Change program_space::added_solibs to a std::vector
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
1736a7bd
PA
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
c906108c
SS
26
27#include "defs.h"
c906108c 28#include "bfd.h"
04ea0df1 29#include "gdb_obstack.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
3e43a32a 35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
39#include "buildsym.h"
40#include "complaints.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "language.h"
f69fdf9b 44#include "target-float.h"
de17c821
DJ
45#include "cp-abi.h"
46#include "cp-support.h"
c906108c
SS
47#include <ctype.h>
48
49/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
50#define EXTERN
51/**/
c906108c
SS
52#include "stabsread.h" /* Our own declarations */
53#undef EXTERN
54
52059ffd
TT
55struct nextfield
56{
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65};
66
67struct next_fnfieldlist
68{
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71};
72
c906108c
SS
73/* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
c378eb4e 77 expected to eventually go away... (FIXME) */
c906108c
SS
78
79struct field_info
c5aa993b 80 {
52059ffd
TT
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
c5aa993b 83 };
c906108c
SS
84
85static void
a121b7c1 86read_one_struct_field (struct field_info *, const char **, const char *,
a14ed312 87 struct type *, struct objfile *);
c906108c 88
a14ed312 89static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 90
a121b7c1 91static long read_huge_number (const char **, int, int *, int);
c906108c 92
a121b7c1 93static struct type *error_type (const char **, struct objfile *);
c906108c
SS
94
95static void
a14ed312
KB
96patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
c906108c 98
46cb6474 99static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 100
a121b7c1 101static int read_type_number (const char **, int *);
c906108c 102
a121b7c1 103static struct type *read_type (const char **, struct objfile *);
a7a48797 104
a121b7c1
PA
105static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
c906108c 107
a121b7c1
PA
108static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
c906108c 110
a121b7c1 111static struct type *read_sun_floating_type (const char **, int[2],
a14ed312 112 struct objfile *);
c906108c 113
a121b7c1 114static struct type *read_enum_type (const char **, struct type *, struct objfile *);
c906108c 115
46bf5051 116static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
117
118static int
a121b7c1 119read_member_functions (struct field_info *, const char **, struct type *,
a14ed312 120 struct objfile *);
c906108c
SS
121
122static int
a121b7c1 123read_struct_fields (struct field_info *, const char **, struct type *,
a14ed312 124 struct objfile *);
c906108c
SS
125
126static int
a121b7c1 127read_baseclasses (struct field_info *, const char **, struct type *,
a14ed312 128 struct objfile *);
c906108c
SS
129
130static int
a121b7c1 131read_tilde_fields (struct field_info *, const char **, struct type *,
a14ed312 132 struct objfile *);
c906108c 133
a14ed312 134static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 135
570b8f7c
AC
136static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
c906108c 138
a121b7c1 139static struct type *read_struct_type (const char **, struct type *,
2ae1c2d2 140 enum type_code,
a14ed312 141 struct objfile *);
c906108c 142
a121b7c1 143static struct type *read_array_type (const char **, struct type *,
a14ed312 144 struct objfile *);
c906108c 145
a121b7c1
PA
146static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
c906108c 148
bf362611 149static void add_undefined_type (struct type *, int[2]);
a7a48797 150
c906108c 151static int
a121b7c1 152read_cpp_abbrev (struct field_info *, const char **, struct type *,
a14ed312 153 struct objfile *);
c906108c 154
a121b7c1 155static const char *find_name_end (const char *name);
7e1d63ec 156
a121b7c1 157static int process_reference (const char **string);
c906108c 158
a14ed312 159void stabsread_clear_cache (void);
7be570e7 160
8343f86c
DJ
161static const char vptr_name[] = "_vptr$";
162static const char vb_name[] = "_vb$";
c906108c 163
23136709
KB
164static void
165invalid_cpp_abbrev_complaint (const char *arg1)
166{
b98664d3 167 complaint (_("invalid C++ abbreviation `%s'"), arg1);
23136709 168}
c906108c 169
23136709 170static void
49b0b195 171reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709 172{
b98664d3 173 complaint (_("bad register number %d (max %d) in symbol %s"),
49b0b195 174 regnum, num_regs - 1, sym);
23136709 175}
c906108c 176
23136709
KB
177static void
178stabs_general_complaint (const char *arg1)
179{
b98664d3 180 complaint ("%s", arg1);
23136709 181}
c906108c 182
c906108c
SS
183/* Make a list of forward references which haven't been defined. */
184
185static struct type **undef_types;
186static int undef_types_allocated;
187static int undef_types_length;
188static struct symbol *current_symbol = NULL;
189
bf362611
JB
190/* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
c378eb4e 192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
193 and type (0,2) is defined only later. */
194
195struct nat
196{
197 int typenums[2];
198 struct type *type;
199};
200static struct nat *noname_undefs;
201static int noname_undefs_allocated;
202static int noname_undefs_length;
203
c906108c
SS
204/* Check for and handle cretinous stabs symbol name continuation! */
205#define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
fc474241
DE
210
211/* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217static struct type **type_vector;
218
219/* Number of elements allocated for type_vector currently. */
220
221static int type_vector_length;
222
223/* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 227\f
c906108c
SS
228
229/* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
a7a48797 236static struct type **
46bf5051 237dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 238{
52f0bd74
AC
239 int filenum = typenums[0];
240 int index = typenums[1];
c906108c 241 unsigned old_len;
52f0bd74
AC
242 int real_filenum;
243 struct header_file *f;
c906108c
SS
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
b98664d3 251 complaint (_("Invalid symbol data: type number "
3e43a32a 252 "(%d,%d) out of range at symtab pos %d."),
23136709 253 filenum, index, symnum);
c906108c
SS
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
46bf5051 268 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
c5aa993b 273 Find it in this object file's type vector. */
c906108c
SS
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 280 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
46bf5051 298 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 299 {
46bf5051 300 static struct type *temp_type;
c906108c 301
8a3fe4f8 302 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
303
304 error_return:
46bf5051
UW
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
c906108c
SS
307 }
308
46bf5051 309 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325}
326
327/* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 331 put into the type vector, and so may not be referred to by number. */
c906108c
SS
332
333static struct type *
35a2f538 334dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 335{
52f0bd74 336 struct type **type_addr;
c906108c
SS
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
46bf5051 343 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354}
355
9b790ce7
UW
356/* Allocate a floating-point type of size BITS. */
357
358static struct type *
359dbx_init_float_type (struct objfile *objfile, int bits)
360{
361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
362 const struct floatformat **format;
363 struct type *type;
364
365 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
366 if (format)
367 type = init_float_type (objfile, bits, NULL, format);
368 else
77b7c781 369 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
9b790ce7
UW
370
371 return type;
372}
373
c906108c 374/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 375 and fix their symbols in given symbol vector. */
c906108c
SS
376
377static void
fba45db2
KB
378patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
379 struct objfile *objfile)
c906108c
SS
380{
381 int ii;
382 char *name;
a121b7c1 383 const char *pp;
c906108c
SS
384 struct symbol *sym;
385
386 if (stabs)
387 {
c906108c 388 /* for all the stab entries, find their corresponding symbols and
c378eb4e 389 patch their types! */
c5aa993b 390
c906108c
SS
391 for (ii = 0; ii < stabs->count; ++ii)
392 {
393 name = stabs->stab[ii];
c5aa993b 394 pp = (char *) strchr (name, ':');
8fb822e0 395 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
396 while (pp[1] == ':')
397 {
c5aa993b
JM
398 pp += 2;
399 pp = (char *) strchr (pp, ':');
c906108c 400 }
c5aa993b 401 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
402 if (!sym)
403 {
404 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
405 the variable was defined *anywhere*, not just whether
406 it is defined in this compilation unit. But neither
407 xlc or GCC seem to need such a definition, and until
408 we do psymtabs (so that the minimal symbols from all
409 compilation units are available now), I'm not sure
410 how to get the information. */
c906108c
SS
411
412 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
413 ld will remove it from the executable. There is then
414 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 415 sym = allocate_symbol (objfile);
176620f1 416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 417 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 418 SYMBOL_SET_LINKAGE_NAME
224c3ddb
SM
419 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
420 name, pp - name));
c906108c 421 pp += 2;
c5aa993b 422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
423 {
424 /* I don't think the linker does this with functions,
425 so as far as I know this is never executed.
426 But it doesn't hurt to check. */
427 SYMBOL_TYPE (sym) =
428 lookup_function_type (read_type (&pp, objfile));
429 }
430 else
431 {
432 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
433 }
434 add_symbol_to_list (sym, &global_symbols);
435 }
436 else
437 {
438 pp += 2;
c5aa993b 439 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
440 {
441 SYMBOL_TYPE (sym) =
442 lookup_function_type (read_type (&pp, objfile));
443 }
444 else
445 {
446 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
447 }
448 }
449 }
450 }
451}
c906108c 452\f
c5aa993b 453
c906108c
SS
454/* Read a number by which a type is referred to in dbx data,
455 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
456 Just a single number N is equivalent to (0,N).
457 Return the two numbers by storing them in the vector TYPENUMS.
458 TYPENUMS will then be used as an argument to dbx_lookup_type.
459
460 Returns 0 for success, -1 for error. */
461
462static int
a121b7c1 463read_type_number (const char **pp, int *typenums)
c906108c
SS
464{
465 int nbits;
433759f7 466
c906108c
SS
467 if (**pp == '(')
468 {
469 (*pp)++;
94e10a22 470 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
471 if (nbits != 0)
472 return -1;
94e10a22 473 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
474 if (nbits != 0)
475 return -1;
c906108c
SS
476 }
477 else
478 {
479 typenums[0] = 0;
94e10a22 480 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
481 if (nbits != 0)
482 return -1;
c906108c
SS
483 }
484 return 0;
485}
c906108c 486\f
c5aa993b 487
c906108c
SS
488#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
489#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
490#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
491#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
492
c906108c 493/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 494 during "process_later". */
c906108c
SS
495
496struct ref_map
497{
a121b7c1 498 const char *stabs;
c906108c
SS
499 CORE_ADDR value;
500 struct symbol *sym;
501};
502
503#define MAX_CHUNK_REFS 100
504#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
505#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
506
c5aa993b 507static struct ref_map *ref_map;
c906108c 508
c378eb4e 509/* Ptr to free cell in chunk's linked list. */
c5aa993b 510static int ref_count = 0;
c906108c 511
c378eb4e 512/* Number of chunks malloced. */
c906108c
SS
513static int ref_chunk = 0;
514
7be570e7 515/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
516 table. If the symbol table changes, this cache must be cleared
517 or we are left holding onto data in invalid obstacks. */
7be570e7 518void
fba45db2 519stabsread_clear_cache (void)
7be570e7
JM
520{
521 ref_count = 0;
522 ref_chunk = 0;
523}
524
c906108c
SS
525/* Create array of pointers mapping refids to symbols and stab strings.
526 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
527 find them, using their reference numbers as our index.
528 These will be used later when we resolve references. */
c906108c 529void
a121b7c1 530ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
c906108c
SS
531{
532 if (ref_count == 0)
533 ref_chunk = 0;
534 if (refnum >= ref_count)
535 ref_count = refnum + 1;
536 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
537 {
c5aa993b 538 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 539 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 540
c906108c
SS
541 ref_map = (struct ref_map *)
542 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
543 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
544 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
545 ref_chunk += new_chunks;
546 }
547 ref_map[refnum].stabs = stabs;
548 ref_map[refnum].sym = sym;
549 ref_map[refnum].value = value;
550}
551
552/* Return defined sym for the reference REFNUM. */
553struct symbol *
fba45db2 554ref_search (int refnum)
c906108c
SS
555{
556 if (refnum < 0 || refnum > ref_count)
557 return 0;
558 return ref_map[refnum].sym;
559}
560
c906108c
SS
561/* Parse a reference id in STRING and return the resulting
562 reference number. Move STRING beyond the reference id. */
563
c5aa993b 564static int
a121b7c1 565process_reference (const char **string)
c906108c 566{
a121b7c1 567 const char *p;
c906108c
SS
568 int refnum = 0;
569
c5aa993b
JM
570 if (**string != '#')
571 return 0;
572
c906108c
SS
573 /* Advance beyond the initial '#'. */
574 p = *string + 1;
575
c378eb4e 576 /* Read number as reference id. */
c906108c
SS
577 while (*p && isdigit (*p))
578 {
579 refnum = refnum * 10 + *p - '0';
580 p++;
581 }
582 *string = p;
583 return refnum;
584}
585
586/* If STRING defines a reference, store away a pointer to the reference
587 definition for later use. Return the reference number. */
588
589int
a121b7c1 590symbol_reference_defined (const char **string)
c906108c 591{
a121b7c1 592 const char *p = *string;
c906108c
SS
593 int refnum = 0;
594
595 refnum = process_reference (&p);
596
c378eb4e 597 /* Defining symbols end in '='. */
c5aa993b 598 if (*p == '=')
c906108c 599 {
c378eb4e 600 /* Symbol is being defined here. */
c906108c
SS
601 *string = p + 1;
602 return refnum;
603 }
604 else
605 {
c378eb4e 606 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
607 or this is a forward reference to it. */
608 *string = p;
609 return -1;
610 }
611}
612
768a979c
UW
613static int
614stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
615{
616 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
617
0fde2c53
DE
618 if (regno < 0
619 || regno >= (gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch)))
768a979c
UW
621 {
622 reg_value_complaint (regno,
623 gdbarch_num_regs (gdbarch)
624 + gdbarch_num_pseudo_regs (gdbarch),
625 SYMBOL_PRINT_NAME (sym));
626
c378eb4e 627 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
628 }
629
630 return regno;
631}
632
633static const struct symbol_register_ops stab_register_funcs = {
634 stab_reg_to_regnum
635};
636
f1e6e072
TT
637/* The "aclass" indices for computed symbols. */
638
639static int stab_register_index;
640static int stab_regparm_index;
641
c906108c 642struct symbol *
a121b7c1 643define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
fba45db2 644 struct objfile *objfile)
c906108c 645{
5e2b427d 646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 647 struct symbol *sym;
a121b7c1 648 const char *p = find_name_end (string);
c906108c
SS
649 int deftype;
650 int synonym = 0;
52f0bd74 651 int i;
c906108c
SS
652
653 /* We would like to eliminate nameless symbols, but keep their types.
654 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
655 to type 2, but, should not create a symbol to address that type. Since
656 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
657
658 int nameless;
659
660 /* Ignore syms with empty names. */
661 if (string[0] == 0)
662 return 0;
663
c378eb4e 664 /* Ignore old-style symbols from cc -go. */
c906108c
SS
665 if (p == 0)
666 return 0;
667
668 while (p[1] == ':')
669 {
c5aa993b
JM
670 p += 2;
671 p = strchr (p, ':');
681c238c
MS
672 if (p == NULL)
673 {
b98664d3 674 complaint (
681c238c
MS
675 _("Bad stabs string '%s'"), string);
676 return NULL;
677 }
c906108c
SS
678 }
679
680 /* If a nameless stab entry, all we need is the type, not the symbol.
681 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
682 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
683
e623cf5d 684 current_symbol = sym = allocate_symbol (objfile);
c906108c 685
c906108c
SS
686 if (processing_gcc_compilation)
687 {
688 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
689 number of bytes occupied by a type or object, which we ignore. */
690 SYMBOL_LINE (sym) = desc;
c906108c
SS
691 }
692 else
693 {
c5aa993b 694 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
695 }
696
025ac414
PM
697 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
698 &objfile->objfile_obstack);
699
c906108c
SS
700 if (is_cplus_marker (string[0]))
701 {
702 /* Special GNU C++ names. */
703 switch (string[1])
704 {
c5aa993b 705 case 't':
1c9e8358 706 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 707 break;
c906108c 708
c5aa993b 709 case 'v': /* $vtbl_ptr_type */
c5aa993b 710 goto normal;
c906108c 711
c5aa993b 712 case 'e':
1c9e8358 713 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 714 break;
c906108c 715
c5aa993b
JM
716 case '_':
717 /* This was an anonymous type that was never fixed up. */
718 goto normal;
c906108c 719
c5aa993b
JM
720 case 'X':
721 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 722 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 723 goto normal;
86a73007 724 /* fall through */
c906108c 725
c5aa993b 726 default:
b98664d3 727 complaint (_("Unknown C++ symbol name `%s'"),
23136709 728 string);
c378eb4e 729 goto normal; /* Do *something* with it. */
c906108c
SS
730 }
731 }
c906108c
SS
732 else
733 {
734 normal:
2f408ecb
PA
735 std::string new_name;
736
df8a16a1 737 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 738 {
224c3ddb 739 char *name = (char *) alloca (p - string + 1);
433759f7 740
71c25dea
TT
741 memcpy (name, string, p - string);
742 name[p - string] = '\0';
743 new_name = cp_canonicalize_string (name);
71c25dea 744 }
2f408ecb 745 if (!new_name.empty ())
71c25dea 746 {
2f408ecb
PA
747 SYMBOL_SET_NAMES (sym,
748 new_name.c_str (), new_name.length (),
749 1, objfile);
71c25dea
TT
750 }
751 else
04a679b8 752 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
753
754 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 755 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 756
c906108c
SS
757 }
758 p++;
759
760 /* Determine the type of name being defined. */
761#if 0
762 /* Getting GDB to correctly skip the symbol on an undefined symbol
763 descriptor and not ever dump core is a very dodgy proposition if
764 we do things this way. I say the acorn RISC machine can just
765 fix their compiler. */
766 /* The Acorn RISC machine's compiler can put out locals that don't
767 start with "234=" or "(3,4)=", so assume anything other than the
768 deftypes we know how to handle is a local. */
769 if (!strchr ("cfFGpPrStTvVXCR", *p))
770#else
771 if (isdigit (*p) || *p == '(' || *p == '-')
772#endif
773 deftype = 'l';
774 else
775 deftype = *p++;
776
777 switch (deftype)
778 {
779 case 'c':
780 /* c is a special case, not followed by a type-number.
c5aa993b
JM
781 SYMBOL:c=iVALUE for an integer constant symbol.
782 SYMBOL:c=rVALUE for a floating constant symbol.
783 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
784 e.g. "b:c=e6,0" for "const b = blob1"
785 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
786 if (*p != '=')
787 {
f1e6e072 788 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 789 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 790 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
791 add_symbol_to_list (sym, &file_symbols);
792 return sym;
793 }
794 ++p;
795 switch (*p++)
796 {
797 case 'r':
798 {
4e38b386 799 gdb_byte *dbl_valu;
6ccb9162 800 struct type *dbl_type;
c906108c 801
46bf5051 802 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
803 dbl_valu
804 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
805 TYPE_LENGTH (dbl_type));
f69fdf9b
UW
806
807 target_float_from_string (dbl_valu, dbl_type, std::string (p));
6ccb9162
UW
808
809 SYMBOL_TYPE (sym) = dbl_type;
c906108c 810 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 811 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
812 }
813 break;
814 case 'i':
815 {
816 /* Defining integer constants this way is kind of silly,
817 since 'e' constants allows the compiler to give not
818 only the value, but the type as well. C has at least
819 int, long, unsigned int, and long long as constant
820 types; other languages probably should have at least
821 unsigned as well as signed constants. */
822
46bf5051 823 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 824 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 825 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
826 }
827 break;
ec8a089a
PM
828
829 case 'c':
830 {
831 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
832 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 833 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
834 }
835 break;
836
837 case 's':
838 {
839 struct type *range_type;
840 int ind = 0;
841 char quote = *p++;
ec8a089a
PM
842 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
843 gdb_byte *string_value;
844
845 if (quote != '\'' && quote != '"')
846 {
f1e6e072 847 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
851 return sym;
852 }
853
854 /* Find matching quote, rejecting escaped quotes. */
855 while (*p && *p != quote)
856 {
857 if (*p == '\\' && p[1] == quote)
858 {
859 string_local[ind] = (gdb_byte) quote;
860 ind++;
861 p += 2;
862 }
863 else if (*p)
864 {
865 string_local[ind] = (gdb_byte) (*p);
866 ind++;
867 p++;
868 }
869 }
870 if (*p != quote)
871 {
f1e6e072 872 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
873 SYMBOL_TYPE (sym) = error_type (&p, objfile);
874 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875 add_symbol_to_list (sym, &file_symbols);
876 return sym;
877 }
878
879 /* NULL terminate the string. */
880 string_local[ind] = 0;
3e43a32a 881 range_type
0c9c3474
SA
882 = create_static_range_type (NULL,
883 objfile_type (objfile)->builtin_int,
884 0, ind);
ec8a089a
PM
885 SYMBOL_TYPE (sym) = create_array_type (NULL,
886 objfile_type (objfile)->builtin_char,
887 range_type);
224c3ddb
SM
888 string_value
889 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
890 memcpy (string_value, string_local, ind + 1);
891 p++;
892
893 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 894 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
895 }
896 break;
897
c906108c
SS
898 case 'e':
899 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
900 can be represented as integral.
