Fix "beneath" conversion on AIX
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
1736a7bd
PA
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
c906108c
SS
26
27#include "defs.h"
c906108c 28#include "bfd.h"
04ea0df1 29#include "gdb_obstack.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "expression.h"
33#include "symfile.h"
34#include "objfiles.h"
3e43a32a 35#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
36#include "libaout.h"
37#include "aout/aout64.h"
38#include "gdb-stabs.h"
39#include "buildsym.h"
40#include "complaints.h"
41#include "demangle.h"
50f182aa 42#include "gdb-demangle.h"
c906108c 43#include "language.h"
f69fdf9b 44#include "target-float.h"
de17c821
DJ
45#include "cp-abi.h"
46#include "cp-support.h"
c906108c
SS
47#include <ctype.h>
48
49/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
50#define EXTERN
51/**/
c906108c
SS
52#include "stabsread.h" /* Our own declarations */
53#undef EXTERN
54
52059ffd
TT
55struct nextfield
56{
57 struct nextfield *next;
58
59 /* This is the raw visibility from the stab. It is not checked
60 for being one of the visibilities we recognize, so code which
61 examines this field better be able to deal. */
62 int visibility;
63
64 struct field field;
65};
66
67struct next_fnfieldlist
68{
69 struct next_fnfieldlist *next;
70 struct fn_fieldlist fn_fieldlist;
71};
72
c906108c
SS
73/* The routines that read and process a complete stabs for a C struct or
74 C++ class pass lists of data member fields and lists of member function
75 fields in an instance of a field_info structure, as defined below.
76 This is part of some reorganization of low level C++ support and is
c378eb4e 77 expected to eventually go away... (FIXME) */
c906108c
SS
78
79struct field_info
c5aa993b 80 {
52059ffd
TT
81 struct nextfield *list;
82 struct next_fnfieldlist *fnlist;
c5aa993b 83 };
c906108c
SS
84
85static void
a121b7c1 86read_one_struct_field (struct field_info *, const char **, const char *,
a14ed312 87 struct type *, struct objfile *);
c906108c 88
a14ed312 89static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 90
a121b7c1 91static long read_huge_number (const char **, int, int *, int);
c906108c 92
a121b7c1 93static struct type *error_type (const char **, struct objfile *);
c906108c
SS
94
95static void
a14ed312
KB
96patch_block_stabs (struct pending *, struct pending_stabs *,
97 struct objfile *);
c906108c 98
46cb6474 99static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 100
a121b7c1 101static int read_type_number (const char **, int *);
c906108c 102
a121b7c1 103static struct type *read_type (const char **, struct objfile *);
a7a48797 104
a121b7c1
PA
105static struct type *read_range_type (const char **, int[2],
106 int, struct objfile *);
c906108c 107
a121b7c1
PA
108static struct type *read_sun_builtin_type (const char **,
109 int[2], struct objfile *);
c906108c 110
a121b7c1 111static struct type *read_sun_floating_type (const char **, int[2],
a14ed312 112 struct objfile *);
c906108c 113
a121b7c1 114static struct type *read_enum_type (const char **, struct type *, struct objfile *);
c906108c 115
46bf5051 116static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
117
118static int
a121b7c1 119read_member_functions (struct field_info *, const char **, struct type *,
a14ed312 120 struct objfile *);
c906108c
SS
121
122static int
a121b7c1 123read_struct_fields (struct field_info *, const char **, struct type *,
a14ed312 124 struct objfile *);
c906108c
SS
125
126static int
a121b7c1 127read_baseclasses (struct field_info *, const char **, struct type *,
a14ed312 128 struct objfile *);
c906108c
SS
129
130static int
a121b7c1 131read_tilde_fields (struct field_info *, const char **, struct type *,
a14ed312 132 struct objfile *);
c906108c 133
a14ed312 134static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 135
570b8f7c
AC
136static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
c906108c 138
a121b7c1 139static struct type *read_struct_type (const char **, struct type *,
2ae1c2d2 140 enum type_code,
a14ed312 141 struct objfile *);
c906108c 142
a121b7c1 143static struct type *read_array_type (const char **, struct type *,
a14ed312 144 struct objfile *);
c906108c 145
a121b7c1
PA
146static struct field *read_args (const char **, int, struct objfile *,
147 int *, int *);
c906108c 148
bf362611 149static void add_undefined_type (struct type *, int[2]);
a7a48797 150
c906108c 151static int
a121b7c1 152read_cpp_abbrev (struct field_info *, const char **, struct type *,
a14ed312 153 struct objfile *);
c906108c 154
a121b7c1 155static const char *find_name_end (const char *name);
7e1d63ec 156
a121b7c1 157static int process_reference (const char **string);
c906108c 158
a14ed312 159void stabsread_clear_cache (void);
7be570e7 160
8343f86c
DJ
161static const char vptr_name[] = "_vptr$";
162static const char vb_name[] = "_vb$";
c906108c 163
23136709
KB
164static void
165invalid_cpp_abbrev_complaint (const char *arg1)
166{
b98664d3 167 complaint (_("invalid C++ abbreviation `%s'"), arg1);
23136709 168}
c906108c 169
23136709 170static void
49b0b195 171reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709 172{
b98664d3 173 complaint (_("bad register number %d (max %d) in symbol %s"),
49b0b195 174 regnum, num_regs - 1, sym);
23136709 175}
c906108c 176
23136709
KB
177static void
178stabs_general_complaint (const char *arg1)
179{
b98664d3 180 complaint ("%s", arg1);
23136709 181}
c906108c 182
c906108c
SS
183/* Make a list of forward references which haven't been defined. */
184
185static struct type **undef_types;
186static int undef_types_allocated;
187static int undef_types_length;
188static struct symbol *current_symbol = NULL;
189
bf362611
JB
190/* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
c378eb4e 192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
193 and type (0,2) is defined only later. */
194
195struct nat
196{
197 int typenums[2];
198 struct type *type;
199};
200static struct nat *noname_undefs;
201static int noname_undefs_allocated;
202static int noname_undefs_length;
203
c906108c
SS
204/* Check for and handle cretinous stabs symbol name continuation! */
205#define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
fc474241
DE
210
211/* Vector of types defined so far, indexed by their type numbers.
212 (In newer sun systems, dbx uses a pair of numbers in parens,
213 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
214 Then these numbers must be translated through the type_translations
215 hash table to get the index into the type vector.) */
216
217static struct type **type_vector;
218
219/* Number of elements allocated for type_vector currently. */
220
221static int type_vector_length;
222
223/* Initial size of type vector. Is realloc'd larger if needed, and
224 realloc'd down to the size actually used, when completed. */
225
226#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 227\f
c906108c
SS
228
229/* Look up a dbx type-number pair. Return the address of the slot
230 where the type for that number-pair is stored.
231 The number-pair is in TYPENUMS.
232
233 This can be used for finding the type associated with that pair
234 or for associating a new type with the pair. */
235
a7a48797 236static struct type **
46bf5051 237dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 238{
52f0bd74
AC
239 int filenum = typenums[0];
240 int index = typenums[1];
c906108c 241 unsigned old_len;
52f0bd74
AC
242 int real_filenum;
243 struct header_file *f;
c906108c
SS
244 int f_orig_length;
245
246 if (filenum == -1) /* -1,-1 is for temporary types. */
247 return 0;
248
249 if (filenum < 0 || filenum >= n_this_object_header_files)
250 {
b98664d3 251 complaint (_("Invalid symbol data: type number "
3e43a32a 252 "(%d,%d) out of range at symtab pos %d."),
23136709 253 filenum, index, symnum);
c906108c
SS
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
46bf5051 268 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
c5aa993b 273 Find it in this object file's type vector. */
c906108c
SS
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 280 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
46bf5051 298 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 299 {
46bf5051 300 static struct type *temp_type;
c906108c 301
8a3fe4f8 302 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
303
304 error_return:
46bf5051
UW
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
c906108c
SS
307 }
308
46bf5051 309 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325}
326
327/* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 331 put into the type vector, and so may not be referred to by number. */
c906108c
SS
332
333static struct type *
35a2f538 334dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 335{
52f0bd74 336 struct type **type_addr;
c906108c
SS
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
46bf5051 343 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354}
355
9b790ce7
UW
356/* Allocate a floating-point type of size BITS. */
357
358static struct type *
359dbx_init_float_type (struct objfile *objfile, int bits)
360{
361 struct gdbarch *gdbarch = get_objfile_arch (objfile);
362 const struct floatformat **format;
363 struct type *type;
364
365 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
366 if (format)
367 type = init_float_type (objfile, bits, NULL, format);
368 else
77b7c781 369 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
9b790ce7
UW
370
371 return type;
372}
373
c906108c 374/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 375 and fix their symbols in given symbol vector. */
c906108c
SS
376
377static void
fba45db2
KB
378patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
379 struct objfile *objfile)
c906108c
SS
380{
381 int ii;
382 char *name;
a121b7c1 383 const char *pp;
c906108c
SS
384 struct symbol *sym;
385
386 if (stabs)
387 {
c906108c 388 /* for all the stab entries, find their corresponding symbols and
c378eb4e 389 patch their types! */
c5aa993b 390
c906108c
SS
391 for (ii = 0; ii < stabs->count; ++ii)
392 {
393 name = stabs->stab[ii];
c5aa993b 394 pp = (char *) strchr (name, ':');
8fb822e0 395 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
396 while (pp[1] == ':')
397 {
c5aa993b
JM
398 pp += 2;
399 pp = (char *) strchr (pp, ':');
c906108c 400 }
c5aa993b 401 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
402 if (!sym)
403 {
404 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
405 the variable was defined *anywhere*, not just whether
406 it is defined in this compilation unit. But neither
407 xlc or GCC seem to need such a definition, and until
408 we do psymtabs (so that the minimal symbols from all
409 compilation units are available now), I'm not sure
410 how to get the information. */
c906108c
SS
411
412 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
413 ld will remove it from the executable. There is then
414 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 415 sym = allocate_symbol (objfile);
176620f1 416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 417 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 418 SYMBOL_SET_LINKAGE_NAME
224c3ddb
SM
419 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
420 name, pp - name));
c906108c 421 pp += 2;
c5aa993b 422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
423 {
424 /* I don't think the linker does this with functions,
425 so as far as I know this is never executed.
