gdbserver: Use pattern rule for objects from target/
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
1736a7bd
PA
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
c906108c
SS
26
27#include "defs.h"
c906108c 28#include "bfd.h"
04ea0df1 29#include "gdb_obstack.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
3e43a32a 35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
39#include "buildsym.h"
40#include "complaints.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "language.h"
d16aafd8 44#include "doublest.h"
de17c821
DJ
45#include "cp-abi.h"
46#include "cp-support.h"
c906108c
SS
47#include <ctype.h>
48
49/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
50#define EXTERN
51/**/
c906108c
SS
52#include "stabsread.h" /* Our own declarations */
53#undef EXTERN
54
a14ed312 55extern void _initialize_stabsread (void);
392a587b 56
52059ffd
TT
57struct nextfield
58{
59 struct nextfield *next;
60
61 /* This is the raw visibility from the stab. It is not checked
62 for being one of the visibilities we recognize, so code which
63 examines this field better be able to deal. */
64 int visibility;
65
66 struct field field;
67};
68
69struct next_fnfieldlist
70{
71 struct next_fnfieldlist *next;
72 struct fn_fieldlist fn_fieldlist;
73};
74
c906108c
SS
75/* The routines that read and process a complete stabs for a C struct or
76 C++ class pass lists of data member fields and lists of member function
77 fields in an instance of a field_info structure, as defined below.
78 This is part of some reorganization of low level C++ support and is
c378eb4e 79 expected to eventually go away... (FIXME) */
c906108c
SS
80
81struct field_info
c5aa993b 82 {
52059ffd
TT
83 struct nextfield *list;
84 struct next_fnfieldlist *fnlist;
c5aa993b 85 };
c906108c
SS
86
87static void
a14ed312
KB
88read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
c906108c 90
a14ed312 91static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 92
94e10a22 93static long read_huge_number (char **, int, int *, int);
c906108c 94
a14ed312 95static struct type *error_type (char **, struct objfile *);
c906108c
SS
96
97static void
a14ed312
KB
98patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
c906108c 100
46cb6474 101static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 102
a14ed312 103static int read_type_number (char **, int *);
c906108c 104
a7a48797
EZ
105static struct type *read_type (char **, struct objfile *);
106
94e10a22 107static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 108
a14ed312 109static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 110
a14ed312
KB
111static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
c906108c 113
a14ed312 114static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 115
46bf5051 116static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
117
118static int
a14ed312
KB
119read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
c906108c
SS
121
122static int
a14ed312
KB
123read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
c906108c
SS
125
126static int
a14ed312
KB
127read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
c906108c
SS
129
130static int
a14ed312
KB
131read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
c906108c 133
a14ed312 134static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 135
570b8f7c
AC
136static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
c906108c 138
a14ed312 139static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 140 enum type_code,
a14ed312 141 struct objfile *);
c906108c 142
a14ed312
KB
143static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
c906108c 145
ad2f7632 146static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 147
bf362611 148static void add_undefined_type (struct type *, int[2]);
a7a48797 149
c906108c 150static int
a14ed312
KB
151read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
c906108c 153
7e1d63ec
AF
154static char *find_name_end (char *name);
155
a14ed312 156static int process_reference (char **string);
c906108c 157
a14ed312 158void stabsread_clear_cache (void);
7be570e7 159
8343f86c
DJ
160static const char vptr_name[] = "_vptr$";
161static const char vb_name[] = "_vb$";
c906108c 162
23136709
KB
163static void
164invalid_cpp_abbrev_complaint (const char *arg1)
165{
e2e0b3e5 166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 167}
c906108c 168
23136709 169static void
49b0b195 170reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
171{
172 complaint (&symfile_complaints,
0fde2c53 173 _("bad register number %d (max %d) in symbol %s"),
49b0b195 174 regnum, num_regs - 1, sym);
23136709 175}
c906108c 176
23136709
KB
177static void
178stabs_general_complaint (const char *arg1)
179{
180 complaint (&symfile_complaints, "%s", arg1);
181}
c906108c 182
c906108c
SS
183/* Make a list of forward references which haven't been defined. */
184
185static struct type **undef_types;
186static int undef_types_allocated;
187static int undef_types_length;
188static struct symbol *current_symbol = NULL;
189
bf362611
JB
190/* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
c378eb4e 192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
193 and type (0,2) is defined only later. */
194
195struct nat
196{
197 int typenums[2];
198 struct type *type;
199};
200static struct nat *noname_undefs;
201static int noname_undefs_allocated;
202static int noname_undefs_length;
203
c906108c
SS
204/* Check for and handle cretinous stabs symbol name continuation! */
205#define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
fc474241
DE
210
211/* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217static struct type **type_vector;
218
219/* Number of elements allocated for type_vector currently. */
220
221static int type_vector_length;
222
223/* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 227\f
c906108c
SS
228
229/* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
a7a48797 236static struct type **
46bf5051 237dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 238{
52f0bd74
AC
239 int filenum = typenums[0];
240 int index = typenums[1];
c906108c 241 unsigned old_len;
52f0bd74
AC
242 int real_filenum;
243 struct header_file *f;
c906108c
SS
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
23136709 251 complaint (&symfile_complaints,
3e43a32a
MS
252 _("Invalid symbol data: type number "
253 "(%d,%d) out of range at symtab pos %d."),
23136709 254 filenum, index, symnum);
c906108c
SS
255 goto error_return;
256 }
257
258 if (filenum == 0)
259 {
260 if (index < 0)
261 {
262 /* Caller wants address of address of type. We think
263 that negative (rs6k builtin) types will never appear as
264 "lvalues", (nor should they), so we stuff the real type
265 pointer into a temp, and return its address. If referenced,
266 this will do the right thing. */
267 static struct type *temp_type;
268
46bf5051 269 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
270 return &temp_type;
271 }
272
273 /* Type is defined outside of header files.
c5aa993b 274 Find it in this object file's type vector. */
c906108c
SS
275 if (index >= type_vector_length)
276 {
277 old_len = type_vector_length;
278 if (old_len == 0)
279 {
280 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 281 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
46bf5051 299 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 300 {
46bf5051 301 static struct type *temp_type;
c906108c 302
8a3fe4f8 303 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
304
305 error_return:
46bf5051
UW
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
c906108c
SS
308 }
309
46bf5051 310 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326}
327
328/* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 332 put into the type vector, and so may not be referred to by number. */
c906108c
SS
333
334static struct type *
35a2f538 335dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 336{
52f0bd74 337 struct type **type_addr;
c906108c
SS
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
46bf5051 344 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355}
356
9b790ce7
UW
357/* Allocate a floating-point type of size BITS. */
358
359static struct type *
360dbx_init_float_type (struct objfile *objfile, int bits)
361{
362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
363 const struct floatformat **format;
364 struct type *type;
365
366 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
367 if (format)
368 type = init_float_type (objfile, bits, NULL, format);
369 else
370 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, NULL);
371
372 return type;
373}
374
c906108c 375/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 376 and fix their symbols in given symbol vector. */
c906108c
SS
377
378static void
fba45db2
KB
379patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
380 struct objfile *objfile)
c906108c
SS
381{
382 int ii;
383 char *name;
384 char *pp;
385 struct symbol *sym;
386
387 if (stabs)
388 {
c906108c 389 /* for all the stab entries, find their corresponding symbols and
c378eb4e 390 patch their types! */
c5aa993b 391
c906108c
SS
392 for (ii = 0; ii < stabs->count; ++ii)
393 {
394 name = stabs->stab[ii];
c5aa993b 395 pp = (char *) strchr (name, ':');
8fb822e0 396 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
397 while (pp[1] == ':')
398 {
c5aa993b
JM
399 pp += 2;
400 pp = (char *) strchr (pp, ':');
c906108c 401 }
c5aa993b 402 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
403 if (!sym)
404 {
405 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
406 the variable was defined *anywhere*, not just whether
407 it is defined in this compilation unit. But neither
408 xlc or GCC seem to need such a definition, and until
409 we do psymtabs (so that the minimal symbols from all
410 compilation units are available now), I'm not sure
411 how to get the information. */
c906108c
SS
412
413 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
414 ld will remove it from the executable. There is then
415 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 416 sym = allocate_symbol (objfile);
176620f1 417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 418 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 419 SYMBOL_SET_LINKAGE_NAME
224c3ddb
SM
420 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
421 name, pp - name));
c906108c 422 pp += 2;
c5aa993b 423 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
424 {
425 /* I don't think the linker does this with functions,
426 so as far as I know this is never executed.
427 But it doesn't hurt to check. */
428 SYMBOL_TYPE (sym) =
429 lookup_function_type (read_type (&pp, objfile));
430 }
431 else
432 {
433 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
434 }
435 add_symbol_to_list (sym, &global_symbols);
436 }
437 else
438 {
439 pp += 2;
c5aa993b 440 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
441 {
442 SYMBOL_TYPE (sym) =
443 lookup_function_type (read_type (&pp, objfile));
444 }
445 else
446 {
447 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
448 }
449 }
450 }
451 }
452}
c906108c 453\f
c5aa993b 454
c906108c
SS
455/* Read a number by which a type is referred to in dbx data,
456 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
457 Just a single number N is equivalent to (0,N).
458 Return the two numbers by storing them in the vector TYPENUMS.
459 TYPENUMS will then be used as an argument to dbx_lookup_type.
460
461 Returns 0 for success, -1 for error. */
462
463static int
aa1ee363 464read_type_number (char **pp, int *typenums)
c906108c
SS
465{
466 int nbits;
433759f7 467
c906108c
SS
468 if (**pp == '(')
469 {
470 (*pp)++;
94e10a22 471 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
472 if (nbits != 0)
473 return -1;
94e10a22 474 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
475 if (nbits != 0)
476 return -1;
c906108c
SS
477 }
478 else
479 {
480 typenums[0] = 0;
94e10a22 481 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
482 if (nbits != 0)
483 return -1;
c906108c
SS
484 }
485 return 0;
486}
c906108c 487\f
c5aa993b 488
c906108c
SS
489#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
490#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
491#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
492#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
493
c906108c 494/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 495 during "process_later". */
c906108c
SS
496
497struct ref_map
498{
499 char *stabs;
500 CORE_ADDR value;
501 struct symbol *sym;
502};
503
504#define MAX_CHUNK_REFS 100
505#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
506#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
507
c5aa993b 508static struct ref_map *ref_map;
c906108c 509
c378eb4e 510/* Ptr to free cell in chunk's linked list. */
c5aa993b 511static int ref_count = 0;
c906108c 512
c378eb4e 513/* Number of chunks malloced. */
c906108c
SS
514static int ref_chunk = 0;
515
7be570e7 516/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
517 table. If the symbol table changes, this cache must be cleared
518 or we are left holding onto data in invalid obstacks. */
7be570e7 519void
fba45db2 520stabsread_clear_cache (void)
7be570e7
JM
521{
522 ref_count = 0;
523 ref_chunk = 0;
524}
525
c906108c
SS
526/* Create array of pointers mapping refids to symbols and stab strings.
527 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
528 find them, using their reference numbers as our index.
529 These will be used later when we resolve references. */
c906108c 530void
fba45db2 531ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
532{
533 if (ref_count == 0)
534 ref_chunk = 0;
535 if (refnum >= ref_count)
536 ref_count = refnum + 1;
537 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
538 {
c5aa993b 539 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 540 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 541
c906108c
SS
542 ref_map = (struct ref_map *)
543 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
544 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
545 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
546 ref_chunk += new_chunks;
547 }
548 ref_map[refnum].stabs = stabs;
549 ref_map[refnum].sym = sym;
550 ref_map[refnum].value = value;
551}
552
553/* Return defined sym for the reference REFNUM. */
554struct symbol *
fba45db2 555ref_search (int refnum)
c906108c
SS
556{
557 if (refnum < 0 || refnum > ref_count)
558 return 0;
559 return ref_map[refnum].sym;
560}
561
c906108c
SS
562/* Parse a reference id in STRING and return the resulting
563 reference number. Move STRING beyond the reference id. */
564
c5aa993b 565static int
fba45db2 566process_reference (char **string)
c906108c
SS
567{
568 char *p;
569 int refnum = 0;
570
c5aa993b
JM
571 if (**string != '#')
572 return 0;
573
c906108c
SS
574 /* Advance beyond the initial '#'. */
575 p = *string + 1;
576
c378eb4e 577 /* Read number as reference id. */
c906108c
SS
578 while (*p && isdigit (*p))
579 {
580 refnum = refnum * 10 + *p - '0';
581 p++;
582 }
583 *string = p;
584 return refnum;
585}
586
587/* If STRING defines a reference, store away a pointer to the reference
588 definition for later use. Return the reference number. */
589
590int
fba45db2 591symbol_reference_defined (char **string)
c906108c
SS
592{
593 char *p = *string;
594 int refnum = 0;
595
596 refnum = process_reference (&p);
597
c378eb4e 598 /* Defining symbols end in '='. */
c5aa993b 599 if (*p == '=')
c906108c 600 {
c378eb4e 601 /* Symbol is being defined here. */
c906108c
SS
602 *string = p + 1;
603 return refnum;
604 }
605 else
606 {
c378eb4e 607 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
608 or this is a forward reference to it. */
609 *string = p;
610 return -1;
611 }
612}
613
768a979c
UW
614static int
615stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
616{
617 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
618
0fde2c53
DE
619 if (regno < 0
620 || regno >= (gdbarch_num_regs (gdbarch)
621 + gdbarch_num_pseudo_regs (gdbarch)))
768a979c
UW
622 {
623 reg_value_complaint (regno,
624 gdbarch_num_regs (gdbarch)
625 + gdbarch_num_pseudo_regs (gdbarch),
626 SYMBOL_PRINT_NAME (sym));
627
c378eb4e 628 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
629 }
630
631 return regno;
632}
633
634static const struct symbol_register_ops stab_register_funcs = {
635 stab_reg_to_regnum
636};
637
f1e6e072
TT
638/* The "aclass" indices for computed symbols. */
639
640static int stab_register_index;
641static int stab_regparm_index;
642
c906108c 643struct symbol *
fba45db2
KB
644define_symbol (CORE_ADDR valu, char *string, int desc, int type,
645 struct objfile *objfile)
c906108c 646{
5e2b427d 647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 648 struct symbol *sym;
7e1d63ec 649 char *p = (char *) find_name_end (string);
c906108c
SS
650 int deftype;
651 int synonym = 0;
52f0bd74 652 int i;
c906108c
SS
653
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
658
659 int nameless;
660
661 /* Ignore syms with empty names. */
662 if (string[0] == 0)
663 return 0;
664
c378eb4e 665 /* Ignore old-style symbols from cc -go. */
c906108c
SS
666 if (p == 0)
667 return 0;
668
669 while (p[1] == ':')
670 {
c5aa993b
JM
671 p += 2;
672 p = strchr (p, ':');
681c238c
MS
673 if (p == NULL)
674 {
675 complaint (&symfile_complaints,
676 _("Bad stabs string '%s'"), string);
677 return NULL;
678 }
c906108c
SS
679 }
680
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
684
e623cf5d 685 current_symbol = sym = allocate_symbol (objfile);
c906108c 686
c906108c
SS
687 if (processing_gcc_compilation)
688 {
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
690 number of bytes occupied by a type or object, which we ignore. */
691 SYMBOL_LINE (sym) = desc;
c906108c
SS
692 }
693 else
694 {
c5aa993b 695 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
696 }
697
025ac414
PM
698 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
699 &objfile->objfile_obstack);
700
c906108c
SS
701 if (is_cplus_marker (string[0]))
702 {
703 /* Special GNU C++ names. */
704 switch (string[1])
705 {
c5aa993b 706 case 't':
1c9e8358 707 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 708 break;
c906108c 709
c5aa993b 710 case 'v': /* $vtbl_ptr_type */
c5aa993b 711 goto normal;
c906108c 712
c5aa993b 713 case 'e':
1c9e8358 714 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 715 break;
c906108c 716
c5aa993b
JM
717 case '_':
718 /* This was an anonymous type that was never fixed up. */
719 goto normal;
c906108c 720
c5aa993b
JM
721 case 'X':
722 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 723 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 724 goto normal;
c378eb4e 725 /* ... fall through ... */
c906108c 726
c5aa993b 727 default:
e2e0b3e5 728 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 729 string);
c378eb4e 730 goto normal; /* Do *something* with it. */
c906108c
SS
731 }
732 }
c906108c
SS
733 else
734 {
735 normal:
2f408ecb
PA
736 std::string new_name;
737
df8a16a1 738 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 739 {
224c3ddb 740 char *name = (char *) alloca (p - string + 1);
433759f7 741
71c25dea
TT
742 memcpy (name, string, p - string);
743 name[p - string] = '\0';
744 new_name = cp_canonicalize_string (name);
71c25dea 745 }
2f408ecb 746 if (!new_name.empty ())
71c25dea 747 {
2f408ecb
PA
748 SYMBOL_SET_NAMES (sym,
749 new_name.c_str (), new_name.length (),
750 1, objfile);
71c25dea
TT
751 }
752 else
04a679b8 753 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
754
755 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 756 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 757
c906108c
SS
758 }
759 p++;
760
761 /* Determine the type of name being defined. */
762#if 0
763 /* Getting GDB to correctly skip the symbol on an undefined symbol
764 descriptor and not ever dump core is a very dodgy proposition if
765 we do things this way. I say the acorn RISC machine can just
766 fix their compiler. */
767 /* The Acorn RISC machine's compiler can put out locals that don't
768 start with "234=" or "(3,4)=", so assume anything other than the
769 deftypes we know how to handle is a local. */
770 if (!strchr ("cfFGpPrStTvVXCR", *p))
771#else
772 if (isdigit (*p) || *p == '(' || *p == '-')
773#endif
774 deftype = 'l';
775 else
776 deftype = *p++;
777
778 switch (deftype)
779 {
780 case 'c':
781 /* c is a special case, not followed by a type-number.
