Don't print 0x for core_addr_to_string_nz
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
c378eb4e 24 Avoid placing any object file format specific code in this file. */
c906108c
SS
25
26#include "defs.h"
c906108c 27#include "bfd.h"
04ea0df1 28#include "gdb_obstack.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "symfile.h"
33#include "objfiles.h"
3e43a32a 34#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
35#include "libaout.h"
36#include "aout/aout64.h"
37#include "gdb-stabs.h"
38#include "buildsym.h"
39#include "complaints.h"
40#include "demangle.h"
50f182aa 41#include "gdb-demangle.h"
c906108c 42#include "language.h"
d16aafd8 43#include "doublest.h"
de17c821
DJ
44#include "cp-abi.h"
45#include "cp-support.h"
c906108c
SS
46#include <ctype.h>
47
48/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
49#define EXTERN
50/**/
c906108c
SS
51#include "stabsread.h" /* Our own declarations */
52#undef EXTERN
53
a14ed312 54extern void _initialize_stabsread (void);
392a587b 55
52059ffd
TT
56struct nextfield
57{
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66};
67
68struct next_fnfieldlist
69{
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72};
73
c906108c
SS
74/* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
c378eb4e 78 expected to eventually go away... (FIXME) */
c906108c
SS
79
80struct field_info
c5aa993b 81 {
52059ffd
TT
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
c5aa993b 84 };
c906108c
SS
85
86static void
a14ed312
KB
87read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
c906108c 89
a14ed312 90static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 91
94e10a22 92static long read_huge_number (char **, int, int *, int);
c906108c 93
a14ed312 94static struct type *error_type (char **, struct objfile *);
c906108c
SS
95
96static void
a14ed312
KB
97patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
c906108c 99
46cb6474 100static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 101
a14ed312 102static int read_type_number (char **, int *);
c906108c 103
a7a48797
EZ
104static struct type *read_type (char **, struct objfile *);
105
94e10a22 106static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 107
a14ed312 108static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 109
a14ed312
KB
110static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
c906108c 112
a14ed312 113static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 114
46bf5051 115static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
116
117static int
a14ed312
KB
118read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
c906108c
SS
120
121static int
a14ed312
KB
122read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
c906108c
SS
124
125static int
a14ed312
KB
126read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
c906108c
SS
128
129static int
a14ed312
KB
130read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
c906108c 132
a14ed312 133static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 134
570b8f7c
AC
135static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
c906108c 137
a14ed312 138static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 139 enum type_code,
a14ed312 140 struct objfile *);
c906108c 141
a14ed312
KB
142static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
c906108c 144
ad2f7632 145static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 146
bf362611 147static void add_undefined_type (struct type *, int[2]);
a7a48797 148
c906108c 149static int
a14ed312
KB
150read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
c906108c 152
7e1d63ec
AF
153static char *find_name_end (char *name);
154
a14ed312 155static int process_reference (char **string);
c906108c 156
a14ed312 157void stabsread_clear_cache (void);
7be570e7 158
8343f86c
DJ
159static const char vptr_name[] = "_vptr$";
160static const char vb_name[] = "_vb$";
c906108c 161
23136709
KB
162static void
163invalid_cpp_abbrev_complaint (const char *arg1)
164{
e2e0b3e5 165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 166}
c906108c 167
23136709 168static void
49b0b195 169reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
170{
171 complaint (&symfile_complaints,
0fde2c53 172 _("bad register number %d (max %d) in symbol %s"),
49b0b195 173 regnum, num_regs - 1, sym);
23136709 174}
c906108c 175
23136709
KB
176static void
177stabs_general_complaint (const char *arg1)
178{
179 complaint (&symfile_complaints, "%s", arg1);
180}
c906108c 181
c906108c
SS
182/* Make a list of forward references which haven't been defined. */
183
184static struct type **undef_types;
185static int undef_types_allocated;
186static int undef_types_length;
187static struct symbol *current_symbol = NULL;
188
bf362611
JB
189/* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
c378eb4e 191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
192 and type (0,2) is defined only later. */
193
194struct nat
195{
196 int typenums[2];
197 struct type *type;
198};
199static struct nat *noname_undefs;
200static int noname_undefs_allocated;
201static int noname_undefs_length;
202
c906108c
SS
203/* Check for and handle cretinous stabs symbol name continuation! */
204#define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
fc474241
DE
209
210/* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216static struct type **type_vector;
217
218/* Number of elements allocated for type_vector currently. */
219
220static int type_vector_length;
221
222/* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 226\f
c906108c
SS
227
228/* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
a7a48797 235static struct type **
46bf5051 236dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 237{
52f0bd74
AC
238 int filenum = typenums[0];
239 int index = typenums[1];
c906108c 240 unsigned old_len;
52f0bd74
AC
241 int real_filenum;
242 struct header_file *f;
c906108c
SS
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
23136709 250 complaint (&symfile_complaints,
3e43a32a
MS
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
23136709 253 filenum, index, symnum);
c906108c
SS
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
46bf5051 268 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
c5aa993b 273 Find it in this object file's type vector. */
c906108c
SS
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 280 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
46bf5051 298 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 299 {
46bf5051 300 static struct type *temp_type;
c906108c 301
8a3fe4f8 302 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
303
304 error_return:
46bf5051
UW
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
c906108c
SS
307 }
308
46bf5051 309 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325}
326
327/* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 331 put into the type vector, and so may not be referred to by number. */
c906108c
SS
332
333static struct type *
35a2f538 334dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 335{
52f0bd74 336 struct type **type_addr;
c906108c
SS
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
46bf5051 343 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354}
355
356/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 357 and fix their symbols in given symbol vector. */
c906108c
SS
358
359static void
fba45db2
KB
360patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
c906108c
SS
362{
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
c906108c 370 /* for all the stab entries, find their corresponding symbols and
c378eb4e 371 patch their types! */
c5aa993b 372
c906108c
SS
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
c5aa993b 376 pp = (char *) strchr (name, ':');
8fb822e0 377 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
378 while (pp[1] == ':')
379 {
c5aa993b
JM
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
c906108c 382 }
c5aa993b 383 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
c906108c
SS
393
394 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 397 sym = allocate_symbol (objfile);
176620f1 398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 400 SYMBOL_SET_LINKAGE_NAME
224c3ddb
SM
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
c906108c 403 pp += 2;
c5aa993b 404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
c5aa993b 421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433}
c906108c 434\f
c5aa993b 435
c906108c
SS
436/* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444static int
aa1ee363 445read_type_number (char **pp, int *typenums)
c906108c
SS
446{
447 int nbits;
433759f7 448
c906108c
SS
449 if (**pp == '(')
450 {
451 (*pp)++;
94e10a22 452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
453 if (nbits != 0)
454 return -1;
94e10a22 455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
456 if (nbits != 0)
457 return -1;
c906108c
SS
458 }
459 else
460 {
461 typenums[0] = 0;
94e10a22 462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
463 if (nbits != 0)
464 return -1;
c906108c
SS
465 }
466 return 0;
467}
c906108c 468\f
c5aa993b 469
c906108c
SS
470#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
c906108c 475/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 476 during "process_later". */
c906108c
SS
477
478struct ref_map
479{
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483};
484
485#define MAX_CHUNK_REFS 100
486#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
c5aa993b 489static struct ref_map *ref_map;
c906108c 490
c378eb4e 491/* Ptr to free cell in chunk's linked list. */
c5aa993b 492static int ref_count = 0;
c906108c 493
c378eb4e 494/* Number of chunks malloced. */
c906108c
SS
495static int ref_chunk = 0;
496
7be570e7 497/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
7be570e7 500void
fba45db2 501stabsread_clear_cache (void)
7be570e7
JM
502{
503 ref_count = 0;
504 ref_chunk = 0;
505}
506
c906108c
SS
507/* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
c906108c 511void
fba45db2 512ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
513{
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
c5aa993b 520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 522
c906108c
SS
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532}
533
534/* Return defined sym for the reference REFNUM. */
535struct symbol *
fba45db2 536ref_search (int refnum)
c906108c
SS
537{
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541}
542
c906108c
SS
543/* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
c5aa993b 546static int
fba45db2 547process_reference (char **string)
c906108c
SS
548{
549 char *p;
550 int refnum = 0;
551
c5aa993b
JM
552 if (**string != '#')
553 return 0;
554
c906108c
SS
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
c378eb4e 558 /* Read number as reference id. */
c906108c
SS
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566}
567
568/* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571int
fba45db2 572symbol_reference_defined (char **string)
c906108c
SS
573{
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
c378eb4e 579 /* Defining symbols end in '='. */
c5aa993b 580 if (*p == '=')
c906108c 581 {
c378eb4e 582 /* Symbol is being defined here. */
c906108c
SS
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
c378eb4e 588 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593}
594
768a979c
UW
595static int
596stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597{
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
0fde2c53
DE
600 if (regno < 0
601 || regno >= (gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch)))
768a979c
UW
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
c378eb4e 609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
610 }
611
612 return regno;
613}
614
615static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617};
618
f1e6e072
TT
619/* The "aclass" indices for computed symbols. */
620
621static int stab_register_index;
622static int stab_regparm_index;
623
c906108c 624struct symbol *
fba45db2
KB
625define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
c906108c 627{
5e2b427d 628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 629 struct symbol *sym;
7e1d63ec 630 char *p = (char *) find_name_end (string);
c906108c
SS
631 int deftype;
632 int synonym = 0;
52f0bd74 633 int i;
71c25dea 634 char *new_name = NULL;
c906108c
SS
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
c378eb4e 647 /* Ignore old-style symbols from cc -go. */
c906108c
SS
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
c5aa993b
JM
653 p += 2;
654 p = strchr (p, ':');
681c238c
MS
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
c906108c
SS
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
e623cf5d 667 current_symbol = sym = allocate_symbol (objfile);
c906108c 668
c906108c
SS
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
c906108c
SS
674 }
675 else
676 {
c5aa993b 677 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
678 }
679
025ac414
PM
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
c906108c
SS
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
c5aa993b 688 case 't':
1c9e8358 689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 690 break;
c906108c 691
c5aa993b 692 case 'v': /* $vtbl_ptr_type */
c5aa993b 693 goto normal;
c906108c 694
c5aa993b 695 case 'e':
1c9e8358 696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 697 break;
c906108c 698
c5aa993b
JM
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
c906108c 702
c5aa993b
JM
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 705 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 706 goto normal;
c378eb4e 707 /* ... fall through ... */
c906108c 708
c5aa993b 709 default:
e2e0b3e5 710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 711 string);
c378eb4e 712 goto normal; /* Do *something* with it. */
c906108c
SS
713 }
714 }
c906108c
SS
715 else
716 {
717 normal:
df8a16a1 718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 719 {
224c3ddb 720 char *name = (char *) alloca (p - string + 1);
433759f7 721
71c25dea
TT
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
71c25dea
TT
725 }
726 if (new_name != NULL)
727 {
04a679b8 728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
71c25dea
TT
729 xfree (new_name);
730 }
731 else
04a679b8 732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 735 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 736
c906108c
SS
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741#if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750#else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752#endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
c5aa993b
JM
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
766 if (*p != '=')
767 {
f1e6e072 768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
4e38b386 780 gdb_byte *dbl_valu;
6ccb9162 781 struct type *dbl_type;
c906108c
SS
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
46bf5051 787 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
788 dbl_valu
789 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
6ccb9162
UW
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
c906108c 794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
46bf5051 807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 808 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
810 }
811 break;
ec8a089a
PM
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
ec8a089a
PM
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
f1e6e072 831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
f1e6e072 856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
3e43a32a 865 range_type
0c9c3474
SA
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
ec8a089a
PM
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
224c3ddb
SM
872 string_value
873 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
874 memcpy (string_value, string_local, ind + 1);
875 p++;
876
877 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
879 }
880 break;
881
c906108c
SS
882 case 'e':
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
887 {
f1e6e072 888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
890
891 if (*p != ',')
892 {
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 break;
895 }
896 ++p;
897
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
903 however. */
904 SYMBOL_VALUE (sym) = atoi (p);
905 }
906 break;
907 default:
908 {
f1e6e072 909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 }
912 }
176620f1 913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
914 add_symbol_to_list (sym, &file_symbols);
915 return sym;
916
917 case 'C':
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
924 break;
925
926 case 'f':
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
933
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
c5aa993b
JM
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
940
1e698235
DJ
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
876cecd0 947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 948
c378eb4e 949 /* fall into process_prototype_types. */
c906108c
SS
950
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
953 if (*p == ';')
954 {
955 struct type *ftype = SYMBOL_TYPE (sym);
956 int nsemi = 0;
957 int nparams = 0;
958 char *p1 = p;
959
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
962 while (*p1)
963 {
964 if (*p1++ == ';')
965 nsemi++;
966 }
967
c378eb4e 968 /* Allocate parameter information fields and fill them in. */
c906108c
SS
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
971 while (*p++ == ';')
972 {
973 struct type *ptype;
974
975 /* A type number of zero indicates the start of varargs.
c5aa993b 976 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
977 if (p[0] == '0' && p[1] == '\0')
978 break;
979 ptype = read_type (&p, objfile);
980
981 /* The Sun compilers mark integer arguments, which should
c5aa993b 982 be promoted to the width of the calling conventions, with
c378eb4e 983 a type which references itself. This type is turned into
c5aa993b 984 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 988 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
991 }
992 TYPE_NFIELDS (ftype) = nparams;
876cecd0 993 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
994 }
995 break;
996
997 case 'F':
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1004
1005 case 'G':
1006 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
c906108c 1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1013 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1018 {
3567439c 1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
c906108c
SS
1022 }
1023 add_symbol_to_list (sym, &global_symbols);
1024 break;
1025
1026 /* This case is faked by a conditional above,
c5aa993b
JM
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
c906108c
SS
1029 case 's':
1030 case 'l':
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1033 SYMBOL_VALUE (sym) = valu;
176620f1 1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1035 add_symbol_to_list (sym, &local_symbols);
1036 break;
1037
1038 case 'p':
1039 if (*p == 'F')
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1043 {
1044 p++;
1045 SYMBOL_TYPE (sym)
1046 = lookup_pointer_type
c5aa993b 1047 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1048 }
1049 else
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1051
f1e6e072 1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1053 SYMBOL_VALUE (sym) = valu;
176620f1 1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1055 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1056 add_symbol_to_list (sym, &local_symbols);
1057
5e2b427d 1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1059 {
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1062 break;
1063 }
1064
1065 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1066 if (processing_gcc_compilation
5e2b427d 1067 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1068 break;
1069
5e2b427d 1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1071 {
8ee56bcf
AC
1072 /* If PCC says a parameter is a short or a char, it is
1073 really an int. */
5e2b427d
UW
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1077 {
8ee56bcf
AC
1078 SYMBOL_TYPE (sym) =
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
7a292a7a 1082 }
8ee56bcf 1083 break;
7a292a7a 1084 }
c906108c
SS
1085
1086 case 'P':
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1090 if (type == N_FUN)
1091 {
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1094 }
c5aa993b 1095 /*FALLTHROUGH */
c906108c
SS
1096
1097 case 'R':
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1101 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1102 SYMBOL_VALUE (sym) = valu;
176620f1 1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'r':
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1111 SYMBOL_VALUE (sym) = valu;
176620f1 1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1113 if (within_function)
1114 {
192cb3d4
MK
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1122 the stack.