426 But it doesn't hurt to check. */
427 SYMBOL_TYPE (sym) =
428 lookup_function_type (read_type (&pp, objfile));
429 }
430 else
431 {
432 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
433 }
434 add_symbol_to_list (sym, &global_symbols);
435 }
436 else
437 {
438 pp += 2;
c5aa993b 439 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
440 {
441 SYMBOL_TYPE (sym) =
442 lookup_function_type (read_type (&pp, objfile));
443 }
444 else
445 {
446 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
447 }
448 }
449 }
450 }
451}
c906108c 452\f
c5aa993b 453
c906108c
SS
454/* Read a number by which a type is referred to in dbx data,
455 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
456 Just a single number N is equivalent to (0,N).
457 Return the two numbers by storing them in the vector TYPENUMS.
458 TYPENUMS will then be used as an argument to dbx_lookup_type.
459
460 Returns 0 for success, -1 for error. */
461
462static int
a121b7c1 463read_type_number (const char **pp, int *typenums)
c906108c
SS
464{
465 int nbits;
433759f7 466
c906108c
SS
467 if (**pp == '(')
468 {
469 (*pp)++;
94e10a22 470 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
471 if (nbits != 0)
472 return -1;
94e10a22 473 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
474 if (nbits != 0)
475 return -1;
c906108c
SS
476 }
477 else
478 {
479 typenums[0] = 0;
94e10a22 480 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
481 if (nbits != 0)
482 return -1;
c906108c
SS
483 }
484 return 0;
485}
c906108c 486\f
c5aa993b 487
c906108c
SS
488#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
489#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
490#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
491#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
492
c906108c 493/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 494 during "process_later". */
c906108c
SS
495
496struct ref_map
497{
a121b7c1 498 const char *stabs;
c906108c
SS
499 CORE_ADDR value;
500 struct symbol *sym;
501};
502
503#define MAX_CHUNK_REFS 100
504#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
505#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
506
c5aa993b 507static struct ref_map *ref_map;
c906108c 508
c378eb4e 509/* Ptr to free cell in chunk's linked list. */
c5aa993b 510static int ref_count = 0;
c906108c 511
c378eb4e 512/* Number of chunks malloced. */
c906108c
SS
513static int ref_chunk = 0;
514
7be570e7 515/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
516 table. If the symbol table changes, this cache must be cleared
517 or we are left holding onto data in invalid obstacks. */
7be570e7 518void
fba45db2 519stabsread_clear_cache (void)
7be570e7
JM
520{
521 ref_count = 0;
522 ref_chunk = 0;
523}
524
c906108c
SS
525/* Create array of pointers mapping refids to symbols and stab strings.
526 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
527 find them, using their reference numbers as our index.
528 These will be used later when we resolve references. */
c906108c 529void
a121b7c1 530ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
c906108c
SS
531{
532 if (ref_count == 0)
533 ref_chunk = 0;
534 if (refnum >= ref_count)
535 ref_count = refnum + 1;
536 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
537 {
c5aa993b 538 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 539 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 540
c906108c
SS
541 ref_map = (struct ref_map *)
542 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
543 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
544 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
545 ref_chunk += new_chunks;
546 }
547 ref_map[refnum].stabs = stabs;
548 ref_map[refnum].sym = sym;
549 ref_map[refnum].value = value;
550}
551
552/* Return defined sym for the reference REFNUM. */
553struct symbol *
fba45db2 554ref_search (int refnum)
c906108c
SS
555{
556 if (refnum < 0 || refnum > ref_count)
557 return 0;
558 return ref_map[refnum].sym;
559}
560
c906108c
SS
561/* Parse a reference id in STRING and return the resulting
562 reference number. Move STRING beyond the reference id. */
563
c5aa993b 564static int
a121b7c1 565process_reference (const char **string)
c906108c 566{
a121b7c1 567 const char *p;
c906108c
SS
568 int refnum = 0;
569
c5aa993b
JM
570 if (**string != '#')
571 return 0;
572
c906108c
SS
573 /* Advance beyond the initial '#'. */
574 p = *string + 1;
575
c378eb4e 576 /* Read number as reference id. */
c906108c
SS
577 while (*p && isdigit (*p))
578 {
579 refnum = refnum * 10 + *p - '0';
580 p++;
581 }
582 *string = p;
583 return refnum;
584}
585
586/* If STRING defines a reference, store away a pointer to the reference
587 definition for later use. Return the reference number. */
588
589int
a121b7c1 590symbol_reference_defined (const char **string)
c906108c 591{
a121b7c1 592 const char *p = *string;
c906108c
SS
593 int refnum = 0;
594
595 refnum = process_reference (&p);
596
c378eb4e 597 /* Defining symbols end in '='. */
c5aa993b 598 if (*p == '=')
c906108c 599 {
c378eb4e 600 /* Symbol is being defined here. */
c906108c
SS
601 *string = p + 1;
602 return refnum;
603 }
604 else
605 {
c378eb4e 606 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
607 or this is a forward reference to it. */
608 *string = p;
609 return -1;
610 }
611}
612
768a979c
UW
613static int
614stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
615{
616 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
617
0fde2c53
DE
618 if (regno < 0
619 || regno >= (gdbarch_num_regs (gdbarch)
620 + gdbarch_num_pseudo_regs (gdbarch)))
768a979c
UW
621 {
622 reg_value_complaint (regno,
623 gdbarch_num_regs (gdbarch)
624 + gdbarch_num_pseudo_regs (gdbarch),
625 SYMBOL_PRINT_NAME (sym));
626
c378eb4e 627 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
628 }
629
630 return regno;
631}
632
633static const struct symbol_register_ops stab_register_funcs = {
634 stab_reg_to_regnum
635};
636
f1e6e072
TT
637/* The "aclass" indices for computed symbols. */
638
639static int stab_register_index;
640static int stab_regparm_index;
641
c906108c 642struct symbol *
a121b7c1 643define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
fba45db2 644 struct objfile *objfile)
c906108c 645{
5e2b427d 646 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 647 struct symbol *sym;
a121b7c1 648 const char *p = find_name_end (string);
c906108c
SS
649 int deftype;
650 int synonym = 0;
52f0bd74 651 int i;
c906108c
SS
652
653 /* We would like to eliminate nameless symbols, but keep their types.
654 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
655 to type 2, but, should not create a symbol to address that type. Since
656 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
657
658 int nameless;
659
660 /* Ignore syms with empty names. */
661 if (string[0] == 0)
662 return 0;
663
c378eb4e 664 /* Ignore old-style symbols from cc -go. */
c906108c
SS
665 if (p == 0)
666 return 0;
667
668 while (p[1] == ':')
669 {
c5aa993b
JM
670 p += 2;
671 p = strchr (p, ':');
681c238c
MS
672 if (p == NULL)
673 {
b98664d3 674 complaint (
681c238c
MS
675 _("Bad stabs string '%s'"), string);
676 return NULL;
677 }
c906108c
SS
678 }
679
680 /* If a nameless stab entry, all we need is the type, not the symbol.
681 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
682 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
683
e623cf5d 684 current_symbol = sym = allocate_symbol (objfile);
c906108c 685
c906108c
SS
686 if (processing_gcc_compilation)
687 {
688 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
689 number of bytes occupied by a type or object, which we ignore. */
690 SYMBOL_LINE (sym) = desc;
c906108c
SS
691 }
692 else
693 {
c5aa993b 694 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
695 }
696
025ac414
PM
697 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
698 &objfile->objfile_obstack);
699
c906108c
SS
700 if (is_cplus_marker (string[0]))
701 {
702 /* Special GNU C++ names. */
703 switch (string[1])
704 {
c5aa993b 705 case 't':
1c9e8358 706 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 707 break;
c906108c 708
c5aa993b 709 case 'v': /* $vtbl_ptr_type */
c5aa993b 710 goto normal;
c906108c 711
c5aa993b 712 case 'e':
1c9e8358 713 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 714 break;
c906108c 715
c5aa993b
JM
716 case '_':
717 /* This was an anonymous type that was never fixed up. */
718 goto normal;
c906108c 719
c5aa993b
JM
720 case 'X':
721 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 722 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 723 goto normal;
86a73007 724 /* fall through */
c906108c 725
c5aa993b 726 default:
b98664d3 727 complaint (_("Unknown C++ symbol name `%s'"),
23136709 728 string);
c378eb4e 729 goto normal; /* Do *something* with it. */
c906108c
SS
730 }
731 }
c906108c
SS
732 else
733 {
734 normal:
2f408ecb
PA
735 std::string new_name;
736
df8a16a1 737 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 738 {
224c3ddb 739 char *name = (char *) alloca (p - string + 1);
433759f7 740
71c25dea
TT
741 memcpy (name, string, p - string);
742 name[p - string] = '\0';
743 new_name = cp_canonicalize_string (name);
71c25dea 744 }
2f408ecb 745 if (!new_name.empty ())
71c25dea 746 {
2f408ecb
PA
747 SYMBOL_SET_NAMES (sym,
748 new_name.c_str (), new_name.length (),
749 1, objfile);
71c25dea
TT
750 }
751 else
04a679b8 752 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
753
754 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 755 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 756
c906108c
SS
757 }
758 p++;
759
760 /* Determine the type of name being defined. */
761#if 0
762 /* Getting GDB to correctly skip the symbol on an undefined symbol
763 descriptor and not ever dump core is a very dodgy proposition if
764 we do things this way. I say the acorn RISC machine can just
765 fix their compiler. */
766 /* The Acorn RISC machine's compiler can put out locals that don't
767 start with "234=" or "(3,4)=", so assume anything other than the
768 deftypes we know how to handle is a local. */
769 if (!strchr ("cfFGpPrStTvVXCR", *p))
770#else
771 if (isdigit (*p) || *p == '(' || *p == '-')
772#endif
773 deftype = 'l';
774 else
775 deftype = *p++;
776
777 switch (deftype)
778 {
779 case 'c':
780 /* c is a special case, not followed by a type-number.
c5aa993b
JM
781 SYMBOL:c=iVALUE for an integer constant symbol.
782 SYMBOL:c=rVALUE for a floating constant symbol.
783 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
784 e.g. "b:c=e6,0" for "const b = blob1"
785 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
786 if (*p != '=')
787 {
f1e6e072 788 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 789 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 790 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
791 add_symbol_to_list (sym, &file_symbols);
792 return sym;
793 }
794 ++p;
795 switch (*p++)
796 {
797 case 'r':
798 {
4e38b386 799 gdb_byte *dbl_valu;
6ccb9162 800 struct type *dbl_type;
c906108c 801
46bf5051 802 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
803 dbl_valu
804 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
805 TYPE_LENGTH (dbl_type));
f69fdf9b
UW
806
807 target_float_from_string (dbl_valu, dbl_type, std::string (p));
6ccb9162
UW
808
809 SYMBOL_TYPE (sym) = dbl_type;
c906108c 810 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 811 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
812 }
813 break;
814 case 'i':
815 {
816 /* Defining integer constants this way is kind of silly,
817 since 'e' constants allows the compiler to give not
818 only the value, but the type as well. C has at least
819 int, long, unsigned int, and long long as constant
820 types; other languages probably should have at least
821 unsigned as well as signed constants. */
822
46bf5051 823 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 824 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 825 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
826 }
827 break;
ec8a089a
PM
828
829 case 'c':
830 {
831 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
832 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 833 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
834 }
835 break;
836
837 case 's':
838 {
839 struct type *range_type;
840 int ind = 0;
841 char quote = *p++;
ec8a089a
PM
842 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
843 gdb_byte *string_value;
844
845 if (quote != '\'' && quote != '"')
846 {
f1e6e072 847 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
848 SYMBOL_TYPE (sym) = error_type (&p, objfile);
849 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
850 add_symbol_to_list (sym, &file_symbols);
851 return sym;
852 }
853
854 /* Find matching quote, rejecting escaped quotes. */
855 while (*p && *p != quote)
856 {
857 if (*p == '\\' && p[1] == quote)
858 {
859 string_local[ind] = (gdb_byte) quote;
860 ind++;
861 p += 2;
862 }
863 else if (*p)
864 {
865 string_local[ind] = (gdb_byte) (*p);
866 ind++;
867 p++;
868 }
869 }
870 if (*p != quote)
871 {
f1e6e072 872 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
873 SYMBOL_TYPE (sym) = error_type (&p, objfile);
874 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875 add_symbol_to_list (sym, &file_symbols);
876 return sym;
877 }
878
879 /* NULL terminate the string. */
880 string_local[ind] = 0;
3e43a32a 881 range_type
0c9c3474
SA
882 = create_static_range_type (NULL,
883 objfile_type (objfile)->builtin_int,
884 0, ind);
ec8a089a
PM
885 SYMBOL_TYPE (sym) = create_array_type (NULL,
886 objfile_type (objfile)->builtin_char,
887 range_type);
224c3ddb
SM
888 string_value
889 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
890 memcpy (string_value, string_local, ind + 1);
891 p++;
892
893 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 894 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
895 }
896 break;
897
c906108c
SS
898 case 'e':
899 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
900 can be represented as integral.