c5aa993b
JM
782 SYMBOL:c=iVALUE for an integer constant symbol.
783 SYMBOL:c=rVALUE for a floating constant symbol.
784 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
785 e.g. "b:c=e6,0" for "const b = blob1"
786 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
787 if (*p != '=')
788 {
f1e6e072 789 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 790 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 791 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
792 add_symbol_to_list (sym, &file_symbols);
793 return sym;
794 }
795 ++p;
796 switch (*p++)
797 {
798 case 'r':
799 {
800 double d = atof (p);
4e38b386 801 gdb_byte *dbl_valu;
6ccb9162 802 struct type *dbl_type;
c906108c
SS
803
804 /* FIXME-if-picky-about-floating-accuracy: Should be using
805 target arithmetic to get the value. real.c in GCC
806 probably has the necessary code. */
807
46bf5051 808 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
809 dbl_valu
810 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
811 TYPE_LENGTH (dbl_type));
6ccb9162
UW
812 store_typed_floating (dbl_valu, dbl_type, d);
813
814 SYMBOL_TYPE (sym) = dbl_type;
c906108c 815 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 816 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
817 }
818 break;
819 case 'i':
820 {
821 /* Defining integer constants this way is kind of silly,
822 since 'e' constants allows the compiler to give not
823 only the value, but the type as well. C has at least
824 int, long, unsigned int, and long long as constant
825 types; other languages probably should have at least
826 unsigned as well as signed constants. */
827
46bf5051 828 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 829 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 830 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
831 }
832 break;
ec8a089a
PM
833
834 case 'c':
835 {
836 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
837 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 838 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
839 }
840 break;
841
842 case 's':
843 {
844 struct type *range_type;
845 int ind = 0;
846 char quote = *p++;
ec8a089a
PM
847 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
848 gdb_byte *string_value;
849
850 if (quote != '\'' && quote != '"')
851 {
f1e6e072 852 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
853 SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 add_symbol_to_list (sym, &file_symbols);
856 return sym;
857 }
858
859 /* Find matching quote, rejecting escaped quotes. */
860 while (*p && *p != quote)
861 {
862 if (*p == '\\' && p[1] == quote)
863 {
864 string_local[ind] = (gdb_byte) quote;
865 ind++;
866 p += 2;
867 }
868 else if (*p)
869 {
870 string_local[ind] = (gdb_byte) (*p);
871 ind++;
872 p++;
873 }
874 }
875 if (*p != quote)
876 {
f1e6e072 877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
878 SYMBOL_TYPE (sym) = error_type (&p, objfile);
879 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
880 add_symbol_to_list (sym, &file_symbols);
881 return sym;
882 }
883
884 /* NULL terminate the string. */
885 string_local[ind] = 0;
3e43a32a 886 range_type
0c9c3474
SA
887 = create_static_range_type (NULL,
888 objfile_type (objfile)->builtin_int,
889 0, ind);
ec8a089a
PM
890 SYMBOL_TYPE (sym) = create_array_type (NULL,
891 objfile_type (objfile)->builtin_char,
892 range_type);
224c3ddb
SM
893 string_value
894 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
895 memcpy (string_value, string_local, ind + 1);
896 p++;
897
898 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 899 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
900 }
901 break;
902
c906108c
SS
903 case 'e':
904 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
905 can be represented as integral.
906 e.g. "b:c=e6,0" for "const b = blob1"
907 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
908 {
f1e6e072 909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
910 SYMBOL_TYPE (sym) = read_type (&p, objfile);
911
912 if (*p != ',')
913 {
914 SYMBOL_TYPE (sym) = error_type (&p, objfile);
915 break;
916 }
917 ++p;
918
919 /* If the value is too big to fit in an int (perhaps because
920 it is unsigned), or something like that, we silently get
921 a bogus value. The type and everything else about it is
922 correct. Ideally, we should be using whatever we have
923 available for parsing unsigned and long long values,
924 however. */
925 SYMBOL_VALUE (sym) = atoi (p);
926 }
927 break;
928 default:
929 {
f1e6e072 930 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
931 SYMBOL_TYPE (sym) = error_type (&p, objfile);
932 }
933 }
176620f1 934 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
935 add_symbol_to_list (sym, &file_symbols);
936 return sym;
937
938 case 'C':
939 /* The name of a caught exception. */
940 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 941 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 942 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
943 SYMBOL_VALUE_ADDRESS (sym) = valu;
944 add_symbol_to_list (sym, &local_symbols);
945 break;
946
947 case 'f':
948 /* A static function definition. */
949 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 950 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 951 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
952 add_symbol_to_list (sym, &file_symbols);
953 /* fall into process_function_types. */
954
955 process_function_types:
956 /* Function result types are described as the result type in stabs.
c5aa993b
JM
957 We need to convert this to the function-returning-type-X type
958 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
959 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
960 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
961
1e698235
DJ
962 /* All functions in C++ have prototypes. Stabs does not offer an
963 explicit way to identify prototyped or unprototyped functions,
964 but both GCC and Sun CC emit stabs for the "call-as" type rather
965 than the "declared-as" type for unprototyped functions, so
966 we treat all functions as if they were prototyped. This is used
967 primarily for promotion when calling the function from GDB. */
876cecd0 968 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 969
c378eb4e 970 /* fall into process_prototype_types. */
c906108c
SS
971
972 process_prototype_types:
973 /* Sun acc puts declared types of arguments here. */
974 if (*p == ';')
975 {
976 struct type *ftype = SYMBOL_TYPE (sym);
977 int nsemi = 0;
978 int nparams = 0;
979 char *p1 = p;
980
981 /* Obtain a worst case guess for the number of arguments
982 by counting the semicolons. */
983 while (*p1)
984 {
985 if (*p1++ == ';')
986 nsemi++;
987 }
988
c378eb4e 989 /* Allocate parameter information fields and fill them in. */
c906108c
SS
990 TYPE_FIELDS (ftype) = (struct field *)
991 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
992 while (*p++ == ';')
993 {
994 struct type *ptype;
995
996 /* A type number of zero indicates the start of varargs.
c5aa993b 997 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
998 if (p[0] == '0' && p[1] == '\0')
999 break;
1000 ptype = read_type (&p, objfile);
1001
1002 /* The Sun compilers mark integer arguments, which should
c5aa993b 1003 be promoted to the width of the calling conventions, with
c378eb4e 1004 a type which references itself. This type is turned into
c5aa993b 1005 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
1006 it back into builtin_int here.
1007 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 1008 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 1009 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
1010 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1011 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
1012 }
1013 TYPE_NFIELDS (ftype) = nparams;
876cecd0 1014 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
1015 }
1016 break;
1017
1018 case 'F':
1019 /* A global function definition. */
1020 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1021 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1023 add_symbol_to_list (sym, &global_symbols);
1024 goto process_function_types;
1025
1026 case 'G':
1027 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1028 value is not correct. It is necessary to search for the
1029 corresponding linker definition to find the value.
1030 These definitions appear at the end of the namelist. */
c906108c 1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1032 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1034 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1035 Symbol references don't have valid names and wont't match up with
1036 minimal symbols when the global_sym_chain is relocated.
1037 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1038 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1039 {
3567439c 1040 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1041 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1042 global_sym_chain[i] = sym;
c906108c
SS
1043 }
1044 add_symbol_to_list (sym, &global_symbols);
1045 break;
1046
1047 /* This case is faked by a conditional above,
c5aa993b
JM
1048 when there is no code letter in the dbx data.
1049 Dbx data never actually contains 'l'. */
c906108c
SS
1050 case 's':
1051 case 'l':
1052 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1053 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1054 SYMBOL_VALUE (sym) = valu;
176620f1 1055 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1056 add_symbol_to_list (sym, &local_symbols);
1057 break;
1058
1059 case 'p':
1060 if (*p == 'F')
1061 /* pF is a two-letter code that means a function parameter in Fortran.
1062 The type-number specifies the type of the return value.
1063 Translate it into a pointer-to-function type. */
1064 {
1065 p++;
1066 SYMBOL_TYPE (sym)
1067 = lookup_pointer_type
c5aa993b 1068 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1069 }
1070 else
1071 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1072
f1e6e072 1073 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1074 SYMBOL_VALUE (sym) = valu;
176620f1 1075 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1076 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1077 add_symbol_to_list (sym, &local_symbols);
1078
5e2b427d 1079 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1080 {
1081 /* On little-endian machines, this crud is never necessary,
1082 and, if the extra bytes contain garbage, is harmful. */
1083 break;
1084 }
1085
1086 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1087 if (processing_gcc_compilation
5e2b427d 1088 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1089 break;
1090
5e2b427d 1091 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1092 {
8ee56bcf
AC
1093 /* If PCC says a parameter is a short or a char, it is
1094 really an int. */
5e2b427d
UW
1095 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1096 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1097 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1098 {
8ee56bcf
AC
1099 SYMBOL_TYPE (sym) =
1100 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1101 ? objfile_type (objfile)->builtin_unsigned_int
1102 : objfile_type (objfile)->builtin_int;
7a292a7a 1103 }
8ee56bcf 1104 break;
7a292a7a 1105 }
c906108c
SS
1106
1107 case 'P':
1108 /* acc seems to use P to declare the prototypes of functions that
1109 are referenced by this file. gdb is not prepared to deal
1110 with this extra information. FIXME, it ought to. */
1111 if (type == N_FUN)
1112 {
1113 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1114 goto process_prototype_types;
1115 }
c5aa993b 1116 /*FALLTHROUGH */
c906108c
SS
1117
1118 case 'R':
1119 /* Parameter which is in a register. */
1120 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1121 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1122 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1123 SYMBOL_VALUE (sym) = valu;
176620f1 1124 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1125 add_symbol_to_list (sym, &local_symbols);
1126 break;
1127
1128 case 'r':
1129 /* Register variable (either global or local). */
1130 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1131 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1132 SYMBOL_VALUE (sym) = valu;
176620f1 1133 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1134 if (within_function)
1135 {
192cb3d4
MK
1136 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1137 the same name to represent an argument passed in a
1138 register. GCC uses 'P' for the same case. So if we find
1139 such a symbol pair we combine it into one 'P' symbol.
1140 For Sun cc we need to do this regardless of
1141 stabs_argument_has_addr, because the compiler puts out
1142 the 'p' symbol even if it never saves the argument onto
1143 the stack.
1144
1145 On most machines, we want to preserve both symbols, so
1146 that we can still get information about what is going on
1147 with the stack (VAX for computing args_printed, using
1148 stack slots instead of saved registers in backtraces,
1149 etc.).
c906108c
SS
1150
1151 Note that this code illegally combines
c5aa993b 1152 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1153 but this case is considered pathological and causes a warning
1154 from a decent compiler. */
1155
1156 if (local_symbols
1157 && local_symbols->nsyms > 0
5e2b427d 1158 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1159 {
1160 struct symbol *prev_sym;
433759f7 1161
c906108c
SS
1162 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1163 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1164 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1165 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1166 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1167 {
f1e6e072 1168 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1169 /* Use the type from the LOC_REGISTER; that is the type
1170 that is actually in that register. */
1171 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1172 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1173 sym = prev_sym;
1174 break;
1175 }
1176 }
c5aa993b 1177 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1178 }
1179 else
c5aa993b 1180 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1181 break;
1182
1183 case 'S':
c378eb4e 1184 /* Static symbol at top level of file. */
c906108c 1185 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1186 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1187 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1188 if (gdbarch_static_transform_name_p (gdbarch)
1189 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1190 SYMBOL_LINKAGE_NAME (sym))
1191 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1192 {
3b7344d5 1193 struct bound_minimal_symbol msym;
433759f7 1194
3e43a32a
MS
1195 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1196 NULL, objfile);
3b7344d5 1197 if (msym.minsym != NULL)
c5aa993b 1198 {
0d5cff50 1199 const char *new_name = gdbarch_static_transform_name
3567439c 1200 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1201
3567439c 1202 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1203 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1204 }
1205 }
176620f1 1206 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1207 add_symbol_to_list (sym, &file_symbols);
1208 break;
1209
1210 case 't':
52eea4ce
JB
1211 /* In Ada, there is no distinction between typedef and non-typedef;
1212 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1213 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1214
1215 Therefore, for Ada units, we check the character immediately
1216 before the 't', and if we do not find a 'T', then make sure to
1217 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1218 will be stored in the VAR_DOMAIN). If the symbol was indeed
1219 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1220 elsewhere, so we don't need to take care of that.
1221
1222 This is important to do, because of forward references:
1223 The cleanup of undefined types stored in undef_types only uses
1224 STRUCT_DOMAIN symbols to perform the replacement. */
1225 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1226
e2cd42dd 1227 /* Typedef */
c906108c
SS
1228 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1229
1230 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1231 did not use `sym'. Return without further processing. */
c5aa993b
JM
1232 if (nameless)
1233 return NULL;
c906108c 1234
f1e6e072 1235 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1236 SYMBOL_VALUE (sym) = valu;
176620f1 1237 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1238 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1239 a base type which did not have its name defined when the
1240 derived class was output. We fill in the derived class's
1241 base part member's name here in that case. */
c906108c
SS
1242 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1243 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1244 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1245 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1246 {
1247 int j;
433759f7 1248
c906108c
SS
1249 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1250 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1251 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1252 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1253 }
1254
1255 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1256 {
1257 /* gcc-2.6 or later (when using -fvtable-thunks)
1258 emits a unique named type for a vtable entry.
c378eb4e 1259 Some gdb code depends on that specific name. */
c906108c
SS
1260 extern const char vtbl_ptr_name[];
1261
1262 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1263 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1264 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1265 {
1266 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1267 foo" or "function returning foo", we better not set
1268 the TYPE_NAME. If the program contains "typedef char
1269 *caddr_t;", we don't want all variables of type char
1270 * to print as caddr_t. This is not just a
1271 consequence of GDB's type management; PCC and GCC (at
1272 least through version 2.4) both output variables of
1273 either type char * or caddr_t with the type number
1274 defined in the 't' symbol for caddr_t. If a future
1275 compiler cleans this up it GDB is not ready for it
1276 yet, but if it becomes ready we somehow need to
1277 disable this check (without breaking the PCC/GCC2.4
1278 case).
1279
1280 Sigh.
1281
1282 Fortunately, this check seems not to be necessary
1283 for anything except pointers or functions. */
c378eb4e
MS
1284 /* ezannoni: 2000-10-26. This seems to apply for
1285 versions of gcc older than 2.8. This was the original
49d97c60 1286 problem: with the following code gdb would tell that
c378eb4e
MS
1287 the type for name1 is caddr_t, and func is char().
1288
49d97c60
EZ
1289 typedef char *caddr_t;
1290 char *name2;
1291 struct x
1292 {
c378eb4e 1293 char *name1;
49d97c60
EZ
1294 } xx;
1295 char *func()
1296 {
1297 }
1298 main () {}
1299 */
1300
c378eb4e 1301 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1302 if (current_subfile->language == language_pascal)
1303 {
3567439c 1304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1305 }
c906108c
SS
1306 }
1307 else
3567439c 1308 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1309 }
1310
1311 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1312
1313 if (synonym)
1314 {
1315 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1316 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1317
1318 *struct_sym = *sym;
f1e6e072 1319 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1320 SYMBOL_VALUE (struct_sym) = valu;
1321 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1322 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1323 TYPE_NAME (SYMBOL_TYPE (sym))
1324 = obconcat (&objfile->objfile_obstack,
1325 SYMBOL_LINKAGE_NAME (sym),
1326 (char *) NULL);
52eea4ce
JB
1327 add_symbol_to_list (struct_sym, &file_symbols);
1328 }
1329
c906108c
SS
1330 break;
1331
1332 case 'T':
1333 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1334 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1335 synonym = *p == 't';
1336
1337 if (synonym)
1338 p++;
c906108c
SS
1339
1340 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1341
c906108c 1342 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1343 did not use `sym'. Return without further processing. */
c5aa993b
JM
1344 if (nameless)
1345 return NULL;
c906108c 1346
f1e6e072 1347 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1348 SYMBOL_VALUE (sym) = valu;
176620f1 1349 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1350 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1351 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1352 = obconcat (&objfile->objfile_obstack,
1353 SYMBOL_LINKAGE_NAME (sym),
1354 (char *) NULL);
c906108c
SS
1355 add_symbol_to_list (sym, &file_symbols);
1356
1357 if (synonym)
1358 {
c378eb4e 1359 /* Clone the sym and then modify it. */
e623cf5d 1360 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1361
c906108c 1362 *typedef_sym = *sym;
f1e6e072 1363 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1364 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1365 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1366 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1367 TYPE_NAME (SYMBOL_TYPE (sym))
1368 = obconcat (&objfile->objfile_obstack,
1369 SYMBOL_LINKAGE_NAME (sym),
1370 (char *) NULL);
c906108c
SS
1371 add_symbol_to_list (typedef_sym, &file_symbols);
1372 }
1373 break;
1374
1375 case 'V':
c378eb4e 1376 /* Static symbol of local scope. */
c906108c 1377 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1378 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1379 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1380 if (gdbarch_static_transform_name_p (gdbarch)
1381 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1382 SYMBOL_LINKAGE_NAME (sym))
1383 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1384 {
3b7344d5 1385 struct bound_minimal_symbol msym;
433759f7
MS
1386
1387 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1388 NULL, objfile);
3b7344d5 1389 if (msym.minsym != NULL)
c5aa993b 1390 {
0d5cff50 1391 const char *new_name = gdbarch_static_transform_name
3567439c 1392 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1393
3567439c 1394 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1395 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1396 }
1397 }
176620f1 1398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1399 add_symbol_to_list (sym, &local_symbols);
1400 break;
1401
1402 case 'v':
1403 /* Reference parameter */
1404 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1405 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1406 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1407 SYMBOL_VALUE (sym) = valu;
176620f1 1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
1411
1412 case 'a':
1413 /* Reference parameter which is in a register. */
1414 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1415 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1416 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1417 SYMBOL_VALUE (sym) = valu;
176620f1 1418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1419 add_symbol_to_list (sym, &local_symbols);
1420 break;
1421
1422 case 'X':
1423 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1424 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1425 that Pascal uses it too, but when I tried it Pascal used
1426 "x:3" (local symbol) instead. */
c906108c 1427 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1428 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1429 SYMBOL_VALUE (sym) = valu;
176620f1 1430 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1431 add_symbol_to_list (sym, &local_symbols);
1432 break;
c906108c
SS
1433
1434 default:
1435 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1436 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1437 SYMBOL_VALUE (sym) = 0;
176620f1 1438 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1439 add_symbol_to_list (sym, &file_symbols);
1440 break;
1441 }
1442
192cb3d4
MK
1443 /* Some systems pass variables of certain types by reference instead
1444 of by value, i.e. they will pass the address of a structure (in a
1445 register or on the stack) instead of the structure itself. */
c906108c 1446
5e2b427d 1447 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1448 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1449 {
2a2d4dc3 1450 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1451 variables passed in a register). */
2a2d4dc3 1452 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1453 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1454 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1455 and subsequent arguments on SPARC, for example). */
1456 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1457 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1458 }
1459
c906108c
SS
1460 return sym;
1461}
1462
c906108c
SS
1463/* Skip rest of this symbol and return an error type.