901 e.g. "b:c=e6,0" for "const b = blob1"
902 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
903 {
f1e6e072 904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906
907 if (*p != ',')
908 {
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 break;
911 }
912 ++p;
913
914 /* If the value is too big to fit in an int (perhaps because
915 it is unsigned), or something like that, we silently get
916 a bogus value. The type and everything else about it is
917 correct. Ideally, we should be using whatever we have
918 available for parsing unsigned and long long values,
919 however. */
920 SYMBOL_VALUE (sym) = atoi (p);
921 }
922 break;
923 default:
924 {
f1e6e072 925 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
926 SYMBOL_TYPE (sym) = error_type (&p, objfile);
927 }
928 }
176620f1 929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
930 add_symbol_to_list (sym, &file_symbols);
931 return sym;
932
933 case 'C':
934 /* The name of a caught exception. */
935 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 936 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 937 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
938 SYMBOL_VALUE_ADDRESS (sym) = valu;
939 add_symbol_to_list (sym, &local_symbols);
940 break;
941
942 case 'f':
943 /* A static function definition. */
944 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 945 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 946 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
947 add_symbol_to_list (sym, &file_symbols);
948 /* fall into process_function_types. */
949
950 process_function_types:
951 /* Function result types are described as the result type in stabs.
c5aa993b
JM
952 We need to convert this to the function-returning-type-X type
953 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
954 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
955 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
956
1e698235
DJ
957 /* All functions in C++ have prototypes. Stabs does not offer an
958 explicit way to identify prototyped or unprototyped functions,
959 but both GCC and Sun CC emit stabs for the "call-as" type rather
960 than the "declared-as" type for unprototyped functions, so
961 we treat all functions as if they were prototyped. This is used
962 primarily for promotion when calling the function from GDB. */
876cecd0 963 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 964
c378eb4e 965 /* fall into process_prototype_types. */
c906108c
SS
966
967 process_prototype_types:
968 /* Sun acc puts declared types of arguments here. */
969 if (*p == ';')
970 {
971 struct type *ftype = SYMBOL_TYPE (sym);
972 int nsemi = 0;
973 int nparams = 0;
a121b7c1 974 const char *p1 = p;
c906108c
SS
975
976 /* Obtain a worst case guess for the number of arguments
977 by counting the semicolons. */
978 while (*p1)
979 {
980 if (*p1++ == ';')
981 nsemi++;
982 }
983
c378eb4e 984 /* Allocate parameter information fields and fill them in. */
c906108c
SS
985 TYPE_FIELDS (ftype) = (struct field *)
986 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
987 while (*p++ == ';')
988 {
989 struct type *ptype;
990
991 /* A type number of zero indicates the start of varargs.
c5aa993b 992 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
993 if (p[0] == '0' && p[1] == '\0')
994 break;
995 ptype = read_type (&p, objfile);
996
997 /* The Sun compilers mark integer arguments, which should
c5aa993b 998 be promoted to the width of the calling conventions, with
c378eb4e 999 a type which references itself. This type is turned into
c5aa993b 1000 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
1001 it back into builtin_int here.
1002 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 1003 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 1004 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
1005 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1006 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
1007 }
1008 TYPE_NFIELDS (ftype) = nparams;
876cecd0 1009 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
1010 }
1011 break;
1012
1013 case 'F':
1014 /* A global function definition. */
1015 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1016 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1018 add_symbol_to_list (sym, &global_symbols);
1019 goto process_function_types;
1020
1021 case 'G':
1022 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1023 value is not correct. It is necessary to search for the
1024 corresponding linker definition to find the value.
1025 These definitions appear at the end of the namelist. */
c906108c 1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1027 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1028 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1029 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1030 Symbol references don't have valid names and wont't match up with
1031 minimal symbols when the global_sym_chain is relocated.
1032 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1033 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1034 {
3567439c 1035 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1036 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1037 global_sym_chain[i] = sym;
c906108c
SS
1038 }
1039 add_symbol_to_list (sym, &global_symbols);
1040 break;
1041
1042 /* This case is faked by a conditional above,
c5aa993b
JM
1043 when there is no code letter in the dbx data.
1044 Dbx data never actually contains 'l'. */
c906108c
SS
1045 case 's':
1046 case 'l':
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1048 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1049 SYMBOL_VALUE (sym) = valu;
176620f1 1050 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1051 add_symbol_to_list (sym, &local_symbols);
1052 break;
1053
1054 case 'p':
1055 if (*p == 'F')
1056 /* pF is a two-letter code that means a function parameter in Fortran.
1057 The type-number specifies the type of the return value.
1058 Translate it into a pointer-to-function type. */
1059 {
1060 p++;
1061 SYMBOL_TYPE (sym)
1062 = lookup_pointer_type
c5aa993b 1063 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1064 }
1065 else
1066 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1067
f1e6e072 1068 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1069 SYMBOL_VALUE (sym) = valu;
176620f1 1070 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1071 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1072 add_symbol_to_list (sym, &local_symbols);
1073
5e2b427d 1074 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1075 {
1076 /* On little-endian machines, this crud is never necessary,
1077 and, if the extra bytes contain garbage, is harmful. */
1078 break;
1079 }
1080
1081 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1082 if (processing_gcc_compilation
5e2b427d 1083 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1084 break;
1085
5e2b427d 1086 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1087 {
8ee56bcf
AC
1088 /* If PCC says a parameter is a short or a char, it is
1089 really an int. */
5e2b427d
UW
1090 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1091 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1092 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1093 {
8ee56bcf
AC
1094 SYMBOL_TYPE (sym) =
1095 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1096 ? objfile_type (objfile)->builtin_unsigned_int
1097 : objfile_type (objfile)->builtin_int;
7a292a7a 1098 }
8ee56bcf 1099 break;
7a292a7a 1100 }
0019cd49 1101 /* Fall through. */
c906108c
SS
1102
1103 case 'P':
1104 /* acc seems to use P to declare the prototypes of functions that
1105 are referenced by this file. gdb is not prepared to deal
1106 with this extra information. FIXME, it ought to. */
1107 if (type == N_FUN)
1108 {
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 goto process_prototype_types;
1111 }
c5aa993b 1112 /*FALLTHROUGH */
c906108c
SS
1113
1114 case 'R':
1115 /* Parameter which is in a register. */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1117 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1118 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1119 SYMBOL_VALUE (sym) = valu;
176620f1 1120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1121 add_symbol_to_list (sym, &local_symbols);
1122 break;
1123
1124 case 'r':
1125 /* Register variable (either global or local). */
1126 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1127 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1128 SYMBOL_VALUE (sym) = valu;
176620f1 1129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1130 if (within_function)
1131 {
192cb3d4
MK
1132 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1133 the same name to represent an argument passed in a
1134 register. GCC uses 'P' for the same case. So if we find
1135 such a symbol pair we combine it into one 'P' symbol.
1136 For Sun cc we need to do this regardless of
1137 stabs_argument_has_addr, because the compiler puts out
1138 the 'p' symbol even if it never saves the argument onto
1139 the stack.
1140
1141 On most machines, we want to preserve both symbols, so
1142 that we can still get information about what is going on
1143 with the stack (VAX for computing args_printed, using
1144 stack slots instead of saved registers in backtraces,
1145 etc.).
c906108c
SS
1146
1147 Note that this code illegally combines
c5aa993b 1148 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1149 but this case is considered pathological and causes a warning
1150 from a decent compiler. */
1151
1152 if (local_symbols
1153 && local_symbols->nsyms > 0
5e2b427d 1154 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1155 {
1156 struct symbol *prev_sym;
433759f7 1157
c906108c
SS
1158 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1159 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1160 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1161 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1162 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1163 {
f1e6e072 1164 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1165 /* Use the type from the LOC_REGISTER; that is the type
1166 that is actually in that register. */
1167 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1168 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1169 sym = prev_sym;
1170 break;
1171 }
1172 }
c5aa993b 1173 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1174 }
1175 else
c5aa993b 1176 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1177 break;
1178
1179 case 'S':
c378eb4e 1180 /* Static symbol at top level of file. */
c906108c 1181 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1182 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1183 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1184 if (gdbarch_static_transform_name_p (gdbarch)
1185 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1186 SYMBOL_LINKAGE_NAME (sym))
1187 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1188 {
3b7344d5 1189 struct bound_minimal_symbol msym;
433759f7 1190
3e43a32a
MS
1191 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1192 NULL, objfile);
3b7344d5 1193 if (msym.minsym != NULL)
c5aa993b 1194 {
0d5cff50 1195 const char *new_name = gdbarch_static_transform_name
3567439c 1196 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1197
3567439c 1198 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1199 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1200 }
1201 }
176620f1 1202 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1203 add_symbol_to_list (sym, &file_symbols);
1204 break;
1205
1206 case 't':
52eea4ce
JB
1207 /* In Ada, there is no distinction between typedef and non-typedef;
1208 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1209 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1210
1211 Therefore, for Ada units, we check the character immediately
1212 before the 't', and if we do not find a 'T', then make sure to
1213 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1214 will be stored in the VAR_DOMAIN). If the symbol was indeed
1215 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1216 elsewhere, so we don't need to take care of that.
1217
1218 This is important to do, because of forward references:
1219 The cleanup of undefined types stored in undef_types only uses
1220 STRUCT_DOMAIN symbols to perform the replacement. */
1221 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1222
e2cd42dd 1223 /* Typedef */
c906108c
SS
1224 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1225
1226 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1227 did not use `sym'. Return without further processing. */
c5aa993b
JM
1228 if (nameless)
1229 return NULL;
c906108c 1230
f1e6e072 1231 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1232 SYMBOL_VALUE (sym) = valu;
176620f1 1233 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1234 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1235 a base type which did not have its name defined when the
1236 derived class was output. We fill in the derived class's
1237 base part member's name here in that case. */
c906108c
SS
1238 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1239 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1240 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1241 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1242 {
1243 int j;
433759f7 1244
c906108c
SS
1245 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1246 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1247 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1248 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1249 }
1250
1251 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1252 {
1253 /* gcc-2.6 or later (when using -fvtable-thunks)
1254 emits a unique named type for a vtable entry.
c378eb4e 1255 Some gdb code depends on that specific name. */
c906108c
SS
1256 extern const char vtbl_ptr_name[];
1257
1258 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1259 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1260 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1261 {
1262 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1263 foo" or "function returning foo", we better not set
1264 the TYPE_NAME. If the program contains "typedef char
1265 *caddr_t;", we don't want all variables of type char
1266 * to print as caddr_t. This is not just a
1267 consequence of GDB's type management; PCC and GCC (at
1268 least through version 2.4) both output variables of
1269 either type char * or caddr_t with the type number
1270 defined in the 't' symbol for caddr_t. If a future
1271 compiler cleans this up it GDB is not ready for it
1272 yet, but if it becomes ready we somehow need to
1273 disable this check (without breaking the PCC/GCC2.4
1274 case).
1275
1276 Sigh.
1277
1278 Fortunately, this check seems not to be necessary
1279 for anything except pointers or functions. */
c378eb4e
MS
1280 /* ezannoni: 2000-10-26. This seems to apply for
1281 versions of gcc older than 2.8. This was the original
49d97c60 1282 problem: with the following code gdb would tell that
c378eb4e
MS
1283 the type for name1 is caddr_t, and func is char().
1284
49d97c60
EZ
1285 typedef char *caddr_t;
1286 char *name2;
1287 struct x
1288 {
c378eb4e 1289 char *name1;
49d97c60
EZ
1290 } xx;
1291 char *func()
1292 {
1293 }
1294 main () {}
1295 */
1296
c378eb4e 1297 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1298 if (current_subfile->language == language_pascal)
1299 {
3567439c 1300 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1301 }
c906108c
SS
1302 }
1303 else
3567439c 1304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1305 }
1306
1307 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1308
1309 if (synonym)
1310 {
1311 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1312 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1313
1314 *struct_sym = *sym;
f1e6e072 1315 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1316 SYMBOL_VALUE (struct_sym) = valu;
1317 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1318 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1319 TYPE_NAME (SYMBOL_TYPE (sym))
1320 = obconcat (&objfile->objfile_obstack,
1321 SYMBOL_LINKAGE_NAME (sym),
1322 (char *) NULL);
52eea4ce
JB
1323 add_symbol_to_list (struct_sym, &file_symbols);
1324 }
1325
c906108c
SS
1326 break;
1327
1328 case 'T':
1329 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1330 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1331 synonym = *p == 't';
1332
1333 if (synonym)
1334 p++;
c906108c
SS
1335
1336 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1337
c906108c 1338 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1339 did not use `sym'. Return without further processing. */
c5aa993b
JM
1340 if (nameless)
1341 return NULL;
c906108c 1342
f1e6e072 1343 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1344 SYMBOL_VALUE (sym) = valu;
176620f1 1345 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1346 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1347 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1348 = obconcat (&objfile->objfile_obstack,
1349 SYMBOL_LINKAGE_NAME (sym),
1350 (char *) NULL);
c906108c
SS
1351 add_symbol_to_list (sym, &file_symbols);
1352
1353 if (synonym)
1354 {
c378eb4e 1355 /* Clone the sym and then modify it. */
e623cf5d 1356 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1357
c906108c 1358 *typedef_sym = *sym;
f1e6e072 1359 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1360 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1361 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1362 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1363 TYPE_NAME (SYMBOL_TYPE (sym))
1364 = obconcat (&objfile->objfile_obstack,
1365 SYMBOL_LINKAGE_NAME (sym),
1366 (char *) NULL);
c906108c
SS
1367 add_symbol_to_list (typedef_sym, &file_symbols);
1368 }
1369 break;
1370
1371 case 'V':
c378eb4e 1372 /* Static symbol of local scope. */
c906108c 1373 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1374 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1375 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1376 if (gdbarch_static_transform_name_p (gdbarch)
1377 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1378 SYMBOL_LINKAGE_NAME (sym))
1379 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1380 {
3b7344d5 1381 struct bound_minimal_symbol msym;
433759f7
MS
1382
1383 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1384 NULL, objfile);
3b7344d5 1385 if (msym.minsym != NULL)
c5aa993b 1386 {
0d5cff50 1387 const char *new_name = gdbarch_static_transform_name
3567439c 1388 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1389
3567439c 1390 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1391 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1392 }
1393 }
176620f1 1394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1395 add_symbol_to_list (sym, &local_symbols);
1396 break;
1397
1398 case 'v':
1399 /* Reference parameter */
1400 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1401 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1402 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1403 SYMBOL_VALUE (sym) = valu;
176620f1 1404 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1405 add_symbol_to_list (sym, &local_symbols);
1406 break;
1407
1408 case 'a':
1409 /* Reference parameter which is in a register. */
1410 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1411 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1412 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1413 SYMBOL_VALUE (sym) = valu;
176620f1 1414 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1415 add_symbol_to_list (sym, &local_symbols);
1416 break;
1417
1418 case 'X':
1419 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1420 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1421 that Pascal uses it too, but when I tried it Pascal used
1422 "x:3" (local symbol) instead. */
c906108c 1423 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1424 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1425 SYMBOL_VALUE (sym) = valu;
176620f1 1426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1427 add_symbol_to_list (sym, &local_symbols);
1428 break;
c906108c
SS
1429
1430 default:
1431 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1432 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1433 SYMBOL_VALUE (sym) = 0;
176620f1 1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1435 add_symbol_to_list (sym, &file_symbols);
1436 break;
1437 }
1438
192cb3d4
MK
1439 /* Some systems pass variables of certain types by reference instead
1440 of by value, i.e. they will pass the address of a structure (in a
1441 register or on the stack) instead of the structure itself. */
c906108c 1442
5e2b427d 1443 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1444 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1445 {
2a2d4dc3 1446 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1447 variables passed in a register). */
2a2d4dc3 1448 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1449 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1450 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1451 and subsequent arguments on SPARC, for example). */
1452 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1453 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1454 }
1455
c906108c
SS
1456 return sym;
1457}
1458
c906108c
SS
1459/* Skip rest of this symbol and return an error type.
