[Ada] Better handling of dynamic types in ada_value_primitive_packed_val
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
c378eb4e 24 Avoid placing any object file format specific code in this file. */
c906108c
SS
25
26#include "defs.h"
c906108c 27#include "bfd.h"
04ea0df1 28#include "gdb_obstack.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "symfile.h"
33#include "objfiles.h"
3e43a32a 34#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
35#include "libaout.h"
36#include "aout/aout64.h"
37#include "gdb-stabs.h"
38#include "buildsym.h"
39#include "complaints.h"
40#include "demangle.h"
50f182aa 41#include "gdb-demangle.h"
c906108c 42#include "language.h"
d16aafd8 43#include "doublest.h"
de17c821
DJ
44#include "cp-abi.h"
45#include "cp-support.h"
c906108c
SS
46#include <ctype.h>
47
48/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
49#define EXTERN
50/**/
c906108c
SS
51#include "stabsread.h" /* Our own declarations */
52#undef EXTERN
53
a14ed312 54extern void _initialize_stabsread (void);
392a587b 55
52059ffd
TT
56struct nextfield
57{
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66};
67
68struct next_fnfieldlist
69{
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72};
73
c906108c
SS
74/* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
c378eb4e 78 expected to eventually go away... (FIXME) */
c906108c
SS
79
80struct field_info
c5aa993b 81 {
52059ffd
TT
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
c5aa993b 84 };
c906108c
SS
85
86static void
a14ed312
KB
87read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
c906108c 89
a14ed312 90static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 91
94e10a22 92static long read_huge_number (char **, int, int *, int);
c906108c 93
a14ed312 94static struct type *error_type (char **, struct objfile *);
c906108c
SS
95
96static void
a14ed312
KB
97patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
c906108c 99
46cb6474 100static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 101
a14ed312 102static int read_type_number (char **, int *);
c906108c 103
a7a48797
EZ
104static struct type *read_type (char **, struct objfile *);
105
94e10a22 106static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 107
a14ed312 108static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 109
a14ed312
KB
110static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
c906108c 112
a14ed312 113static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 114
46bf5051 115static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
116
117static int
a14ed312
KB
118read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
c906108c
SS
120
121static int
a14ed312
KB
122read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
c906108c
SS
124
125static int
a14ed312
KB
126read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
c906108c
SS
128
129static int
a14ed312
KB
130read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
c906108c 132
a14ed312 133static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 134
570b8f7c
AC
135static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
c906108c 137
a14ed312 138static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 139 enum type_code,
a14ed312 140 struct objfile *);
c906108c 141
a14ed312
KB
142static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
c906108c 144
ad2f7632 145static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 146
bf362611 147static void add_undefined_type (struct type *, int[2]);
a7a48797 148
c906108c 149static int
a14ed312
KB
150read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
c906108c 152
7e1d63ec
AF
153static char *find_name_end (char *name);
154
a14ed312 155static int process_reference (char **string);
c906108c 156
a14ed312 157void stabsread_clear_cache (void);
7be570e7 158
8343f86c
DJ
159static const char vptr_name[] = "_vptr$";
160static const char vb_name[] = "_vb$";
c906108c 161
23136709
KB
162static void
163invalid_cpp_abbrev_complaint (const char *arg1)
164{
e2e0b3e5 165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 166}
c906108c 167
23136709 168static void
49b0b195 169reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
170{
171 complaint (&symfile_complaints,
e2e0b3e5 172 _("register number %d too large (max %d) in symbol %s"),
49b0b195 173 regnum, num_regs - 1, sym);
23136709 174}
c906108c 175
23136709
KB
176static void
177stabs_general_complaint (const char *arg1)
178{
179 complaint (&symfile_complaints, "%s", arg1);
180}
c906108c 181
c906108c
SS
182/* Make a list of forward references which haven't been defined. */
183
184static struct type **undef_types;
185static int undef_types_allocated;
186static int undef_types_length;
187static struct symbol *current_symbol = NULL;
188
bf362611
JB
189/* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
c378eb4e 191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
192 and type (0,2) is defined only later. */
193
194struct nat
195{
196 int typenums[2];
197 struct type *type;
198};
199static struct nat *noname_undefs;
200static int noname_undefs_allocated;
201static int noname_undefs_length;
202
c906108c
SS
203/* Check for and handle cretinous stabs symbol name continuation! */
204#define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
fc474241
DE
209
210/* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216static struct type **type_vector;
217
218/* Number of elements allocated for type_vector currently. */
219
220static int type_vector_length;
221
222/* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 226\f
c906108c
SS
227
228/* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
a7a48797 235static struct type **
46bf5051 236dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 237{
52f0bd74
AC
238 int filenum = typenums[0];
239 int index = typenums[1];
c906108c 240 unsigned old_len;
52f0bd74
AC
241 int real_filenum;
242 struct header_file *f;
c906108c
SS
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
23136709 250 complaint (&symfile_complaints,
3e43a32a
MS
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
23136709 253 filenum, index, symnum);
c906108c
SS
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
46bf5051 268 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
c5aa993b 273 Find it in this object file's type vector. */
c906108c
SS
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 280 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
46bf5051 298 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 299 {
46bf5051 300 static struct type *temp_type;
c906108c 301
8a3fe4f8 302 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
303
304 error_return:
46bf5051
UW
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
c906108c
SS
307 }
308
46bf5051 309 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325}
326
327/* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 331 put into the type vector, and so may not be referred to by number. */
c906108c
SS
332
333static struct type *
35a2f538 334dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 335{
52f0bd74 336 struct type **type_addr;
c906108c
SS
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
46bf5051 343 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354}
355
356/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 357 and fix their symbols in given symbol vector. */
c906108c
SS
358
359static void
fba45db2
KB
360patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
c906108c
SS
362{
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
c906108c 370 /* for all the stab entries, find their corresponding symbols and
c378eb4e 371 patch their types! */
c5aa993b 372
c906108c
SS
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
c5aa993b 376 pp = (char *) strchr (name, ':');
8fb822e0 377 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
378 while (pp[1] == ':')
379 {
c5aa993b
JM
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
c906108c 382 }
c5aa993b 383 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
c906108c
SS
393
394 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 397 sym = allocate_symbol (objfile);
176620f1 398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 400 SYMBOL_SET_LINKAGE_NAME
224c3ddb
SM
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
c906108c 403 pp += 2;
c5aa993b 404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
c5aa993b 421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433}
c906108c 434\f
c5aa993b 435
c906108c
SS
436/* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444static int
aa1ee363 445read_type_number (char **pp, int *typenums)
c906108c
SS
446{
447 int nbits;
433759f7 448
c906108c
SS
449 if (**pp == '(')
450 {
451 (*pp)++;
94e10a22 452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
453 if (nbits != 0)
454 return -1;
94e10a22 455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
456 if (nbits != 0)
457 return -1;
c906108c
SS
458 }
459 else
460 {
461 typenums[0] = 0;
94e10a22 462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
463 if (nbits != 0)
464 return -1;
c906108c
SS
465 }
466 return 0;
467}
c906108c 468\f
c5aa993b 469
c906108c
SS
470#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
c906108c 475/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 476 during "process_later". */
c906108c
SS
477
478struct ref_map
479{
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483};
484
485#define MAX_CHUNK_REFS 100
486#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
c5aa993b 489static struct ref_map *ref_map;
c906108c 490
c378eb4e 491/* Ptr to free cell in chunk's linked list. */
c5aa993b 492static int ref_count = 0;
c906108c 493
c378eb4e 494/* Number of chunks malloced. */
c906108c
SS
495static int ref_chunk = 0;
496
7be570e7 497/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
7be570e7 500void
fba45db2 501stabsread_clear_cache (void)
7be570e7
JM
502{
503 ref_count = 0;
504 ref_chunk = 0;
505}
506
c906108c
SS
507/* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
c906108c 511void
fba45db2 512ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
513{
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
c5aa993b 520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 522
c906108c
SS
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532}
533
534/* Return defined sym for the reference REFNUM. */
535struct symbol *
fba45db2 536ref_search (int refnum)
c906108c
SS
537{
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541}
542
c906108c
SS
543/* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
c5aa993b 546static int
fba45db2 547process_reference (char **string)
c906108c
SS
548{
549 char *p;
550 int refnum = 0;
551
c5aa993b
JM
552 if (**string != '#')
553 return 0;
554
c906108c
SS
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
c378eb4e 558 /* Read number as reference id. */
c906108c
SS
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566}
567
568/* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571int
fba45db2 572symbol_reference_defined (char **string)
c906108c
SS
573{
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
c378eb4e 579 /* Defining symbols end in '='. */
c5aa993b 580 if (*p == '=')
c906108c 581 {
c378eb4e 582 /* Symbol is being defined here. */
c906108c
SS
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
c378eb4e 588 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593}
594
768a979c
UW
595static int
596stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597{
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
600 if (regno >= gdbarch_num_regs (gdbarch)
601 + gdbarch_num_pseudo_regs (gdbarch))
602 {
603 reg_value_complaint (regno,
604 gdbarch_num_regs (gdbarch)
605 + gdbarch_num_pseudo_regs (gdbarch),
606 SYMBOL_PRINT_NAME (sym));
607
c378eb4e 608 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
609 }
610
611 return regno;
612}
613
614static const struct symbol_register_ops stab_register_funcs = {
615 stab_reg_to_regnum
616};
617
f1e6e072
TT
618/* The "aclass" indices for computed symbols. */
619
620static int stab_register_index;
621static int stab_regparm_index;
622
c906108c 623struct symbol *
fba45db2
KB
624define_symbol (CORE_ADDR valu, char *string, int desc, int type,
625 struct objfile *objfile)
c906108c 626{
5e2b427d 627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 628 struct symbol *sym;
7e1d63ec 629 char *p = (char *) find_name_end (string);
c906108c
SS
630 int deftype;
631 int synonym = 0;
52f0bd74 632 int i;
71c25dea 633 char *new_name = NULL;
c906108c
SS
634
635 /* We would like to eliminate nameless symbols, but keep their types.
636 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
637 to type 2, but, should not create a symbol to address that type. Since
638 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
639
640 int nameless;
641
642 /* Ignore syms with empty names. */
643 if (string[0] == 0)
644 return 0;
645
c378eb4e 646 /* Ignore old-style symbols from cc -go. */
c906108c
SS
647 if (p == 0)
648 return 0;
649
650 while (p[1] == ':')
651 {
c5aa993b
JM
652 p += 2;
653 p = strchr (p, ':');
681c238c
MS
654 if (p == NULL)
655 {
656 complaint (&symfile_complaints,
657 _("Bad stabs string '%s'"), string);
658 return NULL;
659 }
c906108c
SS
660 }
661
662 /* If a nameless stab entry, all we need is the type, not the symbol.
663 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
664 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
665
e623cf5d 666 current_symbol = sym = allocate_symbol (objfile);
c906108c 667
c906108c
SS
668 if (processing_gcc_compilation)
669 {
670 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
671 number of bytes occupied by a type or object, which we ignore. */
672 SYMBOL_LINE (sym) = desc;
c906108c
SS
673 }
674 else
675 {
c5aa993b 676 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
677 }
678
025ac414
PM
679 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
680 &objfile->objfile_obstack);
681
c906108c
SS
682 if (is_cplus_marker (string[0]))
683 {
684 /* Special GNU C++ names. */
685 switch (string[1])
686 {
c5aa993b 687 case 't':
1c9e8358 688 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 689 break;
c906108c 690
c5aa993b 691 case 'v': /* $vtbl_ptr_type */
c5aa993b 692 goto normal;
c906108c 693
c5aa993b 694 case 'e':
1c9e8358 695 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 696 break;
c906108c 697
c5aa993b
JM
698 case '_':
699 /* This was an anonymous type that was never fixed up. */
700 goto normal;
c906108c 701
c5aa993b
JM
702 case 'X':
703 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 704 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 705 goto normal;
c378eb4e 706 /* ... fall through ... */
c906108c 707
c5aa993b 708 default:
e2e0b3e5 709 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 710 string);
c378eb4e 711 goto normal; /* Do *something* with it. */
c906108c
SS
712 }
713 }
c906108c
SS
714 else
715 {
716 normal:
df8a16a1 717 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 718 {
224c3ddb 719 char *name = (char *) alloca (p - string + 1);
433759f7 720
71c25dea
TT
721 memcpy (name, string, p - string);
722 name[p - string] = '\0';
723 new_name = cp_canonicalize_string (name);
71c25dea
TT
724 }
725 if (new_name != NULL)
726 {
04a679b8 727 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
71c25dea
TT
728 xfree (new_name);
729 }
730 else
04a679b8 731 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
732
733 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 734 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 735
c906108c
SS
736 }
737 p++;
738
739 /* Determine the type of name being defined. */
740#if 0
741 /* Getting GDB to correctly skip the symbol on an undefined symbol
742 descriptor and not ever dump core is a very dodgy proposition if
743 we do things this way. I say the acorn RISC machine can just
744 fix their compiler. */
745 /* The Acorn RISC machine's compiler can put out locals that don't
746 start with "234=" or "(3,4)=", so assume anything other than the
747 deftypes we know how to handle is a local. */
748 if (!strchr ("cfFGpPrStTvVXCR", *p))
749#else
750 if (isdigit (*p) || *p == '(' || *p == '-')
751#endif
752 deftype = 'l';
753 else
754 deftype = *p++;
755
756 switch (deftype)
757 {
758 case 'c':
759 /* c is a special case, not followed by a type-number.
c5aa993b
JM
760 SYMBOL:c=iVALUE for an integer constant symbol.
761 SYMBOL:c=rVALUE for a floating constant symbol.
762 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
763 e.g. "b:c=e6,0" for "const b = blob1"
764 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
765 if (*p != '=')
766 {
f1e6e072 767 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 768 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 769 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
770 add_symbol_to_list (sym, &file_symbols);
771 return sym;
772 }
773 ++p;
774 switch (*p++)
775 {
776 case 'r':
777 {
778 double d = atof (p);
4e38b386 779 gdb_byte *dbl_valu;
6ccb9162 780 struct type *dbl_type;
c906108c
SS
781
782 /* FIXME-if-picky-about-floating-accuracy: Should be using
783 target arithmetic to get the value. real.c in GCC
784 probably has the necessary code. */
785
46bf5051 786 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
787 dbl_valu
788 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
789 TYPE_LENGTH (dbl_type));
6ccb9162
UW
790 store_typed_floating (dbl_valu, dbl_type, d);
791
792 SYMBOL_TYPE (sym) = dbl_type;
c906108c 793 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 794 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
795 }
796 break;
797 case 'i':
798 {
799 /* Defining integer constants this way is kind of silly,
800 since 'e' constants allows the compiler to give not
801 only the value, but the type as well. C has at least
802 int, long, unsigned int, and long long as constant
803 types; other languages probably should have at least
804 unsigned as well as signed constants. */
805
46bf5051 806 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 807 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 808 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
809 }
810 break;
ec8a089a
PM
811
812 case 'c':
813 {
814 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
815 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 816 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
817 }
818 break;
819
820 case 's':
821 {
822 struct type *range_type;
823 int ind = 0;
824 char quote = *p++;
ec8a089a
PM
825 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
826 gdb_byte *string_value;
827
828 if (quote != '\'' && quote != '"')
829 {
f1e6e072 830 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
831 SYMBOL_TYPE (sym) = error_type (&p, objfile);
832 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
833 add_symbol_to_list (sym, &file_symbols);
834 return sym;
835 }
836
837 /* Find matching quote, rejecting escaped quotes. */
838 while (*p && *p != quote)
839 {
840 if (*p == '\\' && p[1] == quote)
841 {
842 string_local[ind] = (gdb_byte) quote;
843 ind++;
844 p += 2;
845 }
846 else if (*p)
847 {
848 string_local[ind] = (gdb_byte) (*p);
849 ind++;
850 p++;
851 }
852 }
853 if (*p != quote)
854 {
f1e6e072 855 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
856 SYMBOL_TYPE (sym) = error_type (&p, objfile);
857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
858 add_symbol_to_list (sym, &file_symbols);
859 return sym;
860 }
861
862 /* NULL terminate the string. */
863 string_local[ind] = 0;
3e43a32a 864 range_type
0c9c3474
SA
865 = create_static_range_type (NULL,
866 objfile_type (objfile)->builtin_int,
867 0, ind);
ec8a089a
PM
868 SYMBOL_TYPE (sym) = create_array_type (NULL,
869 objfile_type (objfile)->builtin_char,
870 range_type);
224c3ddb
SM
871 string_value
872 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
873 memcpy (string_value, string_local, ind + 1);
874 p++;
875
876 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
878 }
879 break;
880
c906108c
SS
881 case 'e':
882 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
883 can be represented as integral.