1123
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1128 etc.).
c906108c
SS
1129
1130 Note that this code illegally combines
c5aa993b 1131 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1134
1135 if (local_symbols
1136 && local_symbols->nsyms > 0
5e2b427d 1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1138 {
1139 struct symbol *prev_sym;
433759f7 1140
c906108c
SS
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1146 {
f1e6e072 1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1152 sym = prev_sym;
1153 break;
1154 }
1155 }
c5aa993b 1156 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1157 }
1158 else
c5aa993b 1159 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1160 break;
1161
1162 case 'S':
c378eb4e 1163 /* Static symbol at top level of file. */
c906108c 1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1171 {
3b7344d5 1172 struct bound_minimal_symbol msym;
433759f7 1173
3e43a32a
MS
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1175 NULL, objfile);
3b7344d5 1176 if (msym.minsym != NULL)
c5aa993b 1177 {
0d5cff50 1178 const char *new_name = gdbarch_static_transform_name
3567439c 1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1180
3567439c 1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1182 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1183 }
1184 }
176620f1 1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1186 add_symbol_to_list (sym, &file_symbols);
1187 break;
1188
1189 case 't':
52eea4ce
JB
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1192 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1193
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1200
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1205
e2cd42dd 1206 /* Typedef */
c906108c
SS
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1208
1209 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1210 did not use `sym'. Return without further processing. */
c5aa993b
JM
1211 if (nameless)
1212 return NULL;
c906108c 1213
f1e6e072 1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1215 SYMBOL_VALUE (sym) = valu;
176620f1 1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1217 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
c906108c
SS
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1225 {
1226 int j;
433759f7 1227
c906108c
SS
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1232 }
1233
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1235 {
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
c378eb4e 1238 Some gdb code depends on that specific name. */
c906108c
SS
1239 extern const char vtbl_ptr_name[];
1240
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1244 {
1245 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1257 case).
1258
1259 Sigh.
1260
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
c378eb4e
MS
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
49d97c60 1265 problem: with the following code gdb would tell that
c378eb4e
MS
1266 the type for name1 is caddr_t, and func is char().
1267
49d97c60
EZ
1268 typedef char *caddr_t;
1269 char *name2;
1270 struct x
1271 {
c378eb4e 1272 char *name1;
49d97c60
EZ
1273 } xx;
1274 char *func()
1275 {
1276 }
1277 main () {}
1278 */
1279
c378eb4e 1280 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1281 if (current_subfile->language == language_pascal)
1282 {
3567439c 1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1284 }
c906108c
SS
1285 }
1286 else
3567439c 1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1288 }
1289
1290 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1291
1292 if (synonym)
1293 {
1294 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1295 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1296
1297 *struct_sym = *sym;
f1e6e072 1298 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1299 SYMBOL_VALUE (struct_sym) = valu;
1300 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1302 TYPE_NAME (SYMBOL_TYPE (sym))
1303 = obconcat (&objfile->objfile_obstack,
1304 SYMBOL_LINKAGE_NAME (sym),
1305 (char *) NULL);
52eea4ce
JB
1306 add_symbol_to_list (struct_sym, &file_symbols);
1307 }
1308
c906108c
SS
1309 break;
1310
1311 case 'T':
1312 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1313 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1314 synonym = *p == 't';
1315
1316 if (synonym)
1317 p++;
c906108c
SS
1318
1319 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1320
c906108c 1321 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1322 did not use `sym'. Return without further processing. */
c5aa993b
JM
1323 if (nameless)
1324 return NULL;
c906108c 1325
f1e6e072 1326 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1327 SYMBOL_VALUE (sym) = valu;
176620f1 1328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1329 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1330 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 = obconcat (&objfile->objfile_obstack,
1332 SYMBOL_LINKAGE_NAME (sym),
1333 (char *) NULL);
c906108c
SS
1334 add_symbol_to_list (sym, &file_symbols);
1335
1336 if (synonym)
1337 {
c378eb4e 1338 /* Clone the sym and then modify it. */
e623cf5d 1339 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1340
c906108c 1341 *typedef_sym = *sym;
f1e6e072 1342 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1343 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
c906108c
SS
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
c378eb4e 1355 /* Static symbol of local scope. */
c906108c 1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1363 {
3b7344d5 1364 struct bound_minimal_symbol msym;
433759f7
MS
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
3b7344d5 1368 if (msym.minsym != NULL)
c5aa993b 1369 {
0d5cff50 1370 const char *new_name = gdbarch_static_transform_name
3567439c 1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1372
3567439c 1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1374 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1375 }
1376 }
176620f1 1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1384 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1385 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1386 SYMBOL_VALUE (sym) = valu;
176620f1 1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1394 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1395 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1396 SYMBOL_VALUE (sym) = valu;
176620f1 1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1398 add_symbol_to_list (sym, &local_symbols);
1399 break;
1400
1401 case 'X':
1402 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1403 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1404 that Pascal uses it too, but when I tried it Pascal used
1405 "x:3" (local symbol) instead. */
c906108c 1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1407 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1408 SYMBOL_VALUE (sym) = valu;
176620f1 1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1410 add_symbol_to_list (sym, &local_symbols);
1411 break;
c906108c
SS
1412
1413 default:
1414 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1416 SYMBOL_VALUE (sym) = 0;
176620f1 1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1418 add_symbol_to_list (sym, &file_symbols);
1419 break;
1420 }
1421
192cb3d4
MK
1422 /* Some systems pass variables of certain types by reference instead
1423 of by value, i.e. they will pass the address of a structure (in a
1424 register or on the stack) instead of the structure itself. */
c906108c 1425
5e2b427d 1426 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1427 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1428 {
2a2d4dc3 1429 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1430 variables passed in a register). */
2a2d4dc3 1431 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1433 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1434 and subsequent arguments on SPARC, for example). */
1435 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1436 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1437 }
1438
c906108c
SS
1439 return sym;
1440}
1441
c906108c
SS
1442/* Skip rest of this symbol and return an error type.
1443
1444 General notes on error recovery: error_type always skips to the
1445 end of the symbol (modulo cretinous dbx symbol name continuation).
1446 Thus code like this:
1447
1448 if (*(*pp)++ != ';')
c5aa993b 1449 return error_type (pp, objfile);
c906108c
SS
1450
1451 is wrong because if *pp starts out pointing at '\0' (typically as the
1452 result of an earlier error), it will be incremented to point to the
1453 start of the next symbol, which might produce strange results, at least
1454 if you run off the end of the string table. Instead use
1455
1456 if (**pp != ';')
c5aa993b 1457 return error_type (pp, objfile);
c906108c
SS
1458 ++*pp;
1459
1460 or
1461
1462 if (**pp != ';')
c5aa993b 1463 foo = error_type (pp, objfile);
c906108c 1464 else
c5aa993b 1465 ++*pp;
c906108c
SS
1466
1467 And in case it isn't obvious, the point of all this hair is so the compiler
1468 can define new types and new syntaxes, and old versions of the
1469 debugger will be able to read the new symbol tables. */
1470
1471static struct type *
fba45db2 1472error_type (char **pp, struct objfile *objfile)
c906108c 1473{
3e43a32a
MS
1474 complaint (&symfile_complaints,
1475 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1476 while (1)
1477 {
1478 /* Skip to end of symbol. */
1479 while (**pp != '\0')
1480 {
1481 (*pp)++;
1482 }
1483
1484 /* Check for and handle cretinous dbx symbol name continuation! */
1485 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1486 {
1487 *pp = next_symbol_text (objfile);
1488 }
1489 else
1490 {
1491 break;
1492 }
1493 }
46bf5051 1494 return objfile_type (objfile)->builtin_error;
c906108c 1495}
c906108c 1496\f
c5aa993b 1497
c906108c
SS
1498/* Read type information or a type definition; return the type. Even
1499 though this routine accepts either type information or a type
1500 definition, the distinction is relevant--some parts of stabsread.c
1501 assume that type information starts with a digit, '-', or '(' in
1502 deciding whether to call read_type. */
1503
a7a48797 1504static struct type *
aa1ee363 1505read_type (char **pp, struct objfile *objfile)
c906108c 1506{
52f0bd74 1507 struct type *type = 0;
c906108c
SS
1508 struct type *type1;
1509 int typenums[2];
1510 char type_descriptor;
1511
1512 /* Size in bits of type if specified by a type attribute, or -1 if
1513 there is no size attribute. */
1514 int type_size = -1;
1515
c378eb4e 1516 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1517 int is_string = 0;
1518
c378eb4e 1519 /* Used to distinguish vector from array. */
e2cd42dd
MS
1520 int is_vector = 0;
1521
c906108c
SS
1522 /* Read type number if present. The type number may be omitted.
1523 for instance in a two-dimensional array declared with type
1524 "ar1;1;10;ar1;1;10;4". */
1525 if ((**pp >= '0' && **pp <= '9')
1526 || **pp == '('
1527 || **pp == '-')
1528 {
1529 if (read_type_number (pp, typenums) != 0)
1530 return error_type (pp, objfile);
c5aa993b 1531
c906108c 1532 if (**pp != '=')
8cfe231d
JB
1533 {
1534 /* Type is not being defined here. Either it already
1535 exists, or this is a forward reference to it.
1536 dbx_alloc_type handles both cases. */
1537 type = dbx_alloc_type (typenums, objfile);
1538
1539 /* If this is a forward reference, arrange to complain if it
1540 doesn't get patched up by the time we're done
1541 reading. */
1542 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1543 add_undefined_type (type, typenums);
8cfe231d
JB
1544
1545 return type;
1546 }
c906108c
SS
1547
1548 /* Type is being defined here. */
1549 /* Skip the '='.
c5aa993b
JM
1550 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1551 (*pp) += 2;
c906108c
SS
1552 }
1553 else
1554 {
1555 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1556 the definition, but don't put it in the type vector. */
c906108c
SS
1557 typenums[0] = typenums[1] = -1;
1558 (*pp)++;
1559 }
1560
c5aa993b 1561again:
c906108c
SS
1562 type_descriptor = (*pp)[-1];
1563 switch (type_descriptor)
1564 {
1565 case 'x':
1566 {
1567 enum type_code code;
1568
1569 /* Used to index through file_symbols. */
1570 struct pending *ppt;
1571 int i;
c5aa993b 1572
c906108c
SS
1573 /* Name including "struct", etc. */
1574 char *type_name;
c5aa993b 1575
c906108c
SS
1576 {
1577 char *from, *to, *p, *q1, *q2;
c5aa993b 1578
c906108c
SS
1579 /* Set the type code according to the following letter. */
1580 switch ((*pp)[0])
1581 {
1582 case 's':
1583 code = TYPE_CODE_STRUCT;
1584 break;
1585 case 'u':
1586 code = TYPE_CODE_UNION;
1587 break;
1588 case 'e':
1589 code = TYPE_CODE_ENUM;
1590 break;
1591 default:
1592 {
1593 /* Complain and keep going, so compilers can invent new
1594 cross-reference types. */
23136709 1595 complaint (&symfile_complaints,
3e43a32a
MS
1596 _("Unrecognized cross-reference type `%c'"),
1597 (*pp)[0]);
c906108c
SS
1598 code = TYPE_CODE_STRUCT;
1599 break;
1600 }
1601 }
c5aa993b 1602
c906108c
SS
1603 q1 = strchr (*pp, '<');
1604 p = strchr (*pp, ':');
1605 if (p == NULL)
1606 return error_type (pp, objfile);
1607 if (q1 && p > q1 && p[1] == ':')
1608 {
1609 int nesting_level = 0;
433759f7 1610
c906108c
SS
1611 for (q2 = q1; *q2; q2++)
1612 {
1613 if (*q2 == '<')
1614 nesting_level++;
1615 else if (*q2 == '>')
1616 nesting_level--;
1617 else if (*q2 == ':' && nesting_level == 0)
1618 break;
1619 }
1620 p = q2;
1621 if (*p != ':')
1622 return error_type (pp, objfile);
1623 }
71c25dea
TT
1624 type_name = NULL;
1625 if (current_subfile->language == language_cplus)
1626 {
224c3ddb 1627 char *new_name, *name = (char *) alloca (p - *pp + 1);
433759f7 1628
71c25dea
TT
1629 memcpy (name, *pp, p - *pp);
1630 name[p - *pp] = '\0';
1631 new_name = cp_canonicalize_string (name);
1632 if (new_name != NULL)
1633 {
224c3ddb
SM
1634 type_name
1635 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1636 new_name, strlen (new_name));
71c25dea
TT
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
3e43a32a
MS
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
c5aa993b 1651
c906108c
SS
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
71c25dea 1654 *pp = p + 1;
c906108c
SS
1655 }
1656
149d821b
JB
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
c906108c
SS
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1670 {
b99607ea 1671 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1672 type = SYMBOL_TYPE (sym);
149d821b 1673 if (typenums[0] != -1)
46bf5051 1674 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1687 INIT_CPLUS_SPECIFIC (type);
876cecd0 1688 TYPE_STUB (type) = 1;
c906108c 1689
bf362611 1690 add_undefined_type (type, typenums);
c906108c
SS
1691 return type;
1692 }
1693
c5aa993b 1694 case '-': /* RS/6000 built-in type */
c906108c
SS
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1710
1711 /* Allocate and enter the typedef type first.