1460
1461 General notes on error recovery: error_type always skips to the
1462 end of the symbol (modulo cretinous dbx symbol name continuation).
1463 Thus code like this:
1464
1465 if (*(*pp)++ != ';')
c5aa993b 1466 return error_type (pp, objfile);
c906108c
SS
1467
1468 is wrong because if *pp starts out pointing at '\0' (typically as the
1469 result of an earlier error), it will be incremented to point to the
1470 start of the next symbol, which might produce strange results, at least
1471 if you run off the end of the string table. Instead use
1472
1473 if (**pp != ';')
c5aa993b 1474 return error_type (pp, objfile);
c906108c
SS
1475 ++*pp;
1476
1477 or
1478
1479 if (**pp != ';')
c5aa993b 1480 foo = error_type (pp, objfile);
c906108c 1481 else
c5aa993b 1482 ++*pp;
c906108c
SS
1483
1484 And in case it isn't obvious, the point of all this hair is so the compiler
1485 can define new types and new syntaxes, and old versions of the
1486 debugger will be able to read the new symbol tables. */
1487
1488static struct type *
a121b7c1 1489error_type (const char **pp, struct objfile *objfile)
c906108c 1490{
b98664d3 1491 complaint (_("couldn't parse type; debugger out of date?"));
c906108c
SS
1492 while (1)
1493 {
1494 /* Skip to end of symbol. */
1495 while (**pp != '\0')
1496 {
1497 (*pp)++;
1498 }
1499
1500 /* Check for and handle cretinous dbx symbol name continuation! */
1501 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1502 {
1503 *pp = next_symbol_text (objfile);
1504 }
1505 else
1506 {
1507 break;
1508 }
1509 }
46bf5051 1510 return objfile_type (objfile)->builtin_error;
c906108c 1511}
c906108c 1512\f
c5aa993b 1513
c906108c
SS
1514/* Read type information or a type definition; return the type. Even
1515 though this routine accepts either type information or a type
1516 definition, the distinction is relevant--some parts of stabsread.c
1517 assume that type information starts with a digit, '-', or '(' in
1518 deciding whether to call read_type. */
1519
a7a48797 1520static struct type *
a121b7c1 1521read_type (const char **pp, struct objfile *objfile)
c906108c 1522{
52f0bd74 1523 struct type *type = 0;
c906108c
SS
1524 struct type *type1;
1525 int typenums[2];
1526 char type_descriptor;
1527
1528 /* Size in bits of type if specified by a type attribute, or -1 if
1529 there is no size attribute. */
1530 int type_size = -1;
1531
c378eb4e 1532 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1533 int is_string = 0;
1534
c378eb4e 1535 /* Used to distinguish vector from array. */
e2cd42dd
MS
1536 int is_vector = 0;
1537
c906108c
SS
1538 /* Read type number if present. The type number may be omitted.
1539 for instance in a two-dimensional array declared with type
1540 "ar1;1;10;ar1;1;10;4". */
1541 if ((**pp >= '0' && **pp <= '9')
1542 || **pp == '('
1543 || **pp == '-')
1544 {
1545 if (read_type_number (pp, typenums) != 0)
1546 return error_type (pp, objfile);
c5aa993b 1547
c906108c 1548 if (**pp != '=')
8cfe231d
JB
1549 {
1550 /* Type is not being defined here. Either it already
1551 exists, or this is a forward reference to it.
1552 dbx_alloc_type handles both cases. */
1553 type = dbx_alloc_type (typenums, objfile);
1554
1555 /* If this is a forward reference, arrange to complain if it
1556 doesn't get patched up by the time we're done
1557 reading. */
1558 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1559 add_undefined_type (type, typenums);
8cfe231d
JB
1560
1561 return type;
1562 }
c906108c
SS
1563
1564 /* Type is being defined here. */
1565 /* Skip the '='.
c5aa993b
JM
1566 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1567 (*pp) += 2;
c906108c
SS
1568 }
1569 else
1570 {
1571 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1572 the definition, but don't put it in the type vector. */
c906108c
SS
1573 typenums[0] = typenums[1] = -1;
1574 (*pp)++;
1575 }
1576
c5aa993b 1577again:
c906108c
SS
1578 type_descriptor = (*pp)[-1];
1579 switch (type_descriptor)
1580 {
1581 case 'x':
1582 {
1583 enum type_code code;
1584
1585 /* Used to index through file_symbols. */
1586 struct pending *ppt;
1587 int i;
c5aa993b 1588
c906108c
SS
1589 /* Name including "struct", etc. */
1590 char *type_name;
c5aa993b 1591
c906108c 1592 {
a121b7c1 1593 const char *from, *p, *q1, *q2;
c5aa993b 1594
c906108c
SS
1595 /* Set the type code according to the following letter. */
1596 switch ((*pp)[0])
1597 {
1598 case 's':
1599 code = TYPE_CODE_STRUCT;
1600 break;
1601 case 'u':
1602 code = TYPE_CODE_UNION;
1603 break;
1604 case 'e':
1605 code = TYPE_CODE_ENUM;
1606 break;
1607 default:
1608 {
1609 /* Complain and keep going, so compilers can invent new
1610 cross-reference types. */
b98664d3 1611 complaint (_("Unrecognized cross-reference type `%c'"),
3e43a32a 1612 (*pp)[0]);
c906108c
SS
1613 code = TYPE_CODE_STRUCT;
1614 break;
1615 }
1616 }
c5aa993b 1617
c906108c
SS
1618 q1 = strchr (*pp, '<');
1619 p = strchr (*pp, ':');
1620 if (p == NULL)
1621 return error_type (pp, objfile);
1622 if (q1 && p > q1 && p[1] == ':')
1623 {
1624 int nesting_level = 0;
433759f7 1625
c906108c
SS
1626 for (q2 = q1; *q2; q2++)
1627 {
1628 if (*q2 == '<')
1629 nesting_level++;
1630 else if (*q2 == '>')
1631 nesting_level--;
1632 else if (*q2 == ':' && nesting_level == 0)
1633 break;
1634 }
1635 p = q2;
1636 if (*p != ':')
1637 return error_type (pp, objfile);
1638 }
71c25dea
TT
1639 type_name = NULL;
1640 if (current_subfile->language == language_cplus)
1641 {
2f408ecb 1642 char *name = (char *) alloca (p - *pp + 1);
433759f7 1643
71c25dea
TT
1644 memcpy (name, *pp, p - *pp);
1645 name[p - *pp] = '\0';
2f408ecb
PA
1646
1647 std::string new_name = cp_canonicalize_string (name);
1648 if (!new_name.empty ())
71c25dea 1649 {
224c3ddb
SM
1650 type_name
1651 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2f408ecb
PA
1652 new_name.c_str (),
1653 new_name.length ());
71c25dea
TT
1654 }
1655 }
1656 if (type_name == NULL)
1657 {
a121b7c1 1658 char *to = type_name = (char *)
3e43a32a 1659 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1660
1661 /* Copy the name. */
1662 from = *pp + 1;
1663 while (from < p)
1664 *to++ = *from++;
1665 *to = '\0';
1666 }
c5aa993b 1667
c906108c
SS
1668 /* Set the pointer ahead of the name which we just read, and
1669 the colon. */
71c25dea 1670 *pp = p + 1;
c906108c
SS
1671 }
1672
149d821b
JB
1673 /* If this type has already been declared, then reuse the same
1674 type, rather than allocating a new one. This saves some
1675 memory. */
c906108c
SS
1676
1677 for (ppt = file_symbols; ppt; ppt = ppt->next)
1678 for (i = 0; i < ppt->nsyms; i++)
1679 {
1680 struct symbol *sym = ppt->symbol[i];
1681
1682 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1683 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1684 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1685 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1686 {
b99607ea 1687 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1688 type = SYMBOL_TYPE (sym);
149d821b 1689 if (typenums[0] != -1)
46bf5051 1690 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1691 return type;
1692 }
1693 }
1694
1695 /* Didn't find the type to which this refers, so we must
1696 be dealing with a forward reference. Allocate a type
1697 structure for it, and keep track of it so we can
1698 fill in the rest of the fields when we get the full
1699 type. */
1700 type = dbx_alloc_type (typenums, objfile);
1701 TYPE_CODE (type) = code;
1702 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1703 INIT_CPLUS_SPECIFIC (type);
876cecd0 1704 TYPE_STUB (type) = 1;
c906108c 1705
bf362611 1706 add_undefined_type (type, typenums);
c906108c
SS
1707 return type;
1708 }
1709
c5aa993b 1710 case '-': /* RS/6000 built-in type */
c906108c
SS
1711 case '0':
1712 case '1':
1713 case '2':
1714 case '3':
1715 case '4':
1716 case '5':
1717 case '6':
1718 case '7':
1719 case '8':
1720 case '9':
1721 case '(':
1722 (*pp)--;
1723
1724 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1725 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1726
1727 /* Allocate and enter the typedef type first.
c378eb4e 1728 This handles recursive types. */
c906108c
SS
1729 type = dbx_alloc_type (typenums, objfile);
1730 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1731 {
1732 struct type *xtype = read_type (pp, objfile);
433759f7 1733
c906108c
SS
1734 if (type == xtype)
1735 {
1736 /* It's being defined as itself. That means it is "void". */
1737 TYPE_CODE (type) = TYPE_CODE_VOID;
1738 TYPE_LENGTH (type) = 1;
1739 }
1740 else if (type_size >= 0 || is_string)
1741 {
dd6bda65
DJ
1742 /* This is the absolute wrong way to construct types. Every
1743 other debug format has found a way around this problem and
1744 the related problems with unnecessarily stubbed types;
1745 someone motivated should attempt to clean up the issue
1746 here as well. Once a type pointed to has been created it
13a393b0
JB
1747 should not be modified.
1748
1749 Well, it's not *absolutely* wrong. Constructing recursive
1750 types (trees, linked lists) necessarily entails modifying
1751 types after creating them. Constructing any loop structure
1752 entails side effects. The Dwarf 2 reader does handle this
1753 more gracefully (it never constructs more than once
1754 instance of a type object, so it doesn't have to copy type
1755 objects wholesale), but it still mutates type objects after
1756 other folks have references to them.
1757
1758 Keep in mind that this circularity/mutation issue shows up
1759 at the source language level, too: C's "incomplete types",
1760 for example. So the proper cleanup, I think, would be to
1761 limit GDB's type smashing to match exactly those required
1762 by the source language. So GDB could have a
1763 "complete_this_type" function, but never create unnecessary
1764 copies of a type otherwise. */
dd6bda65 1765 replace_type (type, xtype);
c906108c
SS
1766 TYPE_NAME (type) = NULL;
1767 TYPE_TAG_NAME (type) = NULL;
1768 }
1769 else
1770 {
876cecd0 1771 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1772 TYPE_TARGET_TYPE (type) = xtype;
1773 }
1774 }
1775 break;
1776
c5aa993b
JM
1777 /* In the following types, we must be sure to overwrite any existing
1778 type that the typenums refer to, rather than allocating a new one
1779 and making the typenums point to the new one. This is because there
1780 may already be pointers to the existing type (if it had been
1781 forward-referenced), and we must change it to a pointer, function,
1782 reference, or whatever, *in-place*. */
c906108c 1783
e2cd42dd 1784 case '*': /* Pointer to another type */
c906108c 1785 type1 = read_type (pp, objfile);
46bf5051 1786 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1787 break;
1788
c5aa993b 1789 case '&': /* Reference to another type */
c906108c 1790 type1 = read_type (pp, objfile);
3b224330
AV
1791 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1792 TYPE_CODE_REF);
c906108c
SS
1793 break;
1794
c5aa993b 1795 case 'f': /* Function returning another type */
c906108c 1796 type1 = read_type (pp, objfile);
0c8b41f1 1797 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1798 break;
1799
da966255
JB
1800 case 'g': /* Prototyped function. (Sun) */
1801 {
1802 /* Unresolved questions:
1803
1804 - According to Sun's ``STABS Interface Manual'', for 'f'
1805 and 'F' symbol descriptors, a `0' in the argument type list
1806 indicates a varargs function. But it doesn't say how 'g'
1807 type descriptors represent that info. Someone with access
1808 to Sun's toolchain should try it out.
1809
1810 - According to the comment in define_symbol (search for
1811 `process_prototype_types:'), Sun emits integer arguments as
1812 types which ref themselves --- like `void' types. Do we
1813 have to deal with that here, too? Again, someone with
1814 access to Sun's toolchain should try it out and let us
1815 know. */
1816
1817 const char *type_start = (*pp) - 1;
1818 struct type *return_type = read_type (pp, objfile);
1819 struct type *func_type
46bf5051 1820 = make_function_type (return_type,
0c8b41f1 1821 dbx_lookup_type (typenums, objfile));
da966255
JB
1822 struct type_list {
1823 struct type *type;
1824 struct type_list *next;
1825 } *arg_types = 0;
1826 int num_args = 0;
1827
1828 while (**pp && **pp != '#')
1829 {
1830 struct type *arg_type = read_type (pp, objfile);
8d749320 1831 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1832 newobj->type = arg_type;
1833 newobj->next = arg_types;
1834 arg_types = newobj;
da966255
JB
1835 num_args++;
1836 }
1837 if (**pp == '#')
1838 ++*pp;
1839 else
1840 {
b98664d3 1841 complaint (_("Prototyped function type didn't "
3e43a32a 1842 "end arguments with `#':\n%s"),
23136709 1843 type_start);
da966255
JB
1844 }
1845
1846 /* If there is just one argument whose type is `void', then
1847 that's just an empty argument list. */
1848 if (arg_types
1849 && ! arg_types->next
1850 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1851 num_args = 0;
1852
1853 TYPE_FIELDS (func_type)
1854 = (struct field *) TYPE_ALLOC (func_type,
1855 num_args * sizeof (struct field));
1856 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1857 {
1858 int i;
1859 struct type_list *t;
1860
1861 /* We stuck each argument type onto the front of the list
1862 when we read it, so the list is reversed. Build the
1863 fields array right-to-left. */
1864 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1865 TYPE_FIELD_TYPE (func_type, i) = t->type;
1866 }
1867 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1868 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1869
1870 type = func_type;
1871 break;
1872 }
1873
c5aa993b 1874 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1875 type = read_type (pp, objfile);
d7242108 1876 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1877 dbx_lookup_type (typenums, objfile));
c906108c
SS
1878 break;
1879
c5aa993b 1880 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1881 type = read_type (pp, objfile);
d7242108 1882 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1883 dbx_lookup_type (typenums, objfile));
c906108c
SS
1884 break;
1885
1886 case '@':
c5aa993b
JM
1887 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1888 { /* Member (class & variable) type */
c906108c
SS
1889 /* FIXME -- we should be doing smash_to_XXX types here. */
1890
1891 struct type *domain = read_type (pp, objfile);
1892 struct type *memtype;
1893
1894 if (**pp != ',')
1895 /* Invalid member type data format. */
1896 return error_type (pp, objfile);
1897 ++*pp;
1898
1899 memtype = read_type (pp, objfile);
1900 type = dbx_alloc_type (typenums, objfile);
0d5de010 1901 smash_to_memberptr_type (type, domain, memtype);
c906108c 1902 }
c5aa993b
JM
1903 else
1904 /* type attribute */
c906108c 1905 {
a121b7c1 1906 const char *attr = *pp;
433759f7 1907
c906108c
SS
1908 /* Skip to the semicolon. */
1909 while (**pp != ';' && **pp != '\0')
1910 ++(*pp);
1911 if (**pp == '\0')
1912 return error_type (pp, objfile);
1913 else
c5aa993b 1914 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1915
1916 switch (*attr)
1917 {
e2cd42dd 1918 case 's': /* Size attribute */
c906108c
SS
1919 type_size = atoi (attr + 1);
1920 if (type_size <= 0)
1921 type_size = -1;
1922 break;
1923
e2cd42dd 1924 case 'S': /* String attribute */
c378eb4e 1925 /* FIXME: check to see if following type is array? */
c906108c
SS
1926 is_string = 1;
1927 break;
1928
e2cd42dd 1929 case 'V': /* Vector attribute */
c378eb4e 1930 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1931 is_vector = 1;
1932 break;
1933
c906108c
SS
1934 default:
1935 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1936 can invent new ones. */
c906108c
SS
1937 break;
1938 }
1939 ++*pp;
1940 goto again;
1941 }
1942 break;
1943
c5aa993b 1944 case '#': /* Method (class & fn) type */
c906108c
SS
1945 if ((*pp)[0] == '#')
1946 {
1947 /* We'll get the parameter types from the name. */
1948 struct type *return_type;
1949
1950 (*pp)++;
1951 return_type = read_type (pp, objfile);
1952 if (*(*pp)++ != ';')
b98664d3 1953 complaint (_("invalid (minimal) member type "
3e43a32a 1954 "data format at symtab pos %d."),
23136709 1955 symnum);
c906108c
SS
1956 type = allocate_stub_method (return_type);
1957 if (typenums[0] != -1)
46bf5051 1958 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1959 }
1960 else
1961 {
1962 struct type *domain = read_type (pp, objfile);
1963 struct type *return_type;
ad2f7632
DJ
1964 struct field *args;
1965 int nargs, varargs;
c906108c
SS
1966
1967 if (**pp != ',')
1968 /* Invalid member type data format. */
1969 return error_type (pp, objfile);
1970 else
1971 ++(*pp);
1972
1973 return_type = read_type (pp, objfile);
ad2f7632 1974 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1975 if (args == NULL)
1976 return error_type (pp, objfile);
c906108c 1977 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1978 smash_to_method_type (type, domain, return_type, args,
1979 nargs, varargs);
c906108c
SS
1980 }
1981 break;
1982
c5aa993b 1983 case 'r': /* Range type */
94e10a22 1984 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1985 if (typenums[0] != -1)
46bf5051 1986 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1987 break;
1988
1989 case 'b':
c906108c
SS
1990 {
1991 /* Sun ACC builtin int type */
1992 type = read_sun_builtin_type (pp, typenums, objfile);
1993 if (typenums[0] != -1)
46bf5051 1994 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1995 }
1996 break;
1997
c5aa993b 1998 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1999 type = read_sun_floating_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
46bf5051 2001 *dbx_lookup_type (typenums, objfile) = type;
c906108c 2002 break;
c5aa993b
JM
2003
2004 case 'e': /* Enumeration type */
c906108c
SS
2005 type = dbx_alloc_type (typenums, objfile);
2006 type = read_enum_type (pp, type, objfile);
2007 if (typenums[0] != -1)
46bf5051 2008 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2009 break;
2010
c5aa993b
JM
2011 case 's': /* Struct type */
2012 case 'u': /* Union type */
2ae1c2d2
JB
2013 {
2014 enum type_code type_code = TYPE_CODE_UNDEF;
2015 type = dbx_alloc_type (typenums, objfile);
2016 switch (type_descriptor)
2017 {
2018 case 's':
2019 type_code = TYPE_CODE_STRUCT;
2020 break;
2021 case 'u':
2022 type_code = TYPE_CODE_UNION;
2023 break;
2024 }
2025 type = read_struct_type (pp, type, type_code, objfile);
2026 break;
2027 }
c906108c 2028
c5aa993b 2029 case 'a': /* Array type */
c906108c
SS
2030 if (**pp != 'r')
2031 return error_type (pp, objfile);
2032 ++*pp;
c5aa993b 2033
c906108c
SS
2034 type = dbx_alloc_type (typenums, objfile);
2035 type = read_array_type (pp, type, objfile);
2036 if (is_string)
2037 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2038 if (is_vector)
ea37ba09 2039 make_vector_type (type);
c906108c
SS
2040 break;
2041
6b1755ce 2042 case 'S': /* Set type */
c906108c 2043 type1 = read_type (pp, objfile);
c5aa993b 2044 type = create_set_type ((struct type *) NULL, type1);
c906108c 2045 if (typenums[0] != -1)
46bf5051 2046 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2047 break;
2048
2049 default:
c378eb4e
MS
2050 --*pp; /* Go back to the symbol in error. */
2051 /* Particularly important if it was \0! */
c906108c
SS
2052 return error_type (pp, objfile);
2053 }
2054
2055 if (type == 0)
2056 {
8a3fe4f8 2057 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2058 return error_type (pp, objfile);
2059 }
2060
2061 /* Size specified in a type attribute overrides any other size. */
2062 if (type_size != -1)
2063 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2064
2065 return type;
2066}
2067\f
2068/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2069 Return the proper type node for a given builtin type number. */
c906108c 2070
46bf5051
UW
2071static const struct objfile_data *rs6000_builtin_type_data;
2072
c906108c 2073static struct type *
46bf5051 2074rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2075{
19ba03f4
SM
2076 struct type **negative_types
2077 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
46bf5051 2078
c906108c
SS
2079 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2080#define NUMBER_RECOGNIZED 34
c906108c
SS
2081 struct type *rettype = NULL;
2082
2083 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2084 {
b98664d3 2085 complaint (_("Unknown builtin type %d"), typenum);
46bf5051 2086 return objfile_type (objfile)->builtin_error;
c906108c 2087 }
46bf5051
UW
2088
2089 if (!negative_types)
2090 {
2091 /* This includes an empty slot for type number -0. */
2092 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2093 NUMBER_RECOGNIZED + 1, struct type *);
2094 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2095 }
2096
c906108c
SS
2097 if (negative_types[-typenum] != NULL)
2098 return negative_types[-typenum];
2099
2100#if TARGET_CHAR_BIT != 8
c5aa993b 2101#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2102 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2103 that if that ever becomes not true, the correct fix will be to
2104 make the size in the struct type to be in bits, not in units of
2105 TARGET_CHAR_BIT. */
2106#endif
2107
2108 switch (-typenum)
2109 {
2110 case 1:
2111 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2112 by the debugging format. If there is a type called "int" which
2113 is other than 32 bits, then it should use a new negative type
2114 number (or avoid negative type numbers for that case).