884 e.g. "b:c=e6,0" for "const b = blob1"
885 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
886 {
f1e6e072 887 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
888 SYMBOL_TYPE (sym) = read_type (&p, objfile);
889
890 if (*p != ',')
891 {
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 break;
894 }
895 ++p;
896
897 /* If the value is too big to fit in an int (perhaps because
898 it is unsigned), or something like that, we silently get
899 a bogus value. The type and everything else about it is
900 correct. Ideally, we should be using whatever we have
901 available for parsing unsigned and long long values,
902 however. */
903 SYMBOL_VALUE (sym) = atoi (p);
904 }
905 break;
906 default:
907 {
f1e6e072 908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 }
911 }
176620f1 912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
913 add_symbol_to_list (sym, &file_symbols);
914 return sym;
915
916 case 'C':
917 /* The name of a caught exception. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 919 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
921 SYMBOL_VALUE_ADDRESS (sym) = valu;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'f':
926 /* A static function definition. */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 928 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
930 add_symbol_to_list (sym, &file_symbols);
931 /* fall into process_function_types. */
932
933 process_function_types:
934 /* Function result types are described as the result type in stabs.
c5aa993b
JM
935 We need to convert this to the function-returning-type-X type
936 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
937 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
938 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
939
1e698235
DJ
940 /* All functions in C++ have prototypes. Stabs does not offer an
941 explicit way to identify prototyped or unprototyped functions,
942 but both GCC and Sun CC emit stabs for the "call-as" type rather
943 than the "declared-as" type for unprototyped functions, so
944 we treat all functions as if they were prototyped. This is used
945 primarily for promotion when calling the function from GDB. */
876cecd0 946 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 947
c378eb4e 948 /* fall into process_prototype_types. */
c906108c
SS
949
950 process_prototype_types:
951 /* Sun acc puts declared types of arguments here. */
952 if (*p == ';')
953 {
954 struct type *ftype = SYMBOL_TYPE (sym);
955 int nsemi = 0;
956 int nparams = 0;
957 char *p1 = p;
958
959 /* Obtain a worst case guess for the number of arguments
960 by counting the semicolons. */
961 while (*p1)
962 {
963 if (*p1++ == ';')
964 nsemi++;
965 }
966
c378eb4e 967 /* Allocate parameter information fields and fill them in. */
c906108c
SS
968 TYPE_FIELDS (ftype) = (struct field *)
969 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
970 while (*p++ == ';')
971 {
972 struct type *ptype;
973
974 /* A type number of zero indicates the start of varargs.
c5aa993b 975 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
976 if (p[0] == '0' && p[1] == '\0')
977 break;
978 ptype = read_type (&p, objfile);
979
980 /* The Sun compilers mark integer arguments, which should
c5aa993b 981 be promoted to the width of the calling conventions, with
c378eb4e 982 a type which references itself. This type is turned into
c5aa993b 983 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
984 it back into builtin_int here.
985 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 986 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 987 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
988 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
989 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
990 }
991 TYPE_NFIELDS (ftype) = nparams;
876cecd0 992 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
993 }
994 break;
995
996 case 'F':
997 /* A global function definition. */
998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 999 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1001 add_symbol_to_list (sym, &global_symbols);
1002 goto process_function_types;
1003
1004 case 'G':
1005 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1006 value is not correct. It is necessary to search for the
1007 corresponding linker definition to find the value.
1008 These definitions appear at the end of the namelist. */
c906108c 1009 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1010 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1011 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1012 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1013 Symbol references don't have valid names and wont't match up with
1014 minimal symbols when the global_sym_chain is relocated.
1015 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1016 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1017 {
3567439c 1018 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1019 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1020 global_sym_chain[i] = sym;
c906108c
SS
1021 }
1022 add_symbol_to_list (sym, &global_symbols);
1023 break;
1024
1025 /* This case is faked by a conditional above,
c5aa993b
JM
1026 when there is no code letter in the dbx data.
1027 Dbx data never actually contains 'l'. */
c906108c
SS
1028 case 's':
1029 case 'l':
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1031 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1032 SYMBOL_VALUE (sym) = valu;
176620f1 1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1034 add_symbol_to_list (sym, &local_symbols);
1035 break;
1036
1037 case 'p':
1038 if (*p == 'F')
1039 /* pF is a two-letter code that means a function parameter in Fortran.
1040 The type-number specifies the type of the return value.
1041 Translate it into a pointer-to-function type. */
1042 {
1043 p++;
1044 SYMBOL_TYPE (sym)
1045 = lookup_pointer_type
c5aa993b 1046 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1047 }
1048 else
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050
f1e6e072 1051 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1052 SYMBOL_VALUE (sym) = valu;
176620f1 1053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1054 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1055 add_symbol_to_list (sym, &local_symbols);
1056
5e2b427d 1057 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1058 {
1059 /* On little-endian machines, this crud is never necessary,
1060 and, if the extra bytes contain garbage, is harmful. */
1061 break;
1062 }
1063
1064 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1065 if (processing_gcc_compilation
5e2b427d 1066 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1067 break;
1068
5e2b427d 1069 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1070 {
8ee56bcf
AC
1071 /* If PCC says a parameter is a short or a char, it is
1072 really an int. */
5e2b427d
UW
1073 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1074 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1075 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1076 {
8ee56bcf
AC
1077 SYMBOL_TYPE (sym) =
1078 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1079 ? objfile_type (objfile)->builtin_unsigned_int
1080 : objfile_type (objfile)->builtin_int;
7a292a7a 1081 }
8ee56bcf 1082 break;
7a292a7a 1083 }
c906108c
SS
1084
1085 case 'P':
1086 /* acc seems to use P to declare the prototypes of functions that
1087 are referenced by this file. gdb is not prepared to deal
1088 with this extra information. FIXME, it ought to. */
1089 if (type == N_FUN)
1090 {
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 goto process_prototype_types;
1093 }
c5aa993b 1094 /*FALLTHROUGH */
c906108c
SS
1095
1096 case 'R':
1097 /* Parameter which is in a register. */
1098 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1099 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1100 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1101 SYMBOL_VALUE (sym) = valu;
176620f1 1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1103 add_symbol_to_list (sym, &local_symbols);
1104 break;
1105
1106 case 'r':
1107 /* Register variable (either global or local). */
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1109 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1110 SYMBOL_VALUE (sym) = valu;
176620f1 1111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1112 if (within_function)
1113 {
192cb3d4
MK
1114 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1115 the same name to represent an argument passed in a
1116 register. GCC uses 'P' for the same case. So if we find
1117 such a symbol pair we combine it into one 'P' symbol.
1118 For Sun cc we need to do this regardless of
1119 stabs_argument_has_addr, because the compiler puts out
1120 the 'p' symbol even if it never saves the argument onto
1121 the stack.
1122
1123 On most machines, we want to preserve both symbols, so
1124 that we can still get information about what is going on
1125 with the stack (VAX for computing args_printed, using
1126 stack slots instead of saved registers in backtraces,
1127 etc.).
c906108c
SS
1128
1129 Note that this code illegally combines
c5aa993b 1130 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1131 but this case is considered pathological and causes a warning
1132 from a decent compiler. */
1133
1134 if (local_symbols
1135 && local_symbols->nsyms > 0
5e2b427d 1136 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1137 {
1138 struct symbol *prev_sym;
433759f7 1139
c906108c
SS
1140 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1141 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1142 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1143 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1144 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1145 {
f1e6e072 1146 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1147 /* Use the type from the LOC_REGISTER; that is the type
1148 that is actually in that register. */
1149 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1150 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1151 sym = prev_sym;
1152 break;
1153 }
1154 }
c5aa993b 1155 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1156 }
1157 else
c5aa993b 1158 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1159 break;
1160
1161 case 'S':
c378eb4e 1162 /* Static symbol at top level of file. */
c906108c 1163 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1164 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1165 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1166 if (gdbarch_static_transform_name_p (gdbarch)
1167 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1168 SYMBOL_LINKAGE_NAME (sym))
1169 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1170 {
3b7344d5 1171 struct bound_minimal_symbol msym;
433759f7 1172
3e43a32a
MS
1173 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1174 NULL, objfile);
3b7344d5 1175 if (msym.minsym != NULL)
c5aa993b 1176 {
0d5cff50 1177 const char *new_name = gdbarch_static_transform_name
3567439c 1178 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1179
3567439c 1180 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1181 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1182 }
1183 }
176620f1 1184 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1185 add_symbol_to_list (sym, &file_symbols);
1186 break;
1187
1188 case 't':
52eea4ce
JB
1189 /* In Ada, there is no distinction between typedef and non-typedef;
1190 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1191 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1192
1193 Therefore, for Ada units, we check the character immediately
1194 before the 't', and if we do not find a 'T', then make sure to
1195 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1196 will be stored in the VAR_DOMAIN). If the symbol was indeed
1197 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1198 elsewhere, so we don't need to take care of that.
1199
1200 This is important to do, because of forward references:
1201 The cleanup of undefined types stored in undef_types only uses
1202 STRUCT_DOMAIN symbols to perform the replacement. */
1203 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1204
e2cd42dd 1205 /* Typedef */
c906108c
SS
1206 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1207
1208 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1209 did not use `sym'. Return without further processing. */
c5aa993b
JM
1210 if (nameless)
1211 return NULL;
c906108c 1212
f1e6e072 1213 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1214 SYMBOL_VALUE (sym) = valu;
176620f1 1215 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1216 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1217 a base type which did not have its name defined when the
1218 derived class was output. We fill in the derived class's
1219 base part member's name here in that case. */
c906108c
SS
1220 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1222 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1223 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1224 {
1225 int j;
433759f7 1226
c906108c
SS
1227 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1228 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1229 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1230 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1231 }
1232
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1234 {
1235 /* gcc-2.6 or later (when using -fvtable-thunks)
1236 emits a unique named type for a vtable entry.
c378eb4e 1237 Some gdb code depends on that specific name. */
c906108c
SS
1238 extern const char vtbl_ptr_name[];
1239
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1241 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1243 {
1244 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1245 foo" or "function returning foo", we better not set
1246 the TYPE_NAME. If the program contains "typedef char
1247 *caddr_t;", we don't want all variables of type char
1248 * to print as caddr_t. This is not just a
1249 consequence of GDB's type management; PCC and GCC (at
1250 least through version 2.4) both output variables of
1251 either type char * or caddr_t with the type number
1252 defined in the 't' symbol for caddr_t. If a future
1253 compiler cleans this up it GDB is not ready for it
1254 yet, but if it becomes ready we somehow need to
1255 disable this check (without breaking the PCC/GCC2.4
1256 case).
1257
1258 Sigh.
1259
1260 Fortunately, this check seems not to be necessary
1261 for anything except pointers or functions. */
c378eb4e
MS
1262 /* ezannoni: 2000-10-26. This seems to apply for
1263 versions of gcc older than 2.8. This was the original
49d97c60 1264 problem: with the following code gdb would tell that
c378eb4e
MS
1265 the type for name1 is caddr_t, and func is char().
1266
49d97c60
EZ
1267 typedef char *caddr_t;
1268 char *name2;
1269 struct x
1270 {
c378eb4e 1271 char *name1;
49d97c60
EZ
1272 } xx;
1273 char *func()
1274 {
1275 }
1276 main () {}
1277 */
1278
c378eb4e 1279 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1280 if (current_subfile->language == language_pascal)
1281 {
3567439c 1282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1283 }
c906108c
SS
1284 }
1285 else
3567439c 1286 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1287 }
1288
1289 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1290
1291 if (synonym)
1292 {
1293 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1294 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1295
1296 *struct_sym = *sym;
f1e6e072 1297 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
52eea4ce
JB
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
c906108c
SS
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1312 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
c906108c
SS
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1319
c906108c 1320 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1321 did not use `sym'. Return without further processing. */
c5aa993b
JM
1322 if (nameless)
1323 return NULL;
c906108c 1324
f1e6e072 1325 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1326 SYMBOL_VALUE (sym) = valu;
176620f1 1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
c906108c
SS
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
c378eb4e 1337 /* Clone the sym and then modify it. */
e623cf5d 1338 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1339
c906108c 1340 *typedef_sym = *sym;
f1e6e072 1341 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1342 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1343 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1344 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1345 TYPE_NAME (SYMBOL_TYPE (sym))
1346 = obconcat (&objfile->objfile_obstack,
1347 SYMBOL_LINKAGE_NAME (sym),
1348 (char *) NULL);
c906108c
SS
1349 add_symbol_to_list (typedef_sym, &file_symbols);
1350 }
1351 break;
1352
1353 case 'V':
c378eb4e 1354 /* Static symbol of local scope. */
c906108c 1355 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1356 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1357 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1358 if (gdbarch_static_transform_name_p (gdbarch)
1359 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1360 SYMBOL_LINKAGE_NAME (sym))
1361 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1362 {
3b7344d5 1363 struct bound_minimal_symbol msym;
433759f7
MS
1364
1365 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1366 NULL, objfile);
3b7344d5 1367 if (msym.minsym != NULL)
c5aa993b 1368 {
0d5cff50 1369 const char *new_name = gdbarch_static_transform_name
3567439c 1370 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1371
3567439c 1372 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1373 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1374 }
1375 }
176620f1 1376 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1377 add_symbol_to_list (sym, &local_symbols);
1378 break;
1379
1380 case 'v':
1381 /* Reference parameter */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1383 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1384 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1385 SYMBOL_VALUE (sym) = valu;
176620f1 1386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1387 add_symbol_to_list (sym, &local_symbols);
1388 break;
1389
1390 case 'a':
1391 /* Reference parameter which is in a register. */
1392 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1393 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1394 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1395 SYMBOL_VALUE (sym) = valu;
176620f1 1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'X':
1401 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1402 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1403 that Pascal uses it too, but when I tried it Pascal used
1404 "x:3" (local symbol) instead. */
c906108c 1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1406 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1407 SYMBOL_VALUE (sym) = valu;
176620f1 1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
c906108c
SS
1411
1412 default:
1413 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1414 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1415 SYMBOL_VALUE (sym) = 0;
176620f1 1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1417 add_symbol_to_list (sym, &file_symbols);
1418 break;
1419 }
1420
192cb3d4
MK
1421 /* Some systems pass variables of certain types by reference instead
1422 of by value, i.e. they will pass the address of a structure (in a
1423 register or on the stack) instead of the structure itself. */
c906108c 1424
5e2b427d 1425 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1426 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1427 {
2a2d4dc3 1428 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1429 variables passed in a register). */
2a2d4dc3 1430 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1431 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1432 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1433 and subsequent arguments on SPARC, for example). */
1434 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1435 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1436 }
1437
c906108c
SS
1438 return sym;
1439}
1440
c906108c
SS
1441/* Skip rest of this symbol and return an error type.
1442
1443 General notes on error recovery: error_type always skips to the
1444 end of the symbol (modulo cretinous dbx symbol name continuation).
1445 Thus code like this:
1446
1447 if (*(*pp)++ != ';')
c5aa993b 1448 return error_type (pp, objfile);
c906108c
SS
1449
1450 is wrong because if *pp starts out pointing at '\0' (typically as the
1451 result of an earlier error), it will be incremented to point to the
1452 start of the next symbol, which might produce strange results, at least
1453 if you run off the end of the string table. Instead use
1454
1455 if (**pp != ';')
c5aa993b 1456 return error_type (pp, objfile);
c906108c
SS
1457 ++*pp;
1458
1459 or
1460
1461 if (**pp != ';')
c5aa993b 1462 foo = error_type (pp, objfile);
c906108c 1463 else
c5aa993b 1464 ++*pp;
c906108c
SS
1465
1466 And in case it isn't obvious, the point of all this hair is so the compiler
1467 can define new types and new syntaxes, and old versions of the
1468 debugger will be able to read the new symbol tables. */
1469
1470static struct type *
fba45db2 1471error_type (char **pp, struct objfile *objfile)
c906108c 1472{
3e43a32a
MS
1473 complaint (&symfile_complaints,
1474 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1475 while (1)
1476 {
1477 /* Skip to end of symbol. */
1478 while (**pp != '\0')
1479 {
1480 (*pp)++;
1481 }
1482
1483 /* Check for and handle cretinous dbx symbol name continuation! */
1484 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1485 {
1486 *pp = next_symbol_text (objfile);
1487 }
1488 else
1489 {
1490 break;
1491 }
1492 }
46bf5051 1493 return objfile_type (objfile)->builtin_error;
c906108c 1494}
c906108c 1495\f
c5aa993b 1496
c906108c
SS
1497/* Read type information or a type definition; return the type. Even
1498 though this routine accepts either type information or a type
1499 definition, the distinction is relevant--some parts of stabsread.c
1500 assume that type information starts with a digit, '-', or '(' in
1501 deciding whether to call read_type. */
1502
a7a48797 1503static struct type *
aa1ee363 1504read_type (char **pp, struct objfile *objfile)
c906108c 1505{
52f0bd74 1506 struct type *type = 0;
c906108c
SS
1507 struct type *type1;
1508 int typenums[2];
1509 char type_descriptor;
1510
1511 /* Size in bits of type if specified by a type attribute, or -1 if
1512 there is no size attribute. */
1513 int type_size = -1;
1514
c378eb4e 1515 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1516 int is_string = 0;
1517
c378eb4e 1518 /* Used to distinguish vector from array. */
e2cd42dd
MS
1519 int is_vector = 0;
1520
c906108c
SS
1521 /* Read type number if present. The type number may be omitted.
1522 for instance in a two-dimensional array declared with type
1523 "ar1;1;10;ar1;1;10;4". */
1524 if ((**pp >= '0' && **pp <= '9')
1525 || **pp == '('
1526 || **pp == '-')
1527 {
1528 if (read_type_number (pp, typenums) != 0)
1529 return error_type (pp, objfile);
c5aa993b 1530
c906108c 1531 if (**pp != '=')
8cfe231d
JB
1532 {
1533 /* Type is not being defined here. Either it already
1534 exists, or this is a forward reference to it.