901 e.g. "b:c=e6,0" for "const b = blob1"
902 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
903 {
f1e6e072 904 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906
907 if (*p != ',')
908 {
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 break;
911 }
912 ++p;
913
914 /* If the value is too big to fit in an int (perhaps because
915 it is unsigned), or something like that, we silently get
916 a bogus value. The type and everything else about it is
917 correct. Ideally, we should be using whatever we have
918 available for parsing unsigned and long long values,
919 however. */
920 SYMBOL_VALUE (sym) = atoi (p);
921 }
922 break;
923 default:
924 {
f1e6e072 925 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
926 SYMBOL_TYPE (sym) = error_type (&p, objfile);
927 }
928 }
176620f1 929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
930 add_symbol_to_list (sym, &file_symbols);
931 return sym;
932
933 case 'C':
934 /* The name of a caught exception. */
935 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 936 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 937 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
938 SYMBOL_VALUE_ADDRESS (sym) = valu;
939 add_symbol_to_list (sym, &local_symbols);
940 break;
941
942 case 'f':
943 /* A static function definition. */
944 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 945 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 946 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
947 add_symbol_to_list (sym, &file_symbols);
948 /* fall into process_function_types. */
949
950 process_function_types:
951 /* Function result types are described as the result type in stabs.
c5aa993b
JM
952 We need to convert this to the function-returning-type-X type
953 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
954 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
955 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
956
1e698235
DJ
957 /* All functions in C++ have prototypes. Stabs does not offer an
958 explicit way to identify prototyped or unprototyped functions,
959 but both GCC and Sun CC emit stabs for the "call-as" type rather
960 than the "declared-as" type for unprototyped functions, so
961 we treat all functions as if they were prototyped. This is used
962 primarily for promotion when calling the function from GDB. */
876cecd0 963 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 964
c378eb4e 965 /* fall into process_prototype_types. */
c906108c
SS
966
967 process_prototype_types:
968 /* Sun acc puts declared types of arguments here. */
969 if (*p == ';')
970 {
971 struct type *ftype = SYMBOL_TYPE (sym);
972 int nsemi = 0;
973 int nparams = 0;
a121b7c1 974 const char *p1 = p;
c906108c
SS
975
976 /* Obtain a worst case guess for the number of arguments
977 by counting the semicolons. */
978 while (*p1)
979 {
980 if (*p1++ == ';')
981 nsemi++;
982 }
983
c378eb4e 984 /* Allocate parameter information fields and fill them in. */
c906108c
SS
985 TYPE_FIELDS (ftype) = (struct field *)
986 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
987 while (*p++ == ';')
988 {
989 struct type *ptype;
990
991 /* A type number of zero indicates the start of varargs.
c5aa993b 992 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
993 if (p[0] == '0' && p[1] == '\0')
994 break;
995 ptype = read_type (&p, objfile);
996
997 /* The Sun compilers mark integer arguments, which should
c5aa993b 998 be promoted to the width of the calling conventions, with
c378eb4e 999 a type which references itself. This type is turned into
c5aa993b 1000 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
1001 it back into builtin_int here.
1002 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 1003 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 1004 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
1005 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1006 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
1007 }
1008 TYPE_NFIELDS (ftype) = nparams;
876cecd0 1009 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
1010 }
1011 break;
1012
1013 case 'F':
1014 /* A global function definition. */
1015 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1016 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1017 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1018 add_symbol_to_list (sym, &global_symbols);
1019 goto process_function_types;
1020
1021 case 'G':
1022 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1023 value is not correct. It is necessary to search for the
1024 corresponding linker definition to find the value.
1025 These definitions appear at the end of the namelist. */
c906108c 1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1027 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1028 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1029 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1030 Symbol references don't have valid names and wont't match up with
1031 minimal symbols when the global_sym_chain is relocated.
1032 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1033 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1034 {
3567439c 1035 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1036 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1037 global_sym_chain[i] = sym;
c906108c
SS
1038 }
1039 add_symbol_to_list (sym, &global_symbols);
1040 break;
1041
1042 /* This case is faked by a conditional above,
c5aa993b
JM
1043 when there is no code letter in the dbx data.
1044 Dbx data never actually contains 'l'. */
c906108c
SS
1045 case 's':
1046 case 'l':
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1048 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1049 SYMBOL_VALUE (sym) = valu;
176620f1 1050 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1051 add_symbol_to_list (sym, &local_symbols);
1052 break;
1053
1054 case 'p':
1055 if (*p == 'F')
1056 /* pF is a two-letter code that means a function parameter in Fortran.
1057 The type-number specifies the type of the return value.
1058 Translate it into a pointer-to-function type. */
1059 {
1060 p++;
1061 SYMBOL_TYPE (sym)
1062 = lookup_pointer_type
c5aa993b 1063 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1064 }
1065 else
1066 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1067
f1e6e072 1068 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1069 SYMBOL_VALUE (sym) = valu;
176620f1 1070 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1071 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1072 add_symbol_to_list (sym, &local_symbols);
1073
5e2b427d 1074 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1075 {
1076 /* On little-endian machines, this crud is never necessary,
1077 and, if the extra bytes contain garbage, is harmful. */
1078 break;
1079 }
1080
1081 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1082 if (processing_gcc_compilation
5e2b427d 1083 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1084 break;
1085
5e2b427d 1086 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1087 {
8ee56bcf
AC
1088 /* If PCC says a parameter is a short or a char, it is
1089 really an int. */
5e2b427d
UW
1090 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1091 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1092 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1093 {
8ee56bcf
AC
1094 SYMBOL_TYPE (sym) =
1095 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1096 ? objfile_type (objfile)->builtin_unsigned_int
1097 : objfile_type (objfile)->builtin_int;
7a292a7a 1098 }
8ee56bcf 1099 break;
7a292a7a 1100 }
0019cd49 1101 /* Fall through. */
c906108c
SS
1102
1103 case 'P':
1104 /* acc seems to use P to declare the prototypes of functions that
1105 are referenced by this file. gdb is not prepared to deal
1106 with this extra information. FIXME, it ought to. */
1107 if (type == N_FUN)
1108 {
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 goto process_prototype_types;
1111 }
c5aa993b 1112 /*FALLTHROUGH */
c906108c
SS
1113
1114 case 'R':
1115 /* Parameter which is in a register. */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1117 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1118 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1119 SYMBOL_VALUE (sym) = valu;
176620f1 1120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1121 add_symbol_to_list (sym, &local_symbols);
1122 break;
1123
1124 case 'r':
1125 /* Register variable (either global or local). */
1126 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1127 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1128 SYMBOL_VALUE (sym) = valu;
176620f1 1129 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1130 if (within_function)
1131 {
192cb3d4
MK
1132 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1133 the same name to represent an argument passed in a
1134 register. GCC uses 'P' for the same case. So if we find
1135 such a symbol pair we combine it into one 'P' symbol.
1136 For Sun cc we need to do this regardless of
1137 stabs_argument_has_addr, because the compiler puts out
1138 the 'p' symbol even if it never saves the argument onto
1139 the stack.
1140
1141 On most machines, we want to preserve both symbols, so
1142 that we can still get information about what is going on
1143 with the stack (VAX for computing args_printed, using
1144 stack slots instead of saved registers in backtraces,
1145 etc.).
c906108c
SS
1146
1147 Note that this code illegally combines
c5aa993b 1148 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1149 but this case is considered pathological and causes a warning
1150 from a decent compiler. */
1151
1152 if (local_symbols
1153 && local_symbols->nsyms > 0
5e2b427d 1154 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1155 {
1156 struct symbol *prev_sym;
433759f7 1157
c906108c
SS
1158 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1159 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1160 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1161 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1162 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1163 {
f1e6e072 1164 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1165 /* Use the type from the LOC_REGISTER; that is the type
1166 that is actually in that register. */
1167 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1168 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1169 sym = prev_sym;
1170 break;
1171 }
1172 }
c5aa993b 1173 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1174 }
1175 else
c5aa993b 1176 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1177 break;
1178
1179 case 'S':
c378eb4e 1180 /* Static symbol at top level of file. */
c906108c 1181 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1182 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1183 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1184 if (gdbarch_static_transform_name_p (gdbarch)
1185 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1186 SYMBOL_LINKAGE_NAME (sym))
1187 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1188 {
3b7344d5 1189 struct bound_minimal_symbol msym;
433759f7 1190
3e43a32a
MS
1191 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1192 NULL, objfile);
3b7344d5 1193 if (msym.minsym != NULL)
c5aa993b 1194 {
0d5cff50 1195 const char *new_name = gdbarch_static_transform_name
3567439c 1196 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1197
3567439c 1198 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1199 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1200 }
1201 }
176620f1 1202 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1203 add_symbol_to_list (sym, &file_symbols);
1204 break;
1205
1206 case 't':
52eea4ce
JB
1207 /* In Ada, there is no distinction between typedef and non-typedef;
1208 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1209 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1210
1211 Therefore, for Ada units, we check the character immediately
1212 before the 't', and if we do not find a 'T', then make sure to
1213 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1214 will be stored in the VAR_DOMAIN). If the symbol was indeed
1215 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1216 elsewhere, so we don't need to take care of that.
1217
1218 This is important to do, because of forward references:
1219 The cleanup of undefined types stored in undef_types only uses
1220 STRUCT_DOMAIN symbols to perform the replacement. */
1221 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1222
e2cd42dd 1223 /* Typedef */
c906108c
SS
1224 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1225
1226 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1227 did not use `sym'. Return without further processing. */
c5aa993b
JM
1228 if (nameless)
1229 return NULL;
c906108c 1230
f1e6e072 1231 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1232 SYMBOL_VALUE (sym) = valu;
176620f1 1233 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1234 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1235 a base type which did not have its name defined when the
1236 derived class was output. We fill in the derived class's
1237 base part member's name here in that case. */
c906108c
SS
1238 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1239 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1240 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1241 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1242 {
1243 int j;
433759f7 1244
c906108c
SS
1245 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1246 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1247 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
a737d952 1248 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
c906108c
SS
1249 }
1250
1251 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1252 {
1253 /* gcc-2.6 or later (when using -fvtable-thunks)
1254 emits a unique named type for a vtable entry.
c378eb4e 1255 Some gdb code depends on that specific name. */
c906108c
SS
1256 extern const char vtbl_ptr_name[];
1257
1258 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1259 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1260 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1261 {
1262 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1263 foo" or "function returning foo", we better not set
1264 the TYPE_NAME. If the program contains "typedef char
1265 *caddr_t;", we don't want all variables of type char
1266 * to print as caddr_t. This is not just a
1267 consequence of GDB's type management; PCC and GCC (at
1268 least through version 2.4) both output variables of
1269 either type char * or caddr_t with the type number
1270 defined in the 't' symbol for caddr_t. If a future
1271 compiler cleans this up it GDB is not ready for it
1272 yet, but if it becomes ready we somehow need to
1273 disable this check (without breaking the PCC/GCC2.4
1274 case).