2115 See stabs.texinfo. */
19f392bc 2116 rettype = init_integer_type (objfile, 32, 0, "int");
c906108c
SS
2117 break;
2118 case 2:
19f392bc 2119 rettype = init_integer_type (objfile, 8, 0, "char");
c413c448 2120 TYPE_NOSIGN (rettype) = 1;
c906108c
SS
2121 break;
2122 case 3:
19f392bc 2123 rettype = init_integer_type (objfile, 16, 0, "short");
c906108c
SS
2124 break;
2125 case 4:
19f392bc 2126 rettype = init_integer_type (objfile, 32, 0, "long");
c906108c
SS
2127 break;
2128 case 5:
19f392bc 2129 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
c906108c
SS
2130 break;
2131 case 6:
19f392bc 2132 rettype = init_integer_type (objfile, 8, 0, "signed char");
c906108c
SS
2133 break;
2134 case 7:
19f392bc 2135 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
c906108c
SS
2136 break;
2137 case 8:
19f392bc 2138 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
c906108c
SS
2139 break;
2140 case 9:
19f392bc 2141 rettype = init_integer_type (objfile, 32, 1, "unsigned");
89acf84d 2142 break;
c906108c 2143 case 10:
19f392bc 2144 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
c906108c
SS
2145 break;
2146 case 11:
77b7c781 2147 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
c906108c
SS
2148 break;
2149 case 12:
2150 /* IEEE single precision (32 bit). */
49f190bc
UW
2151 rettype = init_float_type (objfile, 32, "float",
2152 floatformats_ieee_single);
c906108c
SS
2153 break;
2154 case 13:
2155 /* IEEE double precision (64 bit). */
49f190bc
UW
2156 rettype = init_float_type (objfile, 64, "double",
2157 floatformats_ieee_double);
c906108c
SS
2158 break;
2159 case 14:
2160 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2161 different sizes for "long double" should use different negative
2162 type numbers. See stabs.texinfo. */
49f190bc
UW
2163 rettype = init_float_type (objfile, 64, "long double",
2164 floatformats_ieee_double);
c906108c
SS
2165 break;
2166 case 15:
19f392bc 2167 rettype = init_integer_type (objfile, 32, 0, "integer");
c906108c
SS
2168 break;
2169 case 16:
19f392bc 2170 rettype = init_boolean_type (objfile, 32, 1, "boolean");
c906108c
SS
2171 break;
2172 case 17:
49f190bc
UW
2173 rettype = init_float_type (objfile, 32, "short real",
2174 floatformats_ieee_single);
c906108c
SS
2175 break;
2176 case 18:
49f190bc
UW
2177 rettype = init_float_type (objfile, 64, "real",
2178 floatformats_ieee_double);
c906108c
SS
2179 break;
2180 case 19:
19f392bc 2181 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
c906108c
SS
2182 break;
2183 case 20:
19f392bc 2184 rettype = init_character_type (objfile, 8, 1, "character");
c906108c
SS
2185 break;
2186 case 21:
19f392bc 2187 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
c906108c
SS
2188 break;
2189 case 22:
19f392bc 2190 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
c906108c
SS
2191 break;
2192 case 23:
19f392bc 2193 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
c906108c
SS
2194 break;
2195 case 24:
19f392bc 2196 rettype = init_boolean_type (objfile, 32, 1, "logical");
c906108c
SS
2197 break;
2198 case 25:
2199 /* Complex type consisting of two IEEE single precision values. */
19f392bc
UW
2200 rettype = init_complex_type (objfile, "complex",
2201 rs6000_builtin_type (12, objfile));
c906108c
SS
2202 break;
2203 case 26:
2204 /* Complex type consisting of two IEEE double precision values. */
19f392bc
UW
2205 rettype = init_complex_type (objfile, "double complex",
2206 rs6000_builtin_type (13, objfile));
c906108c
SS
2207 break;
2208 case 27:
19f392bc 2209 rettype = init_integer_type (objfile, 8, 0, "integer*1");
c906108c
SS
2210 break;
2211 case 28:
19f392bc 2212 rettype = init_integer_type (objfile, 16, 0, "integer*2");
c906108c
SS
2213 break;
2214 case 29:
19f392bc 2215 rettype = init_integer_type (objfile, 32, 0, "integer*4");
c906108c
SS
2216 break;
2217 case 30:
19f392bc 2218 rettype = init_character_type (objfile, 16, 0, "wchar");
c906108c
SS
2219 break;
2220 case 31:
19f392bc 2221 rettype = init_integer_type (objfile, 64, 0, "long long");
c906108c
SS
2222 break;
2223 case 32:
19f392bc 2224 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
c906108c
SS
2225 break;
2226 case 33:
19f392bc 2227 rettype = init_integer_type (objfile, 64, 1, "logical*8");
c906108c
SS
2228 break;
2229 case 34:
19f392bc 2230 rettype = init_integer_type (objfile, 64, 0, "integer*8");
c906108c
SS
2231 break;
2232 }
2233 negative_types[-typenum] = rettype;
2234 return rettype;
2235}
2236\f
2237/* This page contains subroutines of read_type. */
2238
0d5cff50
DE
2239/* Wrapper around method_name_from_physname to flag a complaint
2240 if there is an error. */
de17c821 2241
0d5cff50
DE
2242static char *
2243stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2244{
2245 char *method_name;
2246
2247 method_name = method_name_from_physname (physname);
2248
2249 if (method_name == NULL)
c263362b 2250 {
b98664d3 2251 complaint (_("Method has bad physname %s\n"), physname);
0d5cff50 2252 return NULL;
c263362b 2253 }
de17c821 2254
0d5cff50 2255 return method_name;
de17c821
DJ
2256}
2257
c906108c
SS
2258/* Read member function stabs info for C++ classes. The form of each member
2259 function data is:
2260
c5aa993b 2261 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2262
2263 An example with two member functions is:
2264
c5aa993b 2265 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2266
2267 For the case of overloaded operators, the format is op$::*.funcs, where
2268 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2269 name (such as `+=') and `.' marks the end of the operator name.
2270
2271 Returns 1 for success, 0 for failure. */
2272
2273static int
a121b7c1
PA
2274read_member_functions (struct field_info *fip, const char **pp,
2275 struct type *type, struct objfile *objfile)
c906108c
SS
2276{
2277 int nfn_fields = 0;
2278 int length = 0;
c906108c
SS
2279 int i;
2280 struct next_fnfield
2281 {
2282 struct next_fnfield *next;
2283 struct fn_field fn_field;
c5aa993b
JM
2284 }
2285 *sublist;
c906108c
SS
2286 struct type *look_ahead_type;
2287 struct next_fnfieldlist *new_fnlist;
2288 struct next_fnfield *new_sublist;
2289 char *main_fn_name;
a121b7c1 2290 const char *p;
c5aa993b 2291
c906108c 2292 /* Process each list until we find something that is not a member function
c378eb4e 2293 or find the end of the functions. */
c906108c
SS
2294
2295 while (**pp != ';')
2296 {
2297 /* We should be positioned at the start of the function name.
c5aa993b 2298 Scan forward to find the first ':' and if it is not the
c378eb4e 2299 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2300 p = *pp;
2301 while (*p != ':')
2302 {
2303 p++;
2304 }
2305 if (p[1] != ':')
2306 {
2307 break;
2308 }
2309
2310 sublist = NULL;
2311 look_ahead_type = NULL;
2312 length = 0;
c5aa993b 2313
8d749320 2314 new_fnlist = XCNEW (struct next_fnfieldlist);
b8c9b27d 2315 make_cleanup (xfree, new_fnlist);
c5aa993b 2316
c906108c
SS
2317 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2318 {
2319 /* This is a completely wierd case. In order to stuff in the
2320 names that might contain colons (the usual name delimiter),
2321 Mike Tiemann defined a different name format which is
2322 signalled if the identifier is "op$". In that case, the
2323 format is "op$::XXXX." where XXXX is the name. This is
2324 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2325 /* This lets the user type "break operator+".
2326 We could just put in "+" as the name, but that wouldn't
2327 work for "*". */
8343f86c 2328 static char opname[32] = "op$";
c906108c 2329 char *o = opname + 3;
c5aa993b 2330
c906108c
SS
2331 /* Skip past '::'. */
2332 *pp = p + 2;
2333
2334 STABS_CONTINUE (pp, objfile);
2335 p = *pp;
2336 while (*p != '.')
2337 {
2338 *o++ = *p++;
2339 }
2340 main_fn_name = savestring (opname, o - opname);
2341 /* Skip past '.' */
2342 *pp = p + 1;
2343 }
2344 else
2345 {
2346 main_fn_name = savestring (*pp, p - *pp);
2347 /* Skip past '::'. */
2348 *pp = p + 2;
2349 }
c5aa993b
JM
2350 new_fnlist->fn_fieldlist.name = main_fn_name;
2351
c906108c
SS
2352 do
2353 {
8d749320 2354 new_sublist = XCNEW (struct next_fnfield);
b8c9b27d 2355 make_cleanup (xfree, new_sublist);
c5aa993b 2356
c906108c
SS
2357 /* Check for and handle cretinous dbx symbol name continuation! */
2358 if (look_ahead_type == NULL)
2359 {
c378eb4e 2360 /* Normal case. */
c906108c 2361 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2362
2363 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2364 if (**pp != ':')
2365 {
2366 /* Invalid symtab info for member function. */
2367 return 0;
2368 }
2369 }
2370 else
2371 {
2372 /* g++ version 1 kludge */
c5aa993b 2373 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2374 look_ahead_type = NULL;
2375 }
c5aa993b 2376
c906108c
SS
2377 (*pp)++;
2378 p = *pp;
2379 while (*p != ';')
2380 {
2381 p++;
2382 }
c5aa993b 2383
09e2d7c7
DE
2384 /* These are methods, not functions. */
2385 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2386 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2387 else
2388 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2389 == TYPE_CODE_METHOD);
c906108c 2390
09e2d7c7 2391 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2392 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2393 {
4bfb94b8 2394 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2395 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2396 new_sublist->fn_field.is_stub = 1;
c906108c 2397 }
09e2d7c7 2398
c5aa993b 2399 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2400 *pp = p + 1;
c5aa993b 2401
c906108c
SS
2402 /* Set this member function's visibility fields. */
2403 switch (*(*pp)++)
2404 {
c5aa993b
JM
2405 case VISIBILITY_PRIVATE:
2406 new_sublist->fn_field.is_private = 1;
2407 break;
2408 case VISIBILITY_PROTECTED:
2409 new_sublist->fn_field.is_protected = 1;
2410 break;
c906108c 2411 }
c5aa993b 2412
c906108c
SS
2413 STABS_CONTINUE (pp, objfile);
2414 switch (**pp)
2415 {
c378eb4e 2416 case 'A': /* Normal functions. */
c5aa993b
JM
2417 new_sublist->fn_field.is_const = 0;
2418 new_sublist->fn_field.is_volatile = 0;
2419 (*pp)++;
2420 break;
c378eb4e 2421 case 'B': /* `const' member functions. */
c5aa993b
JM
2422 new_sublist->fn_field.is_const = 1;
2423 new_sublist->fn_field.is_volatile = 0;
2424 (*pp)++;
2425 break;
c378eb4e 2426 case 'C': /* `volatile' member function. */
c5aa993b
JM
2427 new_sublist->fn_field.is_const = 0;
2428 new_sublist->fn_field.is_volatile = 1;
2429 (*pp)++;
2430 break;
c378eb4e 2431 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2432 new_sublist->fn_field.is_const = 1;
2433 new_sublist->fn_field.is_volatile = 1;
2434 (*pp)++;
2435 break;
3e43a32a 2436 case '*': /* File compiled with g++ version 1 --
c378eb4e 2437 no info. */
c5aa993b
JM
2438 case '?':
2439 case '.':
2440 break;
2441 default:
b98664d3 2442 complaint (_("const/volatile indicator missing, got '%c'"),
3e43a32a 2443 **pp);
c5aa993b 2444 break;
c906108c 2445 }
c5aa993b 2446
c906108c
SS
2447 switch (*(*pp)++)
2448 {
c5aa993b 2449 case '*':
c906108c
SS
2450 {
2451 int nbits;
c5aa993b 2452 /* virtual member function, followed by index.
c906108c
SS
2453 The sign bit is set to distinguish pointers-to-methods
2454 from virtual function indicies. Since the array is
2455 in words, the quantity must be shifted left by 1
2456 on 16 bit machine, and by 2 on 32 bit machine, forcing
2457 the sign bit out, and usable as a valid index into
2458 the array. Remove the sign bit here. */
c5aa993b 2459 new_sublist->fn_field.voffset =
94e10a22 2460 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2461 if (nbits != 0)
2462 return 0;
c5aa993b 2463
c906108c
SS
2464 STABS_CONTINUE (pp, objfile);
2465 if (**pp == ';' || **pp == '\0')
2466 {
2467 /* Must be g++ version 1. */
c5aa993b 2468 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2469 }
2470 else
2471 {
2472 /* Figure out from whence this virtual function came.
2473 It may belong to virtual function table of
2474 one of its baseclasses. */
2475 look_ahead_type = read_type (pp, objfile);
2476 if (**pp == ':')
2477 {
c378eb4e 2478 /* g++ version 1 overloaded methods. */
c906108c
SS
2479 }
2480 else
2481 {
c5aa993b 2482 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2483 if (**pp != ';')
2484 {
2485 return 0;
2486 }
2487 else
2488 {
2489 ++*pp;
2490 }
2491 look_ahead_type = NULL;
2492 }
2493 }
2494 break;
2495 }
c5aa993b
JM
2496 case '?':
2497 /* static member function. */
4ea09c10
PS
2498 {
2499 int slen = strlen (main_fn_name);
2500
2501 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2502
2503 /* For static member functions, we can't tell if they
2504 are stubbed, as they are put out as functions, and not as
2505 methods.
2506 GCC v2 emits the fully mangled name if
2507 dbxout.c:flag_minimal_debug is not set, so we have to
2508 detect a fully mangled physname here and set is_stub
2509 accordingly. Fully mangled physnames in v2 start with
2510 the member function name, followed by two underscores.