1535 dbx_alloc_type handles both cases. */
1536 type = dbx_alloc_type (typenums, objfile);
1537
1538 /* If this is a forward reference, arrange to complain if it
1539 doesn't get patched up by the time we're done
1540 reading. */
1541 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1542 add_undefined_type (type, typenums);
8cfe231d
JB
1543
1544 return type;
1545 }
c906108c
SS
1546
1547 /* Type is being defined here. */
1548 /* Skip the '='.
c5aa993b
JM
1549 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1550 (*pp) += 2;
c906108c
SS
1551 }
1552 else
1553 {
1554 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1555 the definition, but don't put it in the type vector. */
c906108c
SS
1556 typenums[0] = typenums[1] = -1;
1557 (*pp)++;
1558 }
1559
c5aa993b 1560again:
c906108c
SS
1561 type_descriptor = (*pp)[-1];
1562 switch (type_descriptor)
1563 {
1564 case 'x':
1565 {
1566 enum type_code code;
1567
1568 /* Used to index through file_symbols. */
1569 struct pending *ppt;
1570 int i;
c5aa993b 1571
c906108c
SS
1572 /* Name including "struct", etc. */
1573 char *type_name;
c5aa993b 1574
c906108c
SS
1575 {
1576 char *from, *to, *p, *q1, *q2;
c5aa993b 1577
c906108c
SS
1578 /* Set the type code according to the following letter. */
1579 switch ((*pp)[0])
1580 {
1581 case 's':
1582 code = TYPE_CODE_STRUCT;
1583 break;
1584 case 'u':
1585 code = TYPE_CODE_UNION;
1586 break;
1587 case 'e':
1588 code = TYPE_CODE_ENUM;
1589 break;
1590 default:
1591 {
1592 /* Complain and keep going, so compilers can invent new
1593 cross-reference types. */
23136709 1594 complaint (&symfile_complaints,
3e43a32a
MS
1595 _("Unrecognized cross-reference type `%c'"),
1596 (*pp)[0]);
c906108c
SS
1597 code = TYPE_CODE_STRUCT;
1598 break;
1599 }
1600 }
c5aa993b 1601
c906108c
SS
1602 q1 = strchr (*pp, '<');
1603 p = strchr (*pp, ':');
1604 if (p == NULL)
1605 return error_type (pp, objfile);
1606 if (q1 && p > q1 && p[1] == ':')
1607 {
1608 int nesting_level = 0;
433759f7 1609
c906108c
SS
1610 for (q2 = q1; *q2; q2++)
1611 {
1612 if (*q2 == '<')
1613 nesting_level++;
1614 else if (*q2 == '>')
1615 nesting_level--;
1616 else if (*q2 == ':' && nesting_level == 0)
1617 break;
1618 }
1619 p = q2;
1620 if (*p != ':')
1621 return error_type (pp, objfile);
1622 }
71c25dea
TT
1623 type_name = NULL;
1624 if (current_subfile->language == language_cplus)
1625 {
224c3ddb 1626 char *new_name, *name = (char *) alloca (p - *pp + 1);
433759f7 1627
71c25dea
TT
1628 memcpy (name, *pp, p - *pp);
1629 name[p - *pp] = '\0';
1630 new_name = cp_canonicalize_string (name);
1631 if (new_name != NULL)
1632 {
224c3ddb
SM
1633 type_name
1634 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1635 new_name, strlen (new_name));
71c25dea
TT
1636 xfree (new_name);
1637 }
1638 }
1639 if (type_name == NULL)
1640 {
3e43a32a
MS
1641 to = type_name = (char *)
1642 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1643
1644 /* Copy the name. */
1645 from = *pp + 1;
1646 while (from < p)
1647 *to++ = *from++;
1648 *to = '\0';
1649 }
c5aa993b 1650
c906108c
SS
1651 /* Set the pointer ahead of the name which we just read, and
1652 the colon. */
71c25dea 1653 *pp = p + 1;
c906108c
SS
1654 }
1655
149d821b
JB
1656 /* If this type has already been declared, then reuse the same
1657 type, rather than allocating a new one. This saves some
1658 memory. */
c906108c
SS
1659
1660 for (ppt = file_symbols; ppt; ppt = ppt->next)
1661 for (i = 0; i < ppt->nsyms; i++)
1662 {
1663 struct symbol *sym = ppt->symbol[i];
1664
1665 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1666 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1667 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1668 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1669 {
b99607ea 1670 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1671 type = SYMBOL_TYPE (sym);
149d821b 1672 if (typenums[0] != -1)
46bf5051 1673 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1674 return type;
1675 }
1676 }
1677
1678 /* Didn't find the type to which this refers, so we must
1679 be dealing with a forward reference. Allocate a type
1680 structure for it, and keep track of it so we can
1681 fill in the rest of the fields when we get the full
1682 type. */
1683 type = dbx_alloc_type (typenums, objfile);
1684 TYPE_CODE (type) = code;
1685 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1686 INIT_CPLUS_SPECIFIC (type);
876cecd0 1687 TYPE_STUB (type) = 1;
c906108c 1688
bf362611 1689 add_undefined_type (type, typenums);
c906108c
SS
1690 return type;
1691 }
1692
c5aa993b 1693 case '-': /* RS/6000 built-in type */
c906108c
SS
1694 case '0':
1695 case '1':
1696 case '2':
1697 case '3':
1698 case '4':
1699 case '5':
1700 case '6':
1701 case '7':
1702 case '8':
1703 case '9':
1704 case '(':
1705 (*pp)--;
1706
1707 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1708 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1709
1710 /* Allocate and enter the typedef type first.
c378eb4e 1711 This handles recursive types. */
c906108c
SS
1712 type = dbx_alloc_type (typenums, objfile);
1713 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1714 {
1715 struct type *xtype = read_type (pp, objfile);
433759f7 1716
c906108c
SS
1717 if (type == xtype)
1718 {
1719 /* It's being defined as itself. That means it is "void". */
1720 TYPE_CODE (type) = TYPE_CODE_VOID;
1721 TYPE_LENGTH (type) = 1;
1722 }
1723 else if (type_size >= 0 || is_string)
1724 {
dd6bda65
DJ
1725 /* This is the absolute wrong way to construct types. Every
1726 other debug format has found a way around this problem and
1727 the related problems with unnecessarily stubbed types;
1728 someone motivated should attempt to clean up the issue
1729 here as well. Once a type pointed to has been created it
13a393b0
JB
1730 should not be modified.
1731
1732 Well, it's not *absolutely* wrong. Constructing recursive
1733 types (trees, linked lists) necessarily entails modifying
1734 types after creating them. Constructing any loop structure
1735 entails side effects. The Dwarf 2 reader does handle this
1736 more gracefully (it never constructs more than once
1737 instance of a type object, so it doesn't have to copy type
1738 objects wholesale), but it still mutates type objects after
1739 other folks have references to them.
1740
1741 Keep in mind that this circularity/mutation issue shows up
1742 at the source language level, too: C's "incomplete types",
1743 for example. So the proper cleanup, I think, would be to
1744 limit GDB's type smashing to match exactly those required
1745 by the source language. So GDB could have a
1746 "complete_this_type" function, but never create unnecessary
1747 copies of a type otherwise. */
dd6bda65 1748 replace_type (type, xtype);
c906108c
SS
1749 TYPE_NAME (type) = NULL;
1750 TYPE_TAG_NAME (type) = NULL;
1751 }
1752 else
1753 {
876cecd0 1754 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1755 TYPE_TARGET_TYPE (type) = xtype;
1756 }
1757 }
1758 break;
1759
c5aa993b
JM
1760 /* In the following types, we must be sure to overwrite any existing
1761 type that the typenums refer to, rather than allocating a new one
1762 and making the typenums point to the new one. This is because there
1763 may already be pointers to the existing type (if it had been
1764 forward-referenced), and we must change it to a pointer, function,
1765 reference, or whatever, *in-place*. */
c906108c 1766
e2cd42dd 1767 case '*': /* Pointer to another type */
c906108c 1768 type1 = read_type (pp, objfile);
46bf5051 1769 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1770 break;
1771
c5aa993b 1772 case '&': /* Reference to another type */
c906108c 1773 type1 = read_type (pp, objfile);
46bf5051 1774 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1775 break;
1776
c5aa993b 1777 case 'f': /* Function returning another type */
c906108c 1778 type1 = read_type (pp, objfile);
0c8b41f1 1779 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1780 break;
1781
da966255
JB
1782 case 'g': /* Prototyped function. (Sun) */
1783 {
1784 /* Unresolved questions:
1785
1786 - According to Sun's ``STABS Interface Manual'', for 'f'
1787 and 'F' symbol descriptors, a `0' in the argument type list
1788 indicates a varargs function. But it doesn't say how 'g'
1789 type descriptors represent that info. Someone with access
1790 to Sun's toolchain should try it out.
1791
1792 - According to the comment in define_symbol (search for
1793 `process_prototype_types:'), Sun emits integer arguments as
1794 types which ref themselves --- like `void' types. Do we
1795 have to deal with that here, too? Again, someone with
1796 access to Sun's toolchain should try it out and let us
1797 know. */
1798
1799 const char *type_start = (*pp) - 1;
1800 struct type *return_type = read_type (pp, objfile);
1801 struct type *func_type
46bf5051 1802 = make_function_type (return_type,
0c8b41f1 1803 dbx_lookup_type (typenums, objfile));
da966255
JB
1804 struct type_list {
1805 struct type *type;
1806 struct type_list *next;
1807 } *arg_types = 0;
1808 int num_args = 0;
1809
1810 while (**pp && **pp != '#')
1811 {
1812 struct type *arg_type = read_type (pp, objfile);
8d749320 1813 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1814 newobj->type = arg_type;
1815 newobj->next = arg_types;
1816 arg_types = newobj;
da966255
JB
1817 num_args++;
1818 }
1819 if (**pp == '#')
1820 ++*pp;
1821 else
1822 {
23136709 1823 complaint (&symfile_complaints,
3e43a32a
MS
1824 _("Prototyped function type didn't "
1825 "end arguments with `#':\n%s"),
23136709 1826 type_start);
da966255
JB
1827 }
1828
1829 /* If there is just one argument whose type is `void', then
1830 that's just an empty argument list. */
1831 if (arg_types
1832 && ! arg_types->next
1833 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1834 num_args = 0;
1835
1836 TYPE_FIELDS (func_type)
1837 = (struct field *) TYPE_ALLOC (func_type,
1838 num_args * sizeof (struct field));
1839 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1840 {
1841 int i;
1842 struct type_list *t;
1843
1844 /* We stuck each argument type onto the front of the list
1845 when we read it, so the list is reversed. Build the
1846 fields array right-to-left. */
1847 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1848 TYPE_FIELD_TYPE (func_type, i) = t->type;
1849 }
1850 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1851 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1852
1853 type = func_type;
1854 break;
1855 }
1856
c5aa993b 1857 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1858 type = read_type (pp, objfile);
d7242108 1859 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1860 dbx_lookup_type (typenums, objfile));
c906108c
SS
1861 break;
1862
c5aa993b 1863 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1864 type = read_type (pp, objfile);
d7242108 1865 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1866 dbx_lookup_type (typenums, objfile));
c906108c
SS
1867 break;
1868
1869 case '@':
c5aa993b
JM
1870 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1871 { /* Member (class & variable) type */
c906108c
SS
1872 /* FIXME -- we should be doing smash_to_XXX types here. */
1873
1874 struct type *domain = read_type (pp, objfile);
1875 struct type *memtype;
1876
1877 if (**pp != ',')
1878 /* Invalid member type data format. */
1879 return error_type (pp, objfile);
1880 ++*pp;
1881
1882 memtype = read_type (pp, objfile);
1883 type = dbx_alloc_type (typenums, objfile);
0d5de010 1884 smash_to_memberptr_type (type, domain, memtype);
c906108c 1885 }
c5aa993b
JM
1886 else
1887 /* type attribute */
c906108c
SS
1888 {
1889 char *attr = *pp;
433759f7 1890
c906108c
SS
1891 /* Skip to the semicolon. */
1892 while (**pp != ';' && **pp != '\0')
1893 ++(*pp);
1894 if (**pp == '\0')
1895 return error_type (pp, objfile);
1896 else
c5aa993b 1897 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1898
1899 switch (*attr)
1900 {
e2cd42dd 1901 case 's': /* Size attribute */
c906108c
SS
1902 type_size = atoi (attr + 1);
1903 if (type_size <= 0)
1904 type_size = -1;
1905 break;
1906
e2cd42dd 1907 case 'S': /* String attribute */
c378eb4e 1908 /* FIXME: check to see if following type is array? */
c906108c
SS
1909 is_string = 1;
1910 break;
1911
e2cd42dd 1912 case 'V': /* Vector attribute */
c378eb4e 1913 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1914 is_vector = 1;
1915 break;
1916
c906108c
SS
1917 default:
1918 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1919 can invent new ones. */
c906108c
SS
1920 break;
1921 }
1922 ++*pp;
1923 goto again;
1924 }
1925 break;
1926
c5aa993b 1927 case '#': /* Method (class & fn) type */
c906108c
SS
1928 if ((*pp)[0] == '#')
1929 {
1930 /* We'll get the parameter types from the name. */
1931 struct type *return_type;
1932
1933 (*pp)++;
1934 return_type = read_type (pp, objfile);
1935 if (*(*pp)++ != ';')
23136709 1936 complaint (&symfile_complaints,
3e43a32a
MS
1937 _("invalid (minimal) member type "
1938 "data format at symtab pos %d."),
23136709 1939 symnum);
c906108c
SS
1940 type = allocate_stub_method (return_type);
1941 if (typenums[0] != -1)
46bf5051 1942 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1943 }
1944 else
1945 {
1946 struct type *domain = read_type (pp, objfile);
1947 struct type *return_type;
ad2f7632
DJ
1948 struct field *args;
1949 int nargs, varargs;
c906108c
SS
1950
1951 if (**pp != ',')
1952 /* Invalid member type data format. */
1953 return error_type (pp, objfile);
1954 else
1955 ++(*pp);
1956
1957 return_type = read_type (pp, objfile);
ad2f7632 1958 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1959 if (args == NULL)
1960 return error_type (pp, objfile);
c906108c 1961 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1962 smash_to_method_type (type, domain, return_type, args,
1963 nargs, varargs);
c906108c
SS
1964 }
1965 break;
1966
c5aa993b 1967 case 'r': /* Range type */
94e10a22 1968 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1969 if (typenums[0] != -1)
46bf5051 1970 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1971 break;
1972
1973 case 'b':
c906108c
SS
1974 {
1975 /* Sun ACC builtin int type */
1976 type = read_sun_builtin_type (pp, typenums, objfile);
1977 if (typenums[0] != -1)
46bf5051 1978 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1979 }
1980 break;
1981
c5aa993b 1982 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1983 type = read_sun_floating_type (pp, typenums, objfile);
1984 if (typenums[0] != -1)
46bf5051 1985 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1986 break;
c5aa993b
JM
1987
1988 case 'e': /* Enumeration type */
c906108c
SS
1989 type = dbx_alloc_type (typenums, objfile);
1990 type = read_enum_type (pp, type, objfile);
1991 if (typenums[0] != -1)
46bf5051 1992 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1993 break;
1994
c5aa993b
JM
1995 case 's': /* Struct type */
1996 case 'u': /* Union type */
2ae1c2d2
JB
1997 {
1998 enum type_code type_code = TYPE_CODE_UNDEF;
1999 type = dbx_alloc_type (typenums, objfile);
2000 switch (type_descriptor)
2001 {
2002 case 's':
2003 type_code = TYPE_CODE_STRUCT;
2004 break;
2005 case 'u':
2006 type_code = TYPE_CODE_UNION;
2007 break;
2008 }
2009 type = read_struct_type (pp, type, type_code, objfile);
2010 break;
2011 }
c906108c 2012
c5aa993b 2013 case 'a': /* Array type */
c906108c
SS
2014 if (**pp != 'r')
2015 return error_type (pp, objfile);
2016 ++*pp;
c5aa993b 2017
c906108c
SS
2018 type = dbx_alloc_type (typenums, objfile);
2019 type = read_array_type (pp, type, objfile);
2020 if (is_string)
2021 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2022 if (is_vector)
ea37ba09 2023 make_vector_type (type);
c906108c
SS
2024 break;
2025
6b1755ce 2026 case 'S': /* Set type */
c906108c 2027 type1 = read_type (pp, objfile);
c5aa993b 2028 type = create_set_type ((struct type *) NULL, type1);
c906108c 2029 if (typenums[0] != -1)
46bf5051 2030 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2031 break;
2032
2033 default:
c378eb4e
MS
2034 --*pp; /* Go back to the symbol in error. */
2035 /* Particularly important if it was \0! */
c906108c
SS
2036 return error_type (pp, objfile);
2037 }
2038
2039 if (type == 0)
2040 {
8a3fe4f8 2041 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2042 return error_type (pp, objfile);
2043 }
2044
2045 /* Size specified in a type attribute overrides any other size. */
2046 if (type_size != -1)
2047 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2048
2049 return type;
2050}
2051\f
2052/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2053 Return the proper type node for a given builtin type number. */
c906108c 2054
46bf5051
UW
2055static const struct objfile_data *rs6000_builtin_type_data;
2056
c906108c 2057static struct type *
46bf5051 2058rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2059{
19ba03f4
SM
2060 struct type **negative_types
2061 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
46bf5051 2062
c906108c
SS
2063 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2064#define NUMBER_RECOGNIZED 34
c906108c
SS
2065 struct type *rettype = NULL;
2066
2067 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2068 {
e2e0b3e5 2069 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2070 return objfile_type (objfile)->builtin_error;
c906108c 2071 }
46bf5051
UW
2072
2073 if (!negative_types)
2074 {
2075 /* This includes an empty slot for type number -0. */
2076 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2077 NUMBER_RECOGNIZED + 1, struct type *);
2078 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2079 }
2080
c906108c
SS
2081 if (negative_types[-typenum] != NULL)
2082 return negative_types[-typenum];
2083
2084#if TARGET_CHAR_BIT != 8
c5aa993b 2085#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2086 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2087 that if that ever becomes not true, the correct fix will be to
2088 make the size in the struct type to be in bits, not in units of
2089 TARGET_CHAR_BIT. */
2090#endif
2091
2092 switch (-typenum)
2093 {
2094 case 1:
2095 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2096 by the debugging format. If there is a type called "int" which
2097 is other than 32 bits, then it should use a new negative type
2098 number (or avoid negative type numbers for that case).