c378eb4e 1712 This handles recursive types. */
c906108c
SS
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1715 {
1716 struct type *xtype = read_type (pp, objfile);
433759f7 1717
c906108c
SS
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
dd6bda65
DJ
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
13a393b0
JB
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
dd6bda65 1749 replace_type (type, xtype);
c906108c
SS
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
876cecd0 1755 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
c5aa993b
JM
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
c906108c 1767
e2cd42dd 1768 case '*': /* Pointer to another type */
c906108c 1769 type1 = read_type (pp, objfile);
46bf5051 1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1771 break;
1772
c5aa993b 1773 case '&': /* Reference to another type */
c906108c 1774 type1 = read_type (pp, objfile);
46bf5051 1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1776 break;
1777
c5aa993b 1778 case 'f': /* Function returning another type */
c906108c 1779 type1 = read_type (pp, objfile);
0c8b41f1 1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1781 break;
1782
da966255
JB
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
46bf5051 1803 = make_function_type (return_type,
0c8b41f1 1804 dbx_lookup_type (typenums, objfile));
da966255
JB
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
8d749320 1814 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1815 newobj->type = arg_type;
1816 newobj->next = arg_types;
1817 arg_types = newobj;
da966255
JB
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
23136709 1824 complaint (&symfile_complaints,
3e43a32a
MS
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
23136709 1827 type_start);
da966255
JB
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1852 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1853
1854 type = func_type;
1855 break;
1856 }
1857
c5aa993b 1858 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1859 type = read_type (pp, objfile);
d7242108 1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1861 dbx_lookup_type (typenums, objfile));
c906108c
SS
1862 break;
1863
c5aa993b 1864 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1865 type = read_type (pp, objfile);
d7242108 1866 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1867 dbx_lookup_type (typenums, objfile));
c906108c
SS
1868 break;
1869
1870 case '@':
c5aa993b
JM
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
c906108c
SS
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
0d5de010 1885 smash_to_memberptr_type (type, domain, memtype);
c906108c 1886 }
c5aa993b
JM
1887 else
1888 /* type attribute */
c906108c
SS
1889 {
1890 char *attr = *pp;
433759f7 1891
c906108c
SS
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
c5aa993b 1898 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1899
1900 switch (*attr)
1901 {
e2cd42dd 1902 case 's': /* Size attribute */
c906108c
SS
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
e2cd42dd 1908 case 'S': /* String attribute */
c378eb4e 1909 /* FIXME: check to see if following type is array? */
c906108c
SS
1910 is_string = 1;
1911 break;
1912
e2cd42dd 1913 case 'V': /* Vector attribute */
c378eb4e 1914 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1915 is_vector = 1;
1916 break;
1917
c906108c
SS
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1920 can invent new ones. */
c906108c
SS
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
c5aa993b 1928 case '#': /* Method (class & fn) type */
c906108c
SS
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
23136709 1937 complaint (&symfile_complaints,
3e43a32a
MS
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
23136709 1940 symnum);
c906108c
SS
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
46bf5051 1943 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
ad2f7632
DJ
1949 struct field *args;
1950 int nargs, varargs;
c906108c
SS
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
ad2f7632 1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1960 if (args == NULL)
1961 return error_type (pp, objfile);
c906108c 1962 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
c906108c
SS
1965 }
1966 break;
1967
c5aa993b 1968 case 'r': /* Range type */
94e10a22 1969 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1970 if (typenums[0] != -1)
46bf5051 1971 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1972 break;
1973
1974 case 'b':
c906108c
SS
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
46bf5051 1979 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1980 }
1981 break;
1982
c5aa993b 1983 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
46bf5051 1986 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1987 break;
c5aa993b
JM
1988
1989 case 'e': /* Enumeration type */
c906108c
SS
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
46bf5051 1993 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1994 break;
1995
c5aa993b
JM
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
2ae1c2d2
JB
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
c906108c 2013
c5aa993b 2014 case 'a': /* Array type */
c906108c
SS
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
c5aa993b 2018
c906108c
SS
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2023 if (is_vector)
ea37ba09 2024 make_vector_type (type);
c906108c
SS
2025 break;
2026
6b1755ce 2027 case 'S': /* Set type */
c906108c 2028 type1 = read_type (pp, objfile);
c5aa993b 2029 type = create_set_type ((struct type *) NULL, type1);
c906108c 2030 if (typenums[0] != -1)
46bf5051 2031 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2032 break;
2033
2034 default:
c378eb4e
MS
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
c906108c
SS
2037 return error_type (pp, objfile);
2038 }
2039
2040 if (type == 0)
2041 {
8a3fe4f8 2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2043 return error_type (pp, objfile);
2044 }
2045
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049
2050 return type;
2051}
2052\f
2053/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2054 Return the proper type node for a given builtin type number. */
c906108c 2055
46bf5051
UW
2056static const struct objfile_data *rs6000_builtin_type_data;
2057
c906108c 2058static struct type *
46bf5051 2059rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2060{
19ba03f4
SM
2061 struct type **negative_types
2062 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
46bf5051 2063
c906108c
SS
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065#define NUMBER_RECOGNIZED 34
c906108c
SS
2066 struct type *rettype = NULL;
2067
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069 {
e2e0b3e5 2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2071 return objfile_type (objfile)->builtin_error;
c906108c 2072 }
46bf5051
UW
2073
2074 if (!negative_types)
2075 {
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080 }
2081
c906108c
SS
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2084
2085#if TARGET_CHAR_BIT != 8
c5aa993b 2086#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2090 TARGET_CHAR_BIT. */
2091#endif
2092
2093 switch (-typenum)
2094 {
2095 case 1:
2096 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
46bf5051 2101 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
c906108c
SS
2102 break;
2103 case 2:
46bf5051 2104 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
c906108c
SS
2105 break;
2106 case 3:
46bf5051 2107 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
c906108c
SS
2108 break;
2109 case 4:
46bf5051 2110 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
c906108c
SS
2111 break;
2112 case 5:
2113 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2114 "unsigned char", objfile);
c906108c
SS
2115 break;
2116 case 6:
46bf5051 2117 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
c906108c
SS
2118 break;
2119 case 7:
2120 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2121 "unsigned short", objfile);
c906108c
SS
2122 break;
2123 case 8:
2124 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2125 "unsigned int", objfile);
c906108c
SS
2126 break;
2127 case 9:
2128 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2129 "unsigned", objfile);
89acf84d 2130 break;
c906108c
SS
2131 case 10:
2132 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2133 "unsigned long", objfile);
c906108c
SS
2134 break;
2135 case 11:
46bf5051 2136 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
c906108c
SS
2137 break;
2138 case 12:
2139 /* IEEE single precision (32 bit). */
46bf5051 2140 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
c906108c
SS
2141 break;
2142 case 13:
2143 /* IEEE double precision (64 bit). */
46bf5051 2144 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
c906108c
SS
2145 break;
2146 case 14:
2147 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2148 different sizes for "long double" should use different negative
2149 type numbers. See stabs.texinfo. */
46bf5051 2150 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
c906108c
SS
2151 break;
2152 case 15:
46bf5051 2153 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
c906108c
SS
2154 break;
2155 case 16:
2156 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2157 "boolean", objfile);
c906108c
SS
2158 break;
2159 case 17:
46bf5051 2160 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
c906108c
SS
2161 break;
2162 case 18:
46bf5051 2163 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
c906108c
SS
2164 break;
2165 case 19:
46bf5051 2166 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
c906108c
SS
2167 break;
2168 case 20:
2169 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2170 "character", objfile);
c906108c
SS
2171 break;
2172 case 21:
2173 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2174 "logical*1", objfile);
c906108c
SS
2175 break;
2176 case 22:
2177 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2178 "logical*2", objfile);
c906108c
SS
2179 break;
2180 case 23:
2181 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2182 "logical*4", objfile);
c906108c
SS
2183 break;
2184 case 24:
2185 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2186 "logical", objfile);
c906108c
SS
2187 break;
2188 case 25:
2189 /* Complex type consisting of two IEEE single precision values. */
46bf5051 2190 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
f65ca430 2191 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
46bf5051 2192 objfile);
c906108c
SS
2193 break;
2194 case 26:
2195 /* Complex type consisting of two IEEE double precision values. */
2196 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
f65ca430 2197 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
46bf5051 2198 objfile);
c906108c
SS
2199 break;
2200 case 27:
46bf5051 2201 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
c906108c
SS
2202 break;
2203 case 28:
46bf5051 2204 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
c906108c
SS
2205 break;
2206 case 29:
46bf5051 2207 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
c906108c
SS
2208 break;
2209 case 30:
46bf5051 2210 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
c906108c
SS
2211 break;
2212 case 31:
46bf5051 2213 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
c906108c
SS
2214 break;
2215 case 32:
2216 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2217 "unsigned long long", objfile);
c906108c
SS
2218 break;
2219 case 33:
2220 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2221 "logical*8", objfile);
c906108c
SS
2222 break;
2223 case 34:
46bf5051 2224 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
c906108c
SS
2225 break;
2226 }
2227 negative_types[-typenum] = rettype;
2228 return rettype;
2229}
2230\f
2231/* This page contains subroutines of read_type. */
2232
0d5cff50
DE
2233/* Wrapper around method_name_from_physname to flag a complaint
2234 if there is an error. */
de17c821 2235
0d5cff50
DE
2236static char *
2237stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2238{
2239 char *method_name;
2240
2241 method_name = method_name_from_physname (physname);
2242
2243 if (method_name == NULL)
c263362b
DJ
2244 {
2245 complaint (&symfile_complaints,
e2e0b3e5 2246 _("Method has bad physname %s\n"), physname);
0d5cff50 2247 return NULL;
c263362b 2248 }
de17c821 2249
0d5cff50 2250 return method_name;
de17c821
DJ
2251}
2252
c906108c
SS
2253/* Read member function stabs info for C++ classes. The form of each member
2254 function data is:
2255
c5aa993b 2256 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2257
2258 An example with two member functions is:
2259
c5aa993b 2260 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2261
2262 For the case of overloaded operators, the format is op$::*.funcs, where
2263 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2264 name (such as `+=') and `.' marks the end of the operator name.
2265
2266 Returns 1 for success, 0 for failure. */
2267
2268static int
fba45db2
KB
2269read_member_functions (struct field_info *fip, char **pp, struct type *type,
2270 struct objfile *objfile)
c906108c
SS
2271{
2272 int nfn_fields = 0;
2273 int length = 0;
c906108c
SS
2274 int i;
2275 struct next_fnfield
2276 {
2277 struct next_fnfield *next;
2278 struct fn_field fn_field;
c5aa993b
JM
2279 }
2280 *sublist;
c906108c
SS
2281 struct type *look_ahead_type;
2282 struct next_fnfieldlist *new_fnlist;
2283 struct next_fnfield *new_sublist;
2284 char *main_fn_name;
52f0bd74 2285 char *p;
c5aa993b 2286
c906108c 2287 /* Process each list until we find something that is not a member function
c378eb4e 2288 or find the end of the functions. */
c906108c
SS
2289
2290 while (**pp != ';')
2291 {
2292 /* We should be positioned at the start of the function name.
c5aa993b 2293 Scan forward to find the first ':' and if it is not the
c378eb4e 2294 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2295 p = *pp;
2296 while (*p != ':')
2297 {
2298 p++;
2299 }
2300 if (p[1] != ':')
2301 {
2302 break;
2303 }
2304
2305 sublist = NULL;
2306 look_ahead_type = NULL;
2307 length = 0;
c5aa993b 2308
8d749320 2309 new_fnlist = XCNEW (struct next_fnfieldlist);
b8c9b27d 2310 make_cleanup (xfree, new_fnlist);
c5aa993b 2311
c906108c
SS
2312 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2313 {
2314 /* This is a completely wierd case. In order to stuff in the
2315 names that might contain colons (the usual name delimiter),
2316 Mike Tiemann defined a different name format which is
2317 signalled if the identifier is "op$". In that case, the
2318 format is "op$::XXXX." where XXXX is the name. This is
2319 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2320 /* This lets the user type "break operator+".
2321 We could just put in "+" as the name, but that wouldn't
2322 work for "*". */
8343f86c 2323 static char opname[32] = "op$";
c906108c 2324 char *o = opname + 3;
c5aa993b 2325
c906108c
SS
2326 /* Skip past '::'. */
2327 *pp = p + 2;
2328
2329 STABS_CONTINUE (pp, objfile);
2330 p = *pp;
2331 while (*p != '.')
2332 {
2333 *o++ = *p++;
2334 }
2335 main_fn_name = savestring (opname, o - opname);
2336 /* Skip past '.' */
2337 *pp = p + 1;
2338 }
2339 else
2340 {
2341 main_fn_name = savestring (*pp, p - *pp);
2342 /* Skip past '::'. */
2343 *pp = p + 2;
2344 }
c5aa993b
JM
2345 new_fnlist->fn_fieldlist.name = main_fn_name;
2346
c906108c
SS
2347 do
2348 {
8d749320 2349 new_sublist = XCNEW (struct next_fnfield);
b8c9b27d 2350 make_cleanup (xfree, new_sublist);
c5aa993b 2351
c906108c
SS
2352 /* Check for and handle cretinous dbx symbol name continuation! */
2353 if (look_ahead_type == NULL)
2354 {
c378eb4e 2355 /* Normal case. */
c906108c 2356 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2357
2358 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2359 if (**pp != ':')
2360 {
2361 /* Invalid symtab info for member function. */
2362 return 0;
2363 }
2364 }
2365 else
2366 {
2367 /* g++ version 1 kludge */
c5aa993b 2368 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2369 look_ahead_type = NULL;
2370 }
c5aa993b 2371
c906108c
SS
2372 (*pp)++;
2373 p = *pp;
2374 while (*p != ';')
2375 {
2376 p++;
2377 }
c5aa993b 2378
09e2d7c7
DE
2379 /* These are methods, not functions. */
2380 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2381 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2382 else
2383 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2384 == TYPE_CODE_METHOD);
c906108c 2385
09e2d7c7 2386 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2387 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2388 {
4bfb94b8 2389 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2390 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2391 new_sublist->fn_field.is_stub = 1;
c906108c 2392 }
09e2d7c7 2393
c5aa993b 2394 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2395 *pp = p + 1;
c5aa993b 2396
c906108c
SS
2397 /* Set this member function's visibility fields. */
2398 switch (*(*pp)++)
2399 {
c5aa993b
JM
2400 case VISIBILITY_PRIVATE:
2401 new_sublist->fn_field.is_private = 1;
2402 break;
2403 case VISIBILITY_PROTECTED:
2404 new_sublist->fn_field.is_protected = 1;
2405 break;
c906108c 2406 }
c5aa993b 2407
c906108c
SS
2408 STABS_CONTINUE (pp, objfile);
2409 switch (**pp)
2410 {
c378eb4e 2411 case 'A': /* Normal functions. */
c5aa993b
JM
2412 new_sublist->fn_field.is_const = 0;
2413 new_sublist->fn_field.is_volatile = 0;
2414 (*pp)++;
2415 break;
c378eb4e 2416 case 'B': /* `const' member functions. */
c5aa993b
JM
2417 new_sublist->fn_field.is_const = 1;
2418 new_sublist->fn_field.is_volatile = 0;
2419 (*pp)++;
2420 break;
c378eb4e 2421 case 'C': /* `volatile' member function. */
c5aa993b
JM
2422 new_sublist->fn_field.is_const = 0;
2423 new_sublist->fn_field.is_volatile = 1;
2424 (*pp)++;
2425 break;
c378eb4e 2426 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2427 new_sublist->fn_field.is_const = 1;
2428 new_sublist->fn_field.is_volatile = 1;
2429 (*pp)++;
2430 break;
3e43a32a 2431 case '*': /* File compiled with g++ version 1 --
c378eb4e 2432 no info. */
c5aa993b
JM
2433 case '?':
2434 case '.':
2435 break;
2436 default:
23136709 2437 complaint (&symfile_complaints,
3e43a32a
MS
2438 _("const/volatile indicator missing, got '%c'"),
2439 **pp);
c5aa993b 2440 break;
c906108c 2441 }
c5aa993b 2442
c906108c
SS
2443 switch (*(*pp)++)
2444 {
c5aa993b 2445 case '*':
c906108c
SS
2446 {
2447 int nbits;
c5aa993b 2448 /* virtual member function, followed by index.
c906108c
SS
2449 The sign bit is set to distinguish pointers-to-methods
2450 from virtual function indicies. Since the array is
2451 in words, the quantity must be shifted left by 1
2452 on 16 bit machine, and by 2 on 32 bit machine, forcing
2453 the sign bit out, and usable as a valid index into
2454 the array. Remove the sign bit here. */
c5aa993b 2455 new_sublist->fn_field.voffset =
94e10a22 2456 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2457 if (nbits != 0)
2458 return 0;
c5aa993b 2459
c906108c
SS
2460 STABS_CONTINUE (pp, objfile);
2461 if (**pp == ';' || **pp == '\0')
2462 {
2463 /* Must be g++ version 1. */
c5aa993b 2464 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2465 }
2466 else
2467 {
2468 /* Figure out from whence this virtual function came.