1275
1276 Sigh.
1277
1278 Fortunately, this check seems not to be necessary
1279 for anything except pointers or functions. */
c378eb4e
MS
1280 /* ezannoni: 2000-10-26. This seems to apply for
1281 versions of gcc older than 2.8. This was the original
49d97c60 1282 problem: with the following code gdb would tell that
c378eb4e
MS
1283 the type for name1 is caddr_t, and func is char().
1284
49d97c60
EZ
1285 typedef char *caddr_t;
1286 char *name2;
1287 struct x
1288 {
c378eb4e 1289 char *name1;
49d97c60
EZ
1290 } xx;
1291 char *func()
1292 {
1293 }
1294 main () {}
1295 */
1296
c378eb4e 1297 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1298 if (current_subfile->language == language_pascal)
1299 {
3567439c 1300 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1301 }
c906108c
SS
1302 }
1303 else
3567439c 1304 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1305 }
1306
1307 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1308
1309 if (synonym)
1310 {
1311 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1312 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1313
1314 *struct_sym = *sym;
f1e6e072 1315 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1316 SYMBOL_VALUE (struct_sym) = valu;
1317 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1318 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1319 TYPE_NAME (SYMBOL_TYPE (sym))
1320 = obconcat (&objfile->objfile_obstack,
1321 SYMBOL_LINKAGE_NAME (sym),
1322 (char *) NULL);
52eea4ce
JB
1323 add_symbol_to_list (struct_sym, &file_symbols);
1324 }
1325
c906108c
SS
1326 break;
1327
1328 case 'T':
1329 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1330 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1331 synonym = *p == 't';
1332
1333 if (synonym)
1334 p++;
c906108c
SS
1335
1336 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1337
c906108c 1338 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1339 did not use `sym'. Return without further processing. */
c5aa993b
JM
1340 if (nameless)
1341 return NULL;
c906108c 1342
f1e6e072 1343 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1344 SYMBOL_VALUE (sym) = valu;
176620f1 1345 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
e86ca25f
TT
1346 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1347 TYPE_NAME (SYMBOL_TYPE (sym))
3e43a32a
MS
1348 = obconcat (&objfile->objfile_obstack,
1349 SYMBOL_LINKAGE_NAME (sym),
1350 (char *) NULL);
c906108c
SS
1351 add_symbol_to_list (sym, &file_symbols);
1352
1353 if (synonym)
1354 {
c378eb4e 1355 /* Clone the sym and then modify it. */
e623cf5d 1356 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1357
c906108c 1358 *typedef_sym = *sym;
f1e6e072 1359 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1360 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1361 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1362 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1363 TYPE_NAME (SYMBOL_TYPE (sym))
1364 = obconcat (&objfile->objfile_obstack,
1365 SYMBOL_LINKAGE_NAME (sym),
1366 (char *) NULL);
c906108c
SS
1367 add_symbol_to_list (typedef_sym, &file_symbols);
1368 }
1369 break;
1370
1371 case 'V':
c378eb4e 1372 /* Static symbol of local scope. */
c906108c 1373 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1374 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1375 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1376 if (gdbarch_static_transform_name_p (gdbarch)
1377 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1378 SYMBOL_LINKAGE_NAME (sym))
1379 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1380 {
3b7344d5 1381 struct bound_minimal_symbol msym;
433759f7
MS
1382
1383 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1384 NULL, objfile);
3b7344d5 1385 if (msym.minsym != NULL)
c5aa993b 1386 {
0d5cff50 1387 const char *new_name = gdbarch_static_transform_name
3567439c 1388 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1389
3567439c 1390 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1391 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1392 }
1393 }
176620f1 1394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1395 add_symbol_to_list (sym, &local_symbols);
1396 break;
1397
1398 case 'v':
1399 /* Reference parameter */
1400 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1401 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1402 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1403 SYMBOL_VALUE (sym) = valu;
176620f1 1404 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1405 add_symbol_to_list (sym, &local_symbols);
1406 break;
1407
1408 case 'a':
1409 /* Reference parameter which is in a register. */
1410 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1411 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1412 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1413 SYMBOL_VALUE (sym) = valu;
176620f1 1414 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1415 add_symbol_to_list (sym, &local_symbols);
1416 break;
1417
1418 case 'X':
1419 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1420 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1421 that Pascal uses it too, but when I tried it Pascal used
1422 "x:3" (local symbol) instead. */
c906108c 1423 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1424 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1425 SYMBOL_VALUE (sym) = valu;
176620f1 1426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1427 add_symbol_to_list (sym, &local_symbols);
1428 break;
c906108c
SS
1429
1430 default:
1431 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1432 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1433 SYMBOL_VALUE (sym) = 0;
176620f1 1434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1435 add_symbol_to_list (sym, &file_symbols);
1436 break;
1437 }
1438
192cb3d4
MK
1439 /* Some systems pass variables of certain types by reference instead
1440 of by value, i.e. they will pass the address of a structure (in a
1441 register or on the stack) instead of the structure itself. */
c906108c 1442
5e2b427d 1443 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1444 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1445 {
2a2d4dc3 1446 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1447 variables passed in a register). */
2a2d4dc3 1448 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1449 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1450 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1451 and subsequent arguments on SPARC, for example). */
1452 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1453 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1454 }
1455
c906108c
SS
1456 return sym;
1457}
1458
c906108c
SS
1459/* Skip rest of this symbol and return an error type.
1460
1461 General notes on error recovery: error_type always skips to the
1462 end of the symbol (modulo cretinous dbx symbol name continuation).
1463 Thus code like this:
1464
1465 if (*(*pp)++ != ';')
c5aa993b 1466 return error_type (pp, objfile);
c906108c
SS
1467
1468 is wrong because if *pp starts out pointing at '\0' (typically as the
1469 result of an earlier error), it will be incremented to point to the
1470 start of the next symbol, which might produce strange results, at least
1471 if you run off the end of the string table. Instead use
1472
1473 if (**pp != ';')
c5aa993b 1474 return error_type (pp, objfile);
c906108c
SS
1475 ++*pp;
1476
1477 or
1478
1479 if (**pp != ';')
c5aa993b 1480 foo = error_type (pp, objfile);
c906108c 1481 else
c5aa993b 1482 ++*pp;
c906108c
SS
1483
1484 And in case it isn't obvious, the point of all this hair is so the compiler
1485 can define new types and new syntaxes, and old versions of the
1486 debugger will be able to read the new symbol tables. */
1487
1488static struct type *
a121b7c1 1489error_type (const char **pp, struct objfile *objfile)
c906108c 1490{
b98664d3 1491 complaint (_("couldn't parse type; debugger out of date?"));
c906108c
SS
1492 while (1)
1493 {
1494 /* Skip to end of symbol. */
1495 while (**pp != '\0')
1496 {
1497 (*pp)++;
1498 }
1499
1500 /* Check for and handle cretinous dbx symbol name continuation! */
1501 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1502 {
1503 *pp = next_symbol_text (objfile);
1504 }
1505 else
1506 {
1507 break;
1508 }
1509 }
46bf5051 1510 return objfile_type (objfile)->builtin_error;
c906108c 1511}
c906108c 1512\f
c5aa993b 1513
c906108c
SS
1514/* Read type information or a type definition; return the type. Even
1515 though this routine accepts either type information or a type
1516 definition, the distinction is relevant--some parts of stabsread.c
1517 assume that type information starts with a digit, '-', or '(' in
1518 deciding whether to call read_type. */
1519
a7a48797 1520static struct type *
a121b7c1 1521read_type (const char **pp, struct objfile *objfile)
c906108c 1522{
52f0bd74 1523 struct type *type = 0;
c906108c
SS
1524 struct type *type1;
1525 int typenums[2];
1526 char type_descriptor;
1527
1528 /* Size in bits of type if specified by a type attribute, or -1 if
1529 there is no size attribute. */
1530 int type_size = -1;
1531
c378eb4e 1532 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1533 int is_string = 0;
1534
c378eb4e 1535 /* Used to distinguish vector from array. */
e2cd42dd
MS
1536 int is_vector = 0;
1537
c906108c
SS
1538 /* Read type number if present. The type number may be omitted.
1539 for instance in a two-dimensional array declared with type
1540 "ar1;1;10;ar1;1;10;4". */
1541 if ((**pp >= '0' && **pp <= '9')
1542 || **pp == '('
1543 || **pp == '-')
1544 {
1545 if (read_type_number (pp, typenums) != 0)
1546 return error_type (pp, objfile);
c5aa993b 1547
c906108c 1548 if (**pp != '=')
8cfe231d
JB
1549 {
1550 /* Type is not being defined here. Either it already
1551 exists, or this is a forward reference to it.
1552 dbx_alloc_type handles both cases. */
1553 type = dbx_alloc_type (typenums, objfile);
1554
1555 /* If this is a forward reference, arrange to complain if it
1556 doesn't get patched up by the time we're done
1557 reading. */
1558 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1559 add_undefined_type (type, typenums);
8cfe231d
JB
1560
1561 return type;
1562 }
c906108c
SS
1563
1564 /* Type is being defined here. */
1565 /* Skip the '='.