2511 GCC v3 currently always emits stubbed member functions,
2512 but with fully mangled physnames, which start with _Z. */
2513 if (!(strncmp (new_sublist->fn_field.physname,
2514 main_fn_name, slen) == 0
2515 && new_sublist->fn_field.physname[slen] == '_'
2516 && new_sublist->fn_field.physname[slen + 1] == '_'))
2517 {
2518 new_sublist->fn_field.is_stub = 1;
2519 }
2520 break;
2521 }
c5aa993b
JM
2522
2523 default:
2524 /* error */
b98664d3 2525 complaint (_("member function type missing, got '%c'"),
3e43a32a 2526 (*pp)[-1]);
86a73007
TT
2527 /* Normal member function. */
2528 /* Fall through. */
c5aa993b
JM
2529
2530 case '.':
2531 /* normal member function. */
2532 new_sublist->fn_field.voffset = 0;
2533 new_sublist->fn_field.fcontext = 0;
2534 break;
c906108c 2535 }
c5aa993b
JM
2536
2537 new_sublist->next = sublist;
c906108c
SS
2538 sublist = new_sublist;
2539 length++;
2540 STABS_CONTINUE (pp, objfile);
2541 }
2542 while (**pp != ';' && **pp != '\0');
c5aa993b 2543
c906108c 2544 (*pp)++;
0c867556 2545 STABS_CONTINUE (pp, objfile);
c5aa993b 2546
0c867556
PS
2547 /* Skip GCC 3.X member functions which are duplicates of the callable
2548 constructor/destructor. */
6cbbcdfe
KS
2549 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2550 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2551 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2552 {
0c867556 2553 xfree (main_fn_name);
c906108c 2554 }
0c867556
PS
2555 else
2556 {
de17c821
DJ
2557 int has_stub = 0;
2558 int has_destructor = 0, has_other = 0;
2559 int is_v3 = 0;
2560 struct next_fnfield *tmp_sublist;
2561
2562 /* Various versions of GCC emit various mostly-useless
2563 strings in the name field for special member functions.
2564
2565 For stub methods, we need to defer correcting the name
2566 until we are ready to unstub the method, because the current
2567 name string is used by gdb_mangle_name. The only stub methods
2568 of concern here are GNU v2 operators; other methods have their
2569 names correct (see caveat below).
2570
2571 For non-stub methods, in GNU v3, we have a complete physname.
2572 Therefore we can safely correct the name now. This primarily
2573 affects constructors and destructors, whose name will be
2574 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2575 operators will also have incorrect names; for instance,
2576 "operator int" will be named "operator i" (i.e. the type is
2577 mangled).
2578
2579 For non-stub methods in GNU v2, we have no easy way to
2580 know if we have a complete physname or not. For most
2581 methods the result depends on the platform (if CPLUS_MARKER
2582 can be `$' or `.', it will use minimal debug information, or
2583 otherwise the full physname will be included).
2584
2585 Rather than dealing with this, we take a different approach.
2586 For v3 mangled names, we can use the full physname; for v2,
2587 we use cplus_demangle_opname (which is actually v2 specific),
2588 because the only interesting names are all operators - once again
2589 barring the caveat below. Skip this process if any method in the
2590 group is a stub, to prevent our fouling up the workings of
2591 gdb_mangle_name.
2592
2593 The caveat: GCC 2.95.x (and earlier?) put constructors and
2594 destructors in the same method group. We need to split this
2595 into two groups, because they should have different names.
2596 So for each method group we check whether it contains both
2597 routines whose physname appears to be a destructor (the physnames
2598 for and destructors are always provided, due to quirks in v2
2599 mangling) and routines whose physname does not appear to be a
2600 destructor. If so then we break up the list into two halves.
2601 Even if the constructors and destructors aren't in the same group
2602 the destructor will still lack the leading tilde, so that also
2603 needs to be fixed.
2604
2605 So, to summarize what we expect and handle here:
2606
2607 Given Given Real Real Action
2608 method name physname physname method name
2609
2610 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2611 [now or later]
2612 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2613 rename
2614 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2615 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2616 */
2617
2618 tmp_sublist = sublist;
2619 while (tmp_sublist != NULL)
2620 {
2621 if (tmp_sublist->fn_field.is_stub)
2622 has_stub = 1;
2623 if (tmp_sublist->fn_field.physname[0] == '_'
2624 && tmp_sublist->fn_field.physname[1] == 'Z')
2625 is_v3 = 1;
2626
2627 if (is_destructor_name (tmp_sublist->fn_field.physname))
2628 has_destructor++;
2629 else
2630 has_other++;
2631
2632 tmp_sublist = tmp_sublist->next;
2633 }
2634
2635 if (has_destructor && has_other)
2636 {
2637 struct next_fnfieldlist *destr_fnlist;
2638 struct next_fnfield *last_sublist;
2639
2640 /* Create a new fn_fieldlist for the destructors. */
2641
8d749320 2642 destr_fnlist = XCNEW (struct next_fnfieldlist);
de17c821 2643 make_cleanup (xfree, destr_fnlist);
8d749320 2644
de17c821 2645 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2646 = obconcat (&objfile->objfile_obstack, "~",
2647 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2648
8d749320
SM
2649 destr_fnlist->fn_fieldlist.fn_fields =
2650 XOBNEWVEC (&objfile->objfile_obstack,
2651 struct fn_field, has_destructor);
de17c821
DJ
2652 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2653 sizeof (struct fn_field) * has_destructor);
2654 tmp_sublist = sublist;
2655 last_sublist = NULL;
2656 i = 0;
2657 while (tmp_sublist != NULL)
2658 {
2659 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2660 {
2661 tmp_sublist = tmp_sublist->next;
2662 continue;
2663 }
2664
2665 destr_fnlist->fn_fieldlist.fn_fields[i++]
2666 = tmp_sublist->fn_field;
2667 if (last_sublist)
2668 last_sublist->next = tmp_sublist->next;
2669 else
2670 sublist = tmp_sublist->next;
2671 last_sublist = tmp_sublist;
2672 tmp_sublist = tmp_sublist->next;
2673 }
2674
2675 destr_fnlist->fn_fieldlist.length = has_destructor;
2676 destr_fnlist->next = fip->fnlist;
2677 fip->fnlist = destr_fnlist;
2678 nfn_fields++;
de17c821
DJ
2679 length -= has_destructor;
2680 }
2681 else if (is_v3)
2682 {
2683 /* v3 mangling prevents the use of abbreviated physnames,
2684 so we can do this here. There are stubbed methods in v3
2685 only:
2686 - in -gstabs instead of -gstabs+
2687 - or for static methods, which are output as a function type
2688 instead of a method type. */
0d5cff50
DE
2689 char *new_method_name =
2690 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2691
0d5cff50
DE
2692 if (new_method_name != NULL
2693 && strcmp (new_method_name,
2694 new_fnlist->fn_fieldlist.name) != 0)
2695 {
2696 new_fnlist->fn_fieldlist.name = new_method_name;
2697 xfree (main_fn_name);
2698 }
2699 else
2700 xfree (new_method_name);
de17c821
DJ
2701 }
2702 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2703 {
1754f103 2704 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2705 obconcat (&objfile->objfile_obstack,
2706 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2707 xfree (main_fn_name);
2708 }
2709 else if (!has_stub)
2710 {
2711 char dem_opname[256];
2712 int ret;
433759f7 2713
de17c821
DJ
2714 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2715 dem_opname, DMGL_ANSI);
2716 if (!ret)
2717 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2718 dem_opname, 0);
2719 if (ret)
2720 new_fnlist->fn_fieldlist.name
224c3ddb
SM
2721 = ((const char *)
2722 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2723 strlen (dem_opname)));
0d5cff50 2724 xfree (main_fn_name);
de17c821
DJ
2725 }
2726
e39db4db
SM
2727 new_fnlist->fn_fieldlist.fn_fields
2728 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
0c867556
PS
2729 for (i = length; (i--, sublist); sublist = sublist->next)
2730 {
2731 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2732 }
c5aa993b 2733
0c867556
PS
2734 new_fnlist->fn_fieldlist.length = length;
2735 new_fnlist->next = fip->fnlist;
2736 fip->fnlist = new_fnlist;
2737 nfn_fields++;
0c867556 2738 }
c906108c
SS
2739 }
2740
2741 if (nfn_fields)
2742 {
2743 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2744 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2745 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2746 memset (TYPE_FN_FIELDLISTS (type), 0,
2747 sizeof (struct fn_fieldlist) * nfn_fields);
2748 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2749 }
2750
2751 return 1;
2752}
2753
2754/* Special GNU C++ name.
2755
2756 Returns 1 for success, 0 for failure. "failure" means that we can't
2757 keep parsing and it's time for error_type(). */
2758
2759static int
a121b7c1 2760read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
fba45db2 2761 struct objfile *objfile)
c906108c 2762{
a121b7c1 2763 const char *p;
0d5cff50 2764 const char *name;
c906108c
SS
2765 char cpp_abbrev;
2766 struct type *context;
2767
2768 p = *pp;
2769 if (*++p == 'v')
2770 {
2771 name = NULL;
2772 cpp_abbrev = *++p;
2773
2774 *pp = p + 1;
2775
2776 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2777 where the type number before the ':' is the "context" and
2778 everything after is a regular type definition. Lookup the
c378eb4e 2779 type, find it's name, and construct the field name. */
c906108c
SS
2780
2781 context = read_type (pp, objfile);
2782
2783 switch (cpp_abbrev)
2784 {
c5aa993b 2785 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2786 name = type_name_no_tag (context);
2787 if (name == NULL)
433759f7
MS
2788 {
2789 name = "";
2790 }
48cb83fd
JK
2791 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2792 vptr_name, name, (char *) NULL);
c5aa993b 2793 break;
c906108c 2794
c5aa993b
JM
2795 case 'b': /* $vb -- a virtual bsomethingorother */
2796 name = type_name_no_tag (context);
2797 if (name == NULL)
2798 {
b98664d3 2799 complaint (_("C++ abbreviated type name "
3e43a32a 2800 "unknown at symtab pos %d"),
23136709 2801 symnum);
c5aa993b
JM
2802 name = "FOO";
2803 }
48cb83fd
JK
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2805 name, (char *) NULL);
c5aa993b 2806 break;
c906108c 2807
c5aa993b 2808 default:
23136709 2809 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2810 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2811 "INVALID_CPLUSPLUS_ABBREV",
2812 (char *) NULL);
c5aa993b 2813 break;
c906108c
SS
2814 }
2815
2816 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2817 field type. */
c906108c
SS
2818
2819 p = ++(*pp);
2820 if (p[-1] != ':')
2821 {
23136709 2822 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2823 return 0;
2824 }
2825 fip->list->field.type = read_type (pp, objfile);
2826 if (**pp == ',')
c5aa993b 2827 (*pp)++; /* Skip the comma. */
c906108c
SS
2828 else
2829 return 0;
2830
2831 {
2832 int nbits;
433759f7 2833
f41f5e61
PA
2834 SET_FIELD_BITPOS (fip->list->field,
2835 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2836 if (nbits != 0)
2837 return 0;
2838 }
2839 /* This field is unpacked. */
2840 FIELD_BITSIZE (fip->list->field) = 0;
2841 fip->list->visibility = VISIBILITY_PRIVATE;
2842 }
2843 else
2844 {
23136709 2845 invalid_cpp_abbrev_complaint (*pp);
c906108c 2846 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2847 better return 0. If we returned 1, we would need to at least advance
2848 *pp to avoid an infinite loop. */
c906108c
SS
2849 return 0;
2850 }
2851 return 1;
2852}
2853
2854static void
a121b7c1 2855read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
fba45db2 2856 struct type *type, struct objfile *objfile)
c906108c 2857{
5e2b427d
UW
2858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2859
224c3ddb
SM
2860 fip->list->field.name
2861 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2862 *pp = p + 1;
2863
c378eb4e 2864 /* This means we have a visibility for a field coming. */
c906108c
SS
2865 if (**pp == '/')
2866 {
2867 (*pp)++;
c5aa993b 2868 fip->list->visibility = *(*pp)++;
c906108c
SS
2869 }
2870 else
2871 {
2872 /* normal dbx-style format, no explicit visibility */
c5aa993b 2873 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2874 }
2875
c5aa993b 2876 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2877 if (**pp == ':')
2878 {
2879 p = ++(*pp);
2880#if 0
c378eb4e 2881 /* Possible future hook for nested types. */
c906108c
SS
2882 if (**pp == '!')
2883 {
c5aa993b 2884 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2885 p = ++(*pp);
2886 }
c5aa993b
JM
2887 else
2888 ...;
c906108c 2889#endif
c5aa993b 2890 while (*p != ';')
c906108c
SS
2891 {
2892 p++;
2893 }
2894 /* Static class member. */
2895 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2896 *pp = p + 1;
2897 return;
2898 }
2899 else if (**pp != ',')
2900 {
2901 /* Bad structure-type format. */
23136709 2902 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2903 return;
2904 }
2905
2906 (*pp)++; /* Skip the comma. */
2907
2908 {
2909 int nbits;
433759f7 2910
f41f5e61
PA
2911 SET_FIELD_BITPOS (fip->list->field,
2912 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2913 if (nbits != 0)
2914 {
23136709 2915 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2916 return;
2917 }
94e10a22 2918 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2919 if (nbits != 0)
2920 {
23136709 2921 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2922 return;
2923 }
2924 }
2925
2926 if (FIELD_BITPOS (fip->list->field) == 0
2927 && FIELD_BITSIZE (fip->list->field) == 0)
2928 {
2929 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2930 it is a field which has been optimized out. The correct stab for
2931 this case is to use VISIBILITY_IGNORE, but that is a recent
2932 invention. (2) It is a 0-size array. For example
e2e0b3e5 2933 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2934 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2935 will continue to work, and a 0-size array as a whole doesn't
2936 have any contents to print.
2937
2938 I suspect this probably could also happen with gcc -gstabs (not
2939 -gstabs+) for static fields, and perhaps other C++ extensions.
2940 Hopefully few people use -gstabs with gdb, since it is intended
2941 for dbx compatibility. */
c906108c
SS
2942
2943 /* Ignore this field. */
c5aa993b 2944 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2945 }
2946 else
2947 {
2948 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2949 dbx gives a bit size for all fields.
2950 Note that forward refs cannot be packed,
2951 and treat enums as if they had the width of ints. */
c906108c
SS
2952
2953 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2954
2955 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2956 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2957 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2958 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2959 {
2960 FIELD_BITSIZE (fip->list->field) = 0;
2961 }
c5aa993b 2962 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2963 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2964 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2965 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2966 == gdbarch_int_bit (gdbarch))
c5aa993b 2967 )
c906108c
SS
2968 &&
2969 FIELD_BITPOS (fip->list->field) % 8 == 0)
2970 {
2971 FIELD_BITSIZE (fip->list->field) = 0;
2972 }
2973 }
2974}
2975
2976
2977/* Read struct or class data fields. They have the form:
2978
c5aa993b 2979 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2980
2981 At the end, we see a semicolon instead of a field.
2982
2983 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2984 a static field.
2985
2986 The optional VISIBILITY is one of:
2987
c5aa993b
JM
2988 '/0' (VISIBILITY_PRIVATE)
2989 '/1' (VISIBILITY_PROTECTED)
2990 '/2' (VISIBILITY_PUBLIC)
2991 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2992
2993 or nothing, for C style fields with public visibility.
2994
2995 Returns 1 for success, 0 for failure. */
2996
2997static int
a121b7c1 2998read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
fba45db2 2999 struct objfile *objfile)
c906108c 3000{
a121b7c1 3001 const char *p;
fe978cb0 3002 struct nextfield *newobj;
c906108c
SS
3003
3004 /* We better set p right now, in case there are no fields at all... */
3005
3006 p = *pp;
3007
3008 /* Read each data member type until we find the terminating ';' at the end of
3009 the data member list, or break for some other reason such as finding the
c378eb4e 3010 start of the member function list. */
fedbd091 3011 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3012 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3013
fedbd091 3014 while (**pp != ';' && **pp != '\0')
c906108c 3015 {
c906108c
SS
3016 STABS_CONTINUE (pp, objfile);
3017 /* Get space to record the next field's data. */
8d749320 3018 newobj = XCNEW (struct nextfield);
fe978cb0 3019 make_cleanup (xfree, newobj);
8d749320 3020
fe978cb0
PA
3021 newobj->next = fip->list;
3022 fip->list = newobj;
c906108c
SS
3023
3024 /* Get the field name. */
3025 p = *pp;
3026
3027 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3028 unless the CPLUS_MARKER is followed by an underscore, in
3029 which case it is just the name of an anonymous type, which we
3030 should handle like any other type name. */
c906108c
SS
3031
3032 if (is_cplus_marker (p[0]) && p[1] != '_')
3033 {
3034 if (!read_cpp_abbrev (fip, pp, type, objfile))
3035 return 0;
3036 continue;
3037 }
3038
3039 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3040 values. Data members are delimited by a single ':', while member
3041 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3042 functions (if any), terminate scan loop and return. */
c906108c 3043
c5aa993b 3044 while (*p != ':' && *p != '\0')
c906108c
SS
3045 {
3046 p++;
3047 }
3048 if (*p == '\0')
3049 return 0;
3050
3051 /* Check to see if we have hit the member functions yet. */
3052 if (p[1] == ':')
3053 {
3054 break;
3055 }
3056 read_one_struct_field (fip, pp, p, type, objfile);
3057 }
3058 if (p[0] == ':' && p[1] == ':')
3059 {
1b831c93
AC
3060 /* (the deleted) chill the list of fields: the last entry (at
3061 the head) is a partially constructed entry which we now
c378eb4e 3062 scrub. */
c5aa993b 3063 fip->list = fip->list->next;
c906108c
SS
3064 }
3065 return 1;
3066}
9846de1b 3067/* *INDENT-OFF* */
c906108c
SS
3068/* The stabs for C++ derived classes contain baseclass information which
3069 is marked by a '!' character after the total size. This function is
3070 called when we encounter the baseclass marker, and slurps up all the
3071 baseclass information.
3072
3073 Immediately following the '!' marker is the number of base classes that
3074 the class is derived from, followed by information for each base class.
3075 For each base class, there are two visibility specifiers, a bit offset
3076 to the base class information within the derived class, a reference to
3077 the type for the base class, and a terminating semicolon.