2469 It may belong to virtual function table of
2470 one of its baseclasses. */
2471 look_ahead_type = read_type (pp, objfile);
2472 if (**pp == ':')
2473 {
c378eb4e 2474 /* g++ version 1 overloaded methods. */
c906108c
SS
2475 }
2476 else
2477 {
c5aa993b 2478 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2479 if (**pp != ';')
2480 {
2481 return 0;
2482 }
2483 else
2484 {
2485 ++*pp;
2486 }
2487 look_ahead_type = NULL;
2488 }
2489 }
2490 break;
2491 }
c5aa993b
JM
2492 case '?':
2493 /* static member function. */
4ea09c10
PS
2494 {
2495 int slen = strlen (main_fn_name);
2496
2497 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2498
2499 /* For static member functions, we can't tell if they
2500 are stubbed, as they are put out as functions, and not as
2501 methods.
2502 GCC v2 emits the fully mangled name if
2503 dbxout.c:flag_minimal_debug is not set, so we have to
2504 detect a fully mangled physname here and set is_stub
2505 accordingly. Fully mangled physnames in v2 start with
2506 the member function name, followed by two underscores.
2507 GCC v3 currently always emits stubbed member functions,
2508 but with fully mangled physnames, which start with _Z. */
2509 if (!(strncmp (new_sublist->fn_field.physname,
2510 main_fn_name, slen) == 0
2511 && new_sublist->fn_field.physname[slen] == '_'
2512 && new_sublist->fn_field.physname[slen + 1] == '_'))
2513 {
2514 new_sublist->fn_field.is_stub = 1;
2515 }
2516 break;
2517 }
c5aa993b
JM
2518
2519 default:
2520 /* error */
23136709 2521 complaint (&symfile_complaints,
3e43a32a
MS
2522 _("member function type missing, got '%c'"),
2523 (*pp)[-1]);
c5aa993b
JM
2524 /* Fall through into normal member function. */
2525
2526 case '.':
2527 /* normal member function. */
2528 new_sublist->fn_field.voffset = 0;
2529 new_sublist->fn_field.fcontext = 0;
2530 break;
c906108c 2531 }
c5aa993b
JM
2532
2533 new_sublist->next = sublist;
c906108c
SS
2534 sublist = new_sublist;
2535 length++;
2536 STABS_CONTINUE (pp, objfile);
2537 }
2538 while (**pp != ';' && **pp != '\0');
c5aa993b 2539
c906108c 2540 (*pp)++;
0c867556 2541 STABS_CONTINUE (pp, objfile);
c5aa993b 2542
0c867556
PS
2543 /* Skip GCC 3.X member functions which are duplicates of the callable
2544 constructor/destructor. */
6cbbcdfe
KS
2545 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2546 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2547 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2548 {
0c867556 2549 xfree (main_fn_name);
c906108c 2550 }
0c867556
PS
2551 else
2552 {
de17c821
DJ
2553 int has_stub = 0;
2554 int has_destructor = 0, has_other = 0;
2555 int is_v3 = 0;
2556 struct next_fnfield *tmp_sublist;
2557
2558 /* Various versions of GCC emit various mostly-useless
2559 strings in the name field for special member functions.
2560
2561 For stub methods, we need to defer correcting the name
2562 until we are ready to unstub the method, because the current
2563 name string is used by gdb_mangle_name. The only stub methods
2564 of concern here are GNU v2 operators; other methods have their
2565 names correct (see caveat below).
2566
2567 For non-stub methods, in GNU v3, we have a complete physname.
2568 Therefore we can safely correct the name now. This primarily
2569 affects constructors and destructors, whose name will be
2570 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2571 operators will also have incorrect names; for instance,
2572 "operator int" will be named "operator i" (i.e. the type is
2573 mangled).
2574
2575 For non-stub methods in GNU v2, we have no easy way to
2576 know if we have a complete physname or not. For most
2577 methods the result depends on the platform (if CPLUS_MARKER
2578 can be `$' or `.', it will use minimal debug information, or
2579 otherwise the full physname will be included).
2580
2581 Rather than dealing with this, we take a different approach.
2582 For v3 mangled names, we can use the full physname; for v2,
2583 we use cplus_demangle_opname (which is actually v2 specific),
2584 because the only interesting names are all operators - once again
2585 barring the caveat below. Skip this process if any method in the
2586 group is a stub, to prevent our fouling up the workings of
2587 gdb_mangle_name.
2588
2589 The caveat: GCC 2.95.x (and earlier?) put constructors and
2590 destructors in the same method group. We need to split this
2591 into two groups, because they should have different names.
2592 So for each method group we check whether it contains both
2593 routines whose physname appears to be a destructor (the physnames
2594 for and destructors are always provided, due to quirks in v2
2595 mangling) and routines whose physname does not appear to be a
2596 destructor. If so then we break up the list into two halves.
2597 Even if the constructors and destructors aren't in the same group
2598 the destructor will still lack the leading tilde, so that also
2599 needs to be fixed.
2600
2601 So, to summarize what we expect and handle here:
2602
2603 Given Given Real Real Action
2604 method name physname physname method name
2605
2606 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2607 [now or later]
2608 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2609 rename
2610 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2611 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2612 */
2613
2614 tmp_sublist = sublist;
2615 while (tmp_sublist != NULL)
2616 {
2617 if (tmp_sublist->fn_field.is_stub)
2618 has_stub = 1;
2619 if (tmp_sublist->fn_field.physname[0] == '_'
2620 && tmp_sublist->fn_field.physname[1] == 'Z')
2621 is_v3 = 1;
2622
2623 if (is_destructor_name (tmp_sublist->fn_field.physname))
2624 has_destructor++;
2625 else
2626 has_other++;
2627
2628 tmp_sublist = tmp_sublist->next;
2629 }
2630
2631 if (has_destructor && has_other)
2632 {
2633 struct next_fnfieldlist *destr_fnlist;
2634 struct next_fnfield *last_sublist;
2635
2636 /* Create a new fn_fieldlist for the destructors. */
2637
8d749320 2638 destr_fnlist = XCNEW (struct next_fnfieldlist);
de17c821 2639 make_cleanup (xfree, destr_fnlist);
8d749320 2640
de17c821 2641 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2642 = obconcat (&objfile->objfile_obstack, "~",
2643 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2644
8d749320
SM
2645 destr_fnlist->fn_fieldlist.fn_fields =
2646 XOBNEWVEC (&objfile->objfile_obstack,
2647 struct fn_field, has_destructor);
de17c821
DJ
2648 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2649 sizeof (struct fn_field) * has_destructor);
2650 tmp_sublist = sublist;
2651 last_sublist = NULL;
2652 i = 0;
2653 while (tmp_sublist != NULL)
2654 {
2655 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2656 {
2657 tmp_sublist = tmp_sublist->next;
2658 continue;
2659 }
2660
2661 destr_fnlist->fn_fieldlist.fn_fields[i++]
2662 = tmp_sublist->fn_field;
2663 if (last_sublist)
2664 last_sublist->next = tmp_sublist->next;
2665 else
2666 sublist = tmp_sublist->next;
2667 last_sublist = tmp_sublist;
2668 tmp_sublist = tmp_sublist->next;
2669 }
2670
2671 destr_fnlist->fn_fieldlist.length = has_destructor;
2672 destr_fnlist->next = fip->fnlist;
2673 fip->fnlist = destr_fnlist;
2674 nfn_fields++;
de17c821
DJ
2675 length -= has_destructor;
2676 }
2677 else if (is_v3)
2678 {
2679 /* v3 mangling prevents the use of abbreviated physnames,
2680 so we can do this here. There are stubbed methods in v3
2681 only:
2682 - in -gstabs instead of -gstabs+
2683 - or for static methods, which are output as a function type
2684 instead of a method type. */
0d5cff50
DE
2685 char *new_method_name =
2686 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2687
0d5cff50
DE
2688 if (new_method_name != NULL
2689 && strcmp (new_method_name,
2690 new_fnlist->fn_fieldlist.name) != 0)
2691 {
2692 new_fnlist->fn_fieldlist.name = new_method_name;
2693 xfree (main_fn_name);
2694 }
2695 else
2696 xfree (new_method_name);
de17c821
DJ
2697 }
2698 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2699 {
1754f103 2700 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2701 obconcat (&objfile->objfile_obstack,
2702 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2703 xfree (main_fn_name);
2704 }
2705 else if (!has_stub)
2706 {
2707 char dem_opname[256];
2708 int ret;
433759f7 2709
de17c821
DJ
2710 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2711 dem_opname, DMGL_ANSI);
2712 if (!ret)
2713 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 dem_opname, 0);
2715 if (ret)
2716 new_fnlist->fn_fieldlist.name
224c3ddb
SM
2717 = ((const char *)
2718 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2719 strlen (dem_opname)));
0d5cff50 2720 xfree (main_fn_name);
de17c821
DJ
2721 }
2722
0c867556 2723 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2724 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2725 sizeof (struct fn_field) * length);
2726 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2727 sizeof (struct fn_field) * length);
2728 for (i = length; (i--, sublist); sublist = sublist->next)
2729 {
2730 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2731 }
c5aa993b 2732
0c867556
PS
2733 new_fnlist->fn_fieldlist.length = length;
2734 new_fnlist->next = fip->fnlist;
2735 fip->fnlist = new_fnlist;
2736 nfn_fields++;
0c867556 2737 }
c906108c
SS
2738 }
2739
2740 if (nfn_fields)
2741 {
2742 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2743 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2744 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2745 memset (TYPE_FN_FIELDLISTS (type), 0,
2746 sizeof (struct fn_fieldlist) * nfn_fields);
2747 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2748 }
2749
2750 return 1;
2751}
2752
2753/* Special GNU C++ name.
2754
2755 Returns 1 for success, 0 for failure. "failure" means that we can't
2756 keep parsing and it's time for error_type(). */
2757
2758static int
fba45db2
KB
2759read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2760 struct objfile *objfile)
c906108c 2761{
52f0bd74 2762 char *p;
0d5cff50 2763 const char *name;
c906108c
SS
2764 char cpp_abbrev;
2765 struct type *context;
2766
2767 p = *pp;
2768 if (*++p == 'v')
2769 {
2770 name = NULL;
2771 cpp_abbrev = *++p;
2772
2773 *pp = p + 1;
2774
2775 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2776 where the type number before the ':' is the "context" and
2777 everything after is a regular type definition. Lookup the
c378eb4e 2778 type, find it's name, and construct the field name. */
c906108c
SS
2779
2780 context = read_type (pp, objfile);
2781
2782 switch (cpp_abbrev)
2783 {
c5aa993b 2784 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2785 name = type_name_no_tag (context);
2786 if (name == NULL)
433759f7
MS
2787 {
2788 name = "";
2789 }
48cb83fd
JK
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2791 vptr_name, name, (char *) NULL);
c5aa993b 2792 break;
c906108c 2793
c5aa993b
JM
2794 case 'b': /* $vb -- a virtual bsomethingorother */
2795 name = type_name_no_tag (context);
2796 if (name == NULL)
2797 {
23136709 2798 complaint (&symfile_complaints,
3e43a32a
MS
2799 _("C++ abbreviated type name "
2800 "unknown at symtab pos %d"),
23136709 2801 symnum);
c5aa993b
JM
2802 name = "FOO";
2803 }
48cb83fd
JK
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2805 name, (char *) NULL);
c5aa993b 2806 break;
c906108c 2807
c5aa993b 2808 default:
23136709 2809 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2810 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2811 "INVALID_CPLUSPLUS_ABBREV",
2812 (char *) NULL);
c5aa993b 2813 break;
c906108c
SS
2814 }
2815
2816 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2817 field type. */
c906108c
SS
2818
2819 p = ++(*pp);
2820 if (p[-1] != ':')
2821 {
23136709 2822 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2823 return 0;
2824 }
2825 fip->list->field.type = read_type (pp, objfile);
2826 if (**pp == ',')
c5aa993b 2827 (*pp)++; /* Skip the comma. */
c906108c
SS
2828 else
2829 return 0;
2830
2831 {
2832 int nbits;
433759f7 2833
f41f5e61
PA
2834 SET_FIELD_BITPOS (fip->list->field,
2835 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2836 if (nbits != 0)
2837 return 0;
2838 }
2839 /* This field is unpacked. */
2840 FIELD_BITSIZE (fip->list->field) = 0;
2841 fip->list->visibility = VISIBILITY_PRIVATE;
2842 }
2843 else
2844 {
23136709 2845 invalid_cpp_abbrev_complaint (*pp);
c906108c 2846 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2847 better return 0. If we returned 1, we would need to at least advance
2848 *pp to avoid an infinite loop. */
c906108c
SS
2849 return 0;
2850 }
2851 return 1;
2852}
2853
2854static void
fba45db2
KB
2855read_one_struct_field (struct field_info *fip, char **pp, char *p,
2856 struct type *type, struct objfile *objfile)
c906108c 2857{
5e2b427d
UW
2858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2859
224c3ddb
SM
2860 fip->list->field.name
2861 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2862 *pp = p + 1;
2863
c378eb4e 2864 /* This means we have a visibility for a field coming. */
c906108c
SS
2865 if (**pp == '/')
2866 {
2867 (*pp)++;
c5aa993b 2868 fip->list->visibility = *(*pp)++;
c906108c
SS
2869 }
2870 else
2871 {
2872 /* normal dbx-style format, no explicit visibility */
c5aa993b 2873 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2874 }
2875
c5aa993b 2876 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2877 if (**pp == ':')
2878 {
2879 p = ++(*pp);
2880#if 0
c378eb4e 2881 /* Possible future hook for nested types. */
c906108c
SS
2882 if (**pp == '!')