c5aa993b
JM
1566 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1567 (*pp) += 2;
c906108c
SS
1568 }
1569 else
1570 {
1571 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1572 the definition, but don't put it in the type vector. */
c906108c
SS
1573 typenums[0] = typenums[1] = -1;
1574 (*pp)++;
1575 }
1576
c5aa993b 1577again:
c906108c
SS
1578 type_descriptor = (*pp)[-1];
1579 switch (type_descriptor)
1580 {
1581 case 'x':
1582 {
1583 enum type_code code;
1584
1585 /* Used to index through file_symbols. */
1586 struct pending *ppt;
1587 int i;
c5aa993b 1588
c906108c
SS
1589 /* Name including "struct", etc. */
1590 char *type_name;
c5aa993b 1591
c906108c 1592 {
a121b7c1 1593 const char *from, *p, *q1, *q2;
c5aa993b 1594
c906108c
SS
1595 /* Set the type code according to the following letter. */
1596 switch ((*pp)[0])
1597 {
1598 case 's':
1599 code = TYPE_CODE_STRUCT;
1600 break;
1601 case 'u':
1602 code = TYPE_CODE_UNION;
1603 break;
1604 case 'e':
1605 code = TYPE_CODE_ENUM;
1606 break;
1607 default:
1608 {
1609 /* Complain and keep going, so compilers can invent new
1610 cross-reference types. */
b98664d3 1611 complaint (_("Unrecognized cross-reference type `%c'"),
3e43a32a 1612 (*pp)[0]);
c906108c
SS
1613 code = TYPE_CODE_STRUCT;
1614 break;
1615 }
1616 }
c5aa993b 1617
c906108c
SS
1618 q1 = strchr (*pp, '<');
1619 p = strchr (*pp, ':');
1620 if (p == NULL)
1621 return error_type (pp, objfile);
1622 if (q1 && p > q1 && p[1] == ':')
1623 {
1624 int nesting_level = 0;
433759f7 1625
c906108c
SS
1626 for (q2 = q1; *q2; q2++)
1627 {
1628 if (*q2 == '<')
1629 nesting_level++;
1630 else if (*q2 == '>')
1631 nesting_level--;
1632 else if (*q2 == ':' && nesting_level == 0)
1633 break;
1634 }
1635 p = q2;
1636 if (*p != ':')
1637 return error_type (pp, objfile);
1638 }
71c25dea
TT
1639 type_name = NULL;
1640 if (current_subfile->language == language_cplus)
1641 {
2f408ecb 1642 char *name = (char *) alloca (p - *pp + 1);
433759f7 1643
71c25dea
TT
1644 memcpy (name, *pp, p - *pp);
1645 name[p - *pp] = '\0';
2f408ecb
PA
1646
1647 std::string new_name = cp_canonicalize_string (name);
1648 if (!new_name.empty ())
71c25dea 1649 {
224c3ddb
SM
1650 type_name
1651 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2f408ecb
PA
1652 new_name.c_str (),
1653 new_name.length ());
71c25dea
TT
1654 }
1655 }
1656 if (type_name == NULL)
1657 {
a121b7c1 1658 char *to = type_name = (char *)
3e43a32a 1659 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1660
1661 /* Copy the name. */
1662 from = *pp + 1;
1663 while (from < p)
1664 *to++ = *from++;
1665 *to = '\0';
1666 }
c5aa993b 1667
c906108c
SS
1668 /* Set the pointer ahead of the name which we just read, and
1669 the colon. */
71c25dea 1670 *pp = p + 1;
c906108c
SS
1671 }
1672
149d821b
JB
1673 /* If this type has already been declared, then reuse the same
1674 type, rather than allocating a new one. This saves some
1675 memory. */
c906108c
SS
1676
1677 for (ppt = file_symbols; ppt; ppt = ppt->next)
1678 for (i = 0; i < ppt->nsyms; i++)
1679 {
1680 struct symbol *sym = ppt->symbol[i];
1681
1682 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1683 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1684 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1685 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1686 {
b99607ea 1687 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1688 type = SYMBOL_TYPE (sym);
149d821b 1689 if (typenums[0] != -1)
46bf5051 1690 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1691 return type;
1692 }
1693 }
1694
1695 /* Didn't find the type to which this refers, so we must
1696 be dealing with a forward reference. Allocate a type
1697 structure for it, and keep track of it so we can
1698 fill in the rest of the fields when we get the full
1699 type. */
1700 type = dbx_alloc_type (typenums, objfile);
1701 TYPE_CODE (type) = code;
e86ca25f 1702 TYPE_NAME (type) = type_name;
c5aa993b 1703 INIT_CPLUS_SPECIFIC (type);
876cecd0 1704 TYPE_STUB (type) = 1;
c906108c 1705
bf362611 1706 add_undefined_type (type, typenums);
c906108c
SS
1707 return type;
1708 }
1709
c5aa993b 1710 case '-': /* RS/6000 built-in type */
c906108c
SS
1711 case '0':
1712 case '1':
1713 case '2':
1714 case '3':
1715 case '4':
1716 case '5':
1717 case '6':
1718 case '7':
1719 case '8':
1720 case '9':
1721 case '(':
1722 (*pp)--;
1723
1724 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1725 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1726
1727 /* Allocate and enter the typedef type first.
c378eb4e 1728 This handles recursive types. */
c906108c
SS
1729 type = dbx_alloc_type (typenums, objfile);
1730 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1731 {
1732 struct type *xtype = read_type (pp, objfile);
433759f7 1733
c906108c
SS
1734 if (type == xtype)
1735 {
1736 /* It's being defined as itself. That means it is "void". */
1737 TYPE_CODE (type) = TYPE_CODE_VOID;
1738 TYPE_LENGTH (type) = 1;
1739 }
1740 else if (type_size >= 0 || is_string)
1741 {
dd6bda65
DJ
1742 /* This is the absolute wrong way to construct types. Every
1743 other debug format has found a way around this problem and
1744 the related problems with unnecessarily stubbed types;
1745 someone motivated should attempt to clean up the issue
1746 here as well. Once a type pointed to has been created it
13a393b0
JB
1747 should not be modified.
1748
1749 Well, it's not *absolutely* wrong. Constructing recursive
1750 types (trees, linked lists) necessarily entails modifying
1751 types after creating them. Constructing any loop structure
1752 entails side effects. The Dwarf 2 reader does handle this
1753 more gracefully (it never constructs more than once
1754 instance of a type object, so it doesn't have to copy type
1755 objects wholesale), but it still mutates type objects after
1756 other folks have references to them.
1757
1758 Keep in mind that this circularity/mutation issue shows up
1759 at the source language level, too: C's "incomplete types",
1760 for example. So the proper cleanup, I think, would be to
1761 limit GDB's type smashing to match exactly those required
1762 by the source language. So GDB could have a
1763 "complete_this_type" function, but never create unnecessary
1764 copies of a type otherwise. */
dd6bda65 1765 replace_type (type, xtype);
c906108c 1766 TYPE_NAME (type) = NULL;
c906108c
SS
1767 }
1768 else
1769 {
876cecd0 1770 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1771 TYPE_TARGET_TYPE (type) = xtype;
1772 }
1773 }
1774 break;
1775
c5aa993b
JM
1776 /* In the following types, we must be sure to overwrite any existing
1777 type that the typenums refer to, rather than allocating a new one
1778 and making the typenums point to the new one. This is because there
1779 may already be pointers to the existing type (if it had been
1780 forward-referenced), and we must change it to a pointer, function,
1781 reference, or whatever, *in-place*. */
c906108c 1782
e2cd42dd 1783 case '*': /* Pointer to another type */
c906108c 1784 type1 = read_type (pp, objfile);
46bf5051 1785 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1786 break;
1787
c5aa993b 1788 case '&': /* Reference to another type */
c906108c 1789 type1 = read_type (pp, objfile);
3b224330
AV
1790 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1791 TYPE_CODE_REF);
c906108c
SS
1792 break;
1793
c5aa993b 1794 case 'f': /* Function returning another type */
c906108c 1795 type1 = read_type (pp, objfile);
0c8b41f1 1796 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1797 break;
1798
da966255
JB
1799 case 'g': /* Prototyped function. (Sun) */
1800 {
1801 /* Unresolved questions:
1802
1803 - According to Sun's ``STABS Interface Manual'', for 'f'
1804 and 'F' symbol descriptors, a `0' in the argument type list
1805 indicates a varargs function. But it doesn't say how 'g'
1806 type descriptors represent that info. Someone with access
1807 to Sun's toolchain should try it out.
1808
1809 - According to the comment in define_symbol (search for
1810 `process_prototype_types:'), Sun emits integer arguments as
1811 types which ref themselves --- like `void' types. Do we
1812 have to deal with that here, too? Again, someone with
1813 access to Sun's toolchain should try it out and let us
1814 know. */
1815
1816 const char *type_start = (*pp) - 1;
1817 struct type *return_type = read_type (pp, objfile);
1818 struct type *func_type
46bf5051 1819 = make_function_type (return_type,
0c8b41f1 1820 dbx_lookup_type (typenums, objfile));
da966255
JB
1821 struct type_list {
1822 struct type *type;
1823 struct type_list *next;
1824 } *arg_types = 0;
1825 int num_args = 0;
1826
1827 while (**pp && **pp != '#')
1828 {
1829 struct type *arg_type = read_type (pp, objfile);
8d749320 1830 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1831 newobj->type = arg_type;
1832 newobj->next = arg_types;
1833 arg_types = newobj;
da966255
JB
1834 num_args++;
1835 }
1836 if (**pp == '#')
1837 ++*pp;
1838 else
1839 {
b98664d3 1840 complaint (_("Prototyped function type didn't "
3e43a32a 1841 "end arguments with `#':\n%s"),
23136709 1842 type_start);
da966255
JB
1843 }
1844
1845 /* If there is just one argument whose type is `void', then
1846 that's just an empty argument list. */
1847 if (arg_types
1848 && ! arg_types->next
1849 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1850 num_args = 0;
1851
1852 TYPE_FIELDS (func_type)
1853 = (struct field *) TYPE_ALLOC (func_type,
1854 num_args * sizeof (struct field));
1855 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1856 {
1857 int i;
1858 struct type_list *t;
1859
1860 /* We stuck each argument type onto the front of the list
1861 when we read it, so the list is reversed. Build the
1862 fields array right-to-left. */
1863 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1864 TYPE_FIELD_TYPE (func_type, i) = t->type;
1865 }
1866 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1867 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1868
1869 type = func_type;
1870 break;
1871 }
1872
c5aa993b 1873 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1874 type = read_type (pp, objfile);
d7242108 1875 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1876 dbx_lookup_type (typenums, objfile));
c906108c
SS
1877 break;
1878
c5aa993b 1879 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1880 type = read_type (pp, objfile);
d7242108 1881 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1882 dbx_lookup_type (typenums, objfile));
c906108c
SS
1883 break;
1884
1885 case '@':
c5aa993b
JM
1886 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1887 { /* Member (class & variable) type */
c906108c
SS
1888 /* FIXME -- we should be doing smash_to_XXX types here. */
1889
1890 struct type *domain = read_type (pp, objfile);
1891 struct type *memtype;
1892
1893 if (**pp != ',')
1894 /* Invalid member type data format. */
1895 return error_type (pp, objfile);
1896 ++*pp;
1897
1898 memtype = read_type (pp, objfile);
1899 type = dbx_alloc_type (typenums, objfile);
0d5de010 1900 smash_to_memberptr_type (type, domain, memtype);
c906108c 1901 }
c5aa993b
JM
1902 else
1903 /* type attribute */
c906108c 1904 {
a121b7c1 1905 const char *attr = *pp;
433759f7 1906
c906108c
SS
1907 /* Skip to the semicolon. */
1908 while (**pp != ';' && **pp != '\0')
1909 ++(*pp);
1910 if (**pp == '\0')
1911 return error_type (pp, objfile);
1912 else
c5aa993b 1913 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1914
1915 switch (*attr)
1916 {
e2cd42dd 1917 case 's': /* Size attribute */
c906108c
SS
1918 type_size = atoi (attr + 1);
1919 if (type_size <= 0)
1920 type_size = -1;
1921 break;
1922
e2cd42dd 1923 case 'S': /* String attribute */