3078
3079 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3080 ^^ ^ ^ ^ ^ ^ ^
3081 Baseclass information marker __________________|| | | | | | |
3082 Number of baseclasses __________________________| | | | | | |
3083 Visibility specifiers (2) ________________________| | | | | |
3084 Offset in bits from start of class _________________| | | | |
3085 Type number for base class ___________________________| | | |
3086 Visibility specifiers (2) _______________________________| | |
3087 Offset in bits from start of class ________________________| |
3088 Type number of base class ____________________________________|
3089
3090 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3091/* *INDENT-ON* */
c906108c 3092
c5aa993b
JM
3093
3094
c906108c 3095static int
a121b7c1 3096read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
fba45db2 3097 struct objfile *objfile)
c906108c
SS
3098{
3099 int i;
fe978cb0 3100 struct nextfield *newobj;
c906108c
SS
3101
3102 if (**pp != '!')
3103 {
3104 return 1;
3105 }
3106 else
3107 {
c378eb4e 3108 /* Skip the '!' baseclass information marker. */
c906108c
SS
3109 (*pp)++;
3110 }
3111
3112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3113 {
3114 int nbits;
433759f7 3115
94e10a22 3116 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3117 if (nbits != 0)
3118 return 0;
3119 }
3120
3121#if 0
3122 /* Some stupid compilers have trouble with the following, so break
3123 it up into simpler expressions. */
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3125 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3126#else
3127 {
3128 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3129 char *pointer;
3130
3131 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3132 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3133 }
3134#endif /* 0 */
3135
3136 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3137
3138 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3139 {
8d749320 3140 newobj = XCNEW (struct nextfield);
fe978cb0 3141 make_cleanup (xfree, newobj);
8d749320 3142
fe978cb0
PA
3143 newobj->next = fip->list;
3144 fip->list = newobj;
3145 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3146 field! */
c906108c
SS
3147
3148 STABS_CONTINUE (pp, objfile);
3149 switch (**pp)
3150 {
c5aa993b 3151 case '0':
c378eb4e 3152 /* Nothing to do. */
c5aa993b
JM
3153 break;
3154 case '1':
3155 SET_TYPE_FIELD_VIRTUAL (type, i);
3156 break;
3157 default:
3158 /* Unknown character. Complain and treat it as non-virtual. */
3159 {
b98664d3 3160 complaint (_("Unknown virtual character `%c' for baseclass"),
3e43a32a 3161 **pp);
c5aa993b 3162 }
c906108c
SS
3163 }
3164 ++(*pp);
3165
fe978cb0
PA
3166 newobj->visibility = *(*pp)++;
3167 switch (newobj->visibility)
c906108c 3168 {
c5aa993b
JM
3169 case VISIBILITY_PRIVATE:
3170 case VISIBILITY_PROTECTED:
3171 case VISIBILITY_PUBLIC:
3172 break;
3173 default:
3174 /* Bad visibility format. Complain and treat it as
3175 public. */
3176 {
b98664d3 3177 complaint (_("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3178 newobj->visibility);
3179 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3180 }
c906108c
SS
3181 }
3182
3183 {
3184 int nbits;
c5aa993b 3185
c906108c
SS
3186 /* The remaining value is the bit offset of the portion of the object
3187 corresponding to this baseclass. Always zero in the absence of
3188 multiple inheritance. */
3189
fe978cb0 3190 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3191 if (nbits != 0)
3192 return 0;
3193 }
3194
3195 /* The last piece of baseclass information is the type of the
c5aa993b 3196 base class. Read it, and remember it's type name as this
c378eb4e 3197 field's name. */
c906108c 3198
fe978cb0
PA
3199 newobj->field.type = read_type (pp, objfile);
3200 newobj->field.name = type_name_no_tag (newobj->field.type);
c906108c 3201
c378eb4e 3202 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3203 if (**pp == ';')
3204 (*pp)++;
3205 else
3206 return 0;
3207 }
3208 return 1;
3209}
3210
3211/* The tail end of stabs for C++ classes that contain a virtual function
3212 pointer contains a tilde, a %, and a type number.
3213 The type number refers to the base class (possibly this class itself) which
3214 contains the vtable pointer for the current class.
3215
3216 This function is called when we have parsed all the method declarations,
3217 so we can look for the vptr base class info. */
3218
3219static int
a121b7c1 3220read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
fba45db2 3221 struct objfile *objfile)
c906108c 3222{
a121b7c1 3223 const char *p;
c906108c
SS
3224
3225 STABS_CONTINUE (pp, objfile);
3226
c378eb4e 3227 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3228 if (**pp == ';')
3229 {
3230 (*pp)++;
3231 }
3232
3233 if (**pp == '~')
3234 {
3235 (*pp)++;
3236
3237 if (**pp == '=' || **pp == '+' || **pp == '-')
3238 {
3239 /* Obsolete flags that used to indicate the presence
c378eb4e 3240 of constructors and/or destructors. */
c906108c
SS
3241 (*pp)++;
3242 }
3243
3244 /* Read either a '%' or the final ';'. */
3245 if (*(*pp)++ == '%')
3246 {
3247 /* The next number is the type number of the base class
3248 (possibly our own class) which supplies the vtable for
3249 this class. Parse it out, and search that class to find
3250 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3251 and TYPE_VPTR_FIELDNO. */
3252
3253 struct type *t;
3254 int i;
3255
3256 t = read_type (pp, objfile);
3257 p = (*pp)++;
3258 while (*p != '\0' && *p != ';')
3259 {
3260 p++;
3261 }
3262 if (*p == '\0')
3263 {
3264 /* Premature end of symbol. */
3265 return 0;
3266 }
c5aa993b 3267
ae6ae975 3268 set_type_vptr_basetype (type, t);
c378eb4e 3269 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3270 {
3271 for (i = TYPE_NFIELDS (t) - 1;
3272 i >= TYPE_N_BASECLASSES (t);
3273 --i)
3274 {
0d5cff50 3275 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3276
8343f86c 3277 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3278 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3279 {
ae6ae975 3280 set_type_vptr_fieldno (type, i);
c906108c
SS
3281 goto gotit;
3282 }
3283 }
3284 /* Virtual function table field not found. */
b98664d3 3285 complaint (_("virtual function table pointer "
3e43a32a 3286 "not found when defining class `%s'"),
23136709 3287 TYPE_NAME (type));
c906108c
SS
3288 return 0;
3289 }
3290 else
3291 {
ae6ae975 3292 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3293 }
3294
c5aa993b 3295 gotit:
c906108c
SS
3296 *pp = p + 1;
3297 }
3298 }
3299 return 1;
3300}
3301
3302static int
aa1ee363 3303attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3304{
52f0bd74 3305 int n;
c906108c
SS
3306
3307 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3308 fip->fnlist != NULL;
3309 fip->fnlist = fip->fnlist->next)
c906108c 3310 {
c378eb4e 3311 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3312 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3313 }
3314 return 1;
3315}
3316
c906108c
SS
3317/* Create the vector of fields, and record how big it is.
3318 We need this info to record proper virtual function table information
3319 for this class's virtual functions. */
3320
3321static int
aa1ee363 3322attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3323 struct objfile *objfile)
c906108c 3324{
52f0bd74
AC
3325 int nfields = 0;
3326 int non_public_fields = 0;
3327 struct nextfield *scan;
c906108c
SS
3328
3329 /* Count up the number of fields that we have, as well as taking note of
3330 whether or not there are any non-public fields, which requires us to
3331 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3332 bitfields. */
c906108c 3333
c5aa993b 3334 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3335 {
3336 nfields++;
c5aa993b 3337 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3338 {
3339 non_public_fields++;
3340 }
3341 }
3342
3343 /* Now we know how many fields there are, and whether or not there are any
3344 non-public fields. Record the field count, allocate space for the
c378eb4e 3345 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3346
3347 TYPE_NFIELDS (type) = nfields;
3348 TYPE_FIELDS (type) = (struct field *)
3349 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3350 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3351
3352 if (non_public_fields)
3353 {
3354 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3355
3356 TYPE_FIELD_PRIVATE_BITS (type) =
3357 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3358 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3359
3360 TYPE_FIELD_PROTECTED_BITS (type) =
3361 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3362 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3363
3364 TYPE_FIELD_IGNORE_BITS (type) =
3365 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3366 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3367 }
3368
c378eb4e
MS
3369 /* Copy the saved-up fields into the field vector. Start from the
3370 head of the list, adding to the tail of the field array, so that
3371 they end up in the same order in the array in which they were
3372 added to the list. */
c906108c
SS
3373
3374 while (nfields-- > 0)
3375 {
c5aa993b
JM
3376 TYPE_FIELD (type, nfields) = fip->list->field;
3377 switch (fip->list->visibility)
c906108c 3378 {
c5aa993b
JM
3379 case VISIBILITY_PRIVATE:
3380 SET_TYPE_FIELD_PRIVATE (type, nfields);
3381 break;
c906108c 3382
c5aa993b
JM
3383 case VISIBILITY_PROTECTED:
3384 SET_TYPE_FIELD_PROTECTED (type, nfields);
3385 break;
c906108c 3386
c5aa993b
JM
3387 case VISIBILITY_IGNORE:
3388 SET_TYPE_FIELD_IGNORE (type, nfields);
3389 break;
c906108c 3390
c5aa993b
JM
3391 case VISIBILITY_PUBLIC:
3392 break;
c906108c 3393
c5aa993b
JM
3394 default:
3395 /* Unknown visibility. Complain and treat it as public. */
3396 {
b98664d3 3397 complaint (_("Unknown visibility `%c' for field"),
23136709 3398 fip->list->visibility);
c5aa993b
JM
3399 }
3400 break;
c906108c 3401 }
c5aa993b 3402 fip->list = fip->list->next;
c906108c
SS
3403 }
3404 return 1;
3405}
3406
2ae1c2d2 3407
2ae1c2d2
JB
3408/* Complain that the compiler has emitted more than one definition for the
3409 structure type TYPE. */
3410static void
3411complain_about_struct_wipeout (struct type *type)
3412{
0d5cff50
DE
3413 const char *name = "";
3414 const char *kind = "";
2ae1c2d2
JB
3415
3416 if (TYPE_TAG_NAME (type))
3417 {
3418 name = TYPE_TAG_NAME (type);
3419 switch (TYPE_CODE (type))
3420 {
3421 case TYPE_CODE_STRUCT: kind = "struct "; break;
3422 case TYPE_CODE_UNION: kind = "union "; break;
3423 case TYPE_CODE_ENUM: kind = "enum "; break;
3424 default: kind = "";
3425 }
3426 }
3427 else if (TYPE_NAME (type))
3428 {
3429 name = TYPE_NAME (type);
3430 kind = "";
3431 }
3432 else
3433 {
3434 name = "<unknown>";
3435 kind = "";
3436 }
3437
b98664d3 3438 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3439}
3440
621791b8
PM
3441/* Set the length for all variants of a same main_type, which are
3442 connected in the closed chain.
3443
3444 This is something that needs to be done when a type is defined *after*
3445 some cross references to this type have already been read. Consider
3446 for instance the following scenario where we have the following two
3447 stabs entries:
3448
3449 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3450 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3451
3452 A stubbed version of type dummy is created while processing the first
3453 stabs entry. The length of that type is initially set to zero, since
3454 it is unknown at this point. Also, a "constant" variation of type
3455 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3456 the stabs line).
3457
3458 The second stabs entry allows us to replace the stubbed definition
3459 with the real definition. However, we still need to adjust the length
3460 of the "constant" variation of that type, as its length was left
3461 untouched during the main type replacement... */
3462
3463static void
9e69f3b6 3464set_length_in_type_chain (struct type *type)
621791b8
PM
3465{
3466 struct type *ntype = TYPE_CHAIN (type);
3467
3468 while (ntype != type)
3469 {
3470 if (TYPE_LENGTH(ntype) == 0)
3471 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3472 else
3473 complain_about_struct_wipeout (ntype);
3474 ntype = TYPE_CHAIN (ntype);
3475 }
3476}
2ae1c2d2 3477
c906108c
SS
3478/* Read the description of a structure (or union type) and return an object
3479 describing the type.
3480
3481 PP points to a character pointer that points to the next unconsumed token
b021a221 3482 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3483 *PP will point to "4a:1,0,32;;".
3484
3485 TYPE points to an incomplete type that needs to be filled in.
3486
3487 OBJFILE points to the current objfile from which the stabs information is
3488 being read. (Note that it is redundant in that TYPE also contains a pointer
3489 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3490 */
c906108c
SS
3491
3492static struct type *
a121b7c1 3493read_struct_type (const char **pp, struct type *type, enum type_code type_code,
2ae1c2d2 3494 struct objfile *objfile)
c906108c
SS
3495{
3496 struct cleanup *back_to;
3497 struct field_info fi;
3498
3499 fi.list = NULL;
3500 fi.fnlist = NULL;
3501
2ae1c2d2
JB
3502 /* When describing struct/union/class types in stabs, G++ always drops
3503 all qualifications from the name. So if you've got:
3504 struct A { ... struct B { ... }; ... };
3505 then G++ will emit stabs for `struct A::B' that call it simply
3506 `struct B'. Obviously, if you've got a real top-level definition for
3507 `struct B', or other nested definitions, this is going to cause
3508 problems.
3509
3510 Obviously, GDB can't fix this by itself, but it can at least avoid
3511 scribbling on existing structure type objects when new definitions
3512 appear. */
3513 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3514 || TYPE_STUB (type)))
3515 {
3516 complain_about_struct_wipeout (type);
3517
3518 /* It's probably best to return the type unchanged. */
3519 return type;
3520 }
3521
c906108c
SS
3522 back_to = make_cleanup (null_cleanup, 0);
3523
3524 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3525 TYPE_CODE (type) = type_code;
876cecd0 3526 TYPE_STUB (type) = 0;
c906108c
SS
3527
3528 /* First comes the total size in bytes. */
3529
3530 {
3531 int nbits;
433759f7 3532
94e10a22 3533 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3534 if (nbits != 0)
73b8d9da
TT
3535 {
3536 do_cleanups (back_to);
3537 return error_type (pp, objfile);
3538 }
621791b8 3539 set_length_in_type_chain (type);
c906108c
SS
3540 }
3541
3542 /* Now read the baseclasses, if any, read the regular C struct or C++
3543 class member fields, attach the fields to the type, read the C++
3544 member functions, attach them to the type, and then read any tilde
3e43a32a 3545 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3546
3547 if (!read_baseclasses (&fi, pp, type, objfile)
3548 || !read_struct_fields (&fi, pp, type, objfile)
3549 || !attach_fields_to_type (&fi, type, objfile)
3550 || !read_member_functions (&fi, pp, type, objfile)
3551 || !attach_fn_fields_to_type (&fi, type)
3552 || !read_tilde_fields (&fi, pp, type, objfile))
3553 {
3554 type = error_type (pp, objfile);
3555 }
3556
3557 do_cleanups (back_to);
3558 return (type);
3559}
3560
3561/* Read a definition of an array type,
3562 and create and return a suitable type object.
3563 Also creates a range type which represents the bounds of that
3564 array. */
3565
3566static struct type *
a121b7c1 3567read_array_type (const char **pp, struct type *type,
fba45db2 3568 struct objfile *objfile)
c906108c
SS
3569{
3570 struct type *index_type, *element_type, *range_type;
3571 int lower, upper;
3572 int adjustable = 0;
3573 int nbits;
3574
3575 /* Format of an array type:
3576 "ar<index type>;lower;upper;<array_contents_type>".
3577 OS9000: "arlower,upper;<array_contents_type>".
3578
3579 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3580 for these, produce a type like float[][]. */
3581
c906108c
SS
3582 {
3583 index_type = read_type (pp, objfile);
3584 if (**pp != ';')
3585 /* Improper format of array type decl. */
3586 return error_type (pp, objfile);
3587 ++*pp;
3588 }
3589
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3591 {
3592 (*pp)++;
3593 adjustable = 1;
3594 }
94e10a22 3595 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3596
c906108c
SS
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
3599
3600 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3601 {
3602 (*pp)++;
3603 adjustable = 1;
3604 }
94e10a22 3605 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3606 if (nbits != 0)
3607 return error_type (pp, objfile);
c5aa993b 3608
c906108c
SS
3609 element_type = read_type (pp, objfile);
3610
3611 if (adjustable)
3612 {
3613 lower = 0;
3614 upper = -1;
3615 }
3616
3617 range_type =
0c9c3474 3618 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3619 type = create_array_type (type, element_type, range_type);
3620
3621 return type;
3622}
3623
3624
3625/* Read a definition of an enumeration type,
3626 and create and return a suitable type object.
3627 Also defines the symbols that represent the values of the type. */
3628
3629static struct type *
a121b7c1 3630read_enum_type (const char **pp, struct type *type,
fba45db2 3631 struct objfile *objfile)
c906108c 3632{
5e2b427d 3633 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 3634 const char *p;
c906108c 3635 char *name;
52f0bd74
AC
3636 long n;
3637 struct symbol *sym;
c906108c
SS
3638 int nsyms = 0;
3639 struct pending **symlist;
3640 struct pending *osyms, *syms;
3641 int o_nsyms;
3642 int nbits;
3643 int unsigned_enum = 1;
3644
3645#if 0
3646 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3647 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3648 to do? For now, force all enum values to file scope. */
3649 if (within_function)
3650 symlist = &local_symbols;
3651 else
3652#endif
3653 symlist = &file_symbols;
3654 osyms = *symlist;
3655 o_nsyms = osyms ? osyms->nsyms : 0;
3656
c906108c
SS
3657 /* The aix4 compiler emits an extra field before the enum members;
3658 my guess is it's a type of some sort. Just ignore it. */
3659 if (**pp == '-')
3660 {
3661 /* Skip over the type. */
3662 while (**pp != ':')
c5aa993b 3663 (*pp)++;
c906108c
SS
3664
3665 /* Skip over the colon. */
3666 (*pp)++;
3667 }
3668
3669 /* Read the value-names and their values.