2099 See stabs.texinfo. */
46bf5051 2100 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
c906108c
SS
2101 break;
2102 case 2:
46bf5051 2103 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
c906108c
SS
2104 break;
2105 case 3:
46bf5051 2106 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
c906108c
SS
2107 break;
2108 case 4:
46bf5051 2109 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
c906108c
SS
2110 break;
2111 case 5:
2112 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2113 "unsigned char", objfile);
c906108c
SS
2114 break;
2115 case 6:
46bf5051 2116 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
c906108c
SS
2117 break;
2118 case 7:
2119 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2120 "unsigned short", objfile);
c906108c
SS
2121 break;
2122 case 8:
2123 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2124 "unsigned int", objfile);
c906108c
SS
2125 break;
2126 case 9:
2127 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2128 "unsigned", objfile);
89acf84d 2129 break;
c906108c
SS
2130 case 10:
2131 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2132 "unsigned long", objfile);
c906108c
SS
2133 break;
2134 case 11:
46bf5051 2135 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
c906108c
SS
2136 break;
2137 case 12:
2138 /* IEEE single precision (32 bit). */
46bf5051 2139 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
c906108c
SS
2140 break;
2141 case 13:
2142 /* IEEE double precision (64 bit). */
46bf5051 2143 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
c906108c
SS
2144 break;
2145 case 14:
2146 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2147 different sizes for "long double" should use different negative
2148 type numbers. See stabs.texinfo. */
46bf5051 2149 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
c906108c
SS
2150 break;
2151 case 15:
46bf5051 2152 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
c906108c
SS
2153 break;
2154 case 16:
2155 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2156 "boolean", objfile);
c906108c
SS
2157 break;
2158 case 17:
46bf5051 2159 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
c906108c
SS
2160 break;
2161 case 18:
46bf5051 2162 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
c906108c
SS
2163 break;
2164 case 19:
46bf5051 2165 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
c906108c
SS
2166 break;
2167 case 20:
2168 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2169 "character", objfile);
c906108c
SS
2170 break;
2171 case 21:
2172 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
46bf5051 2173 "logical*1", objfile);
c906108c
SS
2174 break;
2175 case 22:
2176 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
46bf5051 2177 "logical*2", objfile);
c906108c
SS
2178 break;
2179 case 23:
2180 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2181 "logical*4", objfile);
c906108c
SS
2182 break;
2183 case 24:
2184 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
46bf5051 2185 "logical", objfile);
c906108c
SS
2186 break;
2187 case 25:
2188 /* Complex type consisting of two IEEE single precision values. */
46bf5051 2189 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
f65ca430 2190 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
46bf5051 2191 objfile);
c906108c
SS
2192 break;
2193 case 26:
2194 /* Complex type consisting of two IEEE double precision values. */
2195 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
f65ca430 2196 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
46bf5051 2197 objfile);
c906108c
SS
2198 break;
2199 case 27:
46bf5051 2200 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
c906108c
SS
2201 break;
2202 case 28:
46bf5051 2203 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
c906108c
SS
2204 break;
2205 case 29:
46bf5051 2206 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
c906108c
SS
2207 break;
2208 case 30:
46bf5051 2209 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
c906108c
SS
2210 break;
2211 case 31:
46bf5051 2212 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
c906108c
SS
2213 break;
2214 case 32:
2215 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2216 "unsigned long long", objfile);
c906108c
SS
2217 break;
2218 case 33:
2219 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
46bf5051 2220 "logical*8", objfile);
c906108c
SS
2221 break;
2222 case 34:
46bf5051 2223 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
c906108c
SS
2224 break;
2225 }
2226 negative_types[-typenum] = rettype;
2227 return rettype;
2228}
2229\f
2230/* This page contains subroutines of read_type. */
2231
0d5cff50
DE
2232/* Wrapper around method_name_from_physname to flag a complaint
2233 if there is an error. */
de17c821 2234
0d5cff50
DE
2235static char *
2236stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2237{
2238 char *method_name;
2239
2240 method_name = method_name_from_physname (physname);
2241
2242 if (method_name == NULL)
c263362b
DJ
2243 {
2244 complaint (&symfile_complaints,
e2e0b3e5 2245 _("Method has bad physname %s\n"), physname);
0d5cff50 2246 return NULL;
c263362b 2247 }
de17c821 2248
0d5cff50 2249 return method_name;
de17c821
DJ
2250}
2251
c906108c
SS
2252/* Read member function stabs info for C++ classes. The form of each member
2253 function data is:
2254
c5aa993b 2255 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2256
2257 An example with two member functions is:
2258
c5aa993b 2259 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2260
2261 For the case of overloaded operators, the format is op$::*.funcs, where
2262 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2263 name (such as `+=') and `.' marks the end of the operator name.
2264
2265 Returns 1 for success, 0 for failure. */
2266
2267static int
fba45db2
KB
2268read_member_functions (struct field_info *fip, char **pp, struct type *type,
2269 struct objfile *objfile)
c906108c
SS
2270{
2271 int nfn_fields = 0;
2272 int length = 0;
c906108c
SS
2273 int i;
2274 struct next_fnfield
2275 {
2276 struct next_fnfield *next;
2277 struct fn_field fn_field;
c5aa993b
JM
2278 }
2279 *sublist;
c906108c
SS
2280 struct type *look_ahead_type;
2281 struct next_fnfieldlist *new_fnlist;
2282 struct next_fnfield *new_sublist;
2283 char *main_fn_name;
52f0bd74 2284 char *p;
c5aa993b 2285
c906108c 2286 /* Process each list until we find something that is not a member function
c378eb4e 2287 or find the end of the functions. */
c906108c
SS
2288
2289 while (**pp != ';')
2290 {
2291 /* We should be positioned at the start of the function name.
c5aa993b 2292 Scan forward to find the first ':' and if it is not the
c378eb4e 2293 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2294 p = *pp;
2295 while (*p != ':')
2296 {
2297 p++;
2298 }
2299 if (p[1] != ':')
2300 {
2301 break;
2302 }
2303
2304 sublist = NULL;
2305 look_ahead_type = NULL;
2306 length = 0;
c5aa993b 2307
8d749320 2308 new_fnlist = XCNEW (struct next_fnfieldlist);
b8c9b27d 2309 make_cleanup (xfree, new_fnlist);
c5aa993b 2310
c906108c
SS
2311 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2312 {
2313 /* This is a completely wierd case. In order to stuff in the
2314 names that might contain colons (the usual name delimiter),
2315 Mike Tiemann defined a different name format which is
2316 signalled if the identifier is "op$". In that case, the
2317 format is "op$::XXXX." where XXXX is the name. This is
2318 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2319 /* This lets the user type "break operator+".
2320 We could just put in "+" as the name, but that wouldn't
2321 work for "*". */
8343f86c 2322 static char opname[32] = "op$";
c906108c 2323 char *o = opname + 3;
c5aa993b 2324
c906108c
SS
2325 /* Skip past '::'. */
2326 *pp = p + 2;
2327
2328 STABS_CONTINUE (pp, objfile);
2329 p = *pp;
2330 while (*p != '.')
2331 {
2332 *o++ = *p++;
2333 }
2334 main_fn_name = savestring (opname, o - opname);
2335 /* Skip past '.' */
2336 *pp = p + 1;
2337 }
2338 else
2339 {
2340 main_fn_name = savestring (*pp, p - *pp);
2341 /* Skip past '::'. */
2342 *pp = p + 2;
2343 }
c5aa993b
JM
2344 new_fnlist->fn_fieldlist.name = main_fn_name;
2345
c906108c
SS
2346 do
2347 {
8d749320 2348 new_sublist = XCNEW (struct next_fnfield);
b8c9b27d 2349 make_cleanup (xfree, new_sublist);
c5aa993b 2350
c906108c
SS
2351 /* Check for and handle cretinous dbx symbol name continuation! */
2352 if (look_ahead_type == NULL)
2353 {
c378eb4e 2354 /* Normal case. */
c906108c 2355 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2356
2357 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2358 if (**pp != ':')
2359 {
2360 /* Invalid symtab info for member function. */
2361 return 0;
2362 }
2363 }
2364 else
2365 {
2366 /* g++ version 1 kludge */
c5aa993b 2367 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2368 look_ahead_type = NULL;
2369 }
c5aa993b 2370
c906108c
SS
2371 (*pp)++;
2372 p = *pp;
2373 while (*p != ';')
2374 {
2375 p++;
2376 }
c5aa993b 2377
09e2d7c7
DE
2378 /* These are methods, not functions. */
2379 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2380 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2381 else
2382 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2383 == TYPE_CODE_METHOD);
c906108c 2384
09e2d7c7 2385 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2386 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2387 {
4bfb94b8 2388 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2389 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2390 new_sublist->fn_field.is_stub = 1;
c906108c 2391 }
09e2d7c7 2392
c5aa993b 2393 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2394 *pp = p + 1;
c5aa993b 2395
c906108c
SS
2396 /* Set this member function's visibility fields. */
2397 switch (*(*pp)++)
2398 {
c5aa993b
JM
2399 case VISIBILITY_PRIVATE:
2400 new_sublist->fn_field.is_private = 1;
2401 break;
2402 case VISIBILITY_PROTECTED:
2403 new_sublist->fn_field.is_protected = 1;
2404 break;
c906108c 2405 }
c5aa993b 2406
c906108c
SS
2407 STABS_CONTINUE (pp, objfile);
2408 switch (**pp)
2409 {
c378eb4e 2410 case 'A': /* Normal functions. */
c5aa993b
JM
2411 new_sublist->fn_field.is_const = 0;
2412 new_sublist->fn_field.is_volatile = 0;
2413 (*pp)++;
2414 break;
c378eb4e 2415 case 'B': /* `const' member functions. */
c5aa993b
JM
2416 new_sublist->fn_field.is_const = 1;
2417 new_sublist->fn_field.is_volatile = 0;
2418 (*pp)++;
2419 break;
c378eb4e 2420 case 'C': /* `volatile' member function. */
c5aa993b
JM
2421 new_sublist->fn_field.is_const = 0;
2422 new_sublist->fn_field.is_volatile = 1;
2423 (*pp)++;
2424 break;
c378eb4e 2425 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2426 new_sublist->fn_field.is_const = 1;
2427 new_sublist->fn_field.is_volatile = 1;
2428 (*pp)++;
2429 break;
3e43a32a 2430 case '*': /* File compiled with g++ version 1 --
c378eb4e 2431 no info. */
c5aa993b
JM
2432 case '?':
2433 case '.':
2434 break;
2435 default:
23136709 2436 complaint (&symfile_complaints,
3e43a32a
MS
2437 _("const/volatile indicator missing, got '%c'"),
2438 **pp);
c5aa993b 2439 break;
c906108c 2440 }
c5aa993b 2441
c906108c
SS
2442 switch (*(*pp)++)
2443 {
c5aa993b 2444 case '*':
c906108c
SS
2445 {
2446 int nbits;
c5aa993b 2447 /* virtual member function, followed by index.
c906108c
SS
2448 The sign bit is set to distinguish pointers-to-methods
2449 from virtual function indicies. Since the array is
2450 in words, the quantity must be shifted left by 1
2451 on 16 bit machine, and by 2 on 32 bit machine, forcing
2452 the sign bit out, and usable as a valid index into
2453 the array. Remove the sign bit here. */
c5aa993b 2454 new_sublist->fn_field.voffset =
94e10a22 2455 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2456 if (nbits != 0)
2457 return 0;
c5aa993b 2458
c906108c
SS
2459 STABS_CONTINUE (pp, objfile);
2460 if (**pp == ';' || **pp == '\0')
2461 {
2462 /* Must be g++ version 1. */
c5aa993b 2463 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2464 }
2465 else
2466 {
2467 /* Figure out from whence this virtual function came.
2468 It may belong to virtual function table of
2469 one of its baseclasses. */
2470 look_ahead_type = read_type (pp, objfile);
2471 if (**pp == ':')
2472 {
c378eb4e 2473 /* g++ version 1 overloaded methods. */
c906108c
SS
2474 }
2475 else
2476 {
c5aa993b 2477 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2478 if (**pp != ';')
2479 {
2480 return 0;
2481 }
2482 else
2483 {
2484 ++*pp;
2485 }
2486 look_ahead_type = NULL;
2487 }
2488 }
2489 break;
2490 }
c5aa993b
JM
2491 case '?':
2492 /* static member function. */
4ea09c10
PS
2493 {
2494 int slen = strlen (main_fn_name);
2495
2496 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2497
2498 /* For static member functions, we can't tell if they
2499 are stubbed, as they are put out as functions, and not as
2500 methods.
2501 GCC v2 emits the fully mangled name if
2502 dbxout.c:flag_minimal_debug is not set, so we have to
2503 detect a fully mangled physname here and set is_stub
2504 accordingly. Fully mangled physnames in v2 start with
2505 the member function name, followed by two underscores.
2506 GCC v3 currently always emits stubbed member functions,
2507 but with fully mangled physnames, which start with _Z. */
2508 if (!(strncmp (new_sublist->fn_field.physname,
2509 main_fn_name, slen) == 0
2510 && new_sublist->fn_field.physname[slen] == '_'
2511 && new_sublist->fn_field.physname[slen + 1] == '_'))
2512 {
2513 new_sublist->fn_field.is_stub = 1;
2514 }
2515 break;
2516 }
c5aa993b
JM
2517
2518 default:
2519 /* error */
23136709 2520 complaint (&symfile_complaints,
3e43a32a
MS
2521 _("member function type missing, got '%c'"),
2522 (*pp)[-1]);
c5aa993b
JM
2523 /* Fall through into normal member function. */
2524
2525 case '.':
2526 /* normal member function. */
2527 new_sublist->fn_field.voffset = 0;
2528 new_sublist->fn_field.fcontext = 0;
2529 break;
c906108c 2530 }
c5aa993b
JM
2531
2532 new_sublist->next = sublist;
c906108c
SS
2533 sublist = new_sublist;
2534 length++;
2535 STABS_CONTINUE (pp, objfile);
2536 }
2537 while (**pp != ';' && **pp != '\0');
c5aa993b 2538
c906108c 2539 (*pp)++;
0c867556 2540 STABS_CONTINUE (pp, objfile);
c5aa993b 2541
0c867556
PS
2542 /* Skip GCC 3.X member functions which are duplicates of the callable
2543 constructor/destructor. */
6cbbcdfe
KS
2544 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2545 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2546 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2547 {
0c867556 2548 xfree (main_fn_name);
c906108c 2549 }
0c867556
PS
2550 else
2551 {
de17c821
DJ
2552 int has_stub = 0;
2553 int has_destructor = 0, has_other = 0;
2554 int is_v3 = 0;
2555 struct next_fnfield *tmp_sublist;
2556
2557 /* Various versions of GCC emit various mostly-useless
2558 strings in the name field for special member functions.
2559
2560 For stub methods, we need to defer correcting the name
2561 until we are ready to unstub the method, because the current
2562 name string is used by gdb_mangle_name. The only stub methods
2563 of concern here are GNU v2 operators; other methods have their
2564 names correct (see caveat below).
2565
2566 For non-stub methods, in GNU v3, we have a complete physname.
2567 Therefore we can safely correct the name now. This primarily
2568 affects constructors and destructors, whose name will be
2569 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2570 operators will also have incorrect names; for instance,
2571 "operator int" will be named "operator i" (i.e. the type is
2572 mangled).
2573
2574 For non-stub methods in GNU v2, we have no easy way to
2575 know if we have a complete physname or not. For most
2576 methods the result depends on the platform (if CPLUS_MARKER
2577 can be `$' or `.', it will use minimal debug information, or
2578 otherwise the full physname will be included).
2579
2580 Rather than dealing with this, we take a different approach.
2581 For v3 mangled names, we can use the full physname; for v2,
2582 we use cplus_demangle_opname (which is actually v2 specific),
2583 because the only interesting names are all operators - once again
2584 barring the caveat below. Skip this process if any method in the
2585 group is a stub, to prevent our fouling up the workings of
2586 gdb_mangle_name.