2883 {
c5aa993b 2884 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2885 p = ++(*pp);
2886 }
c5aa993b
JM
2887 else
2888 ...;
c906108c 2889#endif
c5aa993b 2890 while (*p != ';')
c906108c
SS
2891 {
2892 p++;
2893 }
2894 /* Static class member. */
2895 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2896 *pp = p + 1;
2897 return;
2898 }
2899 else if (**pp != ',')
2900 {
2901 /* Bad structure-type format. */
23136709 2902 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2903 return;
2904 }
2905
2906 (*pp)++; /* Skip the comma. */
2907
2908 {
2909 int nbits;
433759f7 2910
f41f5e61
PA
2911 SET_FIELD_BITPOS (fip->list->field,
2912 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2913 if (nbits != 0)
2914 {
23136709 2915 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2916 return;
2917 }
94e10a22 2918 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2919 if (nbits != 0)
2920 {
23136709 2921 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2922 return;
2923 }
2924 }
2925
2926 if (FIELD_BITPOS (fip->list->field) == 0
2927 && FIELD_BITSIZE (fip->list->field) == 0)
2928 {
2929 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2930 it is a field which has been optimized out. The correct stab for
2931 this case is to use VISIBILITY_IGNORE, but that is a recent
2932 invention. (2) It is a 0-size array. For example
e2e0b3e5 2933 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2934 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2935 will continue to work, and a 0-size array as a whole doesn't
2936 have any contents to print.
2937
2938 I suspect this probably could also happen with gcc -gstabs (not
2939 -gstabs+) for static fields, and perhaps other C++ extensions.
2940 Hopefully few people use -gstabs with gdb, since it is intended
2941 for dbx compatibility. */
c906108c
SS
2942
2943 /* Ignore this field. */
c5aa993b 2944 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2945 }
2946 else
2947 {
2948 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2949 dbx gives a bit size for all fields.
2950 Note that forward refs cannot be packed,
2951 and treat enums as if they had the width of ints. */
c906108c
SS
2952
2953 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2954
2955 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2956 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2957 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2958 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2959 {
2960 FIELD_BITSIZE (fip->list->field) = 0;
2961 }
c5aa993b 2962 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2963 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2964 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2965 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2966 == gdbarch_int_bit (gdbarch))
c5aa993b 2967 )
c906108c
SS
2968 &&
2969 FIELD_BITPOS (fip->list->field) % 8 == 0)
2970 {
2971 FIELD_BITSIZE (fip->list->field) = 0;
2972 }
2973 }
2974}
2975
2976
2977/* Read struct or class data fields. They have the form:
2978
c5aa993b 2979 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2980
2981 At the end, we see a semicolon instead of a field.
2982
2983 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2984 a static field.
2985
2986 The optional VISIBILITY is one of:
2987
c5aa993b
JM
2988 '/0' (VISIBILITY_PRIVATE)
2989 '/1' (VISIBILITY_PROTECTED)
2990 '/2' (VISIBILITY_PUBLIC)
2991 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2992
2993 or nothing, for C style fields with public visibility.
2994
2995 Returns 1 for success, 0 for failure. */
2996
2997static int
fba45db2
KB
2998read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2999 struct objfile *objfile)
c906108c 3000{
52f0bd74 3001 char *p;
fe978cb0 3002 struct nextfield *newobj;
c906108c
SS
3003
3004 /* We better set p right now, in case there are no fields at all... */
3005
3006 p = *pp;
3007
3008 /* Read each data member type until we find the terminating ';' at the end of
3009 the data member list, or break for some other reason such as finding the
c378eb4e 3010 start of the member function list. */
fedbd091 3011 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3012 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3013
fedbd091 3014 while (**pp != ';' && **pp != '\0')
c906108c 3015 {
c906108c
SS
3016 STABS_CONTINUE (pp, objfile);
3017 /* Get space to record the next field's data. */
8d749320 3018 newobj = XCNEW (struct nextfield);
fe978cb0 3019 make_cleanup (xfree, newobj);
8d749320 3020
fe978cb0
PA
3021 newobj->next = fip->list;
3022 fip->list = newobj;
c906108c
SS
3023
3024 /* Get the field name. */
3025 p = *pp;
3026
3027 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3028 unless the CPLUS_MARKER is followed by an underscore, in
3029 which case it is just the name of an anonymous type, which we
3030 should handle like any other type name. */
c906108c
SS
3031
3032 if (is_cplus_marker (p[0]) && p[1] != '_')
3033 {
3034 if (!read_cpp_abbrev (fip, pp, type, objfile))
3035 return 0;
3036 continue;
3037 }
3038
3039 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3040 values. Data members are delimited by a single ':', while member
3041 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3042 functions (if any), terminate scan loop and return. */
c906108c 3043
c5aa993b 3044 while (*p != ':' && *p != '\0')
c906108c
SS
3045 {
3046 p++;
3047 }
3048 if (*p == '\0')
3049 return 0;
3050
3051 /* Check to see if we have hit the member functions yet. */
3052 if (p[1] == ':')
3053 {
3054 break;
3055 }
3056 read_one_struct_field (fip, pp, p, type, objfile);
3057 }
3058 if (p[0] == ':' && p[1] == ':')
3059 {
1b831c93
AC
3060 /* (the deleted) chill the list of fields: the last entry (at
3061 the head) is a partially constructed entry which we now
c378eb4e 3062 scrub. */
c5aa993b 3063 fip->list = fip->list->next;
c906108c
SS
3064 }
3065 return 1;
3066}
9846de1b 3067/* *INDENT-OFF* */
c906108c
SS
3068/* The stabs for C++ derived classes contain baseclass information which
3069 is marked by a '!' character after the total size. This function is
3070 called when we encounter the baseclass marker, and slurps up all the
3071 baseclass information.
3072
3073 Immediately following the '!' marker is the number of base classes that
3074 the class is derived from, followed by information for each base class.
3075 For each base class, there are two visibility specifiers, a bit offset
3076 to the base class information within the derived class, a reference to
3077 the type for the base class, and a terminating semicolon.
3078
3079 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3080 ^^ ^ ^ ^ ^ ^ ^
3081 Baseclass information marker __________________|| | | | | | |
3082 Number of baseclasses __________________________| | | | | | |
3083 Visibility specifiers (2) ________________________| | | | | |
3084 Offset in bits from start of class _________________| | | | |
3085 Type number for base class ___________________________| | | |
3086 Visibility specifiers (2) _______________________________| | |
3087 Offset in bits from start of class ________________________| |
3088 Type number of base class ____________________________________|
3089
3090 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3091/* *INDENT-ON* */
c906108c 3092
c5aa993b
JM
3093
3094
c906108c 3095static int
fba45db2
KB
3096read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3097 struct objfile *objfile)
c906108c
SS
3098{
3099 int i;
fe978cb0 3100 struct nextfield *newobj;
c906108c
SS
3101
3102 if (**pp != '!')
3103 {
3104 return 1;
3105 }
3106 else
3107 {
c378eb4e 3108 /* Skip the '!' baseclass information marker. */
c906108c
SS
3109 (*pp)++;
3110 }
3111
3112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3113 {
3114 int nbits;
433759f7 3115
94e10a22 3116 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3117 if (nbits != 0)
3118 return 0;
3119 }
3120
3121#if 0
3122 /* Some stupid compilers have trouble with the following, so break
3123 it up into simpler expressions. */
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3125 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3126#else
3127 {
3128 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3129 char *pointer;
3130
3131 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3132 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3133 }
3134#endif /* 0 */
3135
3136 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3137
3138 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3139 {
8d749320 3140 newobj = XCNEW (struct nextfield);
fe978cb0 3141 make_cleanup (xfree, newobj);
8d749320 3142
fe978cb0
PA
3143 newobj->next = fip->list;
3144 fip->list = newobj;
3145 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3146 field! */
c906108c
SS
3147
3148 STABS_CONTINUE (pp, objfile);
3149 switch (**pp)
3150 {
c5aa993b 3151 case '0':
c378eb4e 3152 /* Nothing to do. */
c5aa993b
JM
3153 break;
3154 case '1':
3155 SET_TYPE_FIELD_VIRTUAL (type, i);
3156 break;
3157 default:
3158 /* Unknown character. Complain and treat it as non-virtual. */
3159 {
23136709 3160 complaint (&symfile_complaints,
3e43a32a
MS
3161 _("Unknown virtual character `%c' for baseclass"),
3162 **pp);
c5aa993b 3163 }
c906108c
SS
3164 }
3165 ++(*pp);
3166
fe978cb0
PA
3167 newobj->visibility = *(*pp)++;
3168 switch (newobj->visibility)
c906108c 3169 {
c5aa993b
JM
3170 case VISIBILITY_PRIVATE:
3171 case VISIBILITY_PROTECTED:
3172 case VISIBILITY_PUBLIC:
3173 break;
3174 default:
3175 /* Bad visibility format. Complain and treat it as
3176 public. */
3177 {
23136709 3178 complaint (&symfile_complaints,
e2e0b3e5 3179 _("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3180 newobj->visibility);
3181 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3182 }
c906108c
SS
3183 }
3184
3185 {
3186 int nbits;
c5aa993b 3187
c906108c
SS
3188 /* The remaining value is the bit offset of the portion of the object
3189 corresponding to this baseclass. Always zero in the absence of
3190 multiple inheritance. */
3191
fe978cb0 3192 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3193 if (nbits != 0)
3194 return 0;
3195 }
3196
3197 /* The last piece of baseclass information is the type of the
c5aa993b 3198 base class. Read it, and remember it's type name as this
c378eb4e 3199 field's name. */
c906108c 3200
fe978cb0
PA
3201 newobj->field.type = read_type (pp, objfile);
3202 newobj->field.name = type_name_no_tag (newobj->field.type);
c906108c 3203
c378eb4e 3204 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3205 if (**pp == ';')
3206 (*pp)++;
3207 else
3208 return 0;
3209 }
3210 return 1;
3211}
3212
3213/* The tail end of stabs for C++ classes that contain a virtual function
3214 pointer contains a tilde, a %, and a type number.
3215 The type number refers to the base class (possibly this class itself) which
3216 contains the vtable pointer for the current class.
3217
3218 This function is called when we have parsed all the method declarations,
3219 so we can look for the vptr base class info. */
3220
3221static int
fba45db2
KB
3222read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3223 struct objfile *objfile)
c906108c 3224{
52f0bd74 3225 char *p;
c906108c
SS
3226
3227 STABS_CONTINUE (pp, objfile);
3228
c378eb4e 3229 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3230 if (**pp == ';')
3231 {
3232 (*pp)++;
3233 }
3234
3235 if (**pp == '~')
3236 {
3237 (*pp)++;
3238
3239 if (**pp == '=' || **pp == '+' || **pp == '-')
3240 {
3241 /* Obsolete flags that used to indicate the presence
c378eb4e 3242 of constructors and/or destructors. */
c906108c
SS
3243 (*pp)++;
3244 }
3245
3246 /* Read either a '%' or the final ';'. */
3247 if (*(*pp)++ == '%')
3248 {
3249 /* The next number is the type number of the base class
3250 (possibly our own class) which supplies the vtable for
3251 this class. Parse it out, and search that class to find
3252 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3253 and TYPE_VPTR_FIELDNO. */
3254
3255 struct type *t;
3256 int i;
3257
3258 t = read_type (pp, objfile);
3259 p = (*pp)++;
3260 while (*p != '\0' && *p != ';')
3261 {
3262 p++;
3263 }
3264 if (*p == '\0')
3265 {
3266 /* Premature end of symbol. */
3267 return 0;
3268 }
c5aa993b 3269
ae6ae975 3270 set_type_vptr_basetype (type, t);
c378eb4e 3271 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3272 {
3273 for (i = TYPE_NFIELDS (t) - 1;
3274 i >= TYPE_N_BASECLASSES (t);
3275 --i)
3276 {
0d5cff50 3277 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3278
8343f86c 3279 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3280 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3281 {
ae6ae975 3282 set_type_vptr_fieldno (type, i);
c906108c
SS
3283 goto gotit;
3284 }
3285 }
3286 /* Virtual function table field not found. */
23136709 3287 complaint (&symfile_complaints,
3e43a32a
MS
3288 _("virtual function table pointer "
3289 "not found when defining class `%s'"),
23136709 3290 TYPE_NAME (type));
c906108c
SS
3291 return 0;
3292 }
3293 else
3294 {
ae6ae975 3295 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3296 }
3297
c5aa993b 3298 gotit:
c906108c
SS
3299 *pp = p + 1;
3300 }
3301 }
3302 return 1;
3303}
3304
3305static int
aa1ee363 3306attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3307{
52f0bd74 3308 int n;
c906108c
SS
3309
3310 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3311 fip->fnlist != NULL;
3312 fip->fnlist = fip->fnlist->next)
c906108c 3313 {
c378eb4e 3314 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3315 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3316 }
3317 return 1;
3318}
3319
c906108c
SS
3320/* Create the vector of fields, and record how big it is.
3321 We need this info to record proper virtual function table information
3322 for this class's virtual functions. */
3323
3324static int
aa1ee363 3325attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3326 struct objfile *objfile)
c906108c 3327{
52f0bd74
AC
3328 int nfields = 0;
3329 int non_public_fields = 0;
3330 struct nextfield *scan;
c906108c
SS
3331
3332 /* Count up the number of fields that we have, as well as taking note of
3333 whether or not there are any non-public fields, which requires us to
3334 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3335 bitfields. */
c906108c 3336
c5aa993b 3337 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3338 {
3339 nfields++;
c5aa993b 3340 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3341 {
3342 non_public_fields++;
3343 }
3344 }
3345
3346 /* Now we know how many fields there are, and whether or not there are any
3347 non-public fields. Record the field count, allocate space for the
c378eb4e 3348 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3349
3350 TYPE_NFIELDS (type) = nfields;
3351 TYPE_FIELDS (type) = (struct field *)
3352 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3353 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3354
3355 if (non_public_fields)
3356 {
3357 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3358
3359 TYPE_FIELD_PRIVATE_BITS (type) =
3360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3362
3363 TYPE_FIELD_PROTECTED_BITS (type) =
3364 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3365 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3366
3367 TYPE_FIELD_IGNORE_BITS (type) =
3368 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3369 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3370 }
3371
c378eb4e
MS
3372 /* Copy the saved-up fields into the field vector. Start from the
3373 head of the list, adding to the tail of the field array, so that
3374 they end up in the same order in the array in which they were
3375 added to the list. */
c906108c
SS
3376
3377 while (nfields-- > 0)
3378 {
c5aa993b
JM
3379 TYPE_FIELD (type, nfields) = fip->list->field;
3380 switch (fip->list->visibility)
c906108c 3381 {
c5aa993b
JM
3382 case VISIBILITY_PRIVATE:
3383 SET_TYPE_FIELD_PRIVATE (type, nfields);
3384 break;
c906108c 3385
c5aa993b
JM
3386 case VISIBILITY_PROTECTED:
3387 SET_TYPE_FIELD_PROTECTED (type, nfields);
3388 break;
c906108c 3389
c5aa993b
JM
3390 case VISIBILITY_IGNORE:
3391 SET_TYPE_FIELD_IGNORE (type, nfields);
3392 break;
c906108c 3393
c5aa993b
JM
3394 case VISIBILITY_PUBLIC:
3395 break;
c906108c 3396
c5aa993b
JM
3397 default:
3398 /* Unknown visibility. Complain and treat it as public. */
3399 {
3e43a32a
MS
3400 complaint (&symfile_complaints,
3401 _("Unknown visibility `%c' for field"),
23136709 3402 fip->list->visibility);
c5aa993b
JM
3403 }
3404 break;
c906108c 3405 }
c5aa993b 3406 fip->list = fip->list->next;
c906108c
SS
3407 }
3408 return 1;
3409}
3410
2ae1c2d2 3411
2ae1c2d2
JB
3412/* Complain that the compiler has emitted more than one definition for the
3413 structure type TYPE. */
3414static void
3415complain_about_struct_wipeout (struct type *type)
3416{
0d5cff50
DE
3417 const char *name = "";
3418 const char *kind = "";
2ae1c2d2
JB
3419
3420 if (TYPE_TAG_NAME (type))
3421 {
3422 name = TYPE_TAG_NAME (type);
3423 switch (TYPE_CODE (type))
3424 {
3425 case TYPE_CODE_STRUCT: kind = "struct "; break;
3426 case TYPE_CODE_UNION: kind = "union "; break;
3427 case TYPE_CODE_ENUM: kind = "enum "; break;
3428 default: kind = "";
3429 }
3430 }
3431 else if (TYPE_NAME (type))
3432 {
3433 name = TYPE_NAME (type);
3434 kind = "";
3435 }
3436 else
3437 {
3438 name = "<unknown>";
3439 kind = "";
3440 }
3441
23136709 3442 complaint (&symfile_complaints,
e2e0b3e5 3443 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3444}
3445
621791b8
PM
3446/* Set the length for all variants of a same main_type, which are
3447 connected in the closed chain.