1464
1465 General notes on error recovery: error_type always skips to the
1466 end of the symbol (modulo cretinous dbx symbol name continuation).
1467 Thus code like this:
1468
1469 if (*(*pp)++ != ';')
c5aa993b 1470 return error_type (pp, objfile);
c906108c
SS
1471
1472 is wrong because if *pp starts out pointing at '\0' (typically as the
1473 result of an earlier error), it will be incremented to point to the
1474 start of the next symbol, which might produce strange results, at least
1475 if you run off the end of the string table. Instead use
1476
1477 if (**pp != ';')
c5aa993b 1478 return error_type (pp, objfile);
c906108c
SS
1479 ++*pp;
1480
1481 or
1482
1483 if (**pp != ';')
c5aa993b 1484 foo = error_type (pp, objfile);
c906108c 1485 else
c5aa993b 1486 ++*pp;
c906108c
SS
1487
1488 And in case it isn't obvious, the point of all this hair is so the compiler
1489 can define new types and new syntaxes, and old versions of the
1490 debugger will be able to read the new symbol tables. */
1491
1492static struct type *
fba45db2 1493error_type (char **pp, struct objfile *objfile)
c906108c 1494{
3e43a32a
MS
1495 complaint (&symfile_complaints,
1496 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1497 while (1)
1498 {
1499 /* Skip to end of symbol. */
1500 while (**pp != '\0')
1501 {
1502 (*pp)++;
1503 }
1504
1505 /* Check for and handle cretinous dbx symbol name continuation! */
1506 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1507 {
1508 *pp = next_symbol_text (objfile);
1509 }
1510 else
1511 {
1512 break;
1513 }
1514 }
46bf5051 1515 return objfile_type (objfile)->builtin_error;
c906108c 1516}
c906108c 1517\f
c5aa993b 1518
c906108c
SS
1519/* Read type information or a type definition; return the type. Even
1520 though this routine accepts either type information or a type
1521 definition, the distinction is relevant--some parts of stabsread.c
1522 assume that type information starts with a digit, '-', or '(' in
1523 deciding whether to call read_type. */
1524
a7a48797 1525static struct type *
aa1ee363 1526read_type (char **pp, struct objfile *objfile)
c906108c 1527{
52f0bd74 1528 struct type *type = 0;
c906108c
SS
1529 struct type *type1;
1530 int typenums[2];
1531 char type_descriptor;
1532
1533 /* Size in bits of type if specified by a type attribute, or -1 if
1534 there is no size attribute. */
1535 int type_size = -1;
1536
c378eb4e 1537 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1538 int is_string = 0;
1539
c378eb4e 1540 /* Used to distinguish vector from array. */
e2cd42dd
MS
1541 int is_vector = 0;
1542
c906108c
SS
1543 /* Read type number if present. The type number may be omitted.
1544 for instance in a two-dimensional array declared with type
1545 "ar1;1;10;ar1;1;10;4". */
1546 if ((**pp >= '0' && **pp <= '9')
1547 || **pp == '('
1548 || **pp == '-')
1549 {
1550 if (read_type_number (pp, typenums) != 0)
1551 return error_type (pp, objfile);
c5aa993b 1552
c906108c 1553 if (**pp != '=')
8cfe231d
JB
1554 {
1555 /* Type is not being defined here. Either it already
1556 exists, or this is a forward reference to it.
1557 dbx_alloc_type handles both cases. */
1558 type = dbx_alloc_type (typenums, objfile);
1559
1560 /* If this is a forward reference, arrange to complain if it
1561 doesn't get patched up by the time we're done
1562 reading. */
1563 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1564 add_undefined_type (type, typenums);
8cfe231d
JB
1565
1566 return type;
1567 }
c906108c
SS
1568
1569 /* Type is being defined here. */
1570 /* Skip the '='.
c5aa993b
JM
1571 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1572 (*pp) += 2;
c906108c
SS
1573 }
1574 else
1575 {
1576 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1577 the definition, but don't put it in the type vector. */
c906108c
SS
1578 typenums[0] = typenums[1] = -1;
1579 (*pp)++;
1580 }
1581
c5aa993b 1582again:
c906108c
SS
1583 type_descriptor = (*pp)[-1];
1584 switch (type_descriptor)
1585 {
1586 case 'x':
1587 {
1588 enum type_code code;
1589
1590 /* Used to index through file_symbols. */
1591 struct pending *ppt;
1592 int i;
c5aa993b 1593
c906108c
SS
1594 /* Name including "struct", etc. */
1595 char *type_name;
c5aa993b 1596
c906108c
SS
1597 {
1598 char *from, *to, *p, *q1, *q2;
c5aa993b 1599
c906108c
SS
1600 /* Set the type code according to the following letter. */
1601 switch ((*pp)[0])
1602 {
1603 case 's':
1604 code = TYPE_CODE_STRUCT;
1605 break;
1606 case 'u':
1607 code = TYPE_CODE_UNION;
1608 break;
1609 case 'e':
1610 code = TYPE_CODE_ENUM;
1611 break;
1612 default:
1613 {
1614 /* Complain and keep going, so compilers can invent new
1615 cross-reference types. */
23136709 1616 complaint (&symfile_complaints,
3e43a32a
MS
1617 _("Unrecognized cross-reference type `%c'"),
1618 (*pp)[0]);
c906108c
SS
1619 code = TYPE_CODE_STRUCT;
1620 break;
1621 }
1622 }
c5aa993b 1623
c906108c
SS
1624 q1 = strchr (*pp, '<');
1625 p = strchr (*pp, ':');
1626 if (p == NULL)
1627 return error_type (pp, objfile);
1628 if (q1 && p > q1 && p[1] == ':')
1629 {
1630 int nesting_level = 0;
433759f7 1631
c906108c
SS
1632 for (q2 = q1; *q2; q2++)
1633 {
1634 if (*q2 == '<')
1635 nesting_level++;
1636 else if (*q2 == '>')
1637 nesting_level--;
1638 else if (*q2 == ':' && nesting_level == 0)
1639 break;
1640 }
1641 p = q2;
1642 if (*p != ':')
1643 return error_type (pp, objfile);
1644 }
71c25dea
TT
1645 type_name = NULL;
1646 if (current_subfile->language == language_cplus)
1647 {
2f408ecb 1648 char *name = (char *) alloca (p - *pp + 1);
433759f7 1649
71c25dea
TT
1650 memcpy (name, *pp, p - *pp);
1651 name[p - *pp] = '\0';
2f408ecb
PA
1652
1653 std::string new_name = cp_canonicalize_string (name);
1654 if (!new_name.empty ())
71c25dea 1655 {
224c3ddb
SM
1656 type_name
1657 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2f408ecb
PA
1658 new_name.c_str (),
1659 new_name.length ());
71c25dea
TT
1660 }
1661 }
1662 if (type_name == NULL)
1663 {
3e43a32a
MS
1664 to = type_name = (char *)
1665 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1666
1667 /* Copy the name. */
1668 from = *pp + 1;
1669 while (from < p)
1670 *to++ = *from++;
1671 *to = '\0';
1672 }
c5aa993b 1673
c906108c
SS
1674 /* Set the pointer ahead of the name which we just read, and
1675 the colon. */
71c25dea 1676 *pp = p + 1;
c906108c
SS
1677 }
1678
149d821b
JB
1679 /* If this type has already been declared, then reuse the same
1680 type, rather than allocating a new one. This saves some
1681 memory. */
c906108c
SS
1682
1683 for (ppt = file_symbols; ppt; ppt = ppt->next)
1684 for (i = 0; i < ppt->nsyms; i++)
1685 {
1686 struct symbol *sym = ppt->symbol[i];
1687
1688 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1689 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1690 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1691 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1692 {
b99607ea 1693 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1694 type = SYMBOL_TYPE (sym);
149d821b 1695 if (typenums[0] != -1)
46bf5051 1696 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1697 return type;
1698 }
1699 }
1700
1701 /* Didn't find the type to which this refers, so we must
1702 be dealing with a forward reference. Allocate a type
1703 structure for it, and keep track of it so we can
1704 fill in the rest of the fields when we get the full
1705 type. */
1706 type = dbx_alloc_type (typenums, objfile);
1707 TYPE_CODE (type) = code;
1708 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1709 INIT_CPLUS_SPECIFIC (type);
876cecd0 1710 TYPE_STUB (type) = 1;
c906108c 1711
bf362611 1712 add_undefined_type (type, typenums);
c906108c
SS
1713 return type;
1714 }
1715
c5aa993b 1716 case '-': /* RS/6000 built-in type */
c906108c
SS
1717 case '0':
1718 case '1':
1719 case '2':
1720 case '3':
1721 case '4':
1722 case '5':
1723 case '6':
1724 case '7':
1725 case '8':
1726 case '9':
1727 case '(':
1728 (*pp)--;
1729
1730 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1731 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1732
1733 /* Allocate and enter the typedef type first.
c378eb4e 1734 This handles recursive types. */
c906108c
SS
1735 type = dbx_alloc_type (typenums, objfile);
1736 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1737 {
1738 struct type *xtype = read_type (pp, objfile);
433759f7 1739
c906108c
SS
1740 if (type == xtype)
1741 {
1742 /* It's being defined as itself. That means it is "void". */
1743 TYPE_CODE (type) = TYPE_CODE_VOID;
1744 TYPE_LENGTH (type) = 1;
1745 }
1746 else if (type_size >= 0 || is_string)
1747 {
dd6bda65
DJ
1748 /* This is the absolute wrong way to construct types. Every
1749 other debug format has found a way around this problem and
1750 the related problems with unnecessarily stubbed types;
1751 someone motivated should attempt to clean up the issue
1752 here as well. Once a type pointed to has been created it
13a393b0
JB
1753 should not be modified.
1754
1755 Well, it's not *absolutely* wrong. Constructing recursive
1756 types (trees, linked lists) necessarily entails modifying
1757 types after creating them. Constructing any loop structure
1758 entails side effects. The Dwarf 2 reader does handle this
1759 more gracefully (it never constructs more than once
1760 instance of a type object, so it doesn't have to copy type
1761 objects wholesale), but it still mutates type objects after
1762 other folks have references to them.
1763
1764 Keep in mind that this circularity/mutation issue shows up
1765 at the source language level, too: C's "incomplete types",
1766 for example. So the proper cleanup, I think, would be to
1767 limit GDB's type smashing to match exactly those required
1768 by the source language. So GDB could have a
1769 "complete_this_type" function, but never create unnecessary
1770 copies of a type otherwise. */
dd6bda65 1771 replace_type (type, xtype);
c906108c
SS
1772 TYPE_NAME (type) = NULL;
1773 TYPE_TAG_NAME (type) = NULL;
1774 }
1775 else
1776 {
876cecd0 1777 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1778 TYPE_TARGET_TYPE (type) = xtype;
1779 }
1780 }
1781 break;
1782
c5aa993b
JM
1783 /* In the following types, we must be sure to overwrite any existing
1784 type that the typenums refer to, rather than allocating a new one
1785 and making the typenums point to the new one. This is because there
1786 may already be pointers to the existing type (if it had been
1787 forward-referenced), and we must change it to a pointer, function,
1788 reference, or whatever, *in-place*. */
c906108c 1789
e2cd42dd 1790 case '*': /* Pointer to another type */
c906108c 1791 type1 = read_type (pp, objfile);
46bf5051 1792 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1793 break;
1794
c5aa993b 1795 case '&': /* Reference to another type */
c906108c 1796 type1 = read_type (pp, objfile);
46bf5051 1797 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1798 break;
1799
c5aa993b 1800 case 'f': /* Function returning another type */
c906108c 1801 type1 = read_type (pp, objfile);
0c8b41f1 1802 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1803 break;
1804
da966255
JB
1805 case 'g': /* Prototyped function. (Sun) */
1806 {
1807 /* Unresolved questions:
1808
1809 - According to Sun's ``STABS Interface Manual'', for 'f'
1810 and 'F' symbol descriptors, a `0' in the argument type list
1811 indicates a varargs function. But it doesn't say how 'g'
1812 type descriptors represent that info. Someone with access
1813 to Sun's toolchain should try it out.
1814
1815 - According to the comment in define_symbol (search for
1816 `process_prototype_types:'), Sun emits integer arguments as
1817 types which ref themselves --- like `void' types. Do we
1818 have to deal with that here, too? Again, someone with
1819 access to Sun's toolchain should try it out and let us
1820 know. */
1821
1822 const char *type_start = (*pp) - 1;
1823 struct type *return_type = read_type (pp, objfile);
1824 struct type *func_type
46bf5051 1825 = make_function_type (return_type,
0c8b41f1 1826 dbx_lookup_type (typenums, objfile));
da966255
JB
1827 struct type_list {
1828 struct type *type;
1829 struct type_list *next;
1830 } *arg_types = 0;
1831 int num_args = 0;
1832
1833 while (**pp && **pp != '#')
1834 {
1835 struct type *arg_type = read_type (pp, objfile);
8d749320 1836 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1837 newobj->type = arg_type;
1838 newobj->next = arg_types;
1839 arg_types = newobj;
da966255
JB
1840 num_args++;
1841 }
1842 if (**pp == '#')
1843 ++*pp;
1844 else
1845 {
23136709 1846 complaint (&symfile_complaints,
3e43a32a
MS
1847 _("Prototyped function type didn't "
1848 "end arguments with `#':\n%s"),
23136709 1849 type_start);
da966255
JB
1850 }
1851
1852 /* If there is just one argument whose type is `void', then
1853 that's just an empty argument list. */
1854 if (arg_types
1855 && ! arg_types->next
1856 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1857 num_args = 0;
1858
1859 TYPE_FIELDS (func_type)
1860 = (struct field *) TYPE_ALLOC (func_type,
1861 num_args * sizeof (struct field));
1862 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1863 {
1864 int i;
1865 struct type_list *t;
1866
1867 /* We stuck each argument type onto the front of the list
1868 when we read it, so the list is reversed. Build the
1869 fields array right-to-left. */
1870 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1871 TYPE_FIELD_TYPE (func_type, i) = t->type;
1872 }
1873 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1874 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1875
1876 type = func_type;
1877 break;
1878 }
1879
c5aa993b 1880 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1881 type = read_type (pp, objfile);
d7242108 1882 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1883 dbx_lookup_type (typenums, objfile));
c906108c
SS
1884 break;
1885
c5aa993b 1886 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1887 type = read_type (pp, objfile);
d7242108 1888 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1889 dbx_lookup_type (typenums, objfile));
c906108c
SS
1890 break;
1891
1892 case '@':
c5aa993b
JM
1893 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1894 { /* Member (class & variable) type */
c906108c
SS
1895 /* FIXME -- we should be doing smash_to_XXX types here. */
1896
1897 struct type *domain = read_type (pp, objfile);
1898 struct type *memtype;
1899
1900 if (**pp != ',')
1901 /* Invalid member type data format. */
1902 return error_type (pp, objfile);
1903 ++*pp;
1904
1905 memtype = read_type (pp, objfile);
1906 type = dbx_alloc_type (typenums, objfile);
0d5de010 1907 smash_to_memberptr_type (type, domain, memtype);
c906108c 1908 }
c5aa993b
JM
1909 else
1910 /* type attribute */
c906108c
SS
1911 {
1912 char *attr = *pp;
433759f7 1913
c906108c
SS
1914 /* Skip to the semicolon. */
1915 while (**pp != ';' && **pp != '\0')
1916 ++(*pp);
1917 if (**pp == '\0')
1918 return error_type (pp, objfile);
1919 else
c5aa993b 1920 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1921
1922 switch (*attr)
1923 {
e2cd42dd 1924 case 's': /* Size attribute */
c906108c
SS
1925 type_size = atoi (attr + 1);
1926 if (type_size <= 0)
1927 type_size = -1;
1928 break;
1929
e2cd42dd 1930 case 'S': /* String attribute */
c378eb4e 1931 /* FIXME: check to see if following type is array? */
c906108c
SS
1932 is_string = 1;
1933 break;
1934
e2cd42dd 1935 case 'V': /* Vector attribute */
c378eb4e 1936 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1937 is_vector = 1;
1938 break;
1939
c906108c
SS
1940 default:
1941 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1942 can invent new ones. */
c906108c
SS
1943 break;
1944 }
1945 ++*pp;
1946 goto again;
1947 }
1948 break;
1949
c5aa993b 1950 case '#': /* Method (class & fn) type */
c906108c
SS
1951 if ((*pp)[0] == '#')
1952 {
1953 /* We'll get the parameter types from the name. */
1954 struct type *return_type;
1955
1956 (*pp)++;
1957 return_type = read_type (pp, objfile);
1958 if (*(*pp)++ != ';')
23136709 1959 complaint (&symfile_complaints,
3e43a32a
MS
1960 _("invalid (minimal) member type "
1961 "data format at symtab pos %d."),
23136709 1962 symnum);
c906108c
SS
1963 type = allocate_stub_method (return_type);
1964 if (typenums[0] != -1)
46bf5051 1965 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1966 }
1967 else
1968 {
1969 struct type *domain = read_type (pp, objfile);
1970 struct type *return_type;
ad2f7632
DJ
1971 struct field *args;
1972 int nargs, varargs;
c906108c
SS
1973
1974 if (**pp != ',')
1975 /* Invalid member type data format. */
1976 return error_type (pp, objfile);
1977 else
1978 ++(*pp);
1979
1980 return_type = read_type (pp, objfile);
ad2f7632 1981 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1982 if (args == NULL)
1983 return error_type (pp, objfile);
c906108c 1984 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1985 smash_to_method_type (type, domain, return_type, args,
1986 nargs, varargs);
c906108c
SS
1987 }
1988 break;
1989
c5aa993b 1990 case 'r': /* Range type */
94e10a22 1991 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1992 if (typenums[0] != -1)
46bf5051 1993 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1994 break;
1995
1996 case 'b':
c906108c
SS
1997 {
1998 /* Sun ACC builtin int type */
1999 type = read_sun_builtin_type (pp, typenums, objfile);
2000 if (typenums[0] != -1)
46bf5051 2001 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2002 }
2003 break;
2004
c5aa993b 2005 case 'R': /* Sun ACC builtin float type */
c906108c
SS
2006 type = read_sun_floating_type (pp, typenums, objfile);
2007 if (typenums[0] != -1)
46bf5051 2008 *dbx_lookup_type (typenums, objfile) = type;
c906108c 2009 break;
c5aa993b
JM
2010
2011 case 'e': /* Enumeration type */
c906108c
SS
2012 type = dbx_alloc_type (typenums, objfile);
2013 type = read_enum_type (pp, type, objfile);
2014 if (typenums[0] != -1)
46bf5051 2015 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2016 break;
2017
c5aa993b
JM
2018 case 's': /* Struct type */
2019 case 'u': /* Union type */
2ae1c2d2
JB
2020 {
2021 enum type_code type_code = TYPE_CODE_UNDEF;
2022 type = dbx_alloc_type (typenums, objfile);
2023 switch (type_descriptor)
2024 {
2025 case 's':
2026 type_code = TYPE_CODE_STRUCT;
2027 break;
2028 case 'u':
2029 type_code = TYPE_CODE_UNION;
2030 break;
2031 }
2032 type = read_struct_type (pp, type, type_code, objfile);
2033 break;
2034 }
c906108c 2035
c5aa993b 2036 case 'a': /* Array type */
c906108c
SS
2037 if (**pp != 'r')
2038 return error_type (pp, objfile);
2039 ++*pp;
c5aa993b 2040
c906108c
SS
2041 type = dbx_alloc_type (typenums, objfile);
2042 type = read_array_type (pp, type, objfile);
2043 if (is_string)
2044 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2045 if (is_vector)
ea37ba09 2046 make_vector_type (type);
c906108c
SS
2047 break;
2048
6b1755ce 2049 case 'S': /* Set type */
c906108c 2050 type1 = read_type (pp, objfile);
c5aa993b 2051 type = create_set_type ((struct type *) NULL, type1);
c906108c 2052 if (typenums[0] != -1)
46bf5051 2053 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2054 break;
2055
2056 default:
c378eb4e
MS
2057 --*pp; /* Go back to the symbol in error. */
2058 /* Particularly important if it was \0! */
c906108c
SS
2059 return error_type (pp, objfile);
2060 }
2061
2062 if (type == 0)
2063 {
8a3fe4f8 2064 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2065 return error_type (pp, objfile);
2066 }
2067
2068 /* Size specified in a type attribute overrides any other size. */
2069 if (type_size != -1)
2070 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2071
2072 return type;
2073}
2074\f
2075/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2076 Return the proper type node for a given builtin type number. */
c906108c 2077
46bf5051
UW
2078static const struct objfile_data *rs6000_builtin_type_data;
2079
c906108c 2080static struct type *
46bf5051 2081rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2082{
19ba03f4
SM
2083 struct type **negative_types
2084 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
46bf5051 2085
c906108c
SS
2086 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2087#define NUMBER_RECOGNIZED 34
c906108c
SS
2088 struct type *rettype = NULL;
2089
2090 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2091 {
e2e0b3e5 2092 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2093 return objfile_type (objfile)->builtin_error;
c906108c 2094 }
46bf5051
UW
2095
2096 if (!negative_types)
2097 {
2098 /* This includes an empty slot for type number -0. */
2099 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2100 NUMBER_RECOGNIZED + 1, struct type *);
2101 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2102 }
2103
c906108c
SS
2104 if (negative_types[-typenum] != NULL)
2105 return negative_types[-typenum];
2106
2107#if TARGET_CHAR_BIT != 8
c5aa993b 2108#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2109 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2110 that if that ever becomes not true, the correct fix will be to
2111 make the size in the struct type to be in bits, not in units of
2112 TARGET_CHAR_BIT. */
2113#endif
2114
2115 switch (-typenum)
2116 {
2117 case 1:
2118 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2119 by the debugging format. If there is a type called "int" which
2120 is other than 32 bits, then it should use a new negative type
2121 number (or avoid negative type numbers for that case).