2587
2588 The caveat: GCC 2.95.x (and earlier?) put constructors and
2589 destructors in the same method group. We need to split this
2590 into two groups, because they should have different names.
2591 So for each method group we check whether it contains both
2592 routines whose physname appears to be a destructor (the physnames
2593 for and destructors are always provided, due to quirks in v2
2594 mangling) and routines whose physname does not appear to be a
2595 destructor. If so then we break up the list into two halves.
2596 Even if the constructors and destructors aren't in the same group
2597 the destructor will still lack the leading tilde, so that also
2598 needs to be fixed.
2599
2600 So, to summarize what we expect and handle here:
2601
2602 Given Given Real Real Action
2603 method name physname physname method name
2604
2605 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2606 [now or later]
2607 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2608 rename
2609 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2610 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2611 */
2612
2613 tmp_sublist = sublist;
2614 while (tmp_sublist != NULL)
2615 {
2616 if (tmp_sublist->fn_field.is_stub)
2617 has_stub = 1;
2618 if (tmp_sublist->fn_field.physname[0] == '_'
2619 && tmp_sublist->fn_field.physname[1] == 'Z')
2620 is_v3 = 1;
2621
2622 if (is_destructor_name (tmp_sublist->fn_field.physname))
2623 has_destructor++;
2624 else
2625 has_other++;
2626
2627 tmp_sublist = tmp_sublist->next;
2628 }
2629
2630 if (has_destructor && has_other)
2631 {
2632 struct next_fnfieldlist *destr_fnlist;
2633 struct next_fnfield *last_sublist;
2634
2635 /* Create a new fn_fieldlist for the destructors. */
2636
8d749320 2637 destr_fnlist = XCNEW (struct next_fnfieldlist);
de17c821 2638 make_cleanup (xfree, destr_fnlist);
8d749320 2639
de17c821 2640 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2641 = obconcat (&objfile->objfile_obstack, "~",
2642 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2643
8d749320
SM
2644 destr_fnlist->fn_fieldlist.fn_fields =
2645 XOBNEWVEC (&objfile->objfile_obstack,
2646 struct fn_field, has_destructor);
de17c821
DJ
2647 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2648 sizeof (struct fn_field) * has_destructor);
2649 tmp_sublist = sublist;
2650 last_sublist = NULL;
2651 i = 0;
2652 while (tmp_sublist != NULL)
2653 {
2654 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2655 {
2656 tmp_sublist = tmp_sublist->next;
2657 continue;
2658 }
2659
2660 destr_fnlist->fn_fieldlist.fn_fields[i++]
2661 = tmp_sublist->fn_field;
2662 if (last_sublist)
2663 last_sublist->next = tmp_sublist->next;
2664 else
2665 sublist = tmp_sublist->next;
2666 last_sublist = tmp_sublist;
2667 tmp_sublist = tmp_sublist->next;
2668 }
2669
2670 destr_fnlist->fn_fieldlist.length = has_destructor;
2671 destr_fnlist->next = fip->fnlist;
2672 fip->fnlist = destr_fnlist;
2673 nfn_fields++;
de17c821
DJ
2674 length -= has_destructor;
2675 }
2676 else if (is_v3)
2677 {
2678 /* v3 mangling prevents the use of abbreviated physnames,
2679 so we can do this here. There are stubbed methods in v3
2680 only:
2681 - in -gstabs instead of -gstabs+
2682 - or for static methods, which are output as a function type
2683 instead of a method type. */
0d5cff50
DE
2684 char *new_method_name =
2685 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2686
0d5cff50
DE
2687 if (new_method_name != NULL
2688 && strcmp (new_method_name,
2689 new_fnlist->fn_fieldlist.name) != 0)
2690 {
2691 new_fnlist->fn_fieldlist.name = new_method_name;
2692 xfree (main_fn_name);
2693 }
2694 else
2695 xfree (new_method_name);
de17c821
DJ
2696 }
2697 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2698 {
1754f103 2699 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2700 obconcat (&objfile->objfile_obstack,
2701 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2702 xfree (main_fn_name);
2703 }
2704 else if (!has_stub)
2705 {
2706 char dem_opname[256];
2707 int ret;
433759f7 2708
de17c821
DJ
2709 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2710 dem_opname, DMGL_ANSI);
2711 if (!ret)
2712 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2713 dem_opname, 0);
2714 if (ret)
2715 new_fnlist->fn_fieldlist.name
224c3ddb
SM
2716 = ((const char *)
2717 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2718 strlen (dem_opname)));
0d5cff50 2719 xfree (main_fn_name);
de17c821
DJ
2720 }
2721
0c867556 2722 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2723 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2724 sizeof (struct fn_field) * length);
2725 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2726 sizeof (struct fn_field) * length);
2727 for (i = length; (i--, sublist); sublist = sublist->next)
2728 {
2729 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2730 }
c5aa993b 2731
0c867556
PS
2732 new_fnlist->fn_fieldlist.length = length;
2733 new_fnlist->next = fip->fnlist;
2734 fip->fnlist = new_fnlist;
2735 nfn_fields++;
0c867556 2736 }
c906108c
SS
2737 }
2738
2739 if (nfn_fields)
2740 {
2741 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2742 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2743 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2744 memset (TYPE_FN_FIELDLISTS (type), 0,
2745 sizeof (struct fn_fieldlist) * nfn_fields);
2746 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2747 }
2748
2749 return 1;
2750}
2751
2752/* Special GNU C++ name.
2753
2754 Returns 1 for success, 0 for failure. "failure" means that we can't
2755 keep parsing and it's time for error_type(). */
2756
2757static int
fba45db2
KB
2758read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2759 struct objfile *objfile)
c906108c 2760{
52f0bd74 2761 char *p;
0d5cff50 2762 const char *name;
c906108c
SS
2763 char cpp_abbrev;
2764 struct type *context;
2765
2766 p = *pp;
2767 if (*++p == 'v')
2768 {
2769 name = NULL;
2770 cpp_abbrev = *++p;
2771
2772 *pp = p + 1;
2773
2774 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2775 where the type number before the ':' is the "context" and
2776 everything after is a regular type definition. Lookup the
c378eb4e 2777 type, find it's name, and construct the field name. */
c906108c
SS
2778
2779 context = read_type (pp, objfile);
2780
2781 switch (cpp_abbrev)
2782 {
c5aa993b 2783 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2784 name = type_name_no_tag (context);
2785 if (name == NULL)
433759f7
MS
2786 {
2787 name = "";
2788 }
48cb83fd
JK
2789 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2790 vptr_name, name, (char *) NULL);
c5aa993b 2791 break;
c906108c 2792
c5aa993b
JM
2793 case 'b': /* $vb -- a virtual bsomethingorother */
2794 name = type_name_no_tag (context);
2795 if (name == NULL)
2796 {
23136709 2797 complaint (&symfile_complaints,
3e43a32a
MS
2798 _("C++ abbreviated type name "
2799 "unknown at symtab pos %d"),
23136709 2800 symnum);
c5aa993b
JM
2801 name = "FOO";
2802 }
48cb83fd
JK
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2804 name, (char *) NULL);
c5aa993b 2805 break;
c906108c 2806
c5aa993b 2807 default:
23136709 2808 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2809 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2810 "INVALID_CPLUSPLUS_ABBREV",
2811 (char *) NULL);
c5aa993b 2812 break;
c906108c
SS
2813 }
2814
2815 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2816 field type. */
c906108c
SS
2817
2818 p = ++(*pp);
2819 if (p[-1] != ':')
2820 {
23136709 2821 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2822 return 0;
2823 }
2824 fip->list->field.type = read_type (pp, objfile);
2825 if (**pp == ',')
c5aa993b 2826 (*pp)++; /* Skip the comma. */
c906108c
SS
2827 else
2828 return 0;
2829
2830 {
2831 int nbits;
433759f7 2832
f41f5e61
PA
2833 SET_FIELD_BITPOS (fip->list->field,
2834 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2835 if (nbits != 0)
2836 return 0;
2837 }
2838 /* This field is unpacked. */
2839 FIELD_BITSIZE (fip->list->field) = 0;
2840 fip->list->visibility = VISIBILITY_PRIVATE;
2841 }
2842 else
2843 {
23136709 2844 invalid_cpp_abbrev_complaint (*pp);
c906108c 2845 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2846 better return 0. If we returned 1, we would need to at least advance
2847 *pp to avoid an infinite loop. */
c906108c
SS
2848 return 0;
2849 }
2850 return 1;
2851}
2852
2853static void
fba45db2
KB
2854read_one_struct_field (struct field_info *fip, char **pp, char *p,
2855 struct type *type, struct objfile *objfile)
c906108c 2856{
5e2b427d
UW
2857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2858
224c3ddb
SM
2859 fip->list->field.name
2860 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2861 *pp = p + 1;
2862
c378eb4e 2863 /* This means we have a visibility for a field coming. */
c906108c
SS
2864 if (**pp == '/')
2865 {
2866 (*pp)++;
c5aa993b 2867 fip->list->visibility = *(*pp)++;
c906108c
SS
2868 }
2869 else
2870 {
2871 /* normal dbx-style format, no explicit visibility */
c5aa993b 2872 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2873 }
2874
c5aa993b 2875 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2876 if (**pp == ':')
2877 {
2878 p = ++(*pp);
2879#if 0
c378eb4e 2880 /* Possible future hook for nested types. */
c906108c
SS
2881 if (**pp == '!')
2882 {
c5aa993b 2883 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2884 p = ++(*pp);
2885 }
c5aa993b
JM
2886 else
2887 ...;
c906108c 2888#endif
c5aa993b 2889 while (*p != ';')
c906108c
SS
2890 {
2891 p++;
2892 }
2893 /* Static class member. */
2894 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2895 *pp = p + 1;
2896 return;
2897 }
2898 else if (**pp != ',')
2899 {
2900 /* Bad structure-type format. */
23136709 2901 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2902 return;
2903 }
2904
2905 (*pp)++; /* Skip the comma. */
2906
2907 {
2908 int nbits;
433759f7 2909
f41f5e61
PA
2910 SET_FIELD_BITPOS (fip->list->field,
2911 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2912 if (nbits != 0)
2913 {
23136709 2914 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2915 return;
2916 }
94e10a22 2917 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2918 if (nbits != 0)
2919 {
23136709 2920 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2921 return;
2922 }
2923 }
2924
2925 if (FIELD_BITPOS (fip->list->field) == 0
2926 && FIELD_BITSIZE (fip->list->field) == 0)
2927 {
2928 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2929 it is a field which has been optimized out. The correct stab for
2930 this case is to use VISIBILITY_IGNORE, but that is a recent
2931 invention. (2) It is a 0-size array. For example
e2e0b3e5 2932 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2933 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2934 will continue to work, and a 0-size array as a whole doesn't
2935 have any contents to print.
2936
2937 I suspect this probably could also happen with gcc -gstabs (not
2938 -gstabs+) for static fields, and perhaps other C++ extensions.
2939 Hopefully few people use -gstabs with gdb, since it is intended
2940 for dbx compatibility. */
c906108c
SS
2941
2942 /* Ignore this field. */
c5aa993b 2943 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2944 }
2945 else
2946 {
2947 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2948 dbx gives a bit size for all fields.
2949 Note that forward refs cannot be packed,
2950 and treat enums as if they had the width of ints. */
c906108c
SS
2951
2952 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2953
2954 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2955 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2956 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2957 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2958 {
2959 FIELD_BITSIZE (fip->list->field) = 0;
2960 }
c5aa993b 2961 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2962 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2963 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2964 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2965 == gdbarch_int_bit (gdbarch))
c5aa993b 2966 )
c906108c
SS
2967 &&
2968 FIELD_BITPOS (fip->list->field) % 8 == 0)
2969 {
2970 FIELD_BITSIZE (fip->list->field) = 0;
2971 }
2972 }
2973}
2974
2975
2976/* Read struct or class data fields. They have the form:
2977
c5aa993b 2978 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2979
2980 At the end, we see a semicolon instead of a field.
2981
2982 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2983 a static field.
2984
2985 The optional VISIBILITY is one of:
2986
c5aa993b
JM
2987 '/0' (VISIBILITY_PRIVATE)
2988 '/1' (VISIBILITY_PROTECTED)
2989 '/2' (VISIBILITY_PUBLIC)
2990 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2991
2992 or nothing, for C style fields with public visibility.
2993
2994 Returns 1 for success, 0 for failure. */
2995
2996static int
fba45db2
KB
2997read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2998 struct objfile *objfile)
c906108c 2999{
52f0bd74 3000 char *p;
fe978cb0 3001 struct nextfield *newobj;
c906108c
SS
3002
3003 /* We better set p right now, in case there are no fields at all... */
3004
3005 p = *pp;
3006
3007 /* Read each data member type until we find the terminating ';' at the end of
3008 the data member list, or break for some other reason such as finding the
c378eb4e 3009 start of the member function list. */
fedbd091 3010 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3011 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3012
fedbd091 3013 while (**pp != ';' && **pp != '\0')
c906108c 3014 {
c906108c
SS
3015 STABS_CONTINUE (pp, objfile);
3016 /* Get space to record the next field's data. */
8d749320 3017 newobj = XCNEW (struct nextfield);
fe978cb0 3018 make_cleanup (xfree, newobj);
8d749320 3019
fe978cb0
PA
3020 newobj->next = fip->list;
3021 fip->list = newobj;
c906108c
SS
3022
3023 /* Get the field name. */
3024 p = *pp;
3025
3026 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3027 unless the CPLUS_MARKER is followed by an underscore, in
3028 which case it is just the name of an anonymous type, which we
3029 should handle like any other type name. */
c906108c
SS
3030
3031 if (is_cplus_marker (p[0]) && p[1] != '_')
3032 {
3033 if (!read_cpp_abbrev (fip, pp, type, objfile))
3034 return 0;
3035 continue;
3036 }
3037
3038 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3039 values. Data members are delimited by a single ':', while member
3040 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3041 functions (if any), terminate scan loop and return. */
c906108c 3042
c5aa993b 3043 while (*p != ':' && *p != '\0')
c906108c
SS
3044 {
3045 p++;
3046 }
3047 if (*p == '\0')
3048 return 0;
3049
3050 /* Check to see if we have hit the member functions yet. */
3051 if (p[1] == ':')
3052 {
3053 break;
3054 }
3055 read_one_struct_field (fip, pp, p, type, objfile);
3056 }
3057 if (p[0] == ':' && p[1] == ':')
3058 {
1b831c93
AC
3059 /* (the deleted) chill the list of fields: the last entry (at
3060 the head) is a partially constructed entry which we now
c378eb4e 3061 scrub. */
c5aa993b 3062 fip->list = fip->list->next;
c906108c
SS
3063 }
3064 return 1;
3065}
9846de1b 3066/* *INDENT-OFF* */
c906108c
SS
3067/* The stabs for C++ derived classes contain baseclass information which
3068 is marked by a '!' character after the total size. This function is
3069 called when we encounter the baseclass marker, and slurps up all the
3070 baseclass information.
3071
3072 Immediately following the '!' marker is the number of base classes that
3073 the class is derived from, followed by information for each base class.
3074 For each base class, there are two visibility specifiers, a bit offset
3075 to the base class information within the derived class, a reference to
3076 the type for the base class, and a terminating semicolon.
3077
3078 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3079 ^^ ^ ^ ^ ^ ^ ^
3080 Baseclass information marker __________________|| | | | | | |
3081 Number of baseclasses __________________________| | | | | | |
3082 Visibility specifiers (2) ________________________| | | | | |
3083 Offset in bits from start of class _________________| | | | |
3084 Type number for base class ___________________________| | | |
3085 Visibility specifiers (2) _______________________________| | |
3086 Offset in bits from start of class ________________________| |
3087 Type number of base class ____________________________________|
3088
3089 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3090/* *INDENT-ON* */
c906108c 3091
c5aa993b
JM
3092
3093
c906108c 3094static int
fba45db2
KB
3095read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3096 struct objfile *objfile)
c906108c
SS
3097{
3098 int i;
fe978cb0 3099 struct nextfield *newobj;
c906108c
SS
3100
3101 if (**pp != '!')