c378eb4e 1924 /* FIXME: check to see if following type is array? */
c906108c
SS
1925 is_string = 1;
1926 break;
1927
e2cd42dd 1928 case 'V': /* Vector attribute */
c378eb4e 1929 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1930 is_vector = 1;
1931 break;
1932
c906108c
SS
1933 default:
1934 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1935 can invent new ones. */
c906108c
SS
1936 break;
1937 }
1938 ++*pp;
1939 goto again;
1940 }
1941 break;
1942
c5aa993b 1943 case '#': /* Method (class & fn) type */
c906108c
SS
1944 if ((*pp)[0] == '#')
1945 {
1946 /* We'll get the parameter types from the name. */
1947 struct type *return_type;
1948
1949 (*pp)++;
1950 return_type = read_type (pp, objfile);
1951 if (*(*pp)++ != ';')
b98664d3 1952 complaint (_("invalid (minimal) member type "
3e43a32a 1953 "data format at symtab pos %d."),
23136709 1954 symnum);
c906108c
SS
1955 type = allocate_stub_method (return_type);
1956 if (typenums[0] != -1)
46bf5051 1957 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1958 }
1959 else
1960 {
1961 struct type *domain = read_type (pp, objfile);
1962 struct type *return_type;
ad2f7632
DJ
1963 struct field *args;
1964 int nargs, varargs;
c906108c
SS
1965
1966 if (**pp != ',')
1967 /* Invalid member type data format. */
1968 return error_type (pp, objfile);
1969 else
1970 ++(*pp);
1971
1972 return_type = read_type (pp, objfile);
ad2f7632 1973 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1974 if (args == NULL)
1975 return error_type (pp, objfile);
c906108c 1976 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1977 smash_to_method_type (type, domain, return_type, args,
1978 nargs, varargs);
c906108c
SS
1979 }
1980 break;
1981
c5aa993b 1982 case 'r': /* Range type */
94e10a22 1983 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1984 if (typenums[0] != -1)
46bf5051 1985 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1986 break;
1987
1988 case 'b':
c906108c
SS
1989 {
1990 /* Sun ACC builtin int type */
1991 type = read_sun_builtin_type (pp, typenums, objfile);
1992 if (typenums[0] != -1)
46bf5051 1993 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1994 }
1995 break;
1996
c5aa993b 1997 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1998 type = read_sun_floating_type (pp, typenums, objfile);
1999 if (typenums[0] != -1)
46bf5051 2000 *dbx_lookup_type (typenums, objfile) = type;
c906108c 2001 break;
c5aa993b
JM
2002
2003 case 'e': /* Enumeration type */
c906108c
SS
2004 type = dbx_alloc_type (typenums, objfile);
2005 type = read_enum_type (pp, type, objfile);
2006 if (typenums[0] != -1)
46bf5051 2007 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2008 break;
2009
c5aa993b
JM
2010 case 's': /* Struct type */
2011 case 'u': /* Union type */
2ae1c2d2
JB
2012 {
2013 enum type_code type_code = TYPE_CODE_UNDEF;
2014 type = dbx_alloc_type (typenums, objfile);
2015 switch (type_descriptor)
2016 {
2017 case 's':
2018 type_code = TYPE_CODE_STRUCT;
2019 break;
2020 case 'u':
2021 type_code = TYPE_CODE_UNION;
2022 break;
2023 }
2024 type = read_struct_type (pp, type, type_code, objfile);
2025 break;
2026 }
c906108c 2027
c5aa993b 2028 case 'a': /* Array type */
c906108c
SS
2029 if (**pp != 'r')
2030 return error_type (pp, objfile);
2031 ++*pp;
c5aa993b 2032
c906108c
SS
2033 type = dbx_alloc_type (typenums, objfile);
2034 type = read_array_type (pp, type, objfile);
2035 if (is_string)
2036 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2037 if (is_vector)
ea37ba09 2038 make_vector_type (type);
c906108c
SS
2039 break;
2040
6b1755ce 2041 case 'S': /* Set type */
c906108c 2042 type1 = read_type (pp, objfile);
c5aa993b 2043 type = create_set_type ((struct type *) NULL, type1);
c906108c 2044 if (typenums[0] != -1)
46bf5051 2045 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2046 break;
2047
2048 default:
c378eb4e
MS
2049 --*pp; /* Go back to the symbol in error. */
2050 /* Particularly important if it was \0! */
c906108c
SS
2051 return error_type (pp, objfile);
2052 }
2053
2054 if (type == 0)
2055 {
8a3fe4f8 2056 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2057 return error_type (pp, objfile);
2058 }
2059
2060 /* Size specified in a type attribute overrides any other size. */
2061 if (type_size != -1)
2062 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2063
2064 return type;
2065}
2066\f
2067/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2068 Return the proper type node for a given builtin type number. */
c906108c 2069
46bf5051
UW
2070static const struct objfile_data *rs6000_builtin_type_data;
2071
c906108c 2072static struct type *
46bf5051 2073rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2074{
19ba03f4
SM
2075 struct type **negative_types
2076 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
46bf5051 2077
c906108c
SS
2078 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2079#define NUMBER_RECOGNIZED 34
c906108c
SS
2080 struct type *rettype = NULL;
2081
2082 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2083 {
b98664d3 2084 complaint (_("Unknown builtin type %d"), typenum);
46bf5051 2085 return objfile_type (objfile)->builtin_error;
c906108c 2086 }
46bf5051
UW
2087
2088 if (!negative_types)
2089 {
2090 /* This includes an empty slot for type number -0. */
2091 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2092 NUMBER_RECOGNIZED + 1, struct type *);
2093 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2094 }
2095
c906108c
SS
2096 if (negative_types[-typenum] != NULL)
2097 return negative_types[-typenum];
2098
2099#if TARGET_CHAR_BIT != 8
c5aa993b 2100#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2101 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2102 that if that ever becomes not true, the correct fix will be to
2103 make the size in the struct type to be in bits, not in units of
2104 TARGET_CHAR_BIT. */
2105#endif
2106
2107 switch (-typenum)
2108 {
2109 case 1:
2110 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2111 by the debugging format. If there is a type called "int" which
2112 is other than 32 bits, then it should use a new negative type
2113 number (or avoid negative type numbers for that case).
2114 See stabs.texinfo. */
19f392bc 2115 rettype = init_integer_type (objfile, 32, 0, "int");
c906108c
SS
2116 break;
2117 case 2:
19f392bc 2118 rettype = init_integer_type (objfile, 8, 0, "char");
c413c448 2119 TYPE_NOSIGN (rettype) = 1;
c906108c
SS
2120 break;
2121 case 3:
19f392bc 2122 rettype = init_integer_type (objfile, 16, 0, "short");
c906108c
SS
2123 break;
2124 case 4:
19f392bc 2125 rettype = init_integer_type (objfile, 32, 0, "long");
c906108c
SS
2126 break;
2127 case 5:
19f392bc 2128 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
c906108c
SS
2129 break;
2130 case 6:
19f392bc 2131 rettype = init_integer_type (objfile, 8, 0, "signed char");
c906108c
SS
2132 break;
2133 case 7:
19f392bc 2134 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
c906108c
SS
2135 break;
2136 case 8:
19f392bc 2137 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
c906108c
SS
2138 break;
2139 case 9:
19f392bc 2140 rettype = init_integer_type (objfile, 32, 1, "unsigned");
89acf84d 2141 break;
c906108c 2142 case 10:
19f392bc 2143 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
c906108c
SS
2144 break;
2145 case 11:
77b7c781 2146 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
c906108c
SS
2147 break;
2148 case 12:
2149 /* IEEE single precision (32 bit). */
49f190bc
UW
2150 rettype = init_float_type (objfile, 32, "float",
2151 floatformats_ieee_single);
c906108c
SS
2152 break;
2153 case 13:
2154 /* IEEE double precision (64 bit). */
49f190bc
UW
2155 rettype = init_float_type (objfile, 64, "double",
2156 floatformats_ieee_double);
c906108c
SS
2157 break;
2158 case 14:
2159 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2160 different sizes for "long double" should use different negative
2161 type numbers. See stabs.texinfo. */
49f190bc
UW
2162 rettype = init_float_type (objfile, 64, "long double",
2163 floatformats_ieee_double);
c906108c
SS
2164 break;
2165 case 15:
19f392bc 2166 rettype = init_integer_type (objfile, 32, 0, "integer");
c906108c
SS
2167 break;
2168 case 16:
19f392bc 2169 rettype = init_boolean_type (objfile, 32, 1, "boolean");
c906108c
SS
2170 break;
2171 case 17:
49f190bc
UW
2172 rettype = init_float_type (objfile, 32, "short real",
2173 floatformats_ieee_single);
c906108c
SS
2174 break;
2175 case 18:
49f190bc
UW
2176 rettype = init_float_type (objfile, 64, "real",
2177 floatformats_ieee_double);
c906108c
SS
2178 break;
2179 case 19:
19f392bc 2180 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
c906108c
SS
2181 break;
2182 case 20:
19f392bc 2183 rettype = init_character_type (objfile, 8, 1, "character");
c906108c
SS
2184 break;
2185 case 21:
19f392bc 2186 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
c906108c
SS
2187 break;
2188 case 22:
19f392bc 2189 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
c906108c
SS
2190 break;
2191 case 23:
19f392bc 2192 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
c906108c
SS
2193 break;
2194 case 24:
19f392bc 2195 rettype = init_boolean_type (objfile, 32, 1, "logical");
c906108c
SS
2196 break;
2197 case 25:
2198 /* Complex type consisting of two IEEE single precision values. */
19f392bc
UW
2199 rettype = init_complex_type (objfile, "complex",
2200 rs6000_builtin_type (12, objfile));
c906108c
SS
2201 break;
2202 case 26:
2203 /* Complex type consisting of two IEEE double precision values. */
19f392bc
UW
2204 rettype = init_complex_type (objfile, "double complex",
2205 rs6000_builtin_type (13, objfile));
c906108c
SS
2206 break;
2207 case 27:
19f392bc 2208 rettype = init_integer_type (objfile, 8, 0, "integer*1");
c906108c
SS
2209 break;
2210 case 28:
19f392bc 2211 rettype = init_integer_type (objfile, 16, 0, "integer*2");
c906108c
SS
2212 break;
2213 case 29:
19f392bc 2214 rettype = init_integer_type (objfile, 32, 0, "integer*4");
c906108c
SS
2215 break;
2216 case 30:
19f392bc 2217 rettype = init_character_type (objfile, 16, 0, "wchar");
c906108c
SS
2218 break;
2219 case 31:
19f392bc 2220 rettype = init_integer_type (objfile, 64, 0, "long long");
c906108c
SS
2221 break;
2222 case 32:
19f392bc 2223 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
c906108c
SS
2224 break;
2225 case 33:
19f392bc 2226 rettype = init_integer_type (objfile, 64, 1, "logical*8");
c906108c
SS
2227 break;
2228 case 34:
19f392bc 2229 rettype = init_integer_type (objfile, 64, 0, "integer*8");
c906108c
SS
2230 break;
2231 }
2232 negative_types[-typenum] = rettype;
2233 return rettype;
2234}
2235\f
2236/* This page contains subroutines of read_type. */
2237
0d5cff50
DE
2238/* Wrapper around method_name_from_physname to flag a complaint
2239 if there is an error. */
de17c821 2240
0d5cff50
DE
2241static char *
2242stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2243{
2244 char *method_name;
2245
2246 method_name = method_name_from_physname (physname);
2247
2248 if (method_name == NULL)
c263362b 2249 {
b98664d3 2250 complaint (_("Method has bad physname %s\n"), physname);
0d5cff50 2251 return NULL;
c263362b 2252 }
de17c821 2253
0d5cff50 2254 return method_name;
de17c821
DJ
2255}
2256
c906108c
SS
2257/* Read member function stabs info for C++ classes. The form of each member
2258 function data is:
2259
c5aa993b 2260 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2261
2262 An example with two member functions is:
2263
c5aa993b 2264 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2265
2266 For the case of overloaded operators, the format is op$::*.funcs, where
2267 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2268 name (such as `+=') and `.' marks the end of the operator name.