2122 See stabs.texinfo. */
19f392bc 2123 rettype = init_integer_type (objfile, 32, 0, "int");
c906108c
SS
2124 break;
2125 case 2:
19f392bc 2126 rettype = init_integer_type (objfile, 8, 0, "char");
c413c448 2127 TYPE_NOSIGN (rettype) = 1;
c906108c
SS
2128 break;
2129 case 3:
19f392bc 2130 rettype = init_integer_type (objfile, 16, 0, "short");
c906108c
SS
2131 break;
2132 case 4:
19f392bc 2133 rettype = init_integer_type (objfile, 32, 0, "long");
c906108c
SS
2134 break;
2135 case 5:
19f392bc 2136 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
c906108c
SS
2137 break;
2138 case 6:
19f392bc 2139 rettype = init_integer_type (objfile, 8, 0, "signed char");
c906108c
SS
2140 break;
2141 case 7:
19f392bc 2142 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
c906108c
SS
2143 break;
2144 case 8:
19f392bc 2145 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
c906108c
SS
2146 break;
2147 case 9:
19f392bc 2148 rettype = init_integer_type (objfile, 32, 1, "unsigned");
89acf84d 2149 break;
c906108c 2150 case 10:
19f392bc 2151 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
c906108c
SS
2152 break;
2153 case 11:
19f392bc 2154 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
c906108c
SS
2155 break;
2156 case 12:
2157 /* IEEE single precision (32 bit). */
49f190bc
UW
2158 rettype = init_float_type (objfile, 32, "float",
2159 floatformats_ieee_single);
c906108c
SS
2160 break;
2161 case 13:
2162 /* IEEE double precision (64 bit). */
49f190bc
UW
2163 rettype = init_float_type (objfile, 64, "double",
2164 floatformats_ieee_double);
c906108c
SS
2165 break;
2166 case 14:
2167 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2168 different sizes for "long double" should use different negative
2169 type numbers. See stabs.texinfo. */
49f190bc
UW
2170 rettype = init_float_type (objfile, 64, "long double",
2171 floatformats_ieee_double);
c906108c
SS
2172 break;
2173 case 15:
19f392bc 2174 rettype = init_integer_type (objfile, 32, 0, "integer");
c906108c
SS
2175 break;
2176 case 16:
19f392bc 2177 rettype = init_boolean_type (objfile, 32, 1, "boolean");
c906108c
SS
2178 break;
2179 case 17:
49f190bc
UW
2180 rettype = init_float_type (objfile, 32, "short real",
2181 floatformats_ieee_single);
c906108c
SS
2182 break;
2183 case 18:
49f190bc
UW
2184 rettype = init_float_type (objfile, 64, "real",
2185 floatformats_ieee_double);
c906108c
SS
2186 break;
2187 case 19:
19f392bc 2188 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
c906108c
SS
2189 break;
2190 case 20:
19f392bc 2191 rettype = init_character_type (objfile, 8, 1, "character");
c906108c
SS
2192 break;
2193 case 21:
19f392bc 2194 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
c906108c
SS
2195 break;
2196 case 22:
19f392bc 2197 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
c906108c
SS
2198 break;
2199 case 23:
19f392bc 2200 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
c906108c
SS
2201 break;
2202 case 24:
19f392bc 2203 rettype = init_boolean_type (objfile, 32, 1, "logical");
c906108c
SS
2204 break;
2205 case 25:
2206 /* Complex type consisting of two IEEE single precision values. */
19f392bc
UW
2207 rettype = init_complex_type (objfile, "complex",
2208 rs6000_builtin_type (12, objfile));
c906108c
SS
2209 break;
2210 case 26:
2211 /* Complex type consisting of two IEEE double precision values. */
19f392bc
UW
2212 rettype = init_complex_type (objfile, "double complex",
2213 rs6000_builtin_type (13, objfile));
c906108c
SS
2214 break;
2215 case 27:
19f392bc 2216 rettype = init_integer_type (objfile, 8, 0, "integer*1");
c906108c
SS
2217 break;
2218 case 28:
19f392bc 2219 rettype = init_integer_type (objfile, 16, 0, "integer*2");
c906108c
SS
2220 break;
2221 case 29:
19f392bc 2222 rettype = init_integer_type (objfile, 32, 0, "integer*4");
c906108c
SS
2223 break;
2224 case 30:
19f392bc 2225 rettype = init_character_type (objfile, 16, 0, "wchar");
c906108c
SS
2226 break;
2227 case 31:
19f392bc 2228 rettype = init_integer_type (objfile, 64, 0, "long long");
c906108c
SS
2229 break;
2230 case 32:
19f392bc 2231 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
c906108c
SS
2232 break;
2233 case 33:
19f392bc 2234 rettype = init_integer_type (objfile, 64, 1, "logical*8");
c906108c
SS
2235 break;
2236 case 34:
19f392bc 2237 rettype = init_integer_type (objfile, 64, 0, "integer*8");
c906108c
SS
2238 break;
2239 }
2240 negative_types[-typenum] = rettype;
2241 return rettype;
2242}
2243\f
2244/* This page contains subroutines of read_type. */
2245
0d5cff50
DE
2246/* Wrapper around method_name_from_physname to flag a complaint
2247 if there is an error. */
de17c821 2248
0d5cff50
DE
2249static char *
2250stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2251{
2252 char *method_name;
2253
2254 method_name = method_name_from_physname (physname);
2255
2256 if (method_name == NULL)
c263362b
DJ
2257 {
2258 complaint (&symfile_complaints,
e2e0b3e5 2259 _("Method has bad physname %s\n"), physname);
0d5cff50 2260 return NULL;
c263362b 2261 }
de17c821 2262
0d5cff50 2263 return method_name;
de17c821
DJ
2264}
2265
c906108c
SS
2266/* Read member function stabs info for C++ classes. The form of each member
2267 function data is:
2268
c5aa993b 2269 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2270
2271 An example with two member functions is:
2272
c5aa993b 2273 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2274
2275 For the case of overloaded operators, the format is op$::*.funcs, where
2276 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2277 name (such as `+=') and `.' marks the end of the operator name.
2278
2279 Returns 1 for success, 0 for failure. */
2280
2281static int
fba45db2
KB
2282read_member_functions (struct field_info *fip, char **pp, struct type *type,
2283 struct objfile *objfile)
c906108c
SS
2284{
2285 int nfn_fields = 0;
2286 int length = 0;
c906108c
SS
2287 int i;
2288 struct next_fnfield
2289 {
2290 struct next_fnfield *next;
2291 struct fn_field fn_field;
c5aa993b
JM
2292 }
2293 *sublist;
c906108c
SS
2294 struct type *look_ahead_type;
2295 struct next_fnfieldlist *new_fnlist;
2296 struct next_fnfield *new_sublist;
2297 char *main_fn_name;
52f0bd74 2298 char *p;
c5aa993b 2299
c906108c 2300 /* Process each list until we find something that is not a member function
c378eb4e 2301 or find the end of the functions. */
c906108c
SS
2302
2303 while (**pp != ';')
2304 {
2305 /* We should be positioned at the start of the function name.
c5aa993b 2306 Scan forward to find the first ':' and if it is not the
c378eb4e 2307 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2308 p = *pp;
2309 while (*p != ':')
2310 {
2311 p++;
2312 }
2313 if (p[1] != ':')
2314 {
2315 break;
2316 }
2317
2318 sublist = NULL;
2319 look_ahead_type = NULL;
2320 length = 0;
c5aa993b 2321
8d749320 2322 new_fnlist = XCNEW (struct next_fnfieldlist);
b8c9b27d 2323 make_cleanup (xfree, new_fnlist);
c5aa993b 2324
c906108c
SS
2325 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2326 {
2327 /* This is a completely wierd case. In order to stuff in the
2328 names that might contain colons (the usual name delimiter),
2329 Mike Tiemann defined a different name format which is
2330 signalled if the identifier is "op$". In that case, the
2331 format is "op$::XXXX." where XXXX is the name. This is
2332 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2333 /* This lets the user type "break operator+".
2334 We could just put in "+" as the name, but that wouldn't
2335 work for "*". */
8343f86c 2336 static char opname[32] = "op$";
c906108c 2337 char *o = opname + 3;
c5aa993b 2338
c906108c
SS
2339 /* Skip past '::'. */
2340 *pp = p + 2;
2341
2342 STABS_CONTINUE (pp, objfile);
2343 p = *pp;
2344 while (*p != '.')
2345 {
2346 *o++ = *p++;
2347 }
2348 main_fn_name = savestring (opname, o - opname);
2349 /* Skip past '.' */
2350 *pp = p + 1;
2351 }
2352 else
2353 {
2354 main_fn_name = savestring (*pp, p - *pp);
2355 /* Skip past '::'. */
2356 *pp = p + 2;
2357 }
c5aa993b
JM
2358 new_fnlist->fn_fieldlist.name = main_fn_name;
2359
c906108c
SS
2360 do
2361 {
8d749320 2362 new_sublist = XCNEW (struct next_fnfield);
b8c9b27d 2363 make_cleanup (xfree, new_sublist);
c5aa993b 2364
c906108c
SS
2365 /* Check for and handle cretinous dbx symbol name continuation! */
2366 if (look_ahead_type == NULL)
2367 {
c378eb4e 2368 /* Normal case. */
c906108c 2369 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2370
2371 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2372 if (**pp != ':')
2373 {
2374 /* Invalid symtab info for member function. */
2375 return 0;
2376 }
2377 }
2378 else
2379 {
2380 /* g++ version 1 kludge */
c5aa993b 2381 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2382 look_ahead_type = NULL;
2383 }
c5aa993b 2384
c906108c
SS
2385 (*pp)++;
2386 p = *pp;
2387 while (*p != ';')
2388 {
2389 p++;
2390 }
c5aa993b 2391
09e2d7c7
DE
2392 /* These are methods, not functions. */
2393 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2394 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2395 else
2396 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2397 == TYPE_CODE_METHOD);
c906108c 2398
09e2d7c7 2399 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2400 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2401 {
4bfb94b8 2402 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2403 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2404 new_sublist->fn_field.is_stub = 1;
c906108c 2405 }
09e2d7c7 2406
c5aa993b 2407 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2408 *pp = p + 1;
c5aa993b 2409
c906108c
SS
2410 /* Set this member function's visibility fields. */
2411 switch (*(*pp)++)
2412 {
c5aa993b
JM
2413 case VISIBILITY_PRIVATE:
2414 new_sublist->fn_field.is_private = 1;
2415 break;
2416 case VISIBILITY_PROTECTED:
2417 new_sublist->fn_field.is_protected = 1;
2418 break;
c906108c 2419 }
c5aa993b 2420
c906108c
SS
2421 STABS_CONTINUE (pp, objfile);
2422 switch (**pp)
2423 {
c378eb4e 2424 case 'A': /* Normal functions. */
c5aa993b
JM
2425 new_sublist->fn_field.is_const = 0;
2426 new_sublist->fn_field.is_volatile = 0;
2427 (*pp)++;
2428 break;
c378eb4e 2429 case 'B': /* `const' member functions. */
c5aa993b
JM
2430 new_sublist->fn_field.is_const = 1;
2431 new_sublist->fn_field.is_volatile = 0;
2432 (*pp)++;
2433 break;
c378eb4e 2434 case 'C': /* `volatile' member function. */
c5aa993b
JM
2435 new_sublist->fn_field.is_const = 0;
2436 new_sublist->fn_field.is_volatile = 1;
2437 (*pp)++;
2438 break;
c378eb4e 2439 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2440 new_sublist->fn_field.is_const = 1;
2441 new_sublist->fn_field.is_volatile = 1;
2442 (*pp)++;
2443 break;
3e43a32a 2444 case '*': /* File compiled with g++ version 1 --
c378eb4e 2445 no info. */
c5aa993b
JM
2446 case '?':
2447 case '.':
2448 break;
2449 default:
23136709 2450 complaint (&symfile_complaints,
3e43a32a
MS
2451 _("const/volatile indicator missing, got '%c'"),
2452 **pp);
c5aa993b 2453 break;
c906108c 2454 }
c5aa993b 2455
c906108c
SS
2456 switch (*(*pp)++)
2457 {
c5aa993b 2458 case '*':
c906108c
SS
2459 {
2460 int nbits;
c5aa993b 2461 /* virtual member function, followed by index.
c906108c
SS
2462 The sign bit is set to distinguish pointers-to-methods
2463 from virtual function indicies. Since the array is
2464 in words, the quantity must be shifted left by 1
2465 on 16 bit machine, and by 2 on 32 bit machine, forcing
2466 the sign bit out, and usable as a valid index into
2467 the array. Remove the sign bit here. */
c5aa993b 2468 new_sublist->fn_field.voffset =
94e10a22 2469 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2470 if (nbits != 0)
2471 return 0;
c5aa993b 2472
c906108c
SS
2473 STABS_CONTINUE (pp, objfile);
2474 if (**pp == ';' || **pp == '\0')
2475 {
2476 /* Must be g++ version 1. */
c5aa993b 2477 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2478 }
2479 else
2480 {
2481 /* Figure out from whence this virtual function came.
2482 It may belong to virtual function table of
2483 one of its baseclasses. */
2484 look_ahead_type = read_type (pp, objfile);
2485 if (**pp == ':')
2486 {
c378eb4e 2487 /* g++ version 1 overloaded methods. */
c906108c
SS
2488 }
2489 else
2490 {
c5aa993b 2491 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2492 if (**pp != ';')
2493 {
2494 return 0;
2495 }
2496 else
2497 {
2498 ++*pp;
2499 }
2500 look_ahead_type = NULL;
2501 }
2502 }
2503 break;
2504 }
c5aa993b
JM
2505 case '?':
2506 /* static member function. */
4ea09c10
PS
2507 {
2508 int slen = strlen (main_fn_name);
2509
2510 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2511
2512 /* For static member functions, we can't tell if they
2513 are stubbed, as they are put out as functions, and not as
2514 methods.