3102 {
3103 return 1;
3104 }
3105 else
3106 {
c378eb4e 3107 /* Skip the '!' baseclass information marker. */
c906108c
SS
3108 (*pp)++;
3109 }
3110
3111 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3112 {
3113 int nbits;
433759f7 3114
94e10a22 3115 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3116 if (nbits != 0)
3117 return 0;
3118 }
3119
3120#if 0
3121 /* Some stupid compilers have trouble with the following, so break
3122 it up into simpler expressions. */
3123 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3124 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3125#else
3126 {
3127 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3128 char *pointer;
3129
3130 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3131 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3132 }
3133#endif /* 0 */
3134
3135 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3136
3137 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3138 {
8d749320 3139 newobj = XCNEW (struct nextfield);
fe978cb0 3140 make_cleanup (xfree, newobj);
8d749320 3141
fe978cb0
PA
3142 newobj->next = fip->list;
3143 fip->list = newobj;
3144 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3145 field! */
c906108c
SS
3146
3147 STABS_CONTINUE (pp, objfile);
3148 switch (**pp)
3149 {
c5aa993b 3150 case '0':
c378eb4e 3151 /* Nothing to do. */
c5aa993b
JM
3152 break;
3153 case '1':
3154 SET_TYPE_FIELD_VIRTUAL (type, i);
3155 break;
3156 default:
3157 /* Unknown character. Complain and treat it as non-virtual. */
3158 {
23136709 3159 complaint (&symfile_complaints,
3e43a32a
MS
3160 _("Unknown virtual character `%c' for baseclass"),
3161 **pp);
c5aa993b 3162 }
c906108c
SS
3163 }
3164 ++(*pp);
3165
fe978cb0
PA
3166 newobj->visibility = *(*pp)++;
3167 switch (newobj->visibility)
c906108c 3168 {
c5aa993b
JM
3169 case VISIBILITY_PRIVATE:
3170 case VISIBILITY_PROTECTED:
3171 case VISIBILITY_PUBLIC:
3172 break;
3173 default:
3174 /* Bad visibility format. Complain and treat it as
3175 public. */
3176 {
23136709 3177 complaint (&symfile_complaints,
e2e0b3e5 3178 _("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3179 newobj->visibility);
3180 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3181 }
c906108c
SS
3182 }
3183
3184 {
3185 int nbits;
c5aa993b 3186
c906108c
SS
3187 /* The remaining value is the bit offset of the portion of the object
3188 corresponding to this baseclass. Always zero in the absence of
3189 multiple inheritance. */
3190
fe978cb0 3191 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3192 if (nbits != 0)
3193 return 0;
3194 }
3195
3196 /* The last piece of baseclass information is the type of the
c5aa993b 3197 base class. Read it, and remember it's type name as this
c378eb4e 3198 field's name. */
c906108c 3199
fe978cb0
PA
3200 newobj->field.type = read_type (pp, objfile);
3201 newobj->field.name = type_name_no_tag (newobj->field.type);
c906108c 3202
c378eb4e 3203 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3204 if (**pp == ';')
3205 (*pp)++;
3206 else
3207 return 0;
3208 }
3209 return 1;
3210}
3211
3212/* The tail end of stabs for C++ classes that contain a virtual function
3213 pointer contains a tilde, a %, and a type number.
3214 The type number refers to the base class (possibly this class itself) which
3215 contains the vtable pointer for the current class.
3216
3217 This function is called when we have parsed all the method declarations,
3218 so we can look for the vptr base class info. */
3219
3220static int
fba45db2
KB
3221read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3222 struct objfile *objfile)
c906108c 3223{
52f0bd74 3224 char *p;
c906108c
SS
3225
3226 STABS_CONTINUE (pp, objfile);
3227
c378eb4e 3228 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3229 if (**pp == ';')
3230 {
3231 (*pp)++;
3232 }
3233
3234 if (**pp == '~')
3235 {
3236 (*pp)++;
3237
3238 if (**pp == '=' || **pp == '+' || **pp == '-')
3239 {
3240 /* Obsolete flags that used to indicate the presence
c378eb4e 3241 of constructors and/or destructors. */
c906108c
SS
3242 (*pp)++;
3243 }
3244
3245 /* Read either a '%' or the final ';'. */
3246 if (*(*pp)++ == '%')
3247 {
3248 /* The next number is the type number of the base class
3249 (possibly our own class) which supplies the vtable for
3250 this class. Parse it out, and search that class to find
3251 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3252 and TYPE_VPTR_FIELDNO. */
3253
3254 struct type *t;
3255 int i;
3256
3257 t = read_type (pp, objfile);
3258 p = (*pp)++;
3259 while (*p != '\0' && *p != ';')
3260 {
3261 p++;
3262 }
3263 if (*p == '\0')
3264 {
3265 /* Premature end of symbol. */
3266 return 0;
3267 }
c5aa993b 3268
ae6ae975 3269 set_type_vptr_basetype (type, t);
c378eb4e 3270 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3271 {
3272 for (i = TYPE_NFIELDS (t) - 1;
3273 i >= TYPE_N_BASECLASSES (t);
3274 --i)
3275 {
0d5cff50 3276 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3277
8343f86c 3278 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3279 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3280 {
ae6ae975 3281 set_type_vptr_fieldno (type, i);
c906108c
SS
3282 goto gotit;
3283 }
3284 }
3285 /* Virtual function table field not found. */
23136709 3286 complaint (&symfile_complaints,
3e43a32a
MS
3287 _("virtual function table pointer "
3288 "not found when defining class `%s'"),
23136709 3289 TYPE_NAME (type));
c906108c
SS
3290 return 0;
3291 }
3292 else
3293 {
ae6ae975 3294 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3295 }
3296
c5aa993b 3297 gotit:
c906108c
SS
3298 *pp = p + 1;
3299 }
3300 }
3301 return 1;
3302}
3303
3304static int
aa1ee363 3305attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3306{
52f0bd74 3307 int n;
c906108c
SS
3308
3309 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3310 fip->fnlist != NULL;
3311 fip->fnlist = fip->fnlist->next)
c906108c 3312 {
c378eb4e 3313 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3314 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3315 }
3316 return 1;
3317}
3318
c906108c
SS
3319/* Create the vector of fields, and record how big it is.
3320 We need this info to record proper virtual function table information
3321 for this class's virtual functions. */
3322
3323static int
aa1ee363 3324attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3325 struct objfile *objfile)
c906108c 3326{
52f0bd74
AC
3327 int nfields = 0;
3328 int non_public_fields = 0;
3329 struct nextfield *scan;
c906108c
SS
3330
3331 /* Count up the number of fields that we have, as well as taking note of
3332 whether or not there are any non-public fields, which requires us to
3333 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3334 bitfields. */
c906108c 3335
c5aa993b 3336 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3337 {
3338 nfields++;
c5aa993b 3339 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3340 {
3341 non_public_fields++;
3342 }
3343 }
3344
3345 /* Now we know how many fields there are, and whether or not there are any
3346 non-public fields. Record the field count, allocate space for the
c378eb4e 3347 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3348
3349 TYPE_NFIELDS (type) = nfields;
3350 TYPE_FIELDS (type) = (struct field *)
3351 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3352 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3353
3354 if (non_public_fields)
3355 {
3356 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3357
3358 TYPE_FIELD_PRIVATE_BITS (type) =
3359 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3360 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3361
3362 TYPE_FIELD_PROTECTED_BITS (type) =
3363 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3364 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3365
3366 TYPE_FIELD_IGNORE_BITS (type) =
3367 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3368 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3369 }
3370
c378eb4e
MS
3371 /* Copy the saved-up fields into the field vector. Start from the
3372 head of the list, adding to the tail of the field array, so that
3373 they end up in the same order in the array in which they were
3374 added to the list. */
c906108c
SS
3375
3376 while (nfields-- > 0)
3377 {
c5aa993b
JM
3378 TYPE_FIELD (type, nfields) = fip->list->field;
3379 switch (fip->list->visibility)
c906108c 3380 {
c5aa993b
JM
3381 case VISIBILITY_PRIVATE:
3382 SET_TYPE_FIELD_PRIVATE (type, nfields);
3383 break;
c906108c 3384
c5aa993b
JM
3385 case VISIBILITY_PROTECTED:
3386 SET_TYPE_FIELD_PROTECTED (type, nfields);
3387 break;
c906108c 3388
c5aa993b
JM
3389 case VISIBILITY_IGNORE:
3390 SET_TYPE_FIELD_IGNORE (type, nfields);
3391 break;
c906108c 3392
c5aa993b
JM
3393 case VISIBILITY_PUBLIC:
3394 break;
c906108c 3395
c5aa993b
JM
3396 default:
3397 /* Unknown visibility. Complain and treat it as public. */
3398 {
3e43a32a
MS
3399 complaint (&symfile_complaints,
3400 _("Unknown visibility `%c' for field"),
23136709 3401 fip->list->visibility);
c5aa993b
JM
3402 }
3403 break;
c906108c 3404 }
c5aa993b 3405 fip->list = fip->list->next;
c906108c
SS
3406 }
3407 return 1;
3408}
3409
2ae1c2d2 3410
2ae1c2d2
JB
3411/* Complain that the compiler has emitted more than one definition for the
3412 structure type TYPE. */
3413static void
3414complain_about_struct_wipeout (struct type *type)
3415{
0d5cff50
DE
3416 const char *name = "";
3417 const char *kind = "";
2ae1c2d2
JB
3418
3419 if (TYPE_TAG_NAME (type))
3420 {
3421 name = TYPE_TAG_NAME (type);
3422 switch (TYPE_CODE (type))
3423 {
3424 case TYPE_CODE_STRUCT: kind = "struct "; break;
3425 case TYPE_CODE_UNION: kind = "union "; break;
3426 case TYPE_CODE_ENUM: kind = "enum "; break;
3427 default: kind = "";
3428 }
3429 }
3430 else if (TYPE_NAME (type))
3431 {
3432 name = TYPE_NAME (type);
3433 kind = "";
3434 }
3435 else
3436 {
3437 name = "<unknown>";
3438 kind = "";
3439 }
3440
23136709 3441 complaint (&symfile_complaints,
e2e0b3e5 3442 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3443}
3444
621791b8
PM
3445/* Set the length for all variants of a same main_type, which are
3446 connected in the closed chain.
3447
3448 This is something that needs to be done when a type is defined *after*
3449 some cross references to this type have already been read. Consider
3450 for instance the following scenario where we have the following two
3451 stabs entries:
3452
3453 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3454 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3455
3456 A stubbed version of type dummy is created while processing the first
3457 stabs entry. The length of that type is initially set to zero, since
3458 it is unknown at this point. Also, a "constant" variation of type
3459 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3460 the stabs line).
3461
3462 The second stabs entry allows us to replace the stubbed definition
3463 with the real definition. However, we still need to adjust the length
3464 of the "constant" variation of that type, as its length was left
3465 untouched during the main type replacement... */
3466
3467static void
9e69f3b6 3468set_length_in_type_chain (struct type *type)
621791b8
PM
3469{
3470 struct type *ntype = TYPE_CHAIN (type);
3471
3472 while (ntype != type)
3473 {
3474 if (TYPE_LENGTH(ntype) == 0)
3475 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3476 else
3477 complain_about_struct_wipeout (ntype);
3478 ntype = TYPE_CHAIN (ntype);
3479 }
3480}
2ae1c2d2 3481
c906108c
SS
3482/* Read the description of a structure (or union type) and return an object
3483 describing the type.
3484
3485 PP points to a character pointer that points to the next unconsumed token
b021a221 3486 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3487 *PP will point to "4a:1,0,32;;".
3488
3489 TYPE points to an incomplete type that needs to be filled in.
3490
3491 OBJFILE points to the current objfile from which the stabs information is
3492 being read. (Note that it is redundant in that TYPE also contains a pointer
3493 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3494 */
c906108c
SS
3495
3496static struct type *
2ae1c2d2
JB
3497read_struct_type (char **pp, struct type *type, enum type_code type_code,
3498 struct objfile *objfile)
c906108c
SS
3499{
3500 struct cleanup *back_to;
3501 struct field_info fi;
3502
3503 fi.list = NULL;
3504 fi.fnlist = NULL;
3505
2ae1c2d2
JB
3506 /* When describing struct/union/class types in stabs, G++ always drops
3507 all qualifications from the name. So if you've got:
3508 struct A { ... struct B { ... }; ... };
3509 then G++ will emit stabs for `struct A::B' that call it simply
3510 `struct B'. Obviously, if you've got a real top-level definition for
3511 `struct B', or other nested definitions, this is going to cause
3512 problems.
3513
3514 Obviously, GDB can't fix this by itself, but it can at least avoid
3515 scribbling on existing structure type objects when new definitions
3516 appear. */
3517 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3518 || TYPE_STUB (type)))
3519 {
3520 complain_about_struct_wipeout (type);
3521
3522 /* It's probably best to return the type unchanged. */
3523 return type;
3524 }
3525
c906108c
SS
3526 back_to = make_cleanup (null_cleanup, 0);
3527
3528 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3529 TYPE_CODE (type) = type_code;
876cecd0 3530 TYPE_STUB (type) = 0;
c906108c
SS
3531
3532 /* First comes the total size in bytes. */
3533
3534 {
3535 int nbits;
433759f7 3536
94e10a22 3537 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3538 if (nbits != 0)
73b8d9da
TT
3539 {
3540 do_cleanups (back_to);
3541 return error_type (pp, objfile);
3542 }
621791b8 3543 set_length_in_type_chain (type);
c906108c
SS
3544 }
3545
3546 /* Now read the baseclasses, if any, read the regular C struct or C++
3547 class member fields, attach the fields to the type, read the C++
3548 member functions, attach them to the type, and then read any tilde
3e43a32a 3549 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3550
3551 if (!read_baseclasses (&fi, pp, type, objfile)
3552 || !read_struct_fields (&fi, pp, type, objfile)
3553 || !attach_fields_to_type (&fi, type, objfile)
3554 || !read_member_functions (&fi, pp, type, objfile)
3555 || !attach_fn_fields_to_type (&fi, type)
3556 || !read_tilde_fields (&fi, pp, type, objfile))
3557 {
3558 type = error_type (pp, objfile);
3559 }
3560
3561 do_cleanups (back_to);
3562 return (type);
3563}
3564
3565/* Read a definition of an array type,
3566 and create and return a suitable type object.
3567 Also creates a range type which represents the bounds of that
3568 array. */
3569
3570static struct type *
aa1ee363 3571read_array_type (char **pp, struct type *type,
fba45db2 3572 struct objfile *objfile)
c906108c
SS
3573{
3574 struct type *index_type, *element_type, *range_type;
3575 int lower, upper;
3576 int adjustable = 0;
3577 int nbits;
3578
3579 /* Format of an array type:
3580 "ar<index type>;lower;upper;<array_contents_type>".
3581 OS9000: "arlower,upper;<array_contents_type>".
3582
3583 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3584 for these, produce a type like float[][]. */
3585
c906108c
SS
3586 {
3587 index_type = read_type (pp, objfile);
3588 if (**pp != ';')
3589 /* Improper format of array type decl. */
3590 return error_type (pp, objfile);
3591 ++*pp;
3592 }
3593
3594 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3595 {
3596 (*pp)++;
3597 adjustable = 1;
3598 }
94e10a22 3599 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3600
c906108c
SS
3601 if (nbits != 0)
3602 return error_type (pp, objfile);
3603
3604 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3605 {
3606 (*pp)++;
3607 adjustable = 1;
3608 }
94e10a22 3609 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3610 if (nbits != 0)
3611 return error_type (pp, objfile);
c5aa993b 3612
c906108c
SS
3613 element_type = read_type (pp, objfile);
3614
3615 if (adjustable)
3616 {
3617 lower = 0;
3618 upper = -1;
3619 }
3620
3621 range_type =
0c9c3474 3622 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3623 type = create_array_type (type, element_type, range_type);
3624
3625 return type;
3626}
3627
3628
3629/* Read a definition of an enumeration type,
3630 and create and return a suitable type object.
3631 Also defines the symbols that represent the values of the type. */
3632
3633static struct type *
aa1ee363 3634read_enum_type (char **pp, struct type *type,
fba45db2 3635 struct objfile *objfile)
c906108c 3636{
5e2b427d 3637 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3638 char *p;
c906108c 3639 char *name;
52f0bd74
AC
3640 long n;
3641 struct symbol *sym;
c906108c
SS
3642 int nsyms = 0;
3643 struct pending **symlist;
3644 struct pending *osyms, *syms;
3645 int o_nsyms;
3646 int nbits;
3647 int unsigned_enum = 1;
3648
3649#if 0
3650 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3651 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3652 to do? For now, force all enum values to file scope. */
3653 if (within_function)
3654 symlist = &local_symbols;
3655 else
3656#endif
3657 symlist = &file_symbols;
3658 osyms = *symlist;
3659 o_nsyms = osyms ? osyms->nsyms : 0;
3660
c906108c
SS
3661 /* The aix4 compiler emits an extra field before the enum members;
3662 my guess is it's a type of some sort. Just ignore it. */
3663 if (**pp == '-')
3664 {
3665 /* Skip over the type. */
3666 while (**pp != ':')
c5aa993b 3667 (*pp)++;
c906108c
SS
3668
3669 /* Skip over the colon. */
3670 (*pp)++;
3671 }
3672
3673 /* Read the value-names and their values.
3674 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3675 A semicolon or comma instead of a NAME means the end. */
3676 while (**pp && **pp != ';' && **pp != ',')
3677 {
3678 STABS_CONTINUE (pp, objfile);
3679 p = *pp;
c5aa993b
JM
3680 while (*p != ':')
3681 p++;
224c3ddb 3682 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3683 *pp = p + 1;
94e10a22 3684 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3685 if (nbits != 0)
3686 return error_type (pp, objfile);
3687
e623cf5d 3688 sym = allocate_symbol (objfile);
3567439c 3689 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3690 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3691 &objfile->objfile_obstack);
f1e6e072 3692 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3693 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3694 SYMBOL_VALUE (sym) = n;
3695 if (n < 0)
3696 unsigned_enum = 0;
3697 add_symbol_to_list (sym, symlist);
3698 nsyms++;
3699 }
3700
3701 if (**pp == ';')
3702 (*pp)++; /* Skip the semicolon. */
3703
3704 /* Now fill in the fields of the type-structure. */
3705
5e2b427d 3706 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3707 set_length_in_type_chain (type);
c906108c 3708 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3709 TYPE_STUB (type) = 0;
c906108c 3710 if (unsigned_enum)
876cecd0 3711 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3712 TYPE_NFIELDS (type) = nsyms;
3713 TYPE_FIELDS (type) = (struct field *)
3714 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3715 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3716
3717 /* Find the symbols for the values and put them into the type.