3448
3449 This is something that needs to be done when a type is defined *after*
3450 some cross references to this type have already been read. Consider
3451 for instance the following scenario where we have the following two
3452 stabs entries:
3453
3454 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3455 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3456
3457 A stubbed version of type dummy is created while processing the first
3458 stabs entry. The length of that type is initially set to zero, since
3459 it is unknown at this point. Also, a "constant" variation of type
3460 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3461 the stabs line).
3462
3463 The second stabs entry allows us to replace the stubbed definition
3464 with the real definition. However, we still need to adjust the length
3465 of the "constant" variation of that type, as its length was left
3466 untouched during the main type replacement... */
3467
3468static void
9e69f3b6 3469set_length_in_type_chain (struct type *type)
621791b8
PM
3470{
3471 struct type *ntype = TYPE_CHAIN (type);
3472
3473 while (ntype != type)
3474 {
3475 if (TYPE_LENGTH(ntype) == 0)
3476 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3477 else
3478 complain_about_struct_wipeout (ntype);
3479 ntype = TYPE_CHAIN (ntype);
3480 }
3481}
2ae1c2d2 3482
c906108c
SS
3483/* Read the description of a structure (or union type) and return an object
3484 describing the type.
3485
3486 PP points to a character pointer that points to the next unconsumed token
b021a221 3487 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3488 *PP will point to "4a:1,0,32;;".
3489
3490 TYPE points to an incomplete type that needs to be filled in.
3491
3492 OBJFILE points to the current objfile from which the stabs information is
3493 being read. (Note that it is redundant in that TYPE also contains a pointer
3494 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3495 */
c906108c
SS
3496
3497static struct type *
2ae1c2d2
JB
3498read_struct_type (char **pp, struct type *type, enum type_code type_code,
3499 struct objfile *objfile)
c906108c
SS
3500{
3501 struct cleanup *back_to;
3502 struct field_info fi;
3503
3504 fi.list = NULL;
3505 fi.fnlist = NULL;
3506
2ae1c2d2
JB
3507 /* When describing struct/union/class types in stabs, G++ always drops
3508 all qualifications from the name. So if you've got:
3509 struct A { ... struct B { ... }; ... };
3510 then G++ will emit stabs for `struct A::B' that call it simply
3511 `struct B'. Obviously, if you've got a real top-level definition for
3512 `struct B', or other nested definitions, this is going to cause
3513 problems.
3514
3515 Obviously, GDB can't fix this by itself, but it can at least avoid
3516 scribbling on existing structure type objects when new definitions
3517 appear. */
3518 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3519 || TYPE_STUB (type)))
3520 {
3521 complain_about_struct_wipeout (type);
3522
3523 /* It's probably best to return the type unchanged. */
3524 return type;
3525 }
3526
c906108c
SS
3527 back_to = make_cleanup (null_cleanup, 0);
3528
3529 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3530 TYPE_CODE (type) = type_code;
876cecd0 3531 TYPE_STUB (type) = 0;
c906108c
SS
3532
3533 /* First comes the total size in bytes. */
3534
3535 {
3536 int nbits;
433759f7 3537
94e10a22 3538 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3539 if (nbits != 0)
73b8d9da
TT
3540 {
3541 do_cleanups (back_to);
3542 return error_type (pp, objfile);
3543 }
621791b8 3544 set_length_in_type_chain (type);
c906108c
SS
3545 }
3546
3547 /* Now read the baseclasses, if any, read the regular C struct or C++
3548 class member fields, attach the fields to the type, read the C++
3549 member functions, attach them to the type, and then read any tilde
3e43a32a 3550 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3551
3552 if (!read_baseclasses (&fi, pp, type, objfile)
3553 || !read_struct_fields (&fi, pp, type, objfile)
3554 || !attach_fields_to_type (&fi, type, objfile)
3555 || !read_member_functions (&fi, pp, type, objfile)
3556 || !attach_fn_fields_to_type (&fi, type)
3557 || !read_tilde_fields (&fi, pp, type, objfile))
3558 {
3559 type = error_type (pp, objfile);
3560 }
3561
3562 do_cleanups (back_to);
3563 return (type);
3564}
3565
3566/* Read a definition of an array type,
3567 and create and return a suitable type object.
3568 Also creates a range type which represents the bounds of that
3569 array. */
3570
3571static struct type *
aa1ee363 3572read_array_type (char **pp, struct type *type,
fba45db2 3573 struct objfile *objfile)
c906108c
SS
3574{
3575 struct type *index_type, *element_type, *range_type;
3576 int lower, upper;
3577 int adjustable = 0;
3578 int nbits;
3579
3580 /* Format of an array type:
3581 "ar<index type>;lower;upper;<array_contents_type>".
3582 OS9000: "arlower,upper;<array_contents_type>".
3583
3584 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3585 for these, produce a type like float[][]. */
3586
c906108c
SS
3587 {
3588 index_type = read_type (pp, objfile);
3589 if (**pp != ';')
3590 /* Improper format of array type decl. */
3591 return error_type (pp, objfile);
3592 ++*pp;
3593 }
3594
3595 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3596 {
3597 (*pp)++;
3598 adjustable = 1;
3599 }
94e10a22 3600 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3601
c906108c
SS
3602 if (nbits != 0)
3603 return error_type (pp, objfile);
3604
3605 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3606 {
3607 (*pp)++;
3608 adjustable = 1;
3609 }
94e10a22 3610 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3611 if (nbits != 0)
3612 return error_type (pp, objfile);
c5aa993b 3613
c906108c
SS
3614 element_type = read_type (pp, objfile);
3615
3616 if (adjustable)
3617 {
3618 lower = 0;
3619 upper = -1;
3620 }
3621
3622 range_type =
0c9c3474 3623 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3624 type = create_array_type (type, element_type, range_type);
3625
3626 return type;
3627}
3628
3629
3630/* Read a definition of an enumeration type,
3631 and create and return a suitable type object.
3632 Also defines the symbols that represent the values of the type. */
3633
3634static struct type *
aa1ee363 3635read_enum_type (char **pp, struct type *type,
fba45db2 3636 struct objfile *objfile)
c906108c 3637{
5e2b427d 3638 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3639 char *p;
c906108c 3640 char *name;
52f0bd74
AC
3641 long n;
3642 struct symbol *sym;
c906108c
SS
3643 int nsyms = 0;
3644 struct pending **symlist;
3645 struct pending *osyms, *syms;
3646 int o_nsyms;
3647 int nbits;
3648 int unsigned_enum = 1;
3649
3650#if 0
3651 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3652 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3653 to do? For now, force all enum values to file scope. */
3654 if (within_function)
3655 symlist = &local_symbols;
3656 else
3657#endif
3658 symlist = &file_symbols;
3659 osyms = *symlist;
3660 o_nsyms = osyms ? osyms->nsyms : 0;
3661
c906108c
SS
3662 /* The aix4 compiler emits an extra field before the enum members;
3663 my guess is it's a type of some sort. Just ignore it. */
3664 if (**pp == '-')
3665 {
3666 /* Skip over the type. */
3667 while (**pp != ':')
c5aa993b 3668 (*pp)++;
c906108c
SS
3669
3670 /* Skip over the colon. */
3671 (*pp)++;
3672 }
3673
3674 /* Read the value-names and their values.
3675 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3676 A semicolon or comma instead of a NAME means the end. */
3677 while (**pp && **pp != ';' && **pp != ',')
3678 {
3679 STABS_CONTINUE (pp, objfile);
3680 p = *pp;
c5aa993b
JM
3681 while (*p != ':')
3682 p++;
224c3ddb 3683 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3684 *pp = p + 1;
94e10a22 3685 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3686 if (nbits != 0)
3687 return error_type (pp, objfile);
3688
e623cf5d 3689 sym = allocate_symbol (objfile);
3567439c 3690 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3691 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3692 &objfile->objfile_obstack);
f1e6e072 3693 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3694 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3695 SYMBOL_VALUE (sym) = n;
3696 if (n < 0)
3697 unsigned_enum = 0;
3698 add_symbol_to_list (sym, symlist);
3699 nsyms++;
3700 }
3701
3702 if (**pp == ';')
3703 (*pp)++; /* Skip the semicolon. */
3704
3705 /* Now fill in the fields of the type-structure. */
3706
5e2b427d 3707 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3708 set_length_in_type_chain (type);
c906108c 3709 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3710 TYPE_STUB (type) = 0;
c906108c 3711 if (unsigned_enum)
876cecd0 3712 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3713 TYPE_NFIELDS (type) = nsyms;
3714 TYPE_FIELDS (type) = (struct field *)
3715 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3716 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3717
3718 /* Find the symbols for the values and put them into the type.
3719 The symbols can be found in the symlist that we put them on
3720 to cause them to be defined. osyms contains the old value
3721 of that symlist; everything up to there was defined by us. */
3722 /* Note that we preserve the order of the enum constants, so
3723 that in something like "enum {FOO, LAST_THING=FOO}" we print
3724 FOO, not LAST_THING. */
3725
3726 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3727 {
3728 int last = syms == osyms ? o_nsyms : 0;
3729 int j = syms->nsyms;
433759f7 3730
c906108c
SS
3731 for (; --j >= last; --n)
3732 {
3733 struct symbol *xsym = syms->symbol[j];
433759f7 3734
c906108c 3735 SYMBOL_TYPE (xsym) = type;
3567439c 3736 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3737 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3738 TYPE_FIELD_BITSIZE (type, n) = 0;
3739 }
3740 if (syms == osyms)
3741 break;
3742 }
3743
3744 return type;
3745}
3746
3747/* Sun's ACC uses a somewhat saner method for specifying the builtin
3748 typedefs in every file (for int, long, etc):
3749
c5aa993b
JM
3750 type = b <signed> <width> <format type>; <offset>; <nbits>
3751 signed = u or s.
3752 optional format type = c or b for char or boolean.
3753 offset = offset from high order bit to start bit of type.
3754 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3755
3756 The width/offset stuff appears to be for small objects stored in
3757 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3758 FIXME. */
3759
3760static struct type *
35a2f538 3761read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3762{
3763 int type_bits;
3764 int nbits;
3765 int signed_type;
3766 enum type_code code = TYPE_CODE_INT;
3767
3768 switch (**pp)
3769 {
c5aa993b
JM
3770 case 's':
3771 signed_type = 1;
3772 break;
3773 case 'u':
3774 signed_type = 0;
3775 break;
3776 default:
3777 return error_type (pp, objfile);
c906108c
SS
3778 }
3779 (*pp)++;
3780
3781 /* For some odd reason, all forms of char put a c here. This is strange
3782 because no other type has this honor. We can safely ignore this because
3783 we actually determine 'char'acterness by the number of bits specified in
3784 the descriptor.
3785 Boolean forms, e.g Fortran logical*X, put a b here. */
3786
3787 if (**pp == 'c')
3788 (*pp)++;
3789 else if (**pp == 'b')
3790 {
3791 code = TYPE_CODE_BOOL;
3792 (*pp)++;
3793 }
3794
3795 /* The first number appears to be the number of bytes occupied
3796 by this type, except that unsigned short is 4 instead of 2.
3797 Since this information is redundant with the third number,
3798 we will ignore it. */
94e10a22 3799 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
c378eb4e 3803 /* The second number is always 0, so ignore it too. */
94e10a22 3804 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807
c378eb4e 3808 /* The third number is the number of bits for this type. */
94e10a22 3809 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3810 if (nbits != 0)
3811 return error_type (pp, objfile);
3812 /* The type *should* end with a semicolon. If it are embedded
3813 in a larger type the semicolon may be the only way to know where
3814 the type ends. If this type is at the end of the stabstring we
3815 can deal with the omitted semicolon (but we don't have to like
3816 it). Don't bother to complain(), Sun's compiler omits the semicolon
3817 for "void". */
3818 if (**pp == ';')
3819 ++(*pp);
3820
3821 if (type_bits == 0)
3822 return init_type (TYPE_CODE_VOID, 1,
c5aa993b 3823 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3824 objfile);
3825 else
3826 return init_type (code,
3827 type_bits / TARGET_CHAR_BIT,
c5aa993b 3828 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3829 objfile);
3830}
3831
3832static struct type *
35a2f538 3833read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3834{
3835 int nbits;
3836 int details;
3837 int nbytes;
f65ca430 3838 struct type *rettype;
c906108c
SS
3839
3840 /* The first number has more details about the type, for example
3841 FN_COMPLEX. */
94e10a22 3842 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
c378eb4e 3846 /* The second number is the number of bytes occupied by this type. */
94e10a22 3847 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3848 if (nbits != 0)
3849 return error_type (pp, objfile);
3850
3851 if (details == NF_COMPLEX || details == NF_COMPLEX16
3852 || details == NF_COMPLEX32)
f65ca430
DJ
3853 {
3854 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3855 TYPE_TARGET_TYPE (rettype)
3856 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3857 return rettype;
3858 }
c906108c
SS
3859
3860 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3861}
3862
3863/* Read a number from the string pointed to by *PP.