2515 GCC v2 emits the fully mangled name if
2516 dbxout.c:flag_minimal_debug is not set, so we have to
2517 detect a fully mangled physname here and set is_stub
2518 accordingly. Fully mangled physnames in v2 start with
2519 the member function name, followed by two underscores.
2520 GCC v3 currently always emits stubbed member functions,
2521 but with fully mangled physnames, which start with _Z. */
2522 if (!(strncmp (new_sublist->fn_field.physname,
2523 main_fn_name, slen) == 0
2524 && new_sublist->fn_field.physname[slen] == '_'
2525 && new_sublist->fn_field.physname[slen + 1] == '_'))
2526 {
2527 new_sublist->fn_field.is_stub = 1;
2528 }
2529 break;
2530 }
c5aa993b
JM
2531
2532 default:
2533 /* error */
23136709 2534 complaint (&symfile_complaints,
3e43a32a
MS
2535 _("member function type missing, got '%c'"),
2536 (*pp)[-1]);
c5aa993b
JM
2537 /* Fall through into normal member function. */
2538
2539 case '.':
2540 /* normal member function. */
2541 new_sublist->fn_field.voffset = 0;
2542 new_sublist->fn_field.fcontext = 0;
2543 break;
c906108c 2544 }
c5aa993b
JM
2545
2546 new_sublist->next = sublist;
c906108c
SS
2547 sublist = new_sublist;
2548 length++;
2549 STABS_CONTINUE (pp, objfile);
2550 }
2551 while (**pp != ';' && **pp != '\0');
c5aa993b 2552
c906108c 2553 (*pp)++;
0c867556 2554 STABS_CONTINUE (pp, objfile);
c5aa993b 2555
0c867556
PS
2556 /* Skip GCC 3.X member functions which are duplicates of the callable
2557 constructor/destructor. */
6cbbcdfe
KS
2558 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2559 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2560 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2561 {
0c867556 2562 xfree (main_fn_name);
c906108c 2563 }
0c867556
PS
2564 else
2565 {
de17c821
DJ
2566 int has_stub = 0;
2567 int has_destructor = 0, has_other = 0;
2568 int is_v3 = 0;
2569 struct next_fnfield *tmp_sublist;
2570
2571 /* Various versions of GCC emit various mostly-useless
2572 strings in the name field for special member functions.
2573
2574 For stub methods, we need to defer correcting the name
2575 until we are ready to unstub the method, because the current
2576 name string is used by gdb_mangle_name. The only stub methods
2577 of concern here are GNU v2 operators; other methods have their
2578 names correct (see caveat below).
2579
2580 For non-stub methods, in GNU v3, we have a complete physname.
2581 Therefore we can safely correct the name now. This primarily
2582 affects constructors and destructors, whose name will be
2583 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2584 operators will also have incorrect names; for instance,
2585 "operator int" will be named "operator i" (i.e. the type is
2586 mangled).
2587
2588 For non-stub methods in GNU v2, we have no easy way to
2589 know if we have a complete physname or not. For most
2590 methods the result depends on the platform (if CPLUS_MARKER
2591 can be `$' or `.', it will use minimal debug information, or
2592 otherwise the full physname will be included).
2593
2594 Rather than dealing with this, we take a different approach.
2595 For v3 mangled names, we can use the full physname; for v2,
2596 we use cplus_demangle_opname (which is actually v2 specific),
2597 because the only interesting names are all operators - once again
2598 barring the caveat below. Skip this process if any method in the
2599 group is a stub, to prevent our fouling up the workings of
2600 gdb_mangle_name.
2601
2602 The caveat: GCC 2.95.x (and earlier?) put constructors and
2603 destructors in the same method group. We need to split this
2604 into two groups, because they should have different names.
2605 So for each method group we check whether it contains both
2606 routines whose physname appears to be a destructor (the physnames
2607 for and destructors are always provided, due to quirks in v2
2608 mangling) and routines whose physname does not appear to be a
2609 destructor. If so then we break up the list into two halves.
2610 Even if the constructors and destructors aren't in the same group
2611 the destructor will still lack the leading tilde, so that also
2612 needs to be fixed.
2613
2614 So, to summarize what we expect and handle here:
2615
2616 Given Given Real Real Action
2617 method name physname physname method name
2618
2619 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2620 [now or later]
2621 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2622 rename
2623 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2624 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2625 */
2626
2627 tmp_sublist = sublist;
2628 while (tmp_sublist != NULL)
2629 {
2630 if (tmp_sublist->fn_field.is_stub)
2631 has_stub = 1;
2632 if (tmp_sublist->fn_field.physname[0] == '_'
2633 && tmp_sublist->fn_field.physname[1] == 'Z')
2634 is_v3 = 1;
2635
2636 if (is_destructor_name (tmp_sublist->fn_field.physname))
2637 has_destructor++;
2638 else
2639 has_other++;
2640
2641 tmp_sublist = tmp_sublist->next;
2642 }
2643
2644 if (has_destructor && has_other)
2645 {
2646 struct next_fnfieldlist *destr_fnlist;
2647 struct next_fnfield *last_sublist;
2648
2649 /* Create a new fn_fieldlist for the destructors. */
2650
8d749320 2651 destr_fnlist = XCNEW (struct next_fnfieldlist);
de17c821 2652 make_cleanup (xfree, destr_fnlist);
8d749320 2653
de17c821 2654 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2655 = obconcat (&objfile->objfile_obstack, "~",
2656 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2657
8d749320
SM
2658 destr_fnlist->fn_fieldlist.fn_fields =
2659 XOBNEWVEC (&objfile->objfile_obstack,
2660 struct fn_field, has_destructor);
de17c821
DJ
2661 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2662 sizeof (struct fn_field) * has_destructor);
2663 tmp_sublist = sublist;
2664 last_sublist = NULL;
2665 i = 0;
2666 while (tmp_sublist != NULL)
2667 {
2668 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2669 {
2670 tmp_sublist = tmp_sublist->next;
2671 continue;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.fn_fields[i++]
2675 = tmp_sublist->fn_field;
2676 if (last_sublist)
2677 last_sublist->next = tmp_sublist->next;
2678 else
2679 sublist = tmp_sublist->next;
2680 last_sublist = tmp_sublist;
2681 tmp_sublist = tmp_sublist->next;
2682 }
2683
2684 destr_fnlist->fn_fieldlist.length = has_destructor;
2685 destr_fnlist->next = fip->fnlist;
2686 fip->fnlist = destr_fnlist;
2687 nfn_fields++;
de17c821
DJ
2688 length -= has_destructor;
2689 }
2690 else if (is_v3)
2691 {
2692 /* v3 mangling prevents the use of abbreviated physnames,
2693 so we can do this here. There are stubbed methods in v3
2694 only:
2695 - in -gstabs instead of -gstabs+
2696 - or for static methods, which are output as a function type
2697 instead of a method type. */
0d5cff50
DE
2698 char *new_method_name =
2699 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2700
0d5cff50
DE
2701 if (new_method_name != NULL
2702 && strcmp (new_method_name,
2703 new_fnlist->fn_fieldlist.name) != 0)
2704 {
2705 new_fnlist->fn_fieldlist.name = new_method_name;
2706 xfree (main_fn_name);
2707 }
2708 else
2709 xfree (new_method_name);
de17c821
DJ
2710 }
2711 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2712 {
1754f103 2713 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2714 obconcat (&objfile->objfile_obstack,
2715 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2716 xfree (main_fn_name);
2717 }
2718 else if (!has_stub)
2719 {
2720 char dem_opname[256];
2721 int ret;
433759f7 2722
de17c821
DJ
2723 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2724 dem_opname, DMGL_ANSI);
2725 if (!ret)
2726 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2727 dem_opname, 0);
2728 if (ret)
2729 new_fnlist->fn_fieldlist.name
224c3ddb
SM
2730 = ((const char *)
2731 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2732 strlen (dem_opname)));
0d5cff50 2733 xfree (main_fn_name);
de17c821
DJ
2734 }
2735
0c867556 2736 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2737 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2738 sizeof (struct fn_field) * length);
2739 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2740 sizeof (struct fn_field) * length);
2741 for (i = length; (i--, sublist); sublist = sublist->next)
2742 {
2743 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2744 }
c5aa993b 2745
0c867556
PS
2746 new_fnlist->fn_fieldlist.length = length;
2747 new_fnlist->next = fip->fnlist;
2748 fip->fnlist = new_fnlist;
2749 nfn_fields++;
0c867556 2750 }
c906108c
SS
2751 }
2752
2753 if (nfn_fields)
2754 {
2755 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2756 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2757 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2758 memset (TYPE_FN_FIELDLISTS (type), 0,
2759 sizeof (struct fn_fieldlist) * nfn_fields);
2760 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2761 }
2762
2763 return 1;
2764}
2765
2766/* Special GNU C++ name.
2767
2768 Returns 1 for success, 0 for failure. "failure" means that we can't
2769 keep parsing and it's time for error_type(). */
2770
2771static int
fba45db2
KB
2772read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2773 struct objfile *objfile)
c906108c 2774{
52f0bd74 2775 char *p;
0d5cff50 2776 const char *name;
c906108c
SS
2777 char cpp_abbrev;
2778 struct type *context;
2779
2780 p = *pp;
2781 if (*++p == 'v')
2782 {
2783 name = NULL;
2784 cpp_abbrev = *++p;
2785
2786 *pp = p + 1;
2787
2788 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2789 where the type number before the ':' is the "context" and
2790 everything after is a regular type definition. Lookup the
c378eb4e 2791 type, find it's name, and construct the field name. */
c906108c
SS
2792
2793 context = read_type (pp, objfile);
2794
2795 switch (cpp_abbrev)
2796 {
c5aa993b 2797 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2798 name = type_name_no_tag (context);
2799 if (name == NULL)
433759f7
MS
2800 {
2801 name = "";
2802 }
48cb83fd
JK
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 vptr_name, name, (char *) NULL);
c5aa993b 2805 break;
c906108c 2806
c5aa993b
JM
2807 case 'b': /* $vb -- a virtual bsomethingorother */
2808 name = type_name_no_tag (context);
2809 if (name == NULL)
2810 {
23136709 2811 complaint (&symfile_complaints,
3e43a32a
MS
2812 _("C++ abbreviated type name "
2813 "unknown at symtab pos %d"),
23136709 2814 symnum);
c5aa993b
JM
2815 name = "FOO";
2816 }
48cb83fd
JK
2817 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2818 name, (char *) NULL);
c5aa993b 2819 break;
c906108c 2820
c5aa993b 2821 default:
23136709 2822 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2823 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2824 "INVALID_CPLUSPLUS_ABBREV",
2825 (char *) NULL);
c5aa993b 2826 break;
c906108c
SS
2827 }
2828
2829 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2830 field type. */
c906108c
SS
2831
2832 p = ++(*pp);
2833 if (p[-1] != ':')
2834 {
23136709 2835 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2836 return 0;
2837 }
2838 fip->list->field.type = read_type (pp, objfile);
2839 if (**pp == ',')
c5aa993b 2840 (*pp)++; /* Skip the comma. */
c906108c
SS
2841 else
2842 return 0;
2843
2844 {
2845 int nbits;
433759f7 2846
f41f5e61
PA
2847 SET_FIELD_BITPOS (fip->list->field,
2848 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2849 if (nbits != 0)
2850 return 0;
2851 }
2852 /* This field is unpacked. */
2853 FIELD_BITSIZE (fip->list->field) = 0;
2854 fip->list->visibility = VISIBILITY_PRIVATE;
2855 }
2856 else
2857 {
23136709 2858 invalid_cpp_abbrev_complaint (*pp);
c906108c 2859 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2860 better return 0. If we returned 1, we would need to at least advance
2861 *pp to avoid an infinite loop. */
c906108c
SS
2862 return 0;
2863 }
2864 return 1;
2865}
2866
2867static void
fba45db2
KB
2868read_one_struct_field (struct field_info *fip, char **pp, char *p,
2869 struct type *type, struct objfile *objfile)
c906108c 2870{
5e2b427d
UW
2871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2872
224c3ddb
SM
2873 fip->list->field.name
2874 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2875 *pp = p + 1;
2876
c378eb4e 2877 /* This means we have a visibility for a field coming. */
c906108c
SS
2878 if (**pp == '/')
2879 {
2880 (*pp)++;
c5aa993b 2881 fip->list->visibility = *(*pp)++;
c906108c
SS
2882 }
2883 else
2884 {
2885 /* normal dbx-style format, no explicit visibility */
c5aa993b 2886 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2887 }
2888
c5aa993b 2889 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2890 if (**pp == ':')
2891 {
2892 p = ++(*pp);
2893#if 0
c378eb4e 2894 /* Possible future hook for nested types. */
c906108c
SS
2895 if (**pp == '!')
2896 {
c5aa993b 2897 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2898 p = ++(*pp);
2899 }
c5aa993b
JM
2900 else
2901 ...;
c906108c 2902#endif
c5aa993b 2903 while (*p != ';')
c906108c
SS
2904 {
2905 p++;
2906 }
2907 /* Static class member. */
2908 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2909 *pp = p + 1;
2910 return;
2911 }
2912 else if (**pp != ',')
2913 {
2914 /* Bad structure-type format. */
23136709 2915 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2916 return;
2917 }
2918
2919 (*pp)++; /* Skip the comma. */
2920
2921 {
2922 int nbits;
433759f7 2923
f41f5e61
PA
2924 SET_FIELD_BITPOS (fip->list->field,
2925 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2926 if (nbits != 0)
2927 {
23136709 2928 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2929 return;
2930 }
94e10a22 2931 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2932 if (nbits != 0)
2933 {
23136709 2934 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2935 return;
2936 }
2937 }
2938
2939 if (FIELD_BITPOS (fip->list->field) == 0
2940 && FIELD_BITSIZE (fip->list->field) == 0)
2941 {
2942 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2943 it is a field which has been optimized out. The correct stab for
2944 this case is to use VISIBILITY_IGNORE, but that is a recent
2945 invention. (2) It is a 0-size array. For example
e2e0b3e5 2946 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2947 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2948 will continue to work, and a 0-size array as a whole doesn't
2949 have any contents to print.
2950
2951 I suspect this probably could also happen with gcc -gstabs (not
2952 -gstabs+) for static fields, and perhaps other C++ extensions.
2953 Hopefully few people use -gstabs with gdb, since it is intended
2954 for dbx compatibility. */
c906108c
SS
2955
2956 /* Ignore this field. */
c5aa993b 2957 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2958 }
2959 else
2960 {
2961 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2962 dbx gives a bit size for all fields.
2963 Note that forward refs cannot be packed,
2964 and treat enums as if they had the width of ints. */
c906108c
SS
2965
2966 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2967
2968 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2969 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2970 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2971 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2972 {
2973 FIELD_BITSIZE (fip->list->field) = 0;
2974 }
c5aa993b 2975 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2976 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2977 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2978 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2979 == gdbarch_int_bit (gdbarch))
c5aa993b 2980 )
c906108c
SS
2981 &&
2982 FIELD_BITPOS (fip->list->field) % 8 == 0)
2983 {
2984 FIELD_BITSIZE (fip->list->field) = 0;
2985 }
2986 }
2987}
2988
2989
2990/* Read struct or class data fields. They have the form:
2991
c5aa993b 2992 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2993
2994 At the end, we see a semicolon instead of a field.
2995
2996 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2997 a static field.
2998
2999 The optional VISIBILITY is one of:
3000
c5aa993b
JM
3001 '/0' (VISIBILITY_PRIVATE)
3002 '/1' (VISIBILITY_PROTECTED)
3003 '/2' (VISIBILITY_PUBLIC)
3004 '/9' (VISIBILITY_IGNORE)
c906108c
SS
3005
3006 or nothing, for C style fields with public visibility.
3007
3008 Returns 1 for success, 0 for failure. */
3009
3010static int
fba45db2
KB
3011read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3012 struct objfile *objfile)
c906108c 3013{
52f0bd74 3014 char *p;
fe978cb0 3015 struct nextfield *newobj;
c906108c
SS
3016
3017 /* We better set p right now, in case there are no fields at all... */
3018
3019 p = *pp;
3020
3021 /* Read each data member type until we find the terminating ';' at the end of
3022 the data member list, or break for some other reason such as finding the
c378eb4e 3023 start of the member function list. */
fedbd091 3024 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3025 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3026
fedbd091 3027 while (**pp != ';' && **pp != '\0')
c906108c 3028 {
c906108c
SS
3029 STABS_CONTINUE (pp, objfile);
3030 /* Get space to record the next field's data. */
8d749320 3031 newobj = XCNEW (struct nextfield);
fe978cb0 3032 make_cleanup (xfree, newobj);
8d749320 3033
fe978cb0
PA
3034 newobj->next = fip->list;
3035 fip->list = newobj;
c906108c
SS
3036
3037 /* Get the field name. */
3038 p = *pp;
3039
3040 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3041 unless the CPLUS_MARKER is followed by an underscore, in
3042 which case it is just the name of an anonymous type, which we
3043 should handle like any other type name. */
c906108c
SS
3044
3045 if (is_cplus_marker (p[0]) && p[1] != '_')
3046 {
3047 if (!read_cpp_abbrev (fip, pp, type, objfile))
3048 return 0;
3049 continue;
3050 }
3051
3052 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3053 values. Data members are delimited by a single ':', while member
3054 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3055 functions (if any), terminate scan loop and return. */
c906108c 3056
c5aa993b 3057 while (*p != ':' && *p != '\0')
c906108c
SS
3058 {
3059 p++;
3060 }
3061 if (*p == '\0')
3062 return 0;
3063
3064 /* Check to see if we have hit the member functions yet. */
3065 if (p[1] == ':')
3066 {
3067 break;
3068 }
3069 read_one_struct_field (fip, pp, p, type, objfile);
3070 }
3071 if (p[0] == ':' && p[1] == ':')
3072 {
1b831c93
AC
3073 /* (the deleted) chill the list of fields: the last entry (at
3074 the head) is a partially constructed entry which we now
c378eb4e 3075 scrub. */
c5aa993b 3076 fip->list = fip->list->next;
c906108c
SS
3077 }
3078 return 1;
3079}
9846de1b 3080/* *INDENT-OFF* */
c906108c
SS
3081/* The stabs for C++ derived classes contain baseclass information which
3082 is marked by a '!' character after the total size. This function is
3083 called when we encounter the baseclass marker, and slurps up all the
3084 baseclass information.