2269
2270 Returns 1 for success, 0 for failure. */
2271
2272static int
a121b7c1
PA
2273read_member_functions (struct field_info *fip, const char **pp,
2274 struct type *type, struct objfile *objfile)
c906108c
SS
2275{
2276 int nfn_fields = 0;
2277 int length = 0;
c906108c
SS
2278 int i;
2279 struct next_fnfield
2280 {
2281 struct next_fnfield *next;
2282 struct fn_field fn_field;
c5aa993b
JM
2283 }
2284 *sublist;
c906108c
SS
2285 struct type *look_ahead_type;
2286 struct next_fnfieldlist *new_fnlist;
2287 struct next_fnfield *new_sublist;
2288 char *main_fn_name;
a121b7c1 2289 const char *p;
c5aa993b 2290
c906108c 2291 /* Process each list until we find something that is not a member function
c378eb4e 2292 or find the end of the functions. */
c906108c
SS
2293
2294 while (**pp != ';')
2295 {
2296 /* We should be positioned at the start of the function name.
c5aa993b 2297 Scan forward to find the first ':' and if it is not the
c378eb4e 2298 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2299 p = *pp;
2300 while (*p != ':')
2301 {
2302 p++;
2303 }
2304 if (p[1] != ':')
2305 {
2306 break;
2307 }
2308
2309 sublist = NULL;
2310 look_ahead_type = NULL;
2311 length = 0;
c5aa993b 2312
8d749320 2313 new_fnlist = XCNEW (struct next_fnfieldlist);
b8c9b27d 2314 make_cleanup (xfree, new_fnlist);
c5aa993b 2315
c906108c
SS
2316 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2317 {
2318 /* This is a completely wierd case. In order to stuff in the
2319 names that might contain colons (the usual name delimiter),
2320 Mike Tiemann defined a different name format which is
2321 signalled if the identifier is "op$". In that case, the
2322 format is "op$::XXXX." where XXXX is the name. This is
2323 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2324 /* This lets the user type "break operator+".
2325 We could just put in "+" as the name, but that wouldn't
2326 work for "*". */
8343f86c 2327 static char opname[32] = "op$";
c906108c 2328 char *o = opname + 3;
c5aa993b 2329
c906108c
SS
2330 /* Skip past '::'. */
2331 *pp = p + 2;
2332
2333 STABS_CONTINUE (pp, objfile);
2334 p = *pp;
2335 while (*p != '.')
2336 {
2337 *o++ = *p++;
2338 }
2339 main_fn_name = savestring (opname, o - opname);
2340 /* Skip past '.' */
2341 *pp = p + 1;
2342 }
2343 else
2344 {
2345 main_fn_name = savestring (*pp, p - *pp);
2346 /* Skip past '::'. */
2347 *pp = p + 2;
2348 }
c5aa993b
JM
2349 new_fnlist->fn_fieldlist.name = main_fn_name;
2350
c906108c
SS
2351 do
2352 {
8d749320 2353 new_sublist = XCNEW (struct next_fnfield);
b8c9b27d 2354 make_cleanup (xfree, new_sublist);
c5aa993b 2355
c906108c
SS
2356 /* Check for and handle cretinous dbx symbol name continuation! */
2357 if (look_ahead_type == NULL)
2358 {
c378eb4e 2359 /* Normal case. */
c906108c 2360 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2361
2362 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2363 if (**pp != ':')
2364 {
2365 /* Invalid symtab info for member function. */
2366 return 0;
2367 }
2368 }
2369 else
2370 {
2371 /* g++ version 1 kludge */
c5aa993b 2372 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2373 look_ahead_type = NULL;
2374 }
c5aa993b 2375
c906108c
SS
2376 (*pp)++;
2377 p = *pp;
2378 while (*p != ';')
2379 {
2380 p++;
2381 }
c5aa993b 2382
09e2d7c7
DE
2383 /* These are methods, not functions. */
2384 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2385 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2386 else
2387 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2388 == TYPE_CODE_METHOD);
c906108c 2389
09e2d7c7 2390 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2391 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2392 {
4bfb94b8 2393 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2394 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2395 new_sublist->fn_field.is_stub = 1;
c906108c 2396 }
09e2d7c7 2397
c5aa993b 2398 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2399 *pp = p + 1;
c5aa993b 2400
c906108c
SS
2401 /* Set this member function's visibility fields. */
2402 switch (*(*pp)++)
2403 {
c5aa993b
JM
2404 case VISIBILITY_PRIVATE:
2405 new_sublist->fn_field.is_private = 1;
2406 break;
2407 case VISIBILITY_PROTECTED:
2408 new_sublist->fn_field.is_protected = 1;
2409 break;
c906108c 2410 }
c5aa993b 2411
c906108c
SS
2412 STABS_CONTINUE (pp, objfile);
2413 switch (**pp)
2414 {
c378eb4e 2415 case 'A': /* Normal functions. */
c5aa993b
JM
2416 new_sublist->fn_field.is_const = 0;
2417 new_sublist->fn_field.is_volatile = 0;
2418 (*pp)++;
2419 break;
c378eb4e 2420 case 'B': /* `const' member functions. */
c5aa993b
JM
2421 new_sublist->fn_field.is_const = 1;
2422 new_sublist->fn_field.is_volatile = 0;
2423 (*pp)++;
2424 break;
c378eb4e 2425 case 'C': /* `volatile' member function. */
c5aa993b
JM
2426 new_sublist->fn_field.is_const = 0;
2427 new_sublist->fn_field.is_volatile = 1;
2428 (*pp)++;
2429 break;
c378eb4e 2430 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2431 new_sublist->fn_field.is_const = 1;
2432 new_sublist->fn_field.is_volatile = 1;
2433 (*pp)++;
2434 break;
3e43a32a 2435 case '*': /* File compiled with g++ version 1 --
c378eb4e 2436 no info. */
c5aa993b
JM
2437 case '?':
2438 case '.':
2439 break;
2440 default:
b98664d3 2441 complaint (_("const/volatile indicator missing, got '%c'"),
3e43a32a 2442 **pp);
c5aa993b 2443 break;
c906108c 2444 }
c5aa993b 2445
c906108c
SS
2446 switch (*(*pp)++)
2447 {
c5aa993b 2448 case '*':
c906108c
SS
2449 {
2450 int nbits;
c5aa993b 2451 /* virtual member function, followed by index.
c906108c
SS
2452 The sign bit is set to distinguish pointers-to-methods
2453 from virtual function indicies. Since the array is
2454 in words, the quantity must be shifted left by 1
2455 on 16 bit machine, and by 2 on 32 bit machine, forcing
2456 the sign bit out, and usable as a valid index into
2457 the array. Remove the sign bit here. */
c5aa993b 2458 new_sublist->fn_field.voffset =
94e10a22 2459 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2460 if (nbits != 0)
2461 return 0;
c5aa993b 2462
c906108c
SS
2463 STABS_CONTINUE (pp, objfile);
2464 if (**pp == ';' || **pp == '\0')
2465 {
2466 /* Must be g++ version 1. */
c5aa993b 2467 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2468 }
2469 else
2470 {
2471 /* Figure out from whence this virtual function came.
2472 It may belong to virtual function table of
2473 one of its baseclasses. */
2474 look_ahead_type = read_type (pp, objfile);
2475 if (**pp == ':')
2476 {
c378eb4e 2477 /* g++ version 1 overloaded methods. */
c906108c
SS
2478 }
2479 else
2480 {
c5aa993b 2481 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2482 if (**pp != ';')
2483 {
2484 return 0;
2485 }
2486 else
2487 {
2488 ++*pp;
2489 }
2490 look_ahead_type = NULL;
2491 }
2492 }
2493 break;
2494 }
c5aa993b
JM
2495 case '?':
2496 /* static member function. */
4ea09c10
PS
2497 {
2498 int slen = strlen (main_fn_name);
2499
2500 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2501
2502 /* For static member functions, we can't tell if they
2503 are stubbed, as they are put out as functions, and not as
2504 methods.
2505 GCC v2 emits the fully mangled name if
2506 dbxout.c:flag_minimal_debug is not set, so we have to
2507 detect a fully mangled physname here and set is_stub
2508 accordingly. Fully mangled physnames in v2 start with
2509 the member function name, followed by two underscores.
2510 GCC v3 currently always emits stubbed member functions,
2511 but with fully mangled physnames, which start with _Z. */
2512 if (!(strncmp (new_sublist->fn_field.physname,
2513 main_fn_name, slen) == 0
2514 && new_sublist->fn_field.physname[slen] == '_'
2515 && new_sublist->fn_field.physname[slen + 1] == '_'))
2516 {
2517 new_sublist->fn_field.is_stub = 1;
2518 }
2519 break;
2520 }
c5aa993b
JM
2521
2522 default:
2523 /* error */
b98664d3 2524 complaint (_("member function type missing, got '%c'"),
3e43a32a 2525 (*pp)[-1]);
86a73007
TT
2526 /* Normal member function. */
2527 /* Fall through. */
c5aa993b
JM
2528
2529 case '.':
2530 /* normal member function. */
2531 new_sublist->fn_field.voffset = 0;
2532 new_sublist->fn_field.fcontext = 0;
2533 break;
c906108c 2534 }
c5aa993b
JM
2535
2536 new_sublist->next = sublist;
c906108c
SS
2537 sublist = new_sublist;
2538 length++;
2539 STABS_CONTINUE (pp, objfile);
2540 }
2541 while (**pp != ';' && **pp != '\0');
c5aa993b 2542
c906108c 2543 (*pp)++;
0c867556 2544 STABS_CONTINUE (pp, objfile);
c5aa993b 2545
0c867556
PS
2546 /* Skip GCC 3.X member functions which are duplicates of the callable
2547 constructor/destructor. */
6cbbcdfe
KS
2548 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2549 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2550 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2551 {
0c867556 2552 xfree (main_fn_name);
c906108c 2553 }
0c867556
PS
2554 else
2555 {
de17c821
DJ
2556 int has_stub = 0;
2557 int has_destructor = 0, has_other = 0;
2558 int is_v3 = 0;
2559 struct next_fnfield *tmp_sublist;
2560
2561 /* Various versions of GCC emit various mostly-useless
2562 strings in the name field for special member functions.
2563
2564 For stub methods, we need to defer correcting the name
2565 until we are ready to unstub the method, because the current
2566 name string is used by gdb_mangle_name. The only stub methods
2567 of concern here are GNU v2 operators; other methods have their
2568 names correct (see caveat below).
2569
2570 For non-stub methods, in GNU v3, we have a complete physname.
2571 Therefore we can safely correct the name now. This primarily
2572 affects constructors and destructors, whose name will be
2573 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2574 operators will also have incorrect names; for instance,
2575 "operator int" will be named "operator i" (i.e. the type is
2576 mangled).
2577
2578 For non-stub methods in GNU v2, we have no easy way to
2579 know if we have a complete physname or not. For most
2580 methods the result depends on the platform (if CPLUS_MARKER
2581 can be `$' or `.', it will use minimal debug information, or
2582 otherwise the full physname will be included).
