toggle whether or not to automatically flush the software-managed
2846 cache whenever SPE execution stops. */
2847 add_setshow_boolean_cmd ("auto-flush-cache", class_support,
2848 &spu_auto_flush_cache_p, _("\
2849Set whether to automatically flush the software-managed cache."),
2850 _("\
2851Show whether to automatically flush the software-managed cache."),
2852 _("\
2853Use \"on\" to automatically flush the software-managed cache\n\
2854whenever SPE execution stops.\n\
2855Use \"off\" to never automatically flush the software-managed cache."),
2856 NULL,
2857 show_spu_auto_flush_cache,
2858 &setspucmdlist, &showspucmdlist);
2859
23d964e7
UW
2860 /* Add root prefix command for all "info spu" commands. */
2861 add_prefix_cmd ("spu", class_info, info_spu_command,
2862 _("Various SPU specific commands."),
2863 &infospucmdlist, "info spu ", 0, &infolist);
2864
2865 /* Add various "info spu" commands. */
2866 add_cmd ("event", class_info, info_spu_event_command,
2867 _("Display SPU event facility status.\n"),
2868 &infospucmdlist);
2869 add_cmd ("signal", class_info, info_spu_signal_command,
2870 _("Display SPU signal notification facility status.\n"),
2871 &infospucmdlist);
2872 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2873 _("Display SPU mailbox facility status.\n"),
2874 &infospucmdlist);
2875 add_cmd ("dma", class_info, info_spu_dma_command,
2876 _("Display MFC DMA status.\n"),
2877 &infospucmdlist);
2878 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2879 _("Display MFC Proxy-DMA status.\n"),
2880 &infospucmdlist);
771b4502 2881}
This page took 1.326375 seconds and 4 git commands to generate.