3864 The value of *PP is advanced over the number.
3865 If END is nonzero, the character that ends the
3866 number must match END, or an error happens;
3867 and that character is skipped if it does match.
3868 If END is zero, *PP is left pointing to that character.
3869
94e10a22
JG
3870 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3871 the number is represented in an octal representation, assume that
3872 it is represented in a 2's complement representation with a size of
3873 TWOS_COMPLEMENT_BITS.
3874
c906108c
SS
3875 If the number fits in a long, set *BITS to 0 and return the value.
3876 If not, set *BITS to be the number of bits in the number and return 0.
3877
3878 If encounter garbage, set *BITS to -1 and return 0. */
3879
c2d11a7d 3880static long
94e10a22 3881read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3882{
3883 char *p = *pp;
3884 int sign = 1;
51e9e0d4 3885 int sign_bit = 0;
c2d11a7d 3886 long n = 0;
c906108c
SS
3887 int radix = 10;
3888 char overflow = 0;
3889 int nbits = 0;
3890 int c;
c2d11a7d 3891 long upper_limit;
a2699720 3892 int twos_complement_representation = 0;
c5aa993b 3893
c906108c
SS
3894 if (*p == '-')
3895 {
3896 sign = -1;
3897 p++;
3898 }
3899
3900 /* Leading zero means octal. GCC uses this to output values larger
3901 than an int (because that would be hard in decimal). */
3902 if (*p == '0')
3903 {
3904 radix = 8;
3905 p++;
3906 }
3907
a2699720
PA
3908 /* Skip extra zeros. */
3909 while (*p == '0')
3910 p++;
3911
3912 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3913 {
3914 /* Octal, possibly signed. Check if we have enough chars for a
3915 negative number. */
3916
3917 size_t len;
3918 char *p1 = p;
433759f7 3919
a2699720
PA
3920 while ((c = *p1) >= '0' && c < '8')
3921 p1++;
3922
3923 len = p1 - p;
3924 if (len > twos_complement_bits / 3
3e43a32a
MS
3925 || (twos_complement_bits % 3 == 0
3926 && len == twos_complement_bits / 3))
a2699720
PA
3927 {
3928 /* Ok, we have enough characters for a signed value, check
3929 for signness by testing if the sign bit is set. */
3930 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3931 c = *p - '0';
3932 if (c & (1 << sign_bit))
3933 {
3934 /* Definitely signed. */
3935 twos_complement_representation = 1;
3936 sign = -1;
3937 }
3938 }
3939 }
3940
1b831c93 3941 upper_limit = LONG_MAX / radix;
c906108c
SS
3942
3943 while ((c = *p++) >= '0' && c < ('0' + radix))
3944 {
3945 if (n <= upper_limit)
94e10a22
JG
3946 {
3947 if (twos_complement_representation)
3948 {
a2699720
PA
3949 /* Octal, signed, twos complement representation. In
3950 this case, n is the corresponding absolute value. */
3951 if (n == 0)
3952 {
3953 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3954
a2699720
PA
3955 n = -sn;
3956 }
94e10a22
JG
3957 else
3958 {
a2699720
PA
3959 n *= radix;
3960 n -= c - '0';
94e10a22 3961 }
94e10a22
JG
3962 }
3963 else
3964 {
3965 /* unsigned representation */
3966 n *= radix;
c378eb4e 3967 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3968 }
3969 }
c906108c 3970 else
94e10a22 3971 overflow = 1;
c5aa993b 3972
c906108c 3973 /* This depends on large values being output in octal, which is
c378eb4e 3974 what GCC does. */
c906108c
SS
3975 if (radix == 8)
3976 {
3977 if (nbits == 0)
3978 {
3979 if (c == '0')
3980 /* Ignore leading zeroes. */
3981 ;
3982 else if (c == '1')
3983 nbits = 1;
3984 else if (c == '2' || c == '3')
3985 nbits = 2;
3986 else
3987 nbits = 3;
3988 }
3989 else
3990 nbits += 3;
3991 }
3992 }
3993 if (end)
3994 {
3995 if (c && c != end)
3996 {
3997 if (bits != NULL)
3998 *bits = -1;
3999 return 0;
4000 }
4001 }
4002 else
4003 --p;
4004
a2699720
PA
4005 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4006 {
4007 /* We were supposed to parse a number with maximum
4008 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4009 if (bits != NULL)
4010 *bits = -1;
4011 return 0;
4012 }
4013
c906108c
SS
4014 *pp = p;
4015 if (overflow)
4016 {
4017 if (nbits == 0)
4018 {
4019 /* Large decimal constants are an error (because it is hard to
4020 count how many bits are in them). */
4021 if (bits != NULL)
4022 *bits = -1;
4023 return 0;
4024 }
c5aa993b 4025
c906108c 4026 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4027 the number of bits. Two's complement represention octals
4028 can't have a '-' in front. */
4029 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4030 ++nbits;
4031 if (bits)
4032 *bits = nbits;
4033 }
4034 else
4035 {
4036 if (bits)
4037 *bits = 0;
a2699720 4038 return n * sign;
c906108c
SS
4039 }
4040 /* It's *BITS which has the interesting information. */
4041 return 0;
4042}
4043
4044static struct type *
94e10a22
JG
4045read_range_type (char **pp, int typenums[2], int type_size,
4046 struct objfile *objfile)
c906108c 4047{
5e2b427d 4048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4049 char *orig_pp = *pp;
4050 int rangenums[2];
c2d11a7d 4051 long n2, n3;
c906108c
SS
4052 int n2bits, n3bits;
4053 int self_subrange;
4054 struct type *result_type;
4055 struct type *index_type = NULL;
4056
4057 /* First comes a type we are a subrange of.
4058 In C it is usually 0, 1 or the type being defined. */
4059 if (read_type_number (pp, rangenums) != 0)
4060 return error_type (pp, objfile);
4061 self_subrange = (rangenums[0] == typenums[0] &&
4062 rangenums[1] == typenums[1]);
4063
4064 if (**pp == '=')
4065 {
4066 *pp = orig_pp;
4067 index_type = read_type (pp, objfile);
4068 }
4069
4070 /* A semicolon should now follow; skip it. */
4071 if (**pp == ';')
4072 (*pp)++;
4073
4074 /* The remaining two operands are usually lower and upper bounds
4075 of the range. But in some special cases they mean something else. */
94e10a22
JG
4076 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4077 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4078
4079 if (n2bits == -1 || n3bits == -1)
4080 return error_type (pp, objfile);
4081
4082 if (index_type)
4083 goto handle_true_range;
4084
4085 /* If limits are huge, must be large integral type. */
4086 if (n2bits != 0 || n3bits != 0)
4087 {
4088 char got_signed = 0;
4089 char got_unsigned = 0;
4090 /* Number of bits in the type. */
4091 int nbits = 0;
4092
94e10a22 4093 /* If a type size attribute has been specified, the bounds of
c378eb4e 4094 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4095 more bits than the upper bound, then the type is signed. */
4096 if (n2bits <= type_size && n3bits <= type_size)
4097 {
4098 if (n2bits == type_size && n2bits > n3bits)
4099 got_signed = 1;
4100 else
4101 got_unsigned = 1;
4102 nbits = type_size;
4103 }
c906108c 4104 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4105 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4106 {
4107 got_unsigned = 1;
4108 nbits = n3bits;
4109 }
4110 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4111 integral type. Take care of the case where <large number> doesn't
4112 fit in a long but <large number>-1 does. */
c906108c
SS
4113 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4114 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4115 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4116 && n3 == LONG_MAX))
c906108c
SS
4117 {
4118 got_signed = 1;
4119 nbits = n2bits;
4120 }
4121
4122 if (got_signed || got_unsigned)
4123 {
4124 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4125 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4126 objfile);
4127 }
4128 else
4129 return error_type (pp, objfile);
4130 }
4131
4132 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4133 if (self_subrange && n2 == 0 && n3 == 0)
4134 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4135
4136 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4137 is the width in bytes.
4138
4139 Fortran programs appear to use this for complex types also. To
4140 distinguish between floats and complex, g77 (and others?) seem
4141 to use self-subranges for the complexes, and subranges of int for
4142 the floats.
4143
4144 Also note that for complexes, g77 sets n2 to the size of one of
4145 the member floats, not the whole complex beast. My guess is that
c378eb4e 4146 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4147
4148 if (n3 == 0 && n2 > 0)
4149 {
1300f5dd
JB
4150 struct type *float_type
4151 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4152
c906108c
SS
4153 if (self_subrange)
4154 {
1300f5dd
JB
4155 struct type *complex_type =
4156 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
433759f7 4157
1300f5dd
JB
4158 TYPE_TARGET_TYPE (complex_type) = float_type;
4159 return complex_type;
c906108c
SS
4160 }
4161 else
1300f5dd 4162 return float_type;
c906108c
SS
4163 }
4164
a2699720 4165 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4166
4167 else if (n2 == 0 && n3 == -1)
4168 {
a2699720 4169 int bits = type_size;
433759f7 4170
a2699720
PA
4171 if (bits <= 0)
4172 {
4173 /* We don't know its size. It is unsigned int or unsigned
4174 long. GCC 2.3.3 uses this for long long too, but that is
4175 just a GDB 3.5 compatibility hack. */
5e2b427d 4176 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4177 }
4178
4179 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
c906108c
SS
4180 TYPE_FLAG_UNSIGNED, NULL, objfile);
4181 }
4182
4183 /* Special case: char is defined (Who knows why) as a subrange of
4184 itself with range 0-127. */
4185 else if (self_subrange && n2 == 0 && n3 == 127)
973ccf8b 4186 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
c906108c 4187
c906108c
SS
4188 /* We used to do this only for subrange of self or subrange of int. */
4189 else if (n2 == 0)
4190 {
a0b3c4fd
JM
4191 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4192 "unsigned long", and we already checked for that,
4193 so don't need to test for it here. */
4194
c906108c
SS
4195 if (n3 < 0)
4196 /* n3 actually gives the size. */
c5aa993b 4197 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
c906108c 4198 NULL, objfile);
c906108c 4199
7be570e7 4200 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4201 unsigned n-byte integer. But do require n to be a power of
4202 two; we don't want 3- and 5-byte integers flying around. */
4203 {
4204 int bytes;
4205 unsigned long bits;
4206
4207 bits = n3;
4208 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4209 bits >>= 8;
4210 if (bits == 0
4211 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4212 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4213 objfile);
4214 }
c906108c
SS
4215 }
4216 /* I think this is for Convex "long long". Since I don't know whether
4217 Convex sets self_subrange, I also accept that particular size regardless
4218 of self_subrange. */
4219 else if (n3 == 0 && n2 < 0
4220 && (self_subrange
9a76efb6 4221 || n2 == -gdbarch_long_long_bit
5e2b427d 4222 (gdbarch) / TARGET_CHAR_BIT))
c5aa993b
JM
4223 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4224 else if (n2 == -n3 - 1)
c906108c
SS
4225 {
4226 if (n3 == 0x7f)
4227 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4228 if (n3 == 0x7fff)
4229 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4230 if (n3 == 0x7fffffff)
4231 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4232 }
4233
4234 /* We have a real range type on our hands. Allocate space and
4235 return a real pointer. */
c5aa993b 4236handle_true_range:
c906108c
SS
4237
4238 if (self_subrange)
46bf5051 4239 index_type = objfile_type (objfile)->builtin_int;
c906108c 4240 else
46bf5051 4241 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4242 if (index_type == NULL)
4243 {
4244 /* Does this actually ever happen? Is that why we are worrying
4245 about dealing with it rather than just calling error_type? */
4246
23136709 4247 complaint (&symfile_complaints,
e2e0b3e5 4248 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4249
46bf5051 4250 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4251 }
4252
0c9c3474
SA
4253 result_type
4254 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4255 return (result_type);
4256}
4257
4258/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4259 and terminated with END. Return the list of types read in, or NULL
4260 if there is an error. */
c906108c 4261
ad2f7632
DJ
4262static struct field *
4263read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4264 int *varargsp)
c906108c
SS
4265{
4266 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4267 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4268 int n = 0, i;
4269 struct field *rval;
c906108c
SS
4270
4271 while (**pp != end)
4272 {
4273 if (**pp != ',')
4274 /* Invalid argument list: no ','. */
0a029df5 4275 return NULL;
c906108c
SS
4276 (*pp)++;
4277 STABS_CONTINUE (pp, objfile);
4278 types[n++] = read_type (pp, objfile);
4279 }
c378eb4e 4280 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4281
d24d8548
JK
4282 if (n == 0)
4283 {
4284 /* We should read at least the THIS parameter here. Some broken stabs
4285 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4286 have been present ";-16,(0,43)" reference instead. This way the
4287 excessive ";" marker prematurely stops the parameters parsing. */
4288
4289 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4290 *varargsp = 0;
4291 }
4292 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4293 *varargsp = 1;
c906108c
SS
4294 else
4295 {
ad2f7632
DJ
4296 n--;
4297 *varargsp = 0;
c906108c 4298 }
ad2f7632 4299
8d749320 4300 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4301 for (i = 0; i < n; i++)
4302 rval[i].type = types[i];
4303 *nargsp = n;
c906108c
SS
4304 return rval;
4305}
4306\f
4307/* Common block handling. */
4308
4309/* List of symbols declared since the last BCOMM. This list is a tail
4310 of local_symbols. When ECOMM is seen, the symbols on the list
4311 are noted so their proper addresses can be filled in later,
4312 using the common block base address gotten from the assembler
4313 stabs. */
4314
4315static struct pending *common_block;
4316static int common_block_i;
4317
4318/* Name of the current common block. We get it from the BCOMM instead of the
4319 ECOMM to match IBM documentation (even though IBM puts the name both places
4320 like everyone else). */
4321static char *common_block_name;
4322
4323/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4324 to remain after this function returns. */
4325
4326void
fba45db2 4327common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4328{
4329 if (common_block_name != NULL)
4330 {
23136709 4331 complaint (&symfile_complaints,
e2e0b3e5 4332 _("Invalid symbol data: common block within common block"));
c906108c
SS
4333 }
4334 common_block = local_symbols;
4335 common_block_i = local_symbols ? local_symbols->nsyms : 0;
224c3ddb
SM
4336 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4337 strlen (name));
c906108c
SS
4338}
4339
4340/* Process a N_ECOMM symbol. */
4341
4342void
fba45db2 4343common_block_end (struct objfile *objfile)
c906108c
SS
4344{
4345 /* Symbols declared since the BCOMM are to have the common block
4346 start address added in when we know it. common_block and
4347 common_block_i point to the first symbol after the BCOMM in
4348 the local_symbols list; copy the list and hang it off the
4349 symbol for the common block name for later fixup. */
4350 int i;
4351 struct symbol *sym;
fe978cb0 4352 struct pending *newobj = 0;
c906108c
SS
4353 struct pending *next;
4354 int j;
4355
4356 if (common_block_name == NULL)
4357 {
e2e0b3e5 4358 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4359 return;
4360 }
4361
e623cf5d 4362 sym = allocate_symbol (objfile);
c378eb4e 4363 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4364 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4365 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4366
4367 /* Now we copy all the symbols which have been defined since the BCOMM. */
4368
4369 /* Copy all the struct pendings before common_block. */
4370 for (next = local_symbols;
4371 next != NULL && next != common_block;
4372 next = next->next)
4373 {
4374 for (j = 0; j < next->nsyms; j++)
fe978cb0 4375 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4376 }
4377
4378 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4379 NULL, it means copy all the local symbols (which we already did
4380 above). */
4381
4382 if (common_block != NULL)
4383 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4384 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4385
fe978cb0 4386 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4387
4388 /* Should we be putting local_symbols back to what it was?