3085
3086 Immediately following the '!' marker is the number of base classes that
3087 the class is derived from, followed by information for each base class.
3088 For each base class, there are two visibility specifiers, a bit offset
3089 to the base class information within the derived class, a reference to
3090 the type for the base class, and a terminating semicolon.
3091
3092 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3093 ^^ ^ ^ ^ ^ ^ ^
3094 Baseclass information marker __________________|| | | | | | |
3095 Number of baseclasses __________________________| | | | | | |
3096 Visibility specifiers (2) ________________________| | | | | |
3097 Offset in bits from start of class _________________| | | | |
3098 Type number for base class ___________________________| | | |
3099 Visibility specifiers (2) _______________________________| | |
3100 Offset in bits from start of class ________________________| |
3101 Type number of base class ____________________________________|
3102
3103 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3104/* *INDENT-ON* */
c906108c 3105
c5aa993b
JM
3106
3107
c906108c 3108static int
fba45db2
KB
3109read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3110 struct objfile *objfile)
c906108c
SS
3111{
3112 int i;
fe978cb0 3113 struct nextfield *newobj;
c906108c
SS
3114
3115 if (**pp != '!')
3116 {
3117 return 1;
3118 }
3119 else
3120 {
c378eb4e 3121 /* Skip the '!' baseclass information marker. */
c906108c
SS
3122 (*pp)++;
3123 }
3124
3125 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3126 {
3127 int nbits;
433759f7 3128
94e10a22 3129 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3130 if (nbits != 0)
3131 return 0;
3132 }
3133
3134#if 0
3135 /* Some stupid compilers have trouble with the following, so break
3136 it up into simpler expressions. */
3137 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3138 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3139#else
3140 {
3141 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3142 char *pointer;
3143
3144 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3145 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3146 }
3147#endif /* 0 */
3148
3149 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3150
3151 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3152 {
8d749320 3153 newobj = XCNEW (struct nextfield);
fe978cb0 3154 make_cleanup (xfree, newobj);
8d749320 3155
fe978cb0
PA
3156 newobj->next = fip->list;
3157 fip->list = newobj;
3158 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3159 field! */
c906108c
SS
3160
3161 STABS_CONTINUE (pp, objfile);
3162 switch (**pp)
3163 {
c5aa993b 3164 case '0':
c378eb4e 3165 /* Nothing to do. */
c5aa993b
JM
3166 break;
3167 case '1':
3168 SET_TYPE_FIELD_VIRTUAL (type, i);
3169 break;
3170 default:
3171 /* Unknown character. Complain and treat it as non-virtual. */
3172 {
23136709 3173 complaint (&symfile_complaints,
3e43a32a
MS
3174 _("Unknown virtual character `%c' for baseclass"),
3175 **pp);
c5aa993b 3176 }
c906108c
SS
3177 }
3178 ++(*pp);
3179
fe978cb0
PA
3180 newobj->visibility = *(*pp)++;
3181 switch (newobj->visibility)
c906108c 3182 {
c5aa993b
JM
3183 case VISIBILITY_PRIVATE:
3184 case VISIBILITY_PROTECTED:
3185 case VISIBILITY_PUBLIC:
3186 break;
3187 default:
3188 /* Bad visibility format. Complain and treat it as
3189 public. */
3190 {
23136709 3191 complaint (&symfile_complaints,
e2e0b3e5 3192 _("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3193 newobj->visibility);
3194 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3195 }
c906108c
SS
3196 }
3197
3198 {
3199 int nbits;
c5aa993b 3200
c906108c
SS
3201 /* The remaining value is the bit offset of the portion of the object
3202 corresponding to this baseclass. Always zero in the absence of
3203 multiple inheritance. */
3204
fe978cb0 3205 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3206 if (nbits != 0)
3207 return 0;
3208 }
3209
3210 /* The last piece of baseclass information is the type of the
c5aa993b 3211 base class. Read it, and remember it's type name as this
c378eb4e 3212 field's name. */
c906108c 3213
fe978cb0
PA
3214 newobj->field.type = read_type (pp, objfile);
3215 newobj->field.name = type_name_no_tag (newobj->field.type);
c906108c 3216
c378eb4e 3217 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3218 if (**pp == ';')
3219 (*pp)++;
3220 else
3221 return 0;
3222 }
3223 return 1;
3224}
3225
3226/* The tail end of stabs for C++ classes that contain a virtual function
3227 pointer contains a tilde, a %, and a type number.
3228 The type number refers to the base class (possibly this class itself) which
3229 contains the vtable pointer for the current class.
3230
3231 This function is called when we have parsed all the method declarations,
3232 so we can look for the vptr base class info. */
3233
3234static int
fba45db2
KB
3235read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3236 struct objfile *objfile)
c906108c 3237{
52f0bd74 3238 char *p;
c906108c
SS
3239
3240 STABS_CONTINUE (pp, objfile);
3241
c378eb4e 3242 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3243 if (**pp == ';')
3244 {
3245 (*pp)++;
3246 }
3247
3248 if (**pp == '~')
3249 {
3250 (*pp)++;
3251
3252 if (**pp == '=' || **pp == '+' || **pp == '-')
3253 {
3254 /* Obsolete flags that used to indicate the presence
c378eb4e 3255 of constructors and/or destructors. */
c906108c
SS
3256 (*pp)++;
3257 }
3258
3259 /* Read either a '%' or the final ';'. */
3260 if (*(*pp)++ == '%')
3261 {
3262 /* The next number is the type number of the base class
3263 (possibly our own class) which supplies the vtable for
3264 this class. Parse it out, and search that class to find
3265 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3266 and TYPE_VPTR_FIELDNO. */
3267
3268 struct type *t;
3269 int i;
3270
3271 t = read_type (pp, objfile);
3272 p = (*pp)++;
3273 while (*p != '\0' && *p != ';')
3274 {
3275 p++;
3276 }
3277 if (*p == '\0')
3278 {
3279 /* Premature end of symbol. */
3280 return 0;
3281 }
c5aa993b 3282
ae6ae975 3283 set_type_vptr_basetype (type, t);
c378eb4e 3284 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3285 {
3286 for (i = TYPE_NFIELDS (t) - 1;
3287 i >= TYPE_N_BASECLASSES (t);
3288 --i)
3289 {
0d5cff50 3290 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3291
8343f86c 3292 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3293 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3294 {
ae6ae975 3295 set_type_vptr_fieldno (type, i);
c906108c
SS
3296 goto gotit;
3297 }
3298 }
3299 /* Virtual function table field not found. */
23136709 3300 complaint (&symfile_complaints,
3e43a32a
MS
3301 _("virtual function table pointer "
3302 "not found when defining class `%s'"),
23136709 3303 TYPE_NAME (type));
c906108c
SS
3304 return 0;
3305 }
3306 else
3307 {
ae6ae975 3308 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3309 }
3310
c5aa993b 3311 gotit:
c906108c
SS
3312 *pp = p + 1;
3313 }
3314 }
3315 return 1;
3316}
3317
3318static int
aa1ee363 3319attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3320{
52f0bd74 3321 int n;
c906108c
SS
3322
3323 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3324 fip->fnlist != NULL;
3325 fip->fnlist = fip->fnlist->next)
c906108c 3326 {
c378eb4e 3327 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3328 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3329 }
3330 return 1;
3331}
3332
c906108c
SS
3333/* Create the vector of fields, and record how big it is.
3334 We need this info to record proper virtual function table information
3335 for this class's virtual functions. */
3336
3337static int
aa1ee363 3338attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3339 struct objfile *objfile)
c906108c 3340{
52f0bd74
AC
3341 int nfields = 0;
3342 int non_public_fields = 0;
3343 struct nextfield *scan;
c906108c
SS
3344
3345 /* Count up the number of fields that we have, as well as taking note of
3346 whether or not there are any non-public fields, which requires us to
3347 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3348 bitfields. */
c906108c 3349
c5aa993b 3350 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3351 {
3352 nfields++;
c5aa993b 3353 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3354 {
3355 non_public_fields++;
3356 }
3357 }
3358
3359 /* Now we know how many fields there are, and whether or not there are any
3360 non-public fields. Record the field count, allocate space for the
c378eb4e 3361 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3362
3363 TYPE_NFIELDS (type) = nfields;
3364 TYPE_FIELDS (type) = (struct field *)
3365 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3366 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3367
3368 if (non_public_fields)
3369 {
3370 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3371
3372 TYPE_FIELD_PRIVATE_BITS (type) =
3373 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3374 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3375
3376 TYPE_FIELD_PROTECTED_BITS (type) =
3377 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3378 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3379
3380 TYPE_FIELD_IGNORE_BITS (type) =
3381 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3382 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3383 }
3384
c378eb4e
MS
3385 /* Copy the saved-up fields into the field vector. Start from the
3386 head of the list, adding to the tail of the field array, so that
3387 they end up in the same order in the array in which they were
3388 added to the list. */
c906108c
SS
3389
3390 while (nfields-- > 0)
3391 {
c5aa993b
JM
3392 TYPE_FIELD (type, nfields) = fip->list->field;
3393 switch (fip->list->visibility)
c906108c 3394 {
c5aa993b
JM
3395 case VISIBILITY_PRIVATE:
3396 SET_TYPE_FIELD_PRIVATE (type, nfields);
3397 break;
c906108c 3398
c5aa993b
JM
3399 case VISIBILITY_PROTECTED:
3400 SET_TYPE_FIELD_PROTECTED (type, nfields);
3401 break;
c906108c 3402
c5aa993b
JM
3403 case VISIBILITY_IGNORE:
3404 SET_TYPE_FIELD_IGNORE (type, nfields);
3405 break;
c906108c 3406
c5aa993b
JM
3407 case VISIBILITY_PUBLIC:
3408 break;
c906108c 3409
c5aa993b
JM
3410 default:
3411 /* Unknown visibility. Complain and treat it as public. */
3412 {
3e43a32a
MS
3413 complaint (&symfile_complaints,
3414 _("Unknown visibility `%c' for field"),
23136709 3415 fip->list->visibility);
c5aa993b
JM
3416 }
3417 break;
c906108c 3418 }
c5aa993b 3419 fip->list = fip->list->next;
c906108c
SS
3420 }
3421 return 1;
3422}
3423
2ae1c2d2 3424
2ae1c2d2
JB
3425/* Complain that the compiler has emitted more than one definition for the
3426 structure type TYPE. */
3427static void
3428complain_about_struct_wipeout (struct type *type)
3429{
0d5cff50
DE
3430 const char *name = "";
3431 const char *kind = "";
2ae1c2d2
JB
3432
3433 if (TYPE_TAG_NAME (type))
3434 {
3435 name = TYPE_TAG_NAME (type);
3436 switch (TYPE_CODE (type))
3437 {
3438 case TYPE_CODE_STRUCT: kind = "struct "; break;
3439 case TYPE_CODE_UNION: kind = "union "; break;
3440 case TYPE_CODE_ENUM: kind = "enum "; break;
3441 default: kind = "";
3442 }
3443 }
3444 else if (TYPE_NAME (type))
3445 {
3446 name = TYPE_NAME (type);
3447 kind = "";
3448 }
3449 else
3450 {
3451 name = "<unknown>";
3452 kind = "";
3453 }
3454
23136709 3455 complaint (&symfile_complaints,
e2e0b3e5 3456 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3457}
3458
621791b8
PM
3459/* Set the length for all variants of a same main_type, which are
3460 connected in the closed chain.
3461
3462 This is something that needs to be done when a type is defined *after*
3463 some cross references to this type have already been read. Consider
3464 for instance the following scenario where we have the following two
3465 stabs entries:
3466
3467 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3468 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3469
3470 A stubbed version of type dummy is created while processing the first
3471 stabs entry. The length of that type is initially set to zero, since
3472 it is unknown at this point. Also, a "constant" variation of type
3473 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3474 the stabs line).
3475
3476 The second stabs entry allows us to replace the stubbed definition
3477 with the real definition. However, we still need to adjust the length
3478 of the "constant" variation of that type, as its length was left
3479 untouched during the main type replacement... */
3480
3481static void
9e69f3b6 3482set_length_in_type_chain (struct type *type)
621791b8
PM
3483{
3484 struct type *ntype = TYPE_CHAIN (type);
3485
3486 while (ntype != type)
3487 {
3488 if (TYPE_LENGTH(ntype) == 0)
3489 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3490 else
3491 complain_about_struct_wipeout (ntype);
3492 ntype = TYPE_CHAIN (ntype);
3493 }
3494}
2ae1c2d2 3495
c906108c
SS
3496/* Read the description of a structure (or union type) and return an object
3497 describing the type.
3498
3499 PP points to a character pointer that points to the next unconsumed token
b021a221 3500 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3501 *PP will point to "4a:1,0,32;;".
3502
3503 TYPE points to an incomplete type that needs to be filled in.
3504
3505 OBJFILE points to the current objfile from which the stabs information is
3506 being read. (Note that it is redundant in that TYPE also contains a pointer
3507 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3508 */
c906108c
SS
3509
3510static struct type *
2ae1c2d2
JB
3511read_struct_type (char **pp, struct type *type, enum type_code type_code,
3512 struct objfile *objfile)
c906108c
SS
3513{
3514 struct cleanup *back_to;
3515 struct field_info fi;
3516
3517 fi.list = NULL;
3518 fi.fnlist = NULL;
3519
2ae1c2d2
JB
3520 /* When describing struct/union/class types in stabs, G++ always drops
3521 all qualifications from the name. So if you've got:
3522 struct A { ... struct B { ... }; ... };
3523 then G++ will emit stabs for `struct A::B' that call it simply
3524 `struct B'. Obviously, if you've got a real top-level definition for
3525 `struct B', or other nested definitions, this is going to cause
3526 problems.
3527
3528 Obviously, GDB can't fix this by itself, but it can at least avoid
3529 scribbling on existing structure type objects when new definitions
3530 appear. */
3531 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3532 || TYPE_STUB (type)))
3533 {
3534 complain_about_struct_wipeout (type);
3535
3536 /* It's probably best to return the type unchanged. */
3537 return type;
3538 }
3539
c906108c
SS
3540 back_to = make_cleanup (null_cleanup, 0);
3541
3542 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3543 TYPE_CODE (type) = type_code;
876cecd0 3544 TYPE_STUB (type) = 0;
c906108c
SS
3545
3546 /* First comes the total size in bytes. */
3547
3548 {
3549 int nbits;
433759f7 3550
94e10a22 3551 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3552 if (nbits != 0)
73b8d9da
TT
3553 {
3554 do_cleanups (back_to);
3555 return error_type (pp, objfile);
3556 }
621791b8 3557 set_length_in_type_chain (type);
c906108c
SS
3558 }
3559
3560 /* Now read the baseclasses, if any, read the regular C struct or C++
3561 class member fields, attach the fields to the type, read the C++
3562 member functions, attach them to the type, and then read any tilde
3e43a32a 3563 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3564
3565 if (!read_baseclasses (&fi, pp, type, objfile)
3566 || !read_struct_fields (&fi, pp, type, objfile)
3567 || !attach_fields_to_type (&fi, type, objfile)
3568 || !read_member_functions (&fi, pp, type, objfile)
3569 || !attach_fn_fields_to_type (&fi, type)
3570 || !read_tilde_fields (&fi, pp, type, objfile))
3571 {
3572 type = error_type (pp, objfile);
3573 }
3574
3575 do_cleanups (back_to);
3576 return (type);
3577}
3578
3579/* Read a definition of an array type,
3580 and create and return a suitable type object.
3581 Also creates a range type which represents the bounds of that
3582 array. */
3583
3584static struct type *
aa1ee363 3585read_array_type (char **pp, struct type *type,
fba45db2 3586 struct objfile *objfile)
c906108c
SS
3587{
3588 struct type *index_type, *element_type, *range_type;
3589 int lower, upper;
3590 int adjustable = 0;
3591 int nbits;
3592
3593 /* Format of an array type:
3594 "ar<index type>;lower;upper;<array_contents_type>".
3595 OS9000: "arlower,upper;<array_contents_type>".
3596
3597 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3598 for these, produce a type like float[][]. */
3599
c906108c
SS
3600 {
3601 index_type = read_type (pp, objfile);
3602 if (**pp != ';')
3603 /* Improper format of array type decl. */
3604 return error_type (pp, objfile);
3605 ++*pp;
3606 }
3607
3608 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3609 {
3610 (*pp)++;
3611 adjustable = 1;
3612 }
94e10a22 3613 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3614
c906108c
SS
3615 if (nbits != 0)
3616 return error_type (pp, objfile);
3617
3618 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3619 {
3620 (*pp)++;
3621 adjustable = 1;
3622 }
94e10a22 3623 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3624 if (nbits != 0)
3625 return error_type (pp, objfile);
c5aa993b 3626
c906108c
SS
3627 element_type = read_type (pp, objfile);
3628
3629 if (adjustable)
3630 {
3631 lower = 0;
3632 upper = -1;
3633 }
3634
3635 range_type =
0c9c3474 3636 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3637 type = create_array_type (type, element_type, range_type);
3638
3639 return type;
3640}
3641
3642
3643/* Read a definition of an enumeration type,
3644 and create and return a suitable type object.
3645 Also defines the symbols that represent the values of the type. */
3646
3647static struct type *
aa1ee363 3648read_enum_type (char **pp, struct type *type,
fba45db2 3649 struct objfile *objfile)
c906108c 3650{
5e2b427d 3651 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3652 char *p;
c906108c 3653 char *name;
52f0bd74
AC
3654 long n;
3655 struct symbol *sym;
c906108c
SS
3656 int nsyms = 0;
3657 struct pending **symlist;
3658 struct pending *osyms, *syms;
3659 int o_nsyms;
3660 int nbits;
3661 int unsigned_enum = 1;
3662
3663#if 0
3664 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3665 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3666 to do? For now, force all enum values to file scope. */
3667 if (within_function)
3668 symlist = &local_symbols;
3669 else
3670#endif
3671 symlist = &file_symbols;
3672 osyms = *symlist;
3673 o_nsyms = osyms ? osyms->nsyms : 0;
3674
c906108c
SS
3675 /* The aix4 compiler emits an extra field before the enum members;
3676 my guess is it's a type of some sort. Just ignore it. */
3677 if (**pp == '-')
3678 {
3679 /* Skip over the type. */
3680 while (**pp != ':')
c5aa993b 3681 (*pp)++;
c906108c
SS
3682
3683 /* Skip over the colon. */
3684 (*pp)++;
3685 }
3686
3687 /* Read the value-names and their values.