3718 The symbols can be found in the symlist that we put them on
3719 to cause them to be defined. osyms contains the old value
3720 of that symlist; everything up to there was defined by us. */
3721 /* Note that we preserve the order of the enum constants, so
3722 that in something like "enum {FOO, LAST_THING=FOO}" we print
3723 FOO, not LAST_THING. */
3724
3725 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3726 {
3727 int last = syms == osyms ? o_nsyms : 0;
3728 int j = syms->nsyms;
433759f7 3729
c906108c
SS
3730 for (; --j >= last; --n)
3731 {
3732 struct symbol *xsym = syms->symbol[j];
433759f7 3733
c906108c 3734 SYMBOL_TYPE (xsym) = type;
3567439c 3735 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3736 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3737 TYPE_FIELD_BITSIZE (type, n) = 0;
3738 }
3739 if (syms == osyms)
3740 break;
3741 }
3742
3743 return type;
3744}
3745
3746/* Sun's ACC uses a somewhat saner method for specifying the builtin
3747 typedefs in every file (for int, long, etc):
3748
c5aa993b
JM
3749 type = b <signed> <width> <format type>; <offset>; <nbits>
3750 signed = u or s.
3751 optional format type = c or b for char or boolean.
3752 offset = offset from high order bit to start bit of type.
3753 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3754
3755 The width/offset stuff appears to be for small objects stored in
3756 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3757 FIXME. */
3758
3759static struct type *
35a2f538 3760read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3761{
3762 int type_bits;
3763 int nbits;
3764 int signed_type;
3765 enum type_code code = TYPE_CODE_INT;
3766
3767 switch (**pp)
3768 {
c5aa993b
JM
3769 case 's':
3770 signed_type = 1;
3771 break;
3772 case 'u':
3773 signed_type = 0;
3774 break;
3775 default:
3776 return error_type (pp, objfile);
c906108c
SS
3777 }
3778 (*pp)++;
3779
3780 /* For some odd reason, all forms of char put a c here. This is strange
3781 because no other type has this honor. We can safely ignore this because
3782 we actually determine 'char'acterness by the number of bits specified in
3783 the descriptor.
3784 Boolean forms, e.g Fortran logical*X, put a b here. */
3785
3786 if (**pp == 'c')
3787 (*pp)++;
3788 else if (**pp == 'b')
3789 {
3790 code = TYPE_CODE_BOOL;
3791 (*pp)++;
3792 }
3793
3794 /* The first number appears to be the number of bytes occupied
3795 by this type, except that unsigned short is 4 instead of 2.
3796 Since this information is redundant with the third number,
3797 we will ignore it. */
94e10a22 3798 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3799 if (nbits != 0)
3800 return error_type (pp, objfile);
3801
c378eb4e 3802 /* The second number is always 0, so ignore it too. */
94e10a22 3803 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3804 if (nbits != 0)
3805 return error_type (pp, objfile);
3806
c378eb4e 3807 /* The third number is the number of bits for this type. */
94e10a22 3808 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3809 if (nbits != 0)
3810 return error_type (pp, objfile);
3811 /* The type *should* end with a semicolon. If it are embedded
3812 in a larger type the semicolon may be the only way to know where
3813 the type ends. If this type is at the end of the stabstring we
3814 can deal with the omitted semicolon (but we don't have to like
3815 it). Don't bother to complain(), Sun's compiler omits the semicolon
3816 for "void". */
3817 if (**pp == ';')
3818 ++(*pp);
3819
3820 if (type_bits == 0)
3821 return init_type (TYPE_CODE_VOID, 1,
c5aa993b 3822 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3823 objfile);
3824 else
3825 return init_type (code,
3826 type_bits / TARGET_CHAR_BIT,
c5aa993b 3827 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
c906108c
SS
3828 objfile);
3829}
3830
3831static struct type *
35a2f538 3832read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3833{
3834 int nbits;
3835 int details;
3836 int nbytes;
f65ca430 3837 struct type *rettype;
c906108c
SS
3838
3839 /* The first number has more details about the type, for example
3840 FN_COMPLEX. */
94e10a22 3841 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3842 if (nbits != 0)
3843 return error_type (pp, objfile);
3844
c378eb4e 3845 /* The second number is the number of bytes occupied by this type. */
94e10a22 3846 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3847 if (nbits != 0)
3848 return error_type (pp, objfile);
3849
3850 if (details == NF_COMPLEX || details == NF_COMPLEX16
3851 || details == NF_COMPLEX32)
f65ca430
DJ
3852 {
3853 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3854 TYPE_TARGET_TYPE (rettype)
3855 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3856 return rettype;
3857 }
c906108c
SS
3858
3859 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3860}
3861
3862/* Read a number from the string pointed to by *PP.
3863 The value of *PP is advanced over the number.
3864 If END is nonzero, the character that ends the
3865 number must match END, or an error happens;
3866 and that character is skipped if it does match.
3867 If END is zero, *PP is left pointing to that character.
3868
94e10a22
JG
3869 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3870 the number is represented in an octal representation, assume that
3871 it is represented in a 2's complement representation with a size of
3872 TWOS_COMPLEMENT_BITS.
3873
c906108c
SS
3874 If the number fits in a long, set *BITS to 0 and return the value.
3875 If not, set *BITS to be the number of bits in the number and return 0.
3876
3877 If encounter garbage, set *BITS to -1 and return 0. */
3878
c2d11a7d 3879static long
94e10a22 3880read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3881{
3882 char *p = *pp;
3883 int sign = 1;
51e9e0d4 3884 int sign_bit = 0;
c2d11a7d 3885 long n = 0;
c906108c
SS
3886 int radix = 10;
3887 char overflow = 0;
3888 int nbits = 0;
3889 int c;
c2d11a7d 3890 long upper_limit;
a2699720 3891 int twos_complement_representation = 0;
c5aa993b 3892
c906108c
SS
3893 if (*p == '-')
3894 {
3895 sign = -1;
3896 p++;
3897 }
3898
3899 /* Leading zero means octal. GCC uses this to output values larger
3900 than an int (because that would be hard in decimal). */
3901 if (*p == '0')
3902 {
3903 radix = 8;
3904 p++;
3905 }
3906
a2699720
PA
3907 /* Skip extra zeros. */
3908 while (*p == '0')
3909 p++;
3910
3911 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3912 {
3913 /* Octal, possibly signed. Check if we have enough chars for a
3914 negative number. */
3915
3916 size_t len;
3917 char *p1 = p;
433759f7 3918
a2699720
PA
3919 while ((c = *p1) >= '0' && c < '8')
3920 p1++;
3921
3922 len = p1 - p;
3923 if (len > twos_complement_bits / 3
3e43a32a
MS
3924 || (twos_complement_bits % 3 == 0
3925 && len == twos_complement_bits / 3))
a2699720
PA
3926 {
3927 /* Ok, we have enough characters for a signed value, check
3928 for signness by testing if the sign bit is set. */
3929 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3930 c = *p - '0';
3931 if (c & (1 << sign_bit))
3932 {
3933 /* Definitely signed. */
3934 twos_complement_representation = 1;
3935 sign = -1;
3936 }
3937 }
3938 }
3939
1b831c93 3940 upper_limit = LONG_MAX / radix;
c906108c
SS
3941
3942 while ((c = *p++) >= '0' && c < ('0' + radix))
3943 {
3944 if (n <= upper_limit)
94e10a22
JG
3945 {
3946 if (twos_complement_representation)
3947 {
a2699720
PA
3948 /* Octal, signed, twos complement representation. In
3949 this case, n is the corresponding absolute value. */
3950 if (n == 0)
3951 {
3952 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3953
a2699720
PA
3954 n = -sn;
3955 }
94e10a22
JG
3956 else
3957 {
a2699720
PA
3958 n *= radix;
3959 n -= c - '0';
94e10a22 3960 }
94e10a22
JG
3961 }
3962 else
3963 {
3964 /* unsigned representation */
3965 n *= radix;
c378eb4e 3966 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3967 }
3968 }
c906108c 3969 else
94e10a22 3970 overflow = 1;
c5aa993b 3971
c906108c 3972 /* This depends on large values being output in octal, which is
c378eb4e 3973 what GCC does. */
c906108c
SS
3974 if (radix == 8)
3975 {
3976 if (nbits == 0)
3977 {
3978 if (c == '0')
3979 /* Ignore leading zeroes. */
3980 ;
3981 else if (c == '1')
3982 nbits = 1;
3983 else if (c == '2' || c == '3')
3984 nbits = 2;
3985 else
3986 nbits = 3;
3987 }
3988 else
3989 nbits += 3;
3990 }
3991 }
3992 if (end)
3993 {
3994 if (c && c != end)
3995 {
3996 if (bits != NULL)
3997 *bits = -1;
3998 return 0;
3999 }
4000 }
4001 else
4002 --p;
4003
a2699720
PA
4004 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4005 {
4006 /* We were supposed to parse a number with maximum
4007 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4008 if (bits != NULL)
4009 *bits = -1;
4010 return 0;
4011 }
4012
c906108c
SS
4013 *pp = p;
4014 if (overflow)
4015 {
4016 if (nbits == 0)
4017 {
4018 /* Large decimal constants are an error (because it is hard to
4019 count how many bits are in them). */
4020 if (bits != NULL)
4021 *bits = -1;
4022 return 0;
4023 }
c5aa993b 4024
c906108c 4025 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4026 the number of bits. Two's complement represention octals
4027 can't have a '-' in front. */
4028 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4029 ++nbits;
4030 if (bits)
4031 *bits = nbits;
4032 }
4033 else
4034 {
4035 if (bits)
4036 *bits = 0;
a2699720 4037 return n * sign;
c906108c
SS
4038 }
4039 /* It's *BITS which has the interesting information. */
4040 return 0;
4041}
4042
4043static struct type *
94e10a22
JG
4044read_range_type (char **pp, int typenums[2], int type_size,
4045 struct objfile *objfile)
c906108c 4046{
5e2b427d 4047 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4048 char *orig_pp = *pp;
4049 int rangenums[2];
c2d11a7d 4050 long n2, n3;
c906108c
SS
4051 int n2bits, n3bits;
4052 int self_subrange;
4053 struct type *result_type;
4054 struct type *index_type = NULL;
4055
4056 /* First comes a type we are a subrange of.
4057 In C it is usually 0, 1 or the type being defined. */
4058 if (read_type_number (pp, rangenums) != 0)
4059 return error_type (pp, objfile);
4060 self_subrange = (rangenums[0] == typenums[0] &&
4061 rangenums[1] == typenums[1]);
4062
4063 if (**pp == '=')
4064 {
4065 *pp = orig_pp;
4066 index_type = read_type (pp, objfile);
4067 }
4068
4069 /* A semicolon should now follow; skip it. */
4070 if (**pp == ';')
4071 (*pp)++;
4072
4073 /* The remaining two operands are usually lower and upper bounds
4074 of the range. But in some special cases they mean something else. */
94e10a22
JG
4075 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4076 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4077
4078 if (n2bits == -1 || n3bits == -1)
4079 return error_type (pp, objfile);
4080
4081 if (index_type)
4082 goto handle_true_range;
4083
4084 /* If limits are huge, must be large integral type. */
4085 if (n2bits != 0 || n3bits != 0)
4086 {
4087 char got_signed = 0;
4088 char got_unsigned = 0;
4089 /* Number of bits in the type. */
4090 int nbits = 0;
4091
94e10a22 4092 /* If a type size attribute has been specified, the bounds of
c378eb4e 4093 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4094 more bits than the upper bound, then the type is signed. */
4095 if (n2bits <= type_size && n3bits <= type_size)
4096 {
4097 if (n2bits == type_size && n2bits > n3bits)
4098 got_signed = 1;
4099 else
4100 got_unsigned = 1;
4101 nbits = type_size;
4102 }
c906108c 4103 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4104 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4105 {
4106 got_unsigned = 1;
4107 nbits = n3bits;
4108 }
4109 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4110 integral type. Take care of the case where <large number> doesn't
4111 fit in a long but <large number>-1 does. */
c906108c
SS
4112 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4113 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4114 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4115 && n3 == LONG_MAX))
c906108c
SS
4116 {
4117 got_signed = 1;
4118 nbits = n2bits;
4119 }
4120
4121 if (got_signed || got_unsigned)
4122 {
4123 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4124 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4125 objfile);
4126 }
4127 else
4128 return error_type (pp, objfile);
4129 }
4130
4131 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4132 if (self_subrange && n2 == 0 && n3 == 0)
4133 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4134
4135 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4136 is the width in bytes.
4137
4138 Fortran programs appear to use this for complex types also. To
4139 distinguish between floats and complex, g77 (and others?) seem
4140 to use self-subranges for the complexes, and subranges of int for
4141 the floats.
4142
4143 Also note that for complexes, g77 sets n2 to the size of one of
4144 the member floats, not the whole complex beast. My guess is that
c378eb4e 4145 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4146
4147 if (n3 == 0 && n2 > 0)
4148 {
1300f5dd
JB
4149 struct type *float_type
4150 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4151
c906108c
SS
4152 if (self_subrange)
4153 {
1300f5dd
JB
4154 struct type *complex_type =
4155 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
433759f7 4156
1300f5dd
JB
4157 TYPE_TARGET_TYPE (complex_type) = float_type;
4158 return complex_type;
c906108c
SS
4159 }
4160 else
1300f5dd 4161 return float_type;
c906108c
SS
4162 }
4163
a2699720 4164 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4165
4166 else if (n2 == 0 && n3 == -1)
4167 {
a2699720 4168 int bits = type_size;
433759f7 4169
a2699720
PA
4170 if (bits <= 0)
4171 {
4172 /* We don't know its size. It is unsigned int or unsigned
4173 long. GCC 2.3.3 uses this for long long too, but that is
4174 just a GDB 3.5 compatibility hack. */
5e2b427d 4175 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4176 }
4177
4178 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
c906108c
SS
4179 TYPE_FLAG_UNSIGNED, NULL, objfile);
4180 }
4181
4182 /* Special case: char is defined (Who knows why) as a subrange of
4183 itself with range 0-127. */
4184 else if (self_subrange && n2 == 0 && n3 == 127)
973ccf8b 4185 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
c906108c 4186
c906108c
SS
4187 /* We used to do this only for subrange of self or subrange of int. */
4188 else if (n2 == 0)
4189 {
a0b3c4fd
JM
4190 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4191 "unsigned long", and we already checked for that,
4192 so don't need to test for it here. */
4193
c906108c
SS
4194 if (n3 < 0)
4195 /* n3 actually gives the size. */
c5aa993b 4196 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
c906108c 4197 NULL, objfile);
c906108c 4198
7be570e7 4199 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4200 unsigned n-byte integer. But do require n to be a power of
4201 two; we don't want 3- and 5-byte integers flying around. */
4202 {
4203 int bytes;
4204 unsigned long bits;
4205
4206 bits = n3;
4207 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4208 bits >>= 8;
4209 if (bits == 0
4210 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4211 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4212 objfile);
4213 }
c906108c
SS
4214 }
4215 /* I think this is for Convex "long long". Since I don't know whether
4216 Convex sets self_subrange, I also accept that particular size regardless
4217 of self_subrange. */
4218 else if (n3 == 0 && n2 < 0
4219 && (self_subrange
9a76efb6 4220 || n2 == -gdbarch_long_long_bit
5e2b427d 4221 (gdbarch) / TARGET_CHAR_BIT))
c5aa993b
JM
4222 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4223 else if (n2 == -n3 - 1)
c906108c
SS
4224 {
4225 if (n3 == 0x7f)
4226 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4227 if (n3 == 0x7fff)
4228 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4229 if (n3 == 0x7fffffff)
4230 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4231 }
4232
4233 /* We have a real range type on our hands. Allocate space and
4234 return a real pointer. */
c5aa993b 4235handle_true_range:
c906108c
SS
4236
4237 if (self_subrange)
46bf5051 4238 index_type = objfile_type (objfile)->builtin_int;
c906108c 4239 else
46bf5051 4240 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4241 if (index_type == NULL)
4242 {
4243 /* Does this actually ever happen? Is that why we are worrying
4244 about dealing with it rather than just calling error_type? */
4245
23136709 4246 complaint (&symfile_complaints,
e2e0b3e5 4247 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4248
46bf5051 4249 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4250 }
4251
0c9c3474
SA
4252 result_type
4253 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4254 return (result_type);
4255}
4256
4257/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4258 and terminated with END. Return the list of types read in, or NULL
4259 if there is an error. */
c906108c 4260
ad2f7632
DJ
4261static struct field *
4262read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4263 int *varargsp)
c906108c
SS
4264{
4265 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4266 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4267 int n = 0, i;
4268 struct field *rval;
c906108c
SS
4269
4270 while (**pp != end)
4271 {
4272 if (**pp != ',')
4273 /* Invalid argument list: no ','. */
0a029df5 4274 return NULL;
c906108c
SS
4275 (*pp)++;
4276 STABS_CONTINUE (pp, objfile);
4277 types[n++] = read_type (pp, objfile);
4278 }
c378eb4e 4279 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4280
d24d8548
JK
4281 if (n == 0)
4282 {
4283 /* We should read at least the THIS parameter here. Some broken stabs
4284 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4285 have been present ";-16,(0,43)" reference instead. This way the
4286 excessive ";" marker prematurely stops the parameters parsing. */
4287
4288 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4289 *varargsp = 0;
4290 }
4291 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4292 *varargsp = 1;
c906108c
SS
4293 else
4294 {
ad2f7632
DJ
4295 n--;
4296 *varargsp = 0;
c906108c 4297 }
ad2f7632 4298
8d749320 4299 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4300 for (i = 0; i < n; i++)
4301 rval[i].type = types[i];
4302 *nargsp = n;
c906108c
SS
4303 return rval;
4304}
4305\f
4306/* Common block handling. */
4307
4308/* List of symbols declared since the last BCOMM. This list is a tail
4309 of local_symbols. When ECOMM is seen, the symbols on the list
4310 are noted so their proper addresses can be filled in later,
4311 using the common block base address gotten from the assembler
4312 stabs. */
4313
4314static struct pending *common_block;
4315static int common_block_i;
4316
4317/* Name of the current common block. We get it from the BCOMM instead of the
4318 ECOMM to match IBM documentation (even though IBM puts the name both places
4319 like everyone else). */
4320static char *common_block_name;
4321
4322/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4323 to remain after this function returns. */
4324
4325void
fba45db2 4326common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4327{
4328 if (common_block_name != NULL)
4329 {
23136709 4330 complaint (&symfile_complaints,
e2e0b3e5 4331 _("Invalid symbol data: common block within common block"));
c906108c
SS
4332 }
4333 common_block = local_symbols;
4334 common_block_i = local_symbols ? local_symbols->nsyms : 0;
224c3ddb
SM
4335 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4336 strlen (name));
c906108c
SS
4337}
4338
4339/* Process a N_ECOMM symbol. */
4340
4341void
fba45db2 4342common_block_end (struct objfile *objfile)
c906108c
SS
4343{
4344 /* Symbols declared since the BCOMM are to have the common block
4345 start address added in when we know it. common_block and
4346 common_block_i point to the first symbol after the BCOMM in
4347 the local_symbols list; copy the list and hang it off the
4348 symbol for the common block name for later fixup. */
4349 int i;
4350 struct symbol *sym;
fe978cb0 4351 struct pending *newobj = 0;
c906108c
SS
4352 struct pending *next;
4353 int j;
4354
4355 if (common_block_name == NULL)
4356 {
e2e0b3e5 4357 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4358 return;
4359 }
4360
e623cf5d 4361 sym = allocate_symbol (objfile);
c378eb4e 4362 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4363 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4364 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4365
4366 /* Now we copy all the symbols which have been defined since the BCOMM. */
4367
4368 /* Copy all the struct pendings before common_block. */
4369 for (next = local_symbols;
4370 next != NULL && next != common_block;
4371 next = next->next)
4372 {
4373 for (j = 0; j < next->nsyms; j++)
fe978cb0 4374 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4375 }
4376
4377 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4378 NULL, it means copy all the local symbols (which we already did
4379 above). */
4380
4381 if (common_block != NULL)
4382 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4383 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4384
fe978cb0 4385 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4386
4387 /* Should we be putting local_symbols back to what it was?