4389 Does it matter? */
4390
3567439c 4391 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4392 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4393 global_sym_chain[i] = sym;
4394 common_block_name = NULL;
4395}
4396
4397/* Add a common block's start address to the offset of each symbol
4398 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4399 the common block name). */
4400
4401static void
46cb6474 4402fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4403{
4404 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4405
c5aa993b 4406 for (; next; next = next->next)
c906108c 4407 {
aa1ee363 4408 int j;
433759f7 4409
c906108c
SS
4410 for (j = next->nsyms - 1; j >= 0; j--)
4411 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4412 }
4413}
c5aa993b 4414\f
c906108c
SS
4415
4416
bf362611
JB
4417/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4418 See add_undefined_type for more details. */
c906108c 4419
a7a48797 4420static void
bf362611
JB
4421add_undefined_type_noname (struct type *type, int typenums[2])
4422{
4423 struct nat nat;
4424
4425 nat.typenums[0] = typenums [0];
4426 nat.typenums[1] = typenums [1];
4427 nat.type = type;
4428
4429 if (noname_undefs_length == noname_undefs_allocated)
4430 {
4431 noname_undefs_allocated *= 2;
4432 noname_undefs = (struct nat *)
4433 xrealloc ((char *) noname_undefs,
4434 noname_undefs_allocated * sizeof (struct nat));
4435 }
4436 noname_undefs[noname_undefs_length++] = nat;
4437}
4438
4439/* Add TYPE to the UNDEF_TYPES vector.
4440 See add_undefined_type for more details. */
4441
4442static void
4443add_undefined_type_1 (struct type *type)
c906108c
SS
4444{
4445 if (undef_types_length == undef_types_allocated)
4446 {
4447 undef_types_allocated *= 2;
4448 undef_types = (struct type **)
4449 xrealloc ((char *) undef_types,
4450 undef_types_allocated * sizeof (struct type *));
4451 }
4452 undef_types[undef_types_length++] = type;
4453}
4454
bf362611
JB
4455/* What about types defined as forward references inside of a small lexical
4456 scope? */
4457/* Add a type to the list of undefined types to be checked through
4458 once this file has been read in.
4459
4460 In practice, we actually maintain two such lists: The first list
4461 (UNDEF_TYPES) is used for types whose name has been provided, and
4462 concerns forward references (eg 'xs' or 'xu' forward references);
4463 the second list (NONAME_UNDEFS) is used for types whose name is
4464 unknown at creation time, because they were referenced through
4465 their type number before the actual type was declared.
4466 This function actually adds the given type to the proper list. */
4467
4468static void
4469add_undefined_type (struct type *type, int typenums[2])
4470{
4471 if (TYPE_TAG_NAME (type) == NULL)
4472 add_undefined_type_noname (type, typenums);
4473 else
4474 add_undefined_type_1 (type);
4475}
4476
4477/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4478
2c0b251b 4479static void
46bf5051 4480cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4481{
4482 int i;
4483
4484 for (i = 0; i < noname_undefs_length; i++)
4485 {
4486 struct nat nat = noname_undefs[i];
4487 struct type **type;
4488
46bf5051 4489 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4490 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4491 {
4492 /* The instance flags of the undefined type are still unset,
4493 and needs to be copied over from the reference type.
4494 Since replace_type expects them to be identical, we need
4495 to set these flags manually before hand. */
4496 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4497 replace_type (nat.type, *type);
4498 }
bf362611
JB
4499 }
4500
4501 noname_undefs_length = 0;
4502}
4503
c906108c
SS
4504/* Go through each undefined type, see if it's still undefined, and fix it
4505 up if possible. We have two kinds of undefined types:
4506
4507 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4508 Fix: update array length using the element bounds
4509 and the target type's length.
c906108c 4510 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4511 yet defined at the time a pointer to it was made.
4512 Fix: Do a full lookup on the struct/union tag. */
bf362611 4513
2c0b251b 4514static void
bf362611 4515cleanup_undefined_types_1 (void)
c906108c
SS
4516{
4517 struct type **type;
4518
9e386756
JB
4519 /* Iterate over every undefined type, and look for a symbol whose type
4520 matches our undefined type. The symbol matches if:
4521 1. It is a typedef in the STRUCT domain;
4522 2. It has the same name, and same type code;
4523 3. The instance flags are identical.
4524
4525 It is important to check the instance flags, because we have seen
4526 examples where the debug info contained definitions such as:
4527
4528 "foo_t:t30=B31=xefoo_t:"
4529
4530 In this case, we have created an undefined type named "foo_t" whose
4531 instance flags is null (when processing "xefoo_t"), and then created
4532 another type with the same name, but with different instance flags
4533 ('B' means volatile). I think that the definition above is wrong,
4534 since the same type cannot be volatile and non-volatile at the same
4535 time, but we need to be able to cope with it when it happens. The
4536 approach taken here is to treat these two types as different. */
4537
c906108c
SS
4538 for (type = undef_types; type < undef_types + undef_types_length; type++)
4539 {
4540 switch (TYPE_CODE (*type))
4541 {
4542
c5aa993b
JM
4543 case TYPE_CODE_STRUCT:
4544 case TYPE_CODE_UNION:
4545 case TYPE_CODE_ENUM:
c906108c
SS
4546 {
4547 /* Check if it has been defined since. Need to do this here
4548 as well as in check_typedef to deal with the (legitimate in
4549 C though not C++) case of several types with the same name
4550 in different source files. */
74a9bb82 4551 if (TYPE_STUB (*type))
c906108c
SS
4552 {
4553 struct pending *ppt;
4554 int i;
c378eb4e 4555 /* Name of the type, without "struct" or "union". */
fe978cb0 4556 const char *type_name = TYPE_TAG_NAME (*type);
c906108c 4557
fe978cb0 4558 if (type_name == NULL)
c906108c 4559 {
e2e0b3e5 4560 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4561 break;
4562 }
4563 for (ppt = file_symbols; ppt; ppt = ppt->next)
4564 {
4565 for (i = 0; i < ppt->nsyms; i++)
4566 {
4567 struct symbol *sym = ppt->symbol[i];
c5aa993b 4568
c906108c 4569 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4570 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4571 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4572 TYPE_CODE (*type))
9e386756
JB
4573 && (TYPE_INSTANCE_FLAGS (*type) ==
4574 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4575 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4576 type_name) == 0)
13a393b0 4577 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4578 }
4579 }
4580 }
4581 }
4582 break;
4583
4584 default:
4585 {
23136709 4586 complaint (&symfile_complaints,
e2e0b3e5
AC
4587 _("forward-referenced types left unresolved, "
4588 "type code %d."),
23136709 4589 TYPE_CODE (*type));
c906108c
SS
4590 }
4591 break;
4592 }
4593 }
4594
4595 undef_types_length = 0;
4596}
4597
bf362611
JB
4598/* Try to fix all the undefined types we ecountered while processing
4599 this unit. */
4600
4601void
0a0edcd5 4602cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4603{
4604 cleanup_undefined_types_1 ();
46bf5051 4605 cleanup_undefined_types_noname (objfile);
bf362611
JB
4606}
4607
c906108c
SS
4608/* Scan through all of the global symbols defined in the object file,
4609 assigning values to the debugging symbols that need to be assigned
4610 to. Get these symbols from the minimal symbol table. */
4611
4612void
fba45db2 4613scan_file_globals (struct objfile *objfile)
c906108c
SS
4614{
4615 int hash;
4616 struct minimal_symbol *msymbol;
507836c0 4617 struct symbol *sym, *prev;
c906108c
SS
4618 struct objfile *resolve_objfile;
4619
4620 /* SVR4 based linkers copy referenced global symbols from shared
4621 libraries to the main executable.
4622 If we are scanning the symbols for a shared library, try to resolve
4623 them from the minimal symbols of the main executable first. */
4624
4625 if (symfile_objfile && objfile != symfile_objfile)
4626 resolve_objfile = symfile_objfile;
4627 else
4628 resolve_objfile = objfile;
4629
4630 while (1)
4631 {
4632 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4633 no unresolved symbols. */
c906108c
SS
4634 for (hash = 0; hash < HASHSIZE; hash++)
4635 {
4636 if (global_sym_chain[hash])
4637 break;
4638 }
4639 if (hash >= HASHSIZE)
4640 return;
4641
3567439c 4642 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4643 {
4644 QUIT;
4645
4646 /* Skip static symbols. */
4647 switch (MSYMBOL_TYPE (msymbol))
4648 {
4649 case mst_file_text:
4650 case mst_file_data:
4651 case mst_file_bss:
4652 continue;
4653 default:
4654 break;
4655 }
4656
4657 prev = NULL;
4658
4659 /* Get the hash index and check all the symbols
c378eb4e 4660 under that hash index. */
c906108c 4661
efd66ac6 4662 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4663
4664 for (sym = global_sym_chain[hash]; sym;)
4665 {
efd66ac6 4666 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4667 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4668 {
c906108c 4669 /* Splice this symbol out of the hash chain and
c378eb4e 4670 assign the value we have to it. */
c906108c
SS
4671 if (prev)
4672 {
4673 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4674 }
4675 else
4676 {
4677 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4678 }
c5aa993b 4679
c906108c
SS
4680 /* Check to see whether we need to fix up a common block. */
4681 /* Note: this code might be executed several times for
4682 the same symbol if there are multiple references. */
507836c0 4683 if (sym)
c906108c 4684 {
507836c0 4685 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4686 {
507836c0 4687 fix_common_block (sym,
77e371c0
TT
4688 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4689 msymbol));
c906108c
SS
4690 }
4691 else
4692 {
507836c0 4693 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4694 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4695 }
efd66ac6 4696 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4697 }
4698
c906108c
SS
4699 if (prev)
4700 {
4701 sym = SYMBOL_VALUE_CHAIN (prev);
4702 }
4703 else
4704 {
4705 sym = global_sym_chain[hash];
4706 }
4707 }
4708 else
4709 {
4710 prev = sym;
4711 sym = SYMBOL_VALUE_CHAIN (sym);
4712 }
4713 }
4714 }
4715 if (resolve_objfile == objfile)
4716 break;
4717 resolve_objfile = objfile;
4718 }
4719
4720 /* Change the storage class of any remaining unresolved globals to
4721 LOC_UNRESOLVED and remove them from the chain. */
4722 for (hash = 0; hash < HASHSIZE; hash++)
4723 {
4724 sym = global_sym_chain[hash];
4725 while (sym)
4726 {
4727 prev = sym;
4728 sym = SYMBOL_VALUE_CHAIN (sym);
4729
4730 /* Change the symbol address from the misleading chain value
4731 to address zero. */
4732 SYMBOL_VALUE_ADDRESS (prev) = 0;
4733
4734 /* Complain about unresolved common block symbols. */
4735 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4736 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4737 else
23136709 4738 complaint (&symfile_complaints,
3e43a32a
MS
4739 _("%s: common block `%s' from "
4740 "global_sym_chain unresolved"),
4262abfb 4741 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4742 }
4743 }
4744 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4745}
4746
4747/* Initialize anything that needs initializing when starting to read
4748 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4749 to a psymtab. */
4750
4751void
fba45db2 4752stabsread_init (void)
c906108c
SS
4753{
4754}
4755
4756/* Initialize anything that needs initializing when a completely new
4757 symbol file is specified (not just adding some symbols from another
4758 file, e.g. a shared library). */
4759
4760void
fba45db2 4761stabsread_new_init (void)
c906108c
SS
4762{
4763 /* Empty the hash table of global syms looking for values. */
4764 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4765}
4766
4767/* Initialize anything that needs initializing at the same time as
c378eb4e 4768 start_symtab() is called. */
c906108c 4769
c5aa993b 4770void
fba45db2 4771start_stabs (void)
c906108c
SS
4772{
4773 global_stabs = NULL; /* AIX COFF */
4774 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4775 n_this_object_header_files = 1;
4776 type_vector_length = 0;
4777 type_vector = (struct type **) 0;
4778
4779 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4780 common_block_name = NULL;
c906108c
SS
4781}
4782
c378eb4e 4783/* Call after end_symtab(). */
c906108c 4784
c5aa993b 4785void
fba45db2 4786end_stabs (void)
c906108c
SS
4787{
4788 if (type_vector)
4789 {
b8c9b27d 4790 xfree (type_vector);
c906108c
SS
4791 }
4792 type_vector = 0;
4793 type_vector_length = 0;
4794 previous_stab_code = 0;
4795}
4796
4797void
fba45db2 4798finish_global_stabs (struct objfile *objfile)
c906108c
SS
4799{
4800 if (global_stabs)
4801 {
4802 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4803 xfree (global_stabs);
c906108c
SS
4804 global_stabs = NULL;
4805 }
4806}
4807
7e1d63ec
AF
4808/* Find the end of the name, delimited by a ':', but don't match
4809 ObjC symbols which look like -[Foo bar::]:bla. */
4810static char *
4811find_name_end (char *name)
4812{
4813 char *s = name;
433759f7 4814
7e1d63ec
AF
4815 if (s[0] == '-' || *s == '+')
4816 {
4817 /* Must be an ObjC method symbol. */
4818 if (s[1] != '[')
4819 {
8a3fe4f8 4820 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4821 }
4822 s = strchr (s, ']');
4823 if (s == NULL)
4824 {
8a3fe4f8 4825 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4826 }
4827 return strchr (s, ':');
4828 }
4829 else
4830 {
4831 return strchr (s, ':');
4832 }
4833}
4834
c378eb4e 4835/* Initializer for this module. */
c906108c
SS
4836
4837void
fba45db2 4838_initialize_stabsread (void)
c906108c 4839{
46bf5051
UW
4840 rs6000_builtin_type_data = register_objfile_data ();
4841
c906108c
SS
4842 undef_types_allocated = 20;
4843 undef_types_length = 0;
8d749320 4844 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4845
4846 noname_undefs_allocated = 20;
4847 noname_undefs_length = 0;
8d749320 4848 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4849
4850 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4851 &stab_register_funcs);
4852 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4853 &stab_register_funcs);
c906108c 4854}
This page took 2.158572 seconds and 4 git commands to generate.