3688 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3689 A semicolon or comma instead of a NAME means the end. */
3690 while (**pp && **pp != ';' && **pp != ',')
3691 {
3692 STABS_CONTINUE (pp, objfile);
3693 p = *pp;
c5aa993b
JM
3694 while (*p != ':')
3695 p++;
224c3ddb 3696 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3697 *pp = p + 1;
94e10a22 3698 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3699 if (nbits != 0)
3700 return error_type (pp, objfile);
3701
e623cf5d 3702 sym = allocate_symbol (objfile);
3567439c 3703 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3704 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3705 &objfile->objfile_obstack);
f1e6e072 3706 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3707 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3708 SYMBOL_VALUE (sym) = n;
3709 if (n < 0)
3710 unsigned_enum = 0;
3711 add_symbol_to_list (sym, symlist);
3712 nsyms++;
3713 }
3714
3715 if (**pp == ';')
3716 (*pp)++; /* Skip the semicolon. */
3717
3718 /* Now fill in the fields of the type-structure. */
3719
5e2b427d 3720 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3721 set_length_in_type_chain (type);
c906108c 3722 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3723 TYPE_STUB (type) = 0;
c906108c 3724 if (unsigned_enum)
876cecd0 3725 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3726 TYPE_NFIELDS (type) = nsyms;
3727 TYPE_FIELDS (type) = (struct field *)
3728 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3729 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3730
3731 /* Find the symbols for the values and put them into the type.
3732 The symbols can be found in the symlist that we put them on
3733 to cause them to be defined. osyms contains the old value
3734 of that symlist; everything up to there was defined by us. */
3735 /* Note that we preserve the order of the enum constants, so
3736 that in something like "enum {FOO, LAST_THING=FOO}" we print
3737 FOO, not LAST_THING. */
3738
3739 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3740 {
3741 int last = syms == osyms ? o_nsyms : 0;
3742 int j = syms->nsyms;
433759f7 3743
c906108c
SS
3744 for (; --j >= last; --n)
3745 {
3746 struct symbol *xsym = syms->symbol[j];
433759f7 3747
c906108c 3748 SYMBOL_TYPE (xsym) = type;
3567439c 3749 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3750 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3751 TYPE_FIELD_BITSIZE (type, n) = 0;
3752 }
3753 if (syms == osyms)
3754 break;
3755 }
3756
3757 return type;
3758}
3759
3760/* Sun's ACC uses a somewhat saner method for specifying the builtin
3761 typedefs in every file (for int, long, etc):
3762
c5aa993b
JM
3763 type = b <signed> <width> <format type>; <offset>; <nbits>
3764 signed = u or s.
3765 optional format type = c or b for char or boolean.
3766 offset = offset from high order bit to start bit of type.
3767 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3768
3769 The width/offset stuff appears to be for small objects stored in
3770 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3771 FIXME. */
3772
3773static struct type *
35a2f538 3774read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3775{
3776 int type_bits;
3777 int nbits;
19f392bc
UW
3778 int unsigned_type;
3779 int boolean_type = 0;
c906108c
SS
3780
3781 switch (**pp)
3782 {
c5aa993b 3783 case 's':
19f392bc 3784 unsigned_type = 0;
c5aa993b
JM
3785 break;
3786 case 'u':
19f392bc 3787 unsigned_type = 1;
c5aa993b
JM
3788 break;
3789 default:
3790 return error_type (pp, objfile);
c906108c
SS
3791 }
3792 (*pp)++;
3793
3794 /* For some odd reason, all forms of char put a c here. This is strange
3795 because no other type has this honor. We can safely ignore this because
3796 we actually determine 'char'acterness by the number of bits specified in
3797 the descriptor.
3798 Boolean forms, e.g Fortran logical*X, put a b here. */
3799
3800 if (**pp == 'c')
3801 (*pp)++;
3802 else if (**pp == 'b')
3803 {
19f392bc 3804 boolean_type = 1;
c906108c
SS
3805 (*pp)++;
3806 }
3807
3808 /* The first number appears to be the number of bytes occupied
3809 by this type, except that unsigned short is 4 instead of 2.
3810 Since this information is redundant with the third number,
3811 we will ignore it. */
94e10a22 3812 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3813 if (nbits != 0)
3814 return error_type (pp, objfile);
3815
c378eb4e 3816 /* The second number is always 0, so ignore it too. */
94e10a22 3817 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3818 if (nbits != 0)
3819 return error_type (pp, objfile);
3820
c378eb4e 3821 /* The third number is the number of bits for this type. */
94e10a22 3822 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3823 if (nbits != 0)
3824 return error_type (pp, objfile);
3825 /* The type *should* end with a semicolon. If it are embedded
3826 in a larger type the semicolon may be the only way to know where
3827 the type ends. If this type is at the end of the stabstring we
3828 can deal with the omitted semicolon (but we don't have to like
3829 it). Don't bother to complain(), Sun's compiler omits the semicolon
3830 for "void". */
3831 if (**pp == ';')
3832 ++(*pp);
3833
3834 if (type_bits == 0)
19f392bc
UW
3835 {
3836 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3837 if (unsigned_type)
3838 TYPE_UNSIGNED (type) = 1;
3839 return type;
3840 }
3841
3842 if (boolean_type)
3843 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
c906108c 3844 else
19f392bc 3845 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
c906108c
SS
3846}
3847
3848static struct type *
35a2f538 3849read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3850{
3851 int nbits;
3852 int details;
3853 int nbytes;
f65ca430 3854 struct type *rettype;
c906108c
SS
3855
3856 /* The first number has more details about the type, for example
3857 FN_COMPLEX. */
94e10a22 3858 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3859 if (nbits != 0)
3860 return error_type (pp, objfile);
3861
c378eb4e 3862 /* The second number is the number of bytes occupied by this type. */
94e10a22 3863 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3864 if (nbits != 0)
3865 return error_type (pp, objfile);
3866
19f392bc
UW
3867 nbits = nbytes * TARGET_CHAR_BIT;
3868
c906108c
SS
3869 if (details == NF_COMPLEX || details == NF_COMPLEX16
3870 || details == NF_COMPLEX32)
f65ca430 3871 {
9b790ce7 3872 rettype = dbx_init_float_type (objfile, nbits / 2);
19f392bc 3873 return init_complex_type (objfile, NULL, rettype);
f65ca430 3874 }
c906108c 3875
9b790ce7 3876 return dbx_init_float_type (objfile, nbits);
c906108c
SS
3877}
3878
3879/* Read a number from the string pointed to by *PP.
3880 The value of *PP is advanced over the number.
3881 If END is nonzero, the character that ends the
3882 number must match END, or an error happens;
3883 and that character is skipped if it does match.
3884 If END is zero, *PP is left pointing to that character.
3885
94e10a22
JG
3886 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3887 the number is represented in an octal representation, assume that
3888 it is represented in a 2's complement representation with a size of
3889 TWOS_COMPLEMENT_BITS.
3890
c906108c
SS
3891 If the number fits in a long, set *BITS to 0 and return the value.
3892 If not, set *BITS to be the number of bits in the number and return 0.
3893
3894 If encounter garbage, set *BITS to -1 and return 0. */
3895
c2d11a7d 3896static long
94e10a22 3897read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3898{
3899 char *p = *pp;
3900 int sign = 1;
51e9e0d4 3901 int sign_bit = 0;
c2d11a7d 3902 long n = 0;
c906108c
SS
3903 int radix = 10;
3904 char overflow = 0;
3905 int nbits = 0;
3906 int c;
c2d11a7d 3907 long upper_limit;
a2699720 3908 int twos_complement_representation = 0;
c5aa993b 3909
c906108c
SS
3910 if (*p == '-')
3911 {
3912 sign = -1;
3913 p++;
3914 }
3915
3916 /* Leading zero means octal. GCC uses this to output values larger
3917 than an int (because that would be hard in decimal). */
3918 if (*p == '0')
3919 {
3920 radix = 8;
3921 p++;
3922 }
3923
a2699720
PA
3924 /* Skip extra zeros. */
3925 while (*p == '0')
3926 p++;
3927
3928 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3929 {
3930 /* Octal, possibly signed. Check if we have enough chars for a
3931 negative number. */
3932
3933 size_t len;
3934 char *p1 = p;
433759f7 3935
a2699720
PA
3936 while ((c = *p1) >= '0' && c < '8')
3937 p1++;
3938
3939 len = p1 - p;
3940 if (len > twos_complement_bits / 3
3e43a32a
MS
3941 || (twos_complement_bits % 3 == 0
3942 && len == twos_complement_bits / 3))
a2699720
PA
3943 {
3944 /* Ok, we have enough characters for a signed value, check
3945 for signness by testing if the sign bit is set. */
3946 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3947 c = *p - '0';
3948 if (c & (1 << sign_bit))
3949 {
3950 /* Definitely signed. */
3951 twos_complement_representation = 1;
3952 sign = -1;
3953 }
3954 }
3955 }
3956
1b831c93 3957 upper_limit = LONG_MAX / radix;
c906108c
SS
3958
3959 while ((c = *p++) >= '0' && c < ('0' + radix))
3960 {
3961 if (n <= upper_limit)
94e10a22
JG
3962 {
3963 if (twos_complement_representation)
3964 {
a2699720
PA
3965 /* Octal, signed, twos complement representation. In
3966 this case, n is the corresponding absolute value. */
3967 if (n == 0)
3968 {
3969 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3970
a2699720
PA
3971 n = -sn;
3972 }
94e10a22
JG
3973 else
3974 {
a2699720
PA
3975 n *= radix;
3976 n -= c - '0';
94e10a22 3977 }
94e10a22
JG
3978 }
3979 else
3980 {
3981 /* unsigned representation */
3982 n *= radix;
c378eb4e 3983 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3984 }
3985 }
c906108c 3986 else
94e10a22 3987 overflow = 1;
c5aa993b 3988
c906108c 3989 /* This depends on large values being output in octal, which is
c378eb4e 3990 what GCC does. */
c906108c
SS
3991 if (radix == 8)
3992 {
3993 if (nbits == 0)
3994 {
3995 if (c == '0')
3996 /* Ignore leading zeroes. */
3997 ;
3998 else if (c == '1')
3999 nbits = 1;
4000 else if (c == '2' || c == '3')
4001 nbits = 2;
4002 else
4003 nbits = 3;
4004 }
4005 else
4006 nbits += 3;
4007 }
4008 }
4009 if (end)
4010 {
4011 if (c && c != end)
4012 {
4013 if (bits != NULL)
4014 *bits = -1;
4015 return 0;
4016 }
4017 }
4018 else
4019 --p;
4020
a2699720
PA
4021 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4022 {
4023 /* We were supposed to parse a number with maximum
4024 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4025 if (bits != NULL)
4026 *bits = -1;
4027 return 0;
4028 }
4029
c906108c
SS
4030 *pp = p;
4031 if (overflow)
4032 {
4033 if (nbits == 0)
4034 {
4035 /* Large decimal constants are an error (because it is hard to
4036 count how many bits are in them). */
4037 if (bits != NULL)
4038 *bits = -1;
4039 return 0;
4040 }
c5aa993b 4041
c906108c 4042 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4043 the number of bits. Two's complement represention octals
4044 can't have a '-' in front. */
4045 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4046 ++nbits;
4047 if (bits)
4048 *bits = nbits;
4049 }
4050 else
4051 {
4052 if (bits)
4053 *bits = 0;
a2699720 4054 return n * sign;
c906108c
SS
4055 }
4056 /* It's *BITS which has the interesting information. */
4057 return 0;
4058}
4059
4060static struct type *
94e10a22
JG
4061read_range_type (char **pp, int typenums[2], int type_size,
4062 struct objfile *objfile)
c906108c 4063{
5e2b427d 4064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4065 char *orig_pp = *pp;
4066 int rangenums[2];
c2d11a7d 4067 long n2, n3;
c906108c
SS
4068 int n2bits, n3bits;
4069 int self_subrange;
4070 struct type *result_type;
4071 struct type *index_type = NULL;
4072
4073 /* First comes a type we are a subrange of.
4074 In C it is usually 0, 1 or the type being defined. */
4075 if (read_type_number (pp, rangenums) != 0)
4076 return error_type (pp, objfile);
4077 self_subrange = (rangenums[0] == typenums[0] &&
4078 rangenums[1] == typenums[1]);
4079
4080 if (**pp == '=')
4081 {
4082 *pp = orig_pp;
4083 index_type = read_type (pp, objfile);
4084 }
4085
4086 /* A semicolon should now follow; skip it. */
4087 if (**pp == ';')
4088 (*pp)++;
4089
4090 /* The remaining two operands are usually lower and upper bounds
4091 of the range. But in some special cases they mean something else. */
94e10a22
JG
4092 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4093 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4094
4095 if (n2bits == -1 || n3bits == -1)
4096 return error_type (pp, objfile);
4097
4098 if (index_type)
4099 goto handle_true_range;
4100
4101 /* If limits are huge, must be large integral type. */
4102 if (n2bits != 0 || n3bits != 0)
4103 {
4104 char got_signed = 0;
4105 char got_unsigned = 0;
4106 /* Number of bits in the type. */
4107 int nbits = 0;
4108
94e10a22 4109 /* If a type size attribute has been specified, the bounds of
c378eb4e 4110 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4111 more bits than the upper bound, then the type is signed. */
4112 if (n2bits <= type_size && n3bits <= type_size)
4113 {
4114 if (n2bits == type_size && n2bits > n3bits)
4115 got_signed = 1;
4116 else
4117 got_unsigned = 1;
4118 nbits = type_size;
4119 }
c906108c 4120 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4121 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4122 {
4123 got_unsigned = 1;
4124 nbits = n3bits;
4125 }
4126 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4127 integral type. Take care of the case where <large number> doesn't
4128 fit in a long but <large number>-1 does. */
c906108c
SS
4129 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4130 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4131 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4132 && n3 == LONG_MAX))
c906108c
SS
4133 {
4134 got_signed = 1;
4135 nbits = n2bits;
4136 }
4137
4138 if (got_signed || got_unsigned)
19f392bc 4139 return init_integer_type (objfile, nbits, got_unsigned, NULL);
c906108c
SS
4140 else
4141 return error_type (pp, objfile);
4142 }
4143
4144 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4145 if (self_subrange && n2 == 0 && n3 == 0)
19f392bc 4146 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
c906108c
SS
4147
4148 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4149 is the width in bytes.
4150
4151 Fortran programs appear to use this for complex types also. To
4152 distinguish between floats and complex, g77 (and others?) seem
4153 to use self-subranges for the complexes, and subranges of int for
4154 the floats.