3670 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3671 A semicolon or comma instead of a NAME means the end. */
3672 while (**pp && **pp != ';' && **pp != ',')
3673 {
3674 STABS_CONTINUE (pp, objfile);
3675 p = *pp;
c5aa993b
JM
3676 while (*p != ':')
3677 p++;
224c3ddb 3678 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3679 *pp = p + 1;
94e10a22 3680 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3681 if (nbits != 0)
3682 return error_type (pp, objfile);
3683
e623cf5d 3684 sym = allocate_symbol (objfile);
3567439c 3685 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3686 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3687 &objfile->objfile_obstack);
f1e6e072 3688 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3689 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3690 SYMBOL_VALUE (sym) = n;
3691 if (n < 0)
3692 unsigned_enum = 0;
3693 add_symbol_to_list (sym, symlist);
3694 nsyms++;
3695 }
3696
3697 if (**pp == ';')
3698 (*pp)++; /* Skip the semicolon. */
3699
3700 /* Now fill in the fields of the type-structure. */
3701
5e2b427d 3702 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3703 set_length_in_type_chain (type);
c906108c 3704 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3705 TYPE_STUB (type) = 0;
c906108c 3706 if (unsigned_enum)
876cecd0 3707 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3708 TYPE_NFIELDS (type) = nsyms;
3709 TYPE_FIELDS (type) = (struct field *)
3710 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3711 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3712
3713 /* Find the symbols for the values and put them into the type.
3714 The symbols can be found in the symlist that we put them on
3715 to cause them to be defined. osyms contains the old value
3716 of that symlist; everything up to there was defined by us. */
3717 /* Note that we preserve the order of the enum constants, so
3718 that in something like "enum {FOO, LAST_THING=FOO}" we print
3719 FOO, not LAST_THING. */
3720
3721 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3722 {
3723 int last = syms == osyms ? o_nsyms : 0;
3724 int j = syms->nsyms;
433759f7 3725
c906108c
SS
3726 for (; --j >= last; --n)
3727 {
3728 struct symbol *xsym = syms->symbol[j];
433759f7 3729
c906108c 3730 SYMBOL_TYPE (xsym) = type;
3567439c 3731 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3732 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3733 TYPE_FIELD_BITSIZE (type, n) = 0;
3734 }
3735 if (syms == osyms)
3736 break;
3737 }
3738
3739 return type;
3740}
3741
3742/* Sun's ACC uses a somewhat saner method for specifying the builtin
3743 typedefs in every file (for int, long, etc):
3744
c5aa993b
JM
3745 type = b <signed> <width> <format type>; <offset>; <nbits>
3746 signed = u or s.
3747 optional format type = c or b for char or boolean.
3748 offset = offset from high order bit to start bit of type.
3749 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3750
3751 The width/offset stuff appears to be for small objects stored in
3752 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3753 FIXME. */
3754
3755static struct type *
a121b7c1 3756read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3757{
3758 int type_bits;
3759 int nbits;
19f392bc
UW
3760 int unsigned_type;
3761 int boolean_type = 0;
c906108c
SS
3762
3763 switch (**pp)
3764 {
c5aa993b 3765 case 's':
19f392bc 3766 unsigned_type = 0;
c5aa993b
JM
3767 break;
3768 case 'u':
19f392bc 3769 unsigned_type = 1;
c5aa993b
JM
3770 break;
3771 default:
3772 return error_type (pp, objfile);
c906108c
SS
3773 }
3774 (*pp)++;
3775
3776 /* For some odd reason, all forms of char put a c here. This is strange
3777 because no other type has this honor. We can safely ignore this because
3778 we actually determine 'char'acterness by the number of bits specified in
3779 the descriptor.
3780 Boolean forms, e.g Fortran logical*X, put a b here. */
3781
3782 if (**pp == 'c')
3783 (*pp)++;
3784 else if (**pp == 'b')
3785 {
19f392bc 3786 boolean_type = 1;
c906108c
SS
3787 (*pp)++;
3788 }
3789
3790 /* The first number appears to be the number of bytes occupied
3791 by this type, except that unsigned short is 4 instead of 2.
3792 Since this information is redundant with the third number,
3793 we will ignore it. */
94e10a22 3794 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3795 if (nbits != 0)
3796 return error_type (pp, objfile);
3797
c378eb4e 3798 /* The second number is always 0, so ignore it too. */
94e10a22 3799 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
c378eb4e 3803 /* The third number is the number of bits for this type. */
94e10a22 3804 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807 /* The type *should* end with a semicolon. If it are embedded
3808 in a larger type the semicolon may be the only way to know where
3809 the type ends. If this type is at the end of the stabstring we
3810 can deal with the omitted semicolon (but we don't have to like
3811 it). Don't bother to complain(), Sun's compiler omits the semicolon
3812 for "void". */
3813 if (**pp == ';')
3814 ++(*pp);
3815
3816 if (type_bits == 0)
19f392bc 3817 {
77b7c781
UW
3818 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3819 TARGET_CHAR_BIT, NULL);
19f392bc
UW
3820 if (unsigned_type)
3821 TYPE_UNSIGNED (type) = 1;
3822 return type;
3823 }
3824
3825 if (boolean_type)
3826 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
c906108c 3827 else
19f392bc 3828 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
c906108c
SS
3829}
3830
3831static struct type *
a121b7c1
PA
3832read_sun_floating_type (const char **pp, int typenums[2],
3833 struct objfile *objfile)
c906108c
SS
3834{
3835 int nbits;
3836 int details;
3837 int nbytes;
f65ca430 3838 struct type *rettype;
c906108c
SS
3839
3840 /* The first number has more details about the type, for example
3841 FN_COMPLEX. */
94e10a22 3842 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
c378eb4e 3846 /* The second number is the number of bytes occupied by this type. */
94e10a22 3847 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3848 if (nbits != 0)
3849 return error_type (pp, objfile);
3850
19f392bc
UW
3851 nbits = nbytes * TARGET_CHAR_BIT;
3852
c906108c
SS
3853 if (details == NF_COMPLEX || details == NF_COMPLEX16
3854 || details == NF_COMPLEX32)
f65ca430 3855 {
9b790ce7 3856 rettype = dbx_init_float_type (objfile, nbits / 2);
19f392bc 3857 return init_complex_type (objfile, NULL, rettype);
f65ca430 3858 }
c906108c 3859
9b790ce7 3860 return dbx_init_float_type (objfile, nbits);
c906108c
SS
3861}
3862
3863/* Read a number from the string pointed to by *PP.
3864 The value of *PP is advanced over the number.
3865 If END is nonzero, the character that ends the
3866 number must match END, or an error happens;
3867 and that character is skipped if it does match.
3868 If END is zero, *PP is left pointing to that character.
3869
94e10a22
JG
3870 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3871 the number is represented in an octal representation, assume that
3872 it is represented in a 2's complement representation with a size of
3873 TWOS_COMPLEMENT_BITS.
3874
c906108c
SS
3875 If the number fits in a long, set *BITS to 0 and return the value.
3876 If not, set *BITS to be the number of bits in the number and return 0.
3877
3878 If encounter garbage, set *BITS to -1 and return 0. */
3879
c2d11a7d 3880static long
a121b7c1
PA
3881read_huge_number (const char **pp, int end, int *bits,
3882 int twos_complement_bits)
c906108c 3883{
a121b7c1 3884 const char *p = *pp;
c906108c 3885 int sign = 1;
51e9e0d4 3886 int sign_bit = 0;
c2d11a7d 3887 long n = 0;
c906108c
SS
3888 int radix = 10;
3889 char overflow = 0;
3890 int nbits = 0;
3891 int c;
c2d11a7d 3892 long upper_limit;
a2699720 3893 int twos_complement_representation = 0;
c5aa993b 3894
c906108c
SS
3895 if (*p == '-')
3896 {
3897 sign = -1;
3898 p++;
3899 }
3900
3901 /* Leading zero means octal. GCC uses this to output values larger
3902 than an int (because that would be hard in decimal). */
3903 if (*p == '0')
3904 {
3905 radix = 8;
3906 p++;
3907 }
3908
a2699720
PA
3909 /* Skip extra zeros. */
3910 while (*p == '0')
3911 p++;
3912
3913 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3914 {
3915 /* Octal, possibly signed. Check if we have enough chars for a
3916 negative number. */
3917
3918 size_t len;
a121b7c1 3919 const char *p1 = p;
433759f7 3920
a2699720
PA
3921 while ((c = *p1) >= '0' && c < '8')
3922 p1++;
3923
3924 len = p1 - p;
3925 if (len > twos_complement_bits / 3
3e43a32a
MS
3926 || (twos_complement_bits % 3 == 0
3927 && len == twos_complement_bits / 3))
a2699720
PA
3928 {
3929 /* Ok, we have enough characters for a signed value, check
3930 for signness by testing if the sign bit is set. */
3931 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3932 c = *p - '0';
3933 if (c & (1 << sign_bit))
3934 {
3935 /* Definitely signed. */
3936 twos_complement_representation = 1;
3937 sign = -1;
3938 }
3939 }
3940 }
3941
1b831c93 3942 upper_limit = LONG_MAX / radix;
c906108c
SS
3943
3944 while ((c = *p++) >= '0' && c < ('0' + radix))
3945 {
3946 if (n <= upper_limit)
94e10a22
JG
3947 {
3948 if (twos_complement_representation)
3949 {
a2699720
PA
3950 /* Octal, signed, twos complement representation. In
3951 this case, n is the corresponding absolute value. */
3952 if (n == 0)
3953 {
3954 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3955
a2699720
PA
3956 n = -sn;
3957 }
94e10a22
JG
3958 else
3959 {
a2699720
PA
3960 n *= radix;
3961 n -= c - '0';
94e10a22 3962 }
94e10a22
JG
3963 }
3964 else
3965 {
3966 /* unsigned representation */
3967 n *= radix;
c378eb4e 3968 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3969 }
3970 }
c906108c 3971 else
94e10a22 3972 overflow = 1;
c5aa993b 3973
c906108c 3974 /* This depends on large values being output in octal, which is
c378eb4e 3975 what GCC does. */
c906108c
SS
3976 if (radix == 8)
3977 {
3978 if (nbits == 0)
3979 {
3980 if (c == '0')
3981 /* Ignore leading zeroes. */
3982 ;
3983 else if (c == '1')
3984 nbits = 1;
3985 else if (c == '2' || c == '3')
3986 nbits = 2;
3987 else
3988 nbits = 3;
3989 }
3990 else
3991 nbits += 3;
3992 }
3993 }
3994 if (end)
3995 {
3996 if (c && c != end)
3997 {
3998 if (bits != NULL)
3999 *bits = -1;
4000 return 0;
4001 }
4002 }
4003 else
4004 --p;
4005
a2699720
PA
4006 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4007 {
4008 /* We were supposed to parse a number with maximum
4009 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4010 if (bits != NULL)
4011 *bits = -1;
4012 return 0;
4013 }
4014
c906108c
SS
4015 *pp = p;
4016 if (overflow)
4017 {
4018 if (nbits == 0)
4019 {
4020 /* Large decimal constants are an error (because it is hard to
4021 count how many bits are in them). */
4022 if (bits != NULL)
4023 *bits = -1;
4024 return 0;
4025 }
c5aa993b 4026
c906108c 4027 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4028 the number of bits. Two's complement represention octals
4029 can't have a '-' in front. */
4030 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4031 ++nbits;
4032 if (bits)
4033 *bits = nbits;
4034 }
4035 else
4036 {
4037 if (bits)
4038 *bits = 0;
a2699720 4039 return n * sign;
c906108c
SS
4040 }
4041 /* It's *BITS which has the interesting information. */
4042 return 0;
4043}
4044
4045static struct type *
a121b7c1 4046read_range_type (const char **pp, int typenums[2], int type_size,
94e10a22 4047 struct objfile *objfile)
c906108c 4048{
5e2b427d 4049 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 4050 const char *orig_pp = *pp;
c906108c 4051 int rangenums[2];
c2d11a7d 4052 long n2, n3;
c906108c
SS
4053 int n2bits, n3bits;
4054 int self_subrange;
4055 struct type *result_type;
4056 struct type *index_type = NULL;
4057
4058 /* First comes a type we are a subrange of.
4059 In C it is usually 0, 1 or the type being defined. */
4060 if (read_type_number (pp, rangenums) != 0)
4061 return error_type (pp, objfile);
4062 self_subrange = (rangenums[0] == typenums[0] &&
4063 rangenums[1] == typenums[1]);
4064
4065 if (**pp == '=')
4066 {
4067 *pp = orig_pp;
4068 index_type = read_type (pp, objfile);
4069 }
4070
4071 /* A semicolon should now follow; skip it. */
4072 if (**pp == ';')
4073 (*pp)++;
4074
4075 /* The remaining two operands are usually lower and upper bounds
4076 of the range. But in some special cases they mean something else. */
94e10a22
JG
4077 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4078 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4079
4080 if (n2bits == -1 || n3bits == -1)
4081 return error_type (pp, objfile);
4082
4083 if (index_type)
4084 goto handle_true_range;
4085
4086 /* If limits are huge, must be large integral type. */
4087 if (n2bits != 0 || n3bits != 0)
4088 {
4089 char got_signed = 0;
4090 char got_unsigned = 0;
4091 /* Number of bits in the type. */
4092 int nbits = 0;
4093
94e10a22 4094 /* If a type size attribute has been specified, the bounds of
c378eb4e 4095 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4096 more bits than the upper bound, then the type is signed. */
4097 if (n2bits <= type_size && n3bits <= type_size)
4098 {
4099 if (n2bits == type_size && n2bits > n3bits)
4100 got_signed = 1;
4101 else
4102 got_unsigned = 1;
4103 nbits = type_size;
4104 }
c906108c 4105 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4106 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4107 {
4108 got_unsigned = 1;
4109 nbits = n3bits;
4110 }
4111 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4112 integral type. Take care of the case where <large number> doesn't
4113 fit in a long but <large number>-1 does. */
c906108c
SS
4114 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4115 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4116 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4117 && n3 == LONG_MAX))
c906108c
SS
4118 {
4119 got_signed = 1;
4120 nbits = n2bits;
4121 }
4122
4123 if (got_signed || got_unsigned)
19f392bc 4124 return init_integer_type (objfile, nbits, got_unsigned, NULL);
c906108c
SS
4125 else
4126 return error_type (pp, objfile);
4127 }
4128
4129 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4130 if (self_subrange && n2 == 0 && n3 == 0)
77b7c781 4131 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
c906108c
SS
4132
4133 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4134 is the width in bytes.
4135
4136 Fortran programs appear to use this for complex types also. To
4137 distinguish between floats and complex, g77 (and others?) seem
4138 to use self-subranges for the complexes, and subranges of int for
4139 the floats.