4388 Does it matter? */
4389
3567439c 4390 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4391 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4392 global_sym_chain[i] = sym;
4393 common_block_name = NULL;
4394}
4395
4396/* Add a common block's start address to the offset of each symbol
4397 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4398 the common block name). */
4399
4400static void
46cb6474 4401fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4402{
4403 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4404
c5aa993b 4405 for (; next; next = next->next)
c906108c 4406 {
aa1ee363 4407 int j;
433759f7 4408
c906108c
SS
4409 for (j = next->nsyms - 1; j >= 0; j--)
4410 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4411 }
4412}
c5aa993b 4413\f
c906108c
SS
4414
4415
bf362611
JB
4416/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4417 See add_undefined_type for more details. */
c906108c 4418
a7a48797 4419static void
bf362611
JB
4420add_undefined_type_noname (struct type *type, int typenums[2])
4421{
4422 struct nat nat;
4423
4424 nat.typenums[0] = typenums [0];
4425 nat.typenums[1] = typenums [1];
4426 nat.type = type;
4427
4428 if (noname_undefs_length == noname_undefs_allocated)
4429 {
4430 noname_undefs_allocated *= 2;
4431 noname_undefs = (struct nat *)
4432 xrealloc ((char *) noname_undefs,
4433 noname_undefs_allocated * sizeof (struct nat));
4434 }
4435 noname_undefs[noname_undefs_length++] = nat;
4436}
4437
4438/* Add TYPE to the UNDEF_TYPES vector.
4439 See add_undefined_type for more details. */
4440
4441static void
4442add_undefined_type_1 (struct type *type)
c906108c
SS
4443{
4444 if (undef_types_length == undef_types_allocated)
4445 {
4446 undef_types_allocated *= 2;
4447 undef_types = (struct type **)
4448 xrealloc ((char *) undef_types,
4449 undef_types_allocated * sizeof (struct type *));
4450 }
4451 undef_types[undef_types_length++] = type;
4452}
4453
bf362611
JB
4454/* What about types defined as forward references inside of a small lexical
4455 scope? */
4456/* Add a type to the list of undefined types to be checked through
4457 once this file has been read in.
4458
4459 In practice, we actually maintain two such lists: The first list
4460 (UNDEF_TYPES) is used for types whose name has been provided, and
4461 concerns forward references (eg 'xs' or 'xu' forward references);
4462 the second list (NONAME_UNDEFS) is used for types whose name is
4463 unknown at creation time, because they were referenced through
4464 their type number before the actual type was declared.
4465 This function actually adds the given type to the proper list. */
4466
4467static void
4468add_undefined_type (struct type *type, int typenums[2])
4469{
4470 if (TYPE_TAG_NAME (type) == NULL)
4471 add_undefined_type_noname (type, typenums);
4472 else
4473 add_undefined_type_1 (type);
4474}
4475
4476/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4477
2c0b251b 4478static void
46bf5051 4479cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4480{
4481 int i;
4482
4483 for (i = 0; i < noname_undefs_length; i++)
4484 {
4485 struct nat nat = noname_undefs[i];
4486 struct type **type;
4487
46bf5051 4488 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4489 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4490 {
4491 /* The instance flags of the undefined type are still unset,
4492 and needs to be copied over from the reference type.
4493 Since replace_type expects them to be identical, we need
4494 to set these flags manually before hand. */
4495 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4496 replace_type (nat.type, *type);
4497 }
bf362611
JB
4498 }
4499
4500 noname_undefs_length = 0;
4501}
4502
c906108c
SS
4503/* Go through each undefined type, see if it's still undefined, and fix it
4504 up if possible. We have two kinds of undefined types:
4505
4506 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4507 Fix: update array length using the element bounds
4508 and the target type's length.
c906108c 4509 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4510 yet defined at the time a pointer to it was made.
4511 Fix: Do a full lookup on the struct/union tag. */
bf362611 4512
2c0b251b 4513static void
bf362611 4514cleanup_undefined_types_1 (void)
c906108c
SS
4515{
4516 struct type **type;
4517
9e386756
JB
4518 /* Iterate over every undefined type, and look for a symbol whose type
4519 matches our undefined type. The symbol matches if:
4520 1. It is a typedef in the STRUCT domain;
4521 2. It has the same name, and same type code;
4522 3. The instance flags are identical.
4523
4524 It is important to check the instance flags, because we have seen
4525 examples where the debug info contained definitions such as:
4526
4527 "foo_t:t30=B31=xefoo_t:"
4528
4529 In this case, we have created an undefined type named "foo_t" whose
4530 instance flags is null (when processing "xefoo_t"), and then created
4531 another type with the same name, but with different instance flags
4532 ('B' means volatile). I think that the definition above is wrong,
4533 since the same type cannot be volatile and non-volatile at the same
4534 time, but we need to be able to cope with it when it happens. The
4535 approach taken here is to treat these two types as different. */
4536
c906108c
SS
4537 for (type = undef_types; type < undef_types + undef_types_length; type++)
4538 {
4539 switch (TYPE_CODE (*type))
4540 {
4541
c5aa993b
JM
4542 case TYPE_CODE_STRUCT:
4543 case TYPE_CODE_UNION:
4544 case TYPE_CODE_ENUM:
c906108c
SS
4545 {
4546 /* Check if it has been defined since. Need to do this here
4547 as well as in check_typedef to deal with the (legitimate in
4548 C though not C++) case of several types with the same name
4549 in different source files. */
74a9bb82 4550 if (TYPE_STUB (*type))
c906108c
SS
4551 {
4552 struct pending *ppt;
4553 int i;
c378eb4e 4554 /* Name of the type, without "struct" or "union". */
fe978cb0 4555 const char *type_name = TYPE_TAG_NAME (*type);
c906108c 4556
fe978cb0 4557 if (type_name == NULL)
c906108c 4558 {
e2e0b3e5 4559 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4560 break;
4561 }
4562 for (ppt = file_symbols; ppt; ppt = ppt->next)
4563 {
4564 for (i = 0; i < ppt->nsyms; i++)
4565 {
4566 struct symbol *sym = ppt->symbol[i];
c5aa993b 4567
c906108c 4568 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4569 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4570 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4571 TYPE_CODE (*type))
9e386756
JB
4572 && (TYPE_INSTANCE_FLAGS (*type) ==
4573 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4574 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4575 type_name) == 0)
13a393b0 4576 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4577 }
4578 }
4579 }
4580 }
4581 break;
4582
4583 default:
4584 {
23136709 4585 complaint (&symfile_complaints,
e2e0b3e5
AC
4586 _("forward-referenced types left unresolved, "
4587 "type code %d."),
23136709 4588 TYPE_CODE (*type));
c906108c
SS
4589 }
4590 break;
4591 }
4592 }
4593
4594 undef_types_length = 0;
4595}
4596
bf362611
JB
4597/* Try to fix all the undefined types we ecountered while processing
4598 this unit. */
4599
4600void
0a0edcd5 4601cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4602{
4603 cleanup_undefined_types_1 ();
46bf5051 4604 cleanup_undefined_types_noname (objfile);
bf362611
JB
4605}
4606
c906108c
SS
4607/* Scan through all of the global symbols defined in the object file,
4608 assigning values to the debugging symbols that need to be assigned
4609 to. Get these symbols from the minimal symbol table. */
4610
4611void
fba45db2 4612scan_file_globals (struct objfile *objfile)
c906108c
SS
4613{
4614 int hash;
4615 struct minimal_symbol *msymbol;
507836c0 4616 struct symbol *sym, *prev;
c906108c
SS
4617 struct objfile *resolve_objfile;
4618
4619 /* SVR4 based linkers copy referenced global symbols from shared
4620 libraries to the main executable.
4621 If we are scanning the symbols for a shared library, try to resolve
4622 them from the minimal symbols of the main executable first. */
4623
4624 if (symfile_objfile && objfile != symfile_objfile)
4625 resolve_objfile = symfile_objfile;
4626 else
4627 resolve_objfile = objfile;
4628
4629 while (1)
4630 {
4631 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4632 no unresolved symbols. */
c906108c
SS
4633 for (hash = 0; hash < HASHSIZE; hash++)
4634 {
4635 if (global_sym_chain[hash])
4636 break;
4637 }
4638 if (hash >= HASHSIZE)
4639 return;
4640
3567439c 4641 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4642 {
4643 QUIT;
4644
4645 /* Skip static symbols. */
4646 switch (MSYMBOL_TYPE (msymbol))
4647 {
4648 case mst_file_text:
4649 case mst_file_data:
4650 case mst_file_bss:
4651 continue;
4652 default:
4653 break;
4654 }
4655
4656 prev = NULL;
4657
4658 /* Get the hash index and check all the symbols
c378eb4e 4659 under that hash index. */
c906108c 4660
efd66ac6 4661 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4662
4663 for (sym = global_sym_chain[hash]; sym;)
4664 {
efd66ac6 4665 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4666 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4667 {
c906108c 4668 /* Splice this symbol out of the hash chain and
c378eb4e 4669 assign the value we have to it. */
c906108c
SS
4670 if (prev)
4671 {
4672 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4673 }
4674 else
4675 {
4676 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4677 }
c5aa993b 4678
c906108c
SS
4679 /* Check to see whether we need to fix up a common block. */
4680 /* Note: this code might be executed several times for
4681 the same symbol if there are multiple references. */
507836c0 4682 if (sym)
c906108c 4683 {
507836c0 4684 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4685 {
507836c0 4686 fix_common_block (sym,
77e371c0
TT
4687 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4688 msymbol));
c906108c
SS
4689 }
4690 else
4691 {
507836c0 4692 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4693 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4694 }
efd66ac6 4695 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4696 }
4697
c906108c
SS
4698 if (prev)
4699 {
4700 sym = SYMBOL_VALUE_CHAIN (prev);
4701 }
4702 else
4703 {
4704 sym = global_sym_chain[hash];
4705 }
4706 }
4707 else
4708 {
4709 prev = sym;
4710 sym = SYMBOL_VALUE_CHAIN (sym);
4711 }
4712 }
4713 }
4714 if (resolve_objfile == objfile)
4715 break;
4716 resolve_objfile = objfile;
4717 }
4718
4719 /* Change the storage class of any remaining unresolved globals to
4720 LOC_UNRESOLVED and remove them from the chain. */
4721 for (hash = 0; hash < HASHSIZE; hash++)
4722 {
4723 sym = global_sym_chain[hash];
4724 while (sym)
4725 {
4726 prev = sym;
4727 sym = SYMBOL_VALUE_CHAIN (sym);
4728
4729 /* Change the symbol address from the misleading chain value
4730 to address zero. */
4731 SYMBOL_VALUE_ADDRESS (prev) = 0;
4732
4733 /* Complain about unresolved common block symbols. */
4734 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4735 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4736 else
23136709 4737 complaint (&symfile_complaints,
3e43a32a
MS
4738 _("%s: common block `%s' from "
4739 "global_sym_chain unresolved"),
4262abfb 4740 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4741 }
4742 }
4743 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4744}
4745
4746/* Initialize anything that needs initializing when starting to read
4747 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4748 to a psymtab. */
4749
4750void
fba45db2 4751stabsread_init (void)
c906108c
SS
4752{
4753}
4754
4755/* Initialize anything that needs initializing when a completely new
4756 symbol file is specified (not just adding some symbols from another
4757 file, e.g. a shared library). */
4758
4759void
fba45db2 4760stabsread_new_init (void)
c906108c
SS
4761{
4762 /* Empty the hash table of global syms looking for values. */
4763 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4764}
4765
4766/* Initialize anything that needs initializing at the same time as
c378eb4e 4767 start_symtab() is called. */
c906108c 4768
c5aa993b 4769void
fba45db2 4770start_stabs (void)
c906108c
SS
4771{
4772 global_stabs = NULL; /* AIX COFF */
4773 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4774 n_this_object_header_files = 1;
4775 type_vector_length = 0;
4776 type_vector = (struct type **) 0;
4777
4778 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4779 common_block_name = NULL;
c906108c
SS
4780}
4781
c378eb4e 4782/* Call after end_symtab(). */
c906108c 4783
c5aa993b 4784void
fba45db2 4785end_stabs (void)
c906108c
SS
4786{
4787 if (type_vector)
4788 {
b8c9b27d 4789 xfree (type_vector);
c906108c
SS
4790 }
4791 type_vector = 0;
4792 type_vector_length = 0;
4793 previous_stab_code = 0;
4794}
4795
4796void
fba45db2 4797finish_global_stabs (struct objfile *objfile)
c906108c
SS
4798{
4799 if (global_stabs)
4800 {
4801 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4802 xfree (global_stabs);
c906108c
SS
4803 global_stabs = NULL;
4804 }
4805}
4806
7e1d63ec
AF
4807/* Find the end of the name, delimited by a ':', but don't match
4808 ObjC symbols which look like -[Foo bar::]:bla. */
4809static char *
4810find_name_end (char *name)
4811{
4812 char *s = name;
433759f7 4813
7e1d63ec
AF
4814 if (s[0] == '-' || *s == '+')
4815 {
4816 /* Must be an ObjC method symbol. */
4817 if (s[1] != '[')
4818 {
8a3fe4f8 4819 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4820 }
4821 s = strchr (s, ']');
4822 if (s == NULL)
4823 {
8a3fe4f8 4824 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4825 }
4826 return strchr (s, ':');
4827 }
4828 else
4829 {
4830 return strchr (s, ':');
4831 }
4832}
4833
c378eb4e 4834/* Initializer for this module. */
c906108c
SS
4835
4836void
fba45db2 4837_initialize_stabsread (void)
c906108c 4838{
46bf5051
UW
4839 rs6000_builtin_type_data = register_objfile_data ();
4840
c906108c
SS
4841 undef_types_allocated = 20;
4842 undef_types_length = 0;
8d749320 4843 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4844
4845 noname_undefs_allocated = 20;
4846 noname_undefs_length = 0;
8d749320 4847 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4848
4849 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4850 &stab_register_funcs);
4851 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4852 &stab_register_funcs);
c906108c 4853}
This page took 2.043663 seconds and 4 git commands to generate.