4155
4156 Also note that for complexes, g77 sets n2 to the size of one of
4157 the member floats, not the whole complex beast. My guess is that
c378eb4e 4158 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4159
4160 if (n3 == 0 && n2 > 0)
4161 {
1300f5dd 4162 struct type *float_type
9b790ce7 4163 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
1300f5dd 4164
c906108c 4165 if (self_subrange)
19f392bc 4166 return init_complex_type (objfile, NULL, float_type);
c906108c 4167 else
1300f5dd 4168 return float_type;
c906108c
SS
4169 }
4170
a2699720 4171 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4172
4173 else if (n2 == 0 && n3 == -1)
4174 {
a2699720 4175 int bits = type_size;
433759f7 4176
a2699720
PA
4177 if (bits <= 0)
4178 {
4179 /* We don't know its size. It is unsigned int or unsigned
4180 long. GCC 2.3.3 uses this for long long too, but that is
4181 just a GDB 3.5 compatibility hack. */
5e2b427d 4182 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4183 }
4184
19f392bc 4185 return init_integer_type (objfile, bits, 1, NULL);
c906108c
SS
4186 }
4187
4188 /* Special case: char is defined (Who knows why) as a subrange of
4189 itself with range 0-127. */
4190 else if (self_subrange && n2 == 0 && n3 == 127)
19f392bc
UW
4191 {
4192 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4193 TYPE_NOSIGN (type) = 1;
4194 return type;
4195 }
c906108c
SS
4196 /* We used to do this only for subrange of self or subrange of int. */
4197 else if (n2 == 0)
4198 {
a0b3c4fd
JM
4199 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4200 "unsigned long", and we already checked for that,
4201 so don't need to test for it here. */
4202
c906108c
SS
4203 if (n3 < 0)
4204 /* n3 actually gives the size. */
19f392bc 4205 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
c906108c 4206
7be570e7 4207 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4208 unsigned n-byte integer. But do require n to be a power of
4209 two; we don't want 3- and 5-byte integers flying around. */
4210 {
4211 int bytes;
4212 unsigned long bits;
4213
4214 bits = n3;
4215 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4216 bits >>= 8;
4217 if (bits == 0
4218 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
19f392bc 4219 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
a0b3c4fd 4220 }
c906108c
SS
4221 }
4222 /* I think this is for Convex "long long". Since I don't know whether
4223 Convex sets self_subrange, I also accept that particular size regardless
4224 of self_subrange. */
4225 else if (n3 == 0 && n2 < 0
4226 && (self_subrange
9a76efb6 4227 || n2 == -gdbarch_long_long_bit
5e2b427d 4228 (gdbarch) / TARGET_CHAR_BIT))
19f392bc 4229 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
c5aa993b 4230 else if (n2 == -n3 - 1)
c906108c
SS
4231 {
4232 if (n3 == 0x7f)
19f392bc 4233 return init_integer_type (objfile, 8, 0, NULL);
c906108c 4234 if (n3 == 0x7fff)
19f392bc 4235 return init_integer_type (objfile, 16, 0, NULL);
c906108c 4236 if (n3 == 0x7fffffff)
19f392bc 4237 return init_integer_type (objfile, 32, 0, NULL);
c906108c
SS
4238 }
4239
4240 /* We have a real range type on our hands. Allocate space and
4241 return a real pointer. */
c5aa993b 4242handle_true_range:
c906108c
SS
4243
4244 if (self_subrange)
46bf5051 4245 index_type = objfile_type (objfile)->builtin_int;
c906108c 4246 else
46bf5051 4247 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4248 if (index_type == NULL)
4249 {
4250 /* Does this actually ever happen? Is that why we are worrying
4251 about dealing with it rather than just calling error_type? */
4252
23136709 4253 complaint (&symfile_complaints,
e2e0b3e5 4254 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4255
46bf5051 4256 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4257 }
4258
0c9c3474
SA
4259 result_type
4260 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4261 return (result_type);
4262}
4263
4264/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4265 and terminated with END. Return the list of types read in, or NULL
4266 if there is an error. */
c906108c 4267
ad2f7632
DJ
4268static struct field *
4269read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4270 int *varargsp)
c906108c
SS
4271{
4272 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4273 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4274 int n = 0, i;
4275 struct field *rval;
c906108c
SS
4276
4277 while (**pp != end)
4278 {
4279 if (**pp != ',')
4280 /* Invalid argument list: no ','. */
0a029df5 4281 return NULL;
c906108c
SS
4282 (*pp)++;
4283 STABS_CONTINUE (pp, objfile);
4284 types[n++] = read_type (pp, objfile);
4285 }
c378eb4e 4286 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4287
d24d8548
JK
4288 if (n == 0)
4289 {
4290 /* We should read at least the THIS parameter here. Some broken stabs
4291 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4292 have been present ";-16,(0,43)" reference instead. This way the
4293 excessive ";" marker prematurely stops the parameters parsing. */
4294
4295 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4296 *varargsp = 0;
4297 }
4298 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4299 *varargsp = 1;
c906108c
SS
4300 else
4301 {
ad2f7632
DJ
4302 n--;
4303 *varargsp = 0;
c906108c 4304 }
ad2f7632 4305
8d749320 4306 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4307 for (i = 0; i < n; i++)
4308 rval[i].type = types[i];
4309 *nargsp = n;
c906108c
SS
4310 return rval;
4311}
4312\f
4313/* Common block handling. */
4314
4315/* List of symbols declared since the last BCOMM. This list is a tail
4316 of local_symbols. When ECOMM is seen, the symbols on the list
4317 are noted so their proper addresses can be filled in later,
4318 using the common block base address gotten from the assembler
4319 stabs. */
4320
4321static struct pending *common_block;
4322static int common_block_i;
4323
4324/* Name of the current common block. We get it from the BCOMM instead of the
4325 ECOMM to match IBM documentation (even though IBM puts the name both places
4326 like everyone else). */
4327static char *common_block_name;
4328
4329/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4330 to remain after this function returns. */
4331
4332void
fba45db2 4333common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4334{
4335 if (common_block_name != NULL)
4336 {
23136709 4337 complaint (&symfile_complaints,
e2e0b3e5 4338 _("Invalid symbol data: common block within common block"));
c906108c
SS
4339 }
4340 common_block = local_symbols;
4341 common_block_i = local_symbols ? local_symbols->nsyms : 0;
224c3ddb
SM
4342 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4343 strlen (name));
c906108c
SS
4344}
4345
4346/* Process a N_ECOMM symbol. */
4347
4348void
fba45db2 4349common_block_end (struct objfile *objfile)
c906108c
SS
4350{
4351 /* Symbols declared since the BCOMM are to have the common block
4352 start address added in when we know it. common_block and
4353 common_block_i point to the first symbol after the BCOMM in
4354 the local_symbols list; copy the list and hang it off the
4355 symbol for the common block name for later fixup. */
4356 int i;
4357 struct symbol *sym;
fe978cb0 4358 struct pending *newobj = 0;
c906108c
SS
4359 struct pending *next;
4360 int j;
4361
4362 if (common_block_name == NULL)
4363 {
e2e0b3e5 4364 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4365 return;
4366 }
4367
e623cf5d 4368 sym = allocate_symbol (objfile);
c378eb4e 4369 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4370 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4371 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4372
4373 /* Now we copy all the symbols which have been defined since the BCOMM. */
4374
4375 /* Copy all the struct pendings before common_block. */
4376 for (next = local_symbols;
4377 next != NULL && next != common_block;
4378 next = next->next)
4379 {
4380 for (j = 0; j < next->nsyms; j++)
fe978cb0 4381 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4382 }
4383
4384 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4385 NULL, it means copy all the local symbols (which we already did
4386 above). */
4387
4388 if (common_block != NULL)
4389 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4390 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4391
fe978cb0 4392 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4393
4394 /* Should we be putting local_symbols back to what it was?
4395 Does it matter? */
4396
3567439c 4397 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4398 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4399 global_sym_chain[i] = sym;
4400 common_block_name = NULL;
4401}
4402
4403/* Add a common block's start address to the offset of each symbol
4404 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4405 the common block name). */
4406
4407static void
46cb6474 4408fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4409{
4410 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4411
c5aa993b 4412 for (; next; next = next->next)
c906108c 4413 {
aa1ee363 4414 int j;
433759f7 4415
c906108c
SS
4416 for (j = next->nsyms - 1; j >= 0; j--)
4417 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4418 }
4419}
c5aa993b 4420\f
c906108c
SS
4421
4422
bf362611
JB
4423/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4424 See add_undefined_type for more details. */
c906108c 4425
a7a48797 4426static void
bf362611
JB
4427add_undefined_type_noname (struct type *type, int typenums[2])
4428{
4429 struct nat nat;
4430
4431 nat.typenums[0] = typenums [0];
4432 nat.typenums[1] = typenums [1];
4433 nat.type = type;
4434
4435 if (noname_undefs_length == noname_undefs_allocated)
4436 {
4437 noname_undefs_allocated *= 2;
4438 noname_undefs = (struct nat *)
4439 xrealloc ((char *) noname_undefs,
4440 noname_undefs_allocated * sizeof (struct nat));
4441 }
4442 noname_undefs[noname_undefs_length++] = nat;
4443}
4444
4445/* Add TYPE to the UNDEF_TYPES vector.
4446 See add_undefined_type for more details. */
4447
4448static void
4449add_undefined_type_1 (struct type *type)
c906108c
SS
4450{
4451 if (undef_types_length == undef_types_allocated)
4452 {
4453 undef_types_allocated *= 2;
4454 undef_types = (struct type **)
4455 xrealloc ((char *) undef_types,
4456 undef_types_allocated * sizeof (struct type *));
4457 }
4458 undef_types[undef_types_length++] = type;
4459}
4460
bf362611
JB
4461/* What about types defined as forward references inside of a small lexical
4462 scope? */
4463/* Add a type to the list of undefined types to be checked through
4464 once this file has been read in.
4465
4466 In practice, we actually maintain two such lists: The first list
4467 (UNDEF_TYPES) is used for types whose name has been provided, and
4468 concerns forward references (eg 'xs' or 'xu' forward references);
4469 the second list (NONAME_UNDEFS) is used for types whose name is
4470 unknown at creation time, because they were referenced through
4471 their type number before the actual type was declared.
4472 This function actually adds the given type to the proper list. */
4473
4474static void
4475add_undefined_type (struct type *type, int typenums[2])
4476{
4477 if (TYPE_TAG_NAME (type) == NULL)
4478 add_undefined_type_noname (type, typenums);
4479 else
4480 add_undefined_type_1 (type);
4481}
4482
4483/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4484
2c0b251b 4485static void
46bf5051 4486cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4487{
4488 int i;
4489
4490 for (i = 0; i < noname_undefs_length; i++)
4491 {
4492 struct nat nat = noname_undefs[i];
4493 struct type **type;
4494
46bf5051 4495 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4496 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4497 {
4498 /* The instance flags of the undefined type are still unset,
4499 and needs to be copied over from the reference type.
4500 Since replace_type expects them to be identical, we need
4501 to set these flags manually before hand. */
4502 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4503 replace_type (nat.type, *type);
4504 }
bf362611
JB
4505 }
4506
4507 noname_undefs_length = 0;
4508}
4509
c906108c
SS
4510/* Go through each undefined type, see if it's still undefined, and fix it
4511 up if possible. We have two kinds of undefined types:
4512
4513 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4514 Fix: update array length using the element bounds
4515 and the target type's length.
c906108c 4516 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4517 yet defined at the time a pointer to it was made.
4518 Fix: Do a full lookup on the struct/union tag. */
bf362611 4519
2c0b251b 4520static void
bf362611 4521cleanup_undefined_types_1 (void)
c906108c
SS
4522{
4523 struct type **type;
4524
9e386756
JB
4525 /* Iterate over every undefined type, and look for a symbol whose type
4526 matches our undefined type. The symbol matches if:
4527 1. It is a typedef in the STRUCT domain;
4528 2. It has the same name, and same type code;
4529 3. The instance flags are identical.
4530
4531 It is important to check the instance flags, because we have seen
4532 examples where the debug info contained definitions such as:
4533
4534 "foo_t:t30=B31=xefoo_t:"
4535
4536 In this case, we have created an undefined type named "foo_t" whose
4537 instance flags is null (when processing "xefoo_t"), and then created
4538 another type with the same name, but with different instance flags
4539 ('B' means volatile). I think that the definition above is wrong,
4540 since the same type cannot be volatile and non-volatile at the same
4541 time, but we need to be able to cope with it when it happens. The
4542 approach taken here is to treat these two types as different. */
4543
c906108c
SS
4544 for (type = undef_types; type < undef_types + undef_types_length; type++)
4545 {
4546 switch (TYPE_CODE (*type))
4547 {
4548
c5aa993b
JM
4549 case TYPE_CODE_STRUCT:
4550 case TYPE_CODE_UNION:
4551 case TYPE_CODE_ENUM:
c906108c
SS
4552 {
4553 /* Check if it has been defined since. Need to do this here
4554 as well as in check_typedef to deal with the (legitimate in
4555 C though not C++) case of several types with the same name
4556 in different source files. */
74a9bb82 4557 if (TYPE_STUB (*type))
c906108c
SS
4558 {
4559 struct pending *ppt;
4560 int i;
c378eb4e 4561 /* Name of the type, without "struct" or "union". */
fe978cb0 4562 const char *type_name = TYPE_TAG_NAME (*type);
c906108c 4563
fe978cb0 4564 if (type_name == NULL)
c906108c 4565 {
e2e0b3e5 4566 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4567 break;
4568 }
4569 for (ppt = file_symbols; ppt; ppt = ppt->next)
4570 {
4571 for (i = 0; i < ppt->nsyms; i++)
4572 {
4573 struct symbol *sym = ppt->symbol[i];
c5aa993b 4574
c906108c 4575 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4576 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4577 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4578 TYPE_CODE (*type))
9e386756
JB
4579 && (TYPE_INSTANCE_FLAGS (*type) ==
4580 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4581 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4582 type_name) == 0)
13a393b0 4583 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4584 }
4585 }
4586 }
4587 }
4588 break;
4589
4590 default:
4591 {
23136709 4592 complaint (&symfile_complaints,
e2e0b3e5
AC
4593 _("forward-referenced types left unresolved, "
4594 "type code %d."),
23136709 4595 TYPE_CODE (*type));
c906108c
SS
4596 }
4597 break;
4598 }
4599 }
4600
4601 undef_types_length = 0;
4602}
4603
bf362611
JB
4604/* Try to fix all the undefined types we ecountered while processing
4605 this unit. */
4606
4607void
0a0edcd5 4608cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4609{
4610 cleanup_undefined_types_1 ();
46bf5051 4611 cleanup_undefined_types_noname (objfile);
bf362611
JB
4612}
4613
c906108c
SS
4614/* Scan through all of the global symbols defined in the object file,
4615 assigning values to the debugging symbols that need to be assigned
4616 to. Get these symbols from the minimal symbol table. */
4617
4618void
fba45db2 4619scan_file_globals (struct objfile *objfile)
c906108c
SS
4620{
4621 int hash;
4622 struct minimal_symbol *msymbol;
507836c0 4623 struct symbol *sym, *prev;
c906108c
SS
4624 struct objfile *resolve_objfile;
4625
4626 /* SVR4 based linkers copy referenced global symbols from shared
4627 libraries to the main executable.
4628 If we are scanning the symbols for a shared library, try to resolve
4629 them from the minimal symbols of the main executable first. */
4630
4631 if (symfile_objfile && objfile != symfile_objfile)
4632 resolve_objfile = symfile_objfile;
4633 else
4634 resolve_objfile = objfile;
4635
4636 while (1)
4637 {
4638 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4639 no unresolved symbols. */
c906108c
SS
4640 for (hash = 0; hash < HASHSIZE; hash++)
4641 {
4642 if (global_sym_chain[hash])
4643 break;
4644 }
4645 if (hash >= HASHSIZE)
4646 return;
4647
3567439c 4648 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4649 {
4650 QUIT;
4651
4652 /* Skip static symbols. */
4653 switch (MSYMBOL_TYPE (msymbol))
4654 {
4655 case mst_file_text:
4656 case mst_file_data:
4657 case mst_file_bss:
4658 continue;
4659 default:
4660 break;
4661 }
4662
4663 prev = NULL;
4664
4665 /* Get the hash index and check all the symbols
c378eb4e 4666 under that hash index. */
c906108c 4667
efd66ac6 4668 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4669
4670 for (sym = global_sym_chain[hash]; sym;)
4671 {
efd66ac6 4672 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4673 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4674 {
c906108c 4675 /* Splice this symbol out of the hash chain and
c378eb4e 4676 assign the value we have to it. */
c906108c
SS
4677 if (prev)
4678 {
4679 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4680 }
4681 else
4682 {
4683 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4684 }
c5aa993b 4685
c906108c
SS
4686 /* Check to see whether we need to fix up a common block. */
4687 /* Note: this code might be executed several times for
4688 the same symbol if there are multiple references. */
507836c0 4689 if (sym)
c906108c 4690 {
507836c0 4691 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4692 {
507836c0 4693 fix_common_block (sym,
77e371c0
TT
4694 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4695 msymbol));
c906108c
SS
4696 }
4697 else
4698 {
507836c0 4699 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4700 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4701 }
efd66ac6 4702 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4703 }
4704
c906108c
SS
4705 if (prev)
4706 {
4707 sym = SYMBOL_VALUE_CHAIN (prev);
4708 }
4709 else
4710 {
4711 sym = global_sym_chain[hash];
4712 }
4713 }
4714 else
4715 {
4716 prev = sym;
4717 sym = SYMBOL_VALUE_CHAIN (sym);
4718 }
4719 }
4720 }
4721 if (resolve_objfile == objfile)
4722 break;
4723 resolve_objfile = objfile;
4724 }
4725
4726 /* Change the storage class of any remaining unresolved globals to
4727 LOC_UNRESOLVED and remove them from the chain. */
4728 for (hash = 0; hash < HASHSIZE; hash++)
4729 {
4730 sym = global_sym_chain[hash];
4731 while (sym)
4732 {
4733 prev = sym;
4734 sym = SYMBOL_VALUE_CHAIN (sym);
4735
4736 /* Change the symbol address from the misleading chain value
4737 to address zero. */
4738 SYMBOL_VALUE_ADDRESS (prev) = 0;
4739
4740 /* Complain about unresolved common block symbols. */
4741 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4742 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4743 else
23136709 4744 complaint (&symfile_complaints,
3e43a32a
MS
4745 _("%s: common block `%s' from "
4746 "global_sym_chain unresolved"),
4262abfb 4747 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4748 }
4749 }
4750 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4751}
4752
4753/* Initialize anything that needs initializing when starting to read
4754 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4755 to a psymtab. */
4756
4757void
fba45db2 4758stabsread_init (void)
c906108c
SS
4759{
4760}
4761
4762/* Initialize anything that needs initializing when a completely new
4763 symbol file is specified (not just adding some symbols from another
4764 file, e.g. a shared library). */
4765
4766void
fba45db2 4767stabsread_new_init (void)
c906108c
SS
4768{
4769 /* Empty the hash table of global syms looking for values. */
4770 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4771}
4772
4773/* Initialize anything that needs initializing at the same time as
c378eb4e 4774 start_symtab() is called. */
c906108c 4775
c5aa993b 4776void
fba45db2 4777start_stabs (void)
c906108c
SS
4778{
4779 global_stabs = NULL; /* AIX COFF */
4780 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4781 n_this_object_header_files = 1;
4782 type_vector_length = 0;
4783 type_vector = (struct type **) 0;
4784
4785 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4786 common_block_name = NULL;
c906108c
SS
4787}
4788
c378eb4e 4789/* Call after end_symtab(). */
c906108c 4790
c5aa993b 4791void
fba45db2 4792end_stabs (void)
c906108c
SS
4793{
4794 if (type_vector)
4795 {
b8c9b27d 4796 xfree (type_vector);
c906108c
SS
4797 }
4798 type_vector = 0;
4799 type_vector_length = 0;
4800 previous_stab_code = 0;
4801}
4802
4803void
fba45db2 4804finish_global_stabs (struct objfile *objfile)
c906108c
SS
4805{
4806 if (global_stabs)
4807 {
4808 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4809 xfree (global_stabs);
c906108c
SS
4810 global_stabs = NULL;
4811 }
4812}
4813
7e1d63ec
AF
4814/* Find the end of the name, delimited by a ':', but don't match
4815 ObjC symbols which look like -[Foo bar::]:bla. */
4816static char *
4817find_name_end (char *name)
4818{
4819 char *s = name;
433759f7 4820
7e1d63ec
AF
4821 if (s[0] == '-' || *s == '+')
4822 {
4823 /* Must be an ObjC method symbol. */
4824 if (s[1] != '[')
4825 {
8a3fe4f8 4826 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4827 }
4828 s = strchr (s, ']');
4829 if (s == NULL)
4830 {
8a3fe4f8 4831 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4832 }
4833 return strchr (s, ':');
4834 }
4835 else
4836 {
4837 return strchr (s, ':');
4838 }
4839}
4840
c378eb4e 4841/* Initializer for this module. */
c906108c
SS
4842
4843void
fba45db2 4844_initialize_stabsread (void)
c906108c 4845{
46bf5051
UW
4846 rs6000_builtin_type_data = register_objfile_data ();
4847
c906108c
SS
4848 undef_types_allocated = 20;
4849 undef_types_length = 0;
8d749320 4850 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4851
4852 noname_undefs_allocated = 20;
4853 noname_undefs_length = 0;
8d749320 4854 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4855
4856 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4857 &stab_register_funcs);
4858 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4859 &stab_register_funcs);
c906108c 4860}
This page took 2.048013 seconds and 4 git commands to generate.