4140
4141 Also note that for complexes, g77 sets n2 to the size of one of
4142 the member floats, not the whole complex beast. My guess is that
c378eb4e 4143 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4144
4145 if (n3 == 0 && n2 > 0)
4146 {
1300f5dd 4147 struct type *float_type
9b790ce7 4148 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
1300f5dd 4149
c906108c 4150 if (self_subrange)
19f392bc 4151 return init_complex_type (objfile, NULL, float_type);
c906108c 4152 else
1300f5dd 4153 return float_type;
c906108c
SS
4154 }
4155
a2699720 4156 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4157
4158 else if (n2 == 0 && n3 == -1)
4159 {
a2699720 4160 int bits = type_size;
433759f7 4161
a2699720
PA
4162 if (bits <= 0)
4163 {
4164 /* We don't know its size. It is unsigned int or unsigned
4165 long. GCC 2.3.3 uses this for long long too, but that is
4166 just a GDB 3.5 compatibility hack. */
5e2b427d 4167 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4168 }
4169
19f392bc 4170 return init_integer_type (objfile, bits, 1, NULL);
c906108c
SS
4171 }
4172
4173 /* Special case: char is defined (Who knows why) as a subrange of
4174 itself with range 0-127. */
4175 else if (self_subrange && n2 == 0 && n3 == 127)
19f392bc 4176 {
77b7c781
UW
4177 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4178 0, NULL);
19f392bc
UW
4179 TYPE_NOSIGN (type) = 1;
4180 return type;
4181 }
c906108c
SS
4182 /* We used to do this only for subrange of self or subrange of int. */
4183 else if (n2 == 0)
4184 {
a0b3c4fd
JM
4185 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4186 "unsigned long", and we already checked for that,
4187 so don't need to test for it here. */
4188
c906108c
SS
4189 if (n3 < 0)
4190 /* n3 actually gives the size. */
19f392bc 4191 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
c906108c 4192
7be570e7 4193 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4194 unsigned n-byte integer. But do require n to be a power of
4195 two; we don't want 3- and 5-byte integers flying around. */
4196 {
4197 int bytes;
4198 unsigned long bits;
4199
4200 bits = n3;
4201 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4202 bits >>= 8;
4203 if (bits == 0
4204 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
19f392bc 4205 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
a0b3c4fd 4206 }
c906108c
SS
4207 }
4208 /* I think this is for Convex "long long". Since I don't know whether
4209 Convex sets self_subrange, I also accept that particular size regardless
4210 of self_subrange. */
4211 else if (n3 == 0 && n2 < 0
4212 && (self_subrange
9a76efb6 4213 || n2 == -gdbarch_long_long_bit
5e2b427d 4214 (gdbarch) / TARGET_CHAR_BIT))
19f392bc 4215 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
c5aa993b 4216 else if (n2 == -n3 - 1)
c906108c
SS
4217 {
4218 if (n3 == 0x7f)
19f392bc 4219 return init_integer_type (objfile, 8, 0, NULL);
c906108c 4220 if (n3 == 0x7fff)
19f392bc 4221 return init_integer_type (objfile, 16, 0, NULL);
c906108c 4222 if (n3 == 0x7fffffff)
19f392bc 4223 return init_integer_type (objfile, 32, 0, NULL);
c906108c
SS
4224 }
4225
4226 /* We have a real range type on our hands. Allocate space and
4227 return a real pointer. */
c5aa993b 4228handle_true_range:
c906108c
SS
4229
4230 if (self_subrange)
46bf5051 4231 index_type = objfile_type (objfile)->builtin_int;
c906108c 4232 else
46bf5051 4233 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4234 if (index_type == NULL)
4235 {
4236 /* Does this actually ever happen? Is that why we are worrying
4237 about dealing with it rather than just calling error_type? */
4238
b98664d3 4239 complaint (_("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4240
46bf5051 4241 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4242 }
4243
0c9c3474
SA
4244 result_type
4245 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4246 return (result_type);
4247}
4248
4249/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4250 and terminated with END. Return the list of types read in, or NULL
4251 if there is an error. */
c906108c 4252
ad2f7632 4253static struct field *
a121b7c1 4254read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
ad2f7632 4255 int *varargsp)
c906108c
SS
4256{
4257 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4258 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4259 int n = 0, i;
4260 struct field *rval;
c906108c
SS
4261
4262 while (**pp != end)
4263 {
4264 if (**pp != ',')
4265 /* Invalid argument list: no ','. */
0a029df5 4266 return NULL;
c906108c
SS
4267 (*pp)++;
4268 STABS_CONTINUE (pp, objfile);
4269 types[n++] = read_type (pp, objfile);
4270 }
c378eb4e 4271 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4272
d24d8548
JK
4273 if (n == 0)
4274 {
4275 /* We should read at least the THIS parameter here. Some broken stabs
4276 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4277 have been present ";-16,(0,43)" reference instead. This way the
4278 excessive ";" marker prematurely stops the parameters parsing. */
4279
b98664d3 4280 complaint (_("Invalid (empty) method arguments"));
d24d8548
JK
4281 *varargsp = 0;
4282 }
4283 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4284 *varargsp = 1;
c906108c
SS
4285 else
4286 {
ad2f7632
DJ
4287 n--;
4288 *varargsp = 0;
c906108c 4289 }
ad2f7632 4290
8d749320 4291 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4292 for (i = 0; i < n; i++)
4293 rval[i].type = types[i];
4294 *nargsp = n;
c906108c
SS
4295 return rval;
4296}
4297\f
4298/* Common block handling. */
4299
4300/* List of symbols declared since the last BCOMM. This list is a tail
4301 of local_symbols. When ECOMM is seen, the symbols on the list
4302 are noted so their proper addresses can be filled in later,
4303 using the common block base address gotten from the assembler
4304 stabs. */
4305
4306static struct pending *common_block;
4307static int common_block_i;
4308
4309/* Name of the current common block. We get it from the BCOMM instead of the
4310 ECOMM to match IBM documentation (even though IBM puts the name both places
4311 like everyone else). */
4312static char *common_block_name;
4313
4314/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4315 to remain after this function returns. */
4316
4317void
a121b7c1 4318common_block_start (const char *name, struct objfile *objfile)
c906108c
SS
4319{
4320 if (common_block_name != NULL)
4321 {
b98664d3 4322 complaint (_("Invalid symbol data: common block within common block"));
c906108c
SS
4323 }
4324 common_block = local_symbols;
4325 common_block_i = local_symbols ? local_symbols->nsyms : 0;
224c3ddb
SM
4326 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4327 strlen (name));
c906108c
SS
4328}
4329
4330/* Process a N_ECOMM symbol. */
4331
4332void
fba45db2 4333common_block_end (struct objfile *objfile)
c906108c
SS
4334{
4335 /* Symbols declared since the BCOMM are to have the common block
4336 start address added in when we know it. common_block and
4337 common_block_i point to the first symbol after the BCOMM in
4338 the local_symbols list; copy the list and hang it off the
4339 symbol for the common block name for later fixup. */
4340 int i;
4341 struct symbol *sym;
fe978cb0 4342 struct pending *newobj = 0;
c906108c
SS
4343 struct pending *next;
4344 int j;
4345
4346 if (common_block_name == NULL)
4347 {
b98664d3 4348 complaint (_("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4349 return;
4350 }
4351
e623cf5d 4352 sym = allocate_symbol (objfile);
c378eb4e 4353 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4354 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4355 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4356
4357 /* Now we copy all the symbols which have been defined since the BCOMM. */
4358
4359 /* Copy all the struct pendings before common_block. */
4360 for (next = local_symbols;
4361 next != NULL && next != common_block;
4362 next = next->next)
4363 {
4364 for (j = 0; j < next->nsyms; j++)
fe978cb0 4365 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4366 }
4367
4368 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4369 NULL, it means copy all the local symbols (which we already did
4370 above). */
4371
4372 if (common_block != NULL)
4373 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4374 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4375
fe978cb0 4376 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4377
4378 /* Should we be putting local_symbols back to what it was?
4379 Does it matter? */
4380
3567439c 4381 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4382 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4383 global_sym_chain[i] = sym;
4384 common_block_name = NULL;
4385}
4386
4387/* Add a common block's start address to the offset of each symbol
4388 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4389 the common block name). */
4390
4391static void
46cb6474 4392fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4393{
4394 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4395
c5aa993b 4396 for (; next; next = next->next)
c906108c 4397 {
aa1ee363 4398 int j;
433759f7 4399
c906108c
SS
4400 for (j = next->nsyms - 1; j >= 0; j--)
4401 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4402 }
4403}
c5aa993b 4404\f
c906108c
SS
4405
4406
bf362611
JB
4407/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4408 See add_undefined_type for more details. */
c906108c 4409
a7a48797 4410static void
bf362611
JB
4411add_undefined_type_noname (struct type *type, int typenums[2])
4412{
4413 struct nat nat;
4414
4415 nat.typenums[0] = typenums [0];
4416 nat.typenums[1] = typenums [1];
4417 nat.type = type;
4418
4419 if (noname_undefs_length == noname_undefs_allocated)
4420 {
4421 noname_undefs_allocated *= 2;
4422 noname_undefs = (struct nat *)
4423 xrealloc ((char *) noname_undefs,
4424 noname_undefs_allocated * sizeof (struct nat));
4425 }
4426 noname_undefs[noname_undefs_length++] = nat;
4427}
4428
4429/* Add TYPE to the UNDEF_TYPES vector.
4430 See add_undefined_type for more details. */
4431
4432static void
4433add_undefined_type_1 (struct type *type)
c906108c
SS
4434{
4435 if (undef_types_length == undef_types_allocated)
4436 {
4437 undef_types_allocated *= 2;
4438 undef_types = (struct type **)
4439 xrealloc ((char *) undef_types,
4440 undef_types_allocated * sizeof (struct type *));
4441 }
4442 undef_types[undef_types_length++] = type;
4443}
4444
bf362611
JB
4445/* What about types defined as forward references inside of a small lexical
4446 scope? */
4447/* Add a type to the list of undefined types to be checked through
4448 once this file has been read in.
4449
4450 In practice, we actually maintain two such lists: The first list
4451 (UNDEF_TYPES) is used for types whose name has been provided, and
4452 concerns forward references (eg 'xs' or 'xu' forward references);
4453 the second list (NONAME_UNDEFS) is used for types whose name is
4454 unknown at creation time, because they were referenced through
4455 their type number before the actual type was declared.
4456 This function actually adds the given type to the proper list. */
4457
4458static void
4459add_undefined_type (struct type *type, int typenums[2])
4460{
4461 if (TYPE_TAG_NAME (type) == NULL)
4462 add_undefined_type_noname (type, typenums);
4463 else
4464 add_undefined_type_1 (type);
4465}
4466
4467/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4468
2c0b251b 4469static void
46bf5051 4470cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4471{
4472 int i;
4473
4474 for (i = 0; i < noname_undefs_length; i++)
4475 {
4476 struct nat nat = noname_undefs[i];
4477 struct type **type;
4478
46bf5051 4479 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4480 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4481 {
4482 /* The instance flags of the undefined type are still unset,
4483 and needs to be copied over from the reference type.
4484 Since replace_type expects them to be identical, we need
4485 to set these flags manually before hand. */
4486 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4487 replace_type (nat.type, *type);
4488 }
bf362611
JB
4489 }
4490
4491 noname_undefs_length = 0;
4492}
4493
c906108c
SS
4494/* Go through each undefined type, see if it's still undefined, and fix it
4495 up if possible. We have two kinds of undefined types:
4496
4497 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4498 Fix: update array length using the element bounds
4499 and the target type's length.
c906108c 4500 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4501 yet defined at the time a pointer to it was made.
4502 Fix: Do a full lookup on the struct/union tag. */
bf362611 4503
2c0b251b 4504static void
bf362611 4505cleanup_undefined_types_1 (void)
c906108c
SS
4506{
4507 struct type **type;
4508
9e386756
JB
4509 /* Iterate over every undefined type, and look for a symbol whose type
4510 matches our undefined type. The symbol matches if:
4511 1. It is a typedef in the STRUCT domain;
4512 2. It has the same name, and same type code;
4513 3. The instance flags are identical.
4514
4515 It is important to check the instance flags, because we have seen
4516 examples where the debug info contained definitions such as:
4517
4518 "foo_t:t30=B31=xefoo_t:"
4519
4520 In this case, we have created an undefined type named "foo_t" whose
4521 instance flags is null (when processing "xefoo_t"), and then created
4522 another type with the same name, but with different instance flags
4523 ('B' means volatile). I think that the definition above is wrong,
4524 since the same type cannot be volatile and non-volatile at the same
4525 time, but we need to be able to cope with it when it happens. The
4526 approach taken here is to treat these two types as different. */
4527
c906108c
SS
4528 for (type = undef_types; type < undef_types + undef_types_length; type++)
4529 {
4530 switch (TYPE_CODE (*type))
4531 {
4532
c5aa993b
JM
4533 case TYPE_CODE_STRUCT:
4534 case TYPE_CODE_UNION:
4535 case TYPE_CODE_ENUM:
c906108c
SS
4536 {
4537 /* Check if it has been defined since. Need to do this here
4538 as well as in check_typedef to deal with the (legitimate in
4539 C though not C++) case of several types with the same name
4540 in different source files. */
74a9bb82 4541 if (TYPE_STUB (*type))
c906108c
SS
4542 {
4543 struct pending *ppt;
4544 int i;
c378eb4e 4545 /* Name of the type, without "struct" or "union". */
fe978cb0 4546 const char *type_name = TYPE_TAG_NAME (*type);
c906108c 4547
fe978cb0 4548 if (type_name == NULL)
c906108c 4549 {
b98664d3 4550 complaint (_("need a type name"));
c906108c
SS
4551 break;
4552 }
4553 for (ppt = file_symbols; ppt; ppt = ppt->next)
4554 {
4555 for (i = 0; i < ppt->nsyms; i++)
4556 {
4557 struct symbol *sym = ppt->symbol[i];
c5aa993b 4558
c906108c 4559 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4560 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4561 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4562 TYPE_CODE (*type))
9e386756
JB
4563 && (TYPE_INSTANCE_FLAGS (*type) ==
4564 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4565 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4566 type_name) == 0)
13a393b0 4567 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4568 }
4569 }
4570 }
4571 }
4572 break;
4573
4574 default:
4575 {
b98664d3 4576 complaint (_("forward-referenced types left unresolved, "
e2e0b3e5 4577 "type code %d."),
23136709 4578 TYPE_CODE (*type));
c906108c
SS
4579 }
4580 break;
4581 }
4582 }
4583
4584 undef_types_length = 0;
4585}
4586
bf362611
JB
4587/* Try to fix all the undefined types we ecountered while processing
4588 this unit. */
4589
4590void
0a0edcd5 4591cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4592{
4593 cleanup_undefined_types_1 ();
46bf5051 4594 cleanup_undefined_types_noname (objfile);
bf362611
JB
4595}
4596
c906108c
SS
4597/* Scan through all of the global symbols defined in the object file,
4598 assigning values to the debugging symbols that need to be assigned
4599 to. Get these symbols from the minimal symbol table. */
4600
4601void
fba45db2 4602scan_file_globals (struct objfile *objfile)
c906108c
SS
4603{
4604 int hash;
4605 struct minimal_symbol *msymbol;
507836c0 4606 struct symbol *sym, *prev;
c906108c
SS
4607 struct objfile *resolve_objfile;
4608
4609 /* SVR4 based linkers copy referenced global symbols from shared
4610 libraries to the main executable.
4611 If we are scanning the symbols for a shared library, try to resolve
4612 them from the minimal symbols of the main executable first. */
4613
4614 if (symfile_objfile && objfile != symfile_objfile)
4615 resolve_objfile = symfile_objfile;
4616 else
4617 resolve_objfile = objfile;
4618
4619 while (1)
4620 {
4621 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4622 no unresolved symbols. */
c906108c
SS
4623 for (hash = 0; hash < HASHSIZE; hash++)
4624 {
4625 if (global_sym_chain[hash])
4626 break;
4627 }
4628 if (hash >= HASHSIZE)
4629 return;
4630
3567439c 4631 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4632 {
4633 QUIT;
4634
4635 /* Skip static symbols. */
4636 switch (MSYMBOL_TYPE (msymbol))
4637 {
4638 case mst_file_text:
4639 case mst_file_data:
4640 case mst_file_bss:
4641 continue;
4642 default:
4643 break;
4644 }
4645
4646 prev = NULL;
4647
4648 /* Get the hash index and check all the symbols
c378eb4e 4649 under that hash index. */
c906108c 4650
efd66ac6 4651 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4652
4653 for (sym = global_sym_chain[hash]; sym;)
4654 {
efd66ac6 4655 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4656 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4657 {
c906108c 4658 /* Splice this symbol out of the hash chain and
c378eb4e 4659 assign the value we have to it. */
c906108c
SS
4660 if (prev)
4661 {
4662 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4663 }
4664 else
4665 {
4666 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4667 }
c5aa993b 4668
c906108c
SS
4669 /* Check to see whether we need to fix up a common block. */
4670 /* Note: this code might be executed several times for
4671 the same symbol if there are multiple references. */
507836c0 4672 if (sym)
c906108c 4673 {
507836c0 4674 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4675 {
507836c0 4676 fix_common_block (sym,
77e371c0
TT
4677 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4678 msymbol));
c906108c
SS
4679 }
4680 else
4681 {
507836c0 4682 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4683 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4684 }
efd66ac6 4685 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4686 }
4687
c906108c
SS
4688 if (prev)
4689 {
4690 sym = SYMBOL_VALUE_CHAIN (prev);
4691 }
4692 else
4693 {
4694 sym = global_sym_chain[hash];
4695 }
4696 }
4697 else
4698 {
4699 prev = sym;
4700 sym = SYMBOL_VALUE_CHAIN (sym);
4701 }
4702 }
4703 }
4704 if (resolve_objfile == objfile)
4705 break;
4706 resolve_objfile = objfile;
4707 }
4708
4709 /* Change the storage class of any remaining unresolved globals to
4710 LOC_UNRESOLVED and remove them from the chain. */
4711 for (hash = 0; hash < HASHSIZE; hash++)
4712 {
4713 sym = global_sym_chain[hash];
4714 while (sym)
4715 {
4716 prev = sym;
4717 sym = SYMBOL_VALUE_CHAIN (sym);
4718
4719 /* Change the symbol address from the misleading chain value
4720 to address zero. */
4721 SYMBOL_VALUE_ADDRESS (prev) = 0;
4722
4723 /* Complain about unresolved common block symbols. */
4724 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4725 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4726 else
b98664d3 4727 complaint (_("%s: common block `%s' from "
3e43a32a 4728 "global_sym_chain unresolved"),
4262abfb 4729 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4730 }
4731 }
4732 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4733}
4734
4735/* Initialize anything that needs initializing when starting to read
4736 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4737 to a psymtab. */
4738
4739void
fba45db2 4740stabsread_init (void)
c906108c
SS
4741{
4742}
4743
4744/* Initialize anything that needs initializing when a completely new
4745 symbol file is specified (not just adding some symbols from another
4746 file, e.g. a shared library). */
4747
4748void
fba45db2 4749stabsread_new_init (void)
c906108c
SS
4750{
4751 /* Empty the hash table of global syms looking for values. */
4752 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4753}
4754
4755/* Initialize anything that needs initializing at the same time as
c378eb4e 4756 start_symtab() is called. */
c906108c 4757
c5aa993b 4758void
fba45db2 4759start_stabs (void)
c906108c
SS
4760{
4761 global_stabs = NULL; /* AIX COFF */
4762 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4763 n_this_object_header_files = 1;
4764 type_vector_length = 0;
4765 type_vector = (struct type **) 0;
4766
4767 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4768 common_block_name = NULL;
c906108c
SS
4769}
4770
c378eb4e 4771/* Call after end_symtab(). */
c906108c 4772
c5aa993b 4773void
fba45db2 4774end_stabs (void)
c906108c
SS
4775{
4776 if (type_vector)
4777 {
b8c9b27d 4778 xfree (type_vector);
c906108c
SS
4779 }
4780 type_vector = 0;
4781 type_vector_length = 0;
4782 previous_stab_code = 0;
4783}
4784
4785void
fba45db2 4786finish_global_stabs (struct objfile *objfile)
c906108c
SS
4787{
4788 if (global_stabs)
4789 {
4790 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4791 xfree (global_stabs);
c906108c
SS
4792 global_stabs = NULL;
4793 }
4794}
4795
7e1d63ec
AF
4796/* Find the end of the name, delimited by a ':', but don't match
4797 ObjC symbols which look like -[Foo bar::]:bla. */
a121b7c1
PA
4798static const char *
4799find_name_end (const char *name)
7e1d63ec 4800{
a121b7c1 4801 const char *s = name;
433759f7 4802
7e1d63ec
AF
4803 if (s[0] == '-' || *s == '+')
4804 {
4805 /* Must be an ObjC method symbol. */
4806 if (s[1] != '[')
4807 {
8a3fe4f8 4808 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4809 }
4810 s = strchr (s, ']');
4811 if (s == NULL)
4812 {
8a3fe4f8 4813 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4814 }
4815 return strchr (s, ':');
4816 }
4817 else
4818 {
4819 return strchr (s, ':');
4820 }
4821}
4822
c378eb4e 4823/* Initializer for this module. */
c906108c
SS
4824
4825void
fba45db2 4826_initialize_stabsread (void)
c906108c 4827{
46bf5051
UW
4828 rs6000_builtin_type_data = register_objfile_data ();
4829
c906108c
SS
4830 undef_types_allocated = 20;
4831 undef_types_length = 0;
8d749320 4832 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4833
4834 noname_undefs_allocated = 20;
4835 noname_undefs_length = 0;
8d749320 4836 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4837
4838 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4839 &stab_register_funcs);
4840 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4841 &stab_register_funcs);
c906108c 4842}
This page took 2.240387 seconds and 4 git commands to generate.