2583
2584 Rather than dealing with this, we take a different approach.
2585 For v3 mangled names, we can use the full physname; for v2,
2586 we use cplus_demangle_opname (which is actually v2 specific),
2587 because the only interesting names are all operators - once again
2588 barring the caveat below. Skip this process if any method in the
2589 group is a stub, to prevent our fouling up the workings of
2590 gdb_mangle_name.
2591
2592 The caveat: GCC 2.95.x (and earlier?) put constructors and
2593 destructors in the same method group. We need to split this
2594 into two groups, because they should have different names.
2595 So for each method group we check whether it contains both
2596 routines whose physname appears to be a destructor (the physnames
2597 for and destructors are always provided, due to quirks in v2
2598 mangling) and routines whose physname does not appear to be a
2599 destructor. If so then we break up the list into two halves.
2600 Even if the constructors and destructors aren't in the same group
2601 the destructor will still lack the leading tilde, so that also
2602 needs to be fixed.
2603
2604 So, to summarize what we expect and handle here:
2605
2606 Given Given Real Real Action
2607 method name physname physname method name
2608
2609 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2610 [now or later]
2611 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2612 rename
2613 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2614 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2615 */
2616
2617 tmp_sublist = sublist;
2618 while (tmp_sublist != NULL)
2619 {
2620 if (tmp_sublist->fn_field.is_stub)
2621 has_stub = 1;
2622 if (tmp_sublist->fn_field.physname[0] == '_'
2623 && tmp_sublist->fn_field.physname[1] == 'Z')
2624 is_v3 = 1;
2625
2626 if (is_destructor_name (tmp_sublist->fn_field.physname))
2627 has_destructor++;
2628 else
2629 has_other++;
2630
2631 tmp_sublist = tmp_sublist->next;
2632 }
2633
2634 if (has_destructor && has_other)
2635 {
2636 struct next_fnfieldlist *destr_fnlist;
2637 struct next_fnfield *last_sublist;
2638
2639 /* Create a new fn_fieldlist for the destructors. */
2640
8d749320 2641 destr_fnlist = XCNEW (struct next_fnfieldlist);
de17c821 2642 make_cleanup (xfree, destr_fnlist);
8d749320 2643
de17c821 2644 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2647
8d749320
SM
2648 destr_fnlist->fn_fieldlist.fn_fields =
2649 XOBNEWVEC (&objfile->objfile_obstack,
2650 struct fn_field, has_destructor);
de17c821
DJ
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2655 i = 0;
2656 while (tmp_sublist != NULL)
2657 {
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 {
2660 tmp_sublist = tmp_sublist->next;
2661 continue;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2666 if (last_sublist)
2667 last_sublist->next = tmp_sublist->next;
2668 else
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2677 nfn_fields++;
de17c821
DJ
2678 length -= has_destructor;
2679 }
2680 else if (is_v3)
2681 {
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2684 only:
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
0d5cff50
DE
2688 char *new_method_name =
2689 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2690
0d5cff50
DE
2691 if (new_method_name != NULL
2692 && strcmp (new_method_name,
2693 new_fnlist->fn_fieldlist.name) != 0)
2694 {
2695 new_fnlist->fn_fieldlist.name = new_method_name;
2696 xfree (main_fn_name);
2697 }
2698 else
2699 xfree (new_method_name);
de17c821
DJ
2700 }
2701 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2702 {
1754f103 2703 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2704 obconcat (&objfile->objfile_obstack,
2705 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2706 xfree (main_fn_name);
2707 }
2708 else if (!has_stub)
2709 {
2710 char dem_opname[256];
2711 int ret;
433759f7 2712
de17c821
DJ
2713 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 dem_opname, DMGL_ANSI);
2715 if (!ret)
2716 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2717 dem_opname, 0);
2718 if (ret)
2719 new_fnlist->fn_fieldlist.name
224c3ddb
SM
2720 = ((const char *)
2721 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2722 strlen (dem_opname)));
0d5cff50 2723 xfree (main_fn_name);
de17c821
DJ
2724 }
2725
e39db4db
SM
2726 new_fnlist->fn_fieldlist.fn_fields
2727 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
0c867556
PS
2728 for (i = length; (i--, sublist); sublist = sublist->next)
2729 {
2730 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2731 }
c5aa993b 2732
0c867556
PS
2733 new_fnlist->fn_fieldlist.length = length;
2734 new_fnlist->next = fip->fnlist;
2735 fip->fnlist = new_fnlist;
2736 nfn_fields++;
0c867556 2737 }
c906108c
SS
2738 }
2739
2740 if (nfn_fields)
2741 {
2742 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2743 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2744 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2745 memset (TYPE_FN_FIELDLISTS (type), 0,
2746 sizeof (struct fn_fieldlist) * nfn_fields);
2747 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2748 }
2749
2750 return 1;
2751}
2752
2753/* Special GNU C++ name.
2754
2755 Returns 1 for success, 0 for failure. "failure" means that we can't
2756 keep parsing and it's time for error_type(). */
2757
2758static int
a121b7c1 2759read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
fba45db2 2760 struct objfile *objfile)
c906108c 2761{
a121b7c1 2762 const char *p;
0d5cff50 2763 const char *name;
c906108c
SS
2764 char cpp_abbrev;
2765 struct type *context;
2766
2767 p = *pp;
2768 if (*++p == 'v')
2769 {
2770 name = NULL;
2771 cpp_abbrev = *++p;
2772
2773 *pp = p + 1;
2774
2775 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2776 where the type number before the ':' is the "context" and
2777 everything after is a regular type definition. Lookup the
c378eb4e 2778 type, find it's name, and construct the field name. */
c906108c
SS
2779
2780 context = read_type (pp, objfile);
2781
2782 switch (cpp_abbrev)
2783 {
c5aa993b 2784 case 'f': /* $vf -- a virtual function table pointer */
a737d952 2785 name = TYPE_NAME (context);
c2bd2ed9 2786 if (name == NULL)
433759f7
MS
2787 {
2788 name = "";
2789 }
48cb83fd
JK
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2791 vptr_name, name, (char *) NULL);
c5aa993b 2792 break;
c906108c 2793
c5aa993b 2794 case 'b': /* $vb -- a virtual bsomethingorother */
a737d952 2795 name = TYPE_NAME (context);
c5aa993b
JM
2796 if (name == NULL)
2797 {
b98664d3 2798 complaint (_("C++ abbreviated type name "
3e43a32a 2799 "unknown at symtab pos %d"),
23136709 2800 symnum);
c5aa993b
JM
2801 name = "FOO";
2802 }
48cb83fd
JK
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2804 name, (char *) NULL);
c5aa993b 2805 break;
c906108c 2806
c5aa993b 2807 default:
23136709 2808 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2809 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2810 "INVALID_CPLUSPLUS_ABBREV",
2811 (char *) NULL);
c5aa993b 2812 break;
c906108c
SS
2813 }
2814
2815 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2816 field type. */
c906108c
SS
2817
2818 p = ++(*pp);
2819 if (p[-1] != ':')
2820 {
23136709 2821 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2822 return 0;
2823 }
2824 fip->list->field.type = read_type (pp, objfile);
2825 if (**pp == ',')
c5aa993b 2826 (*pp)++; /* Skip the comma. */
c906108c
SS
2827 else
2828 return 0;
2829
2830 {
2831 int nbits;
433759f7 2832
f41f5e61
PA
2833 SET_FIELD_BITPOS (fip->list->field,
2834 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2835 if (nbits != 0)
2836 return 0;
2837 }
2838 /* This field is unpacked. */
2839 FIELD_BITSIZE (fip->list->field) = 0;
2840 fip->list->visibility = VISIBILITY_PRIVATE;
2841 }
2842 else
2843 {
23136709 2844 invalid_cpp_abbrev_complaint (*pp);
c906108c 2845 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2846 better return 0. If we returned 1, we would need to at least advance
2847 *pp to avoid an infinite loop. */
c906108c
SS
2848 return 0;
2849 }
2850 return 1;
2851}
2852
2853static void
a121b7c1 2854read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
fba45db2 2855 struct type *type, struct objfile *objfile)
c906108c 2856{
5e2b427d
UW
2857 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2858
224c3ddb
SM
2859 fip->list->field.name
2860 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2861 *pp = p + 1;
2862
c378eb4e 2863 /* This means we have a visibility for a field coming. */
c906108c
SS
2864 if (**pp == '/')
2865 {
2866 (*pp)++;
c5aa993b 2867 fip->list->visibility = *(*pp)++;
c906108c
SS
2868 }
2869 else
2870 {
2871 /* normal dbx-style format, no explicit visibility */
c5aa993b 2872 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2873 }
2874
c5aa993b 2875 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2876 if (**pp == ':')
2877 {
2878 p = ++(*pp);
2879#if 0
c378eb4e 2880 /* Possible future hook for nested types. */
c906108c
SS
2881 if (**pp == '!')
2882 {
c5aa993b 2883 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2884 p = ++(*pp);
2885 }
c5aa993b
JM
2886 else
2887 ...;
c906108c 2888#endif
c5aa993b 2889 while (*p != ';')
c906108c
SS
2890 {
2891 p++;
2892 }
2893 /* Static class member. */
2894 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2895 *pp = p + 1;
2896 return;
2897 }
2898 else if (**pp != ',')
2899 {
2900 /* Bad structure-type format. */
23136709 2901 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2902 return;
2903 }
2904
2905 (*pp)++; /* Skip the comma. */
2906
2907 {
2908 int nbits;
433759f7 2909
f41f5e61
PA
2910 SET_FIELD_BITPOS (fip->list->field,
2911 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2912 if (nbits != 0)
2913 {
23136709 2914 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2915 return;
2916 }
94e10a22 2917 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2918 if (nbits != 0)
2919 {
23136709 2920 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2921 return;
2922 }
2923 }
2924
2925 if (FIELD_BITPOS (fip->list->field) == 0
2926 && FIELD_BITSIZE (fip->list->field) == 0)
2927 {
2928 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2929 it is a field which has been optimized out. The correct stab for
2930 this case is to use VISIBILITY_IGNORE, but that is a recent
2931 invention. (2) It is a 0-size array. For example
e2e0b3e5 2932 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2933 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2934 will continue to work, and a 0-size array as a whole doesn't
2935 have any contents to print.
2936
2937 I suspect this probably could also happen with gcc -gstabs (not
2938 -gstabs+) for static fields, and perhaps other C++ extensions.
2939 Hopefully few people use -gstabs with gdb, since it is intended
2940 for dbx compatibility. */
c906108c
SS
2941
2942 /* Ignore this field. */
c5aa993b 2943 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2944 }
2945 else
2946 {
2947 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2948 dbx gives a bit size for all fields.
2949 Note that forward refs cannot be packed,
2950 and treat enums as if they had the width of ints. */
c906108c
SS
2951
2952 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2953
2954 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2955 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2956 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2957 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2958 {
2959 FIELD_BITSIZE (fip->list->field) = 0;
2960 }
c5aa993b 2961 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2962 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2963 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2964 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2965 == gdbarch_int_bit (gdbarch))
c5aa993b 2966 )
c906108c
SS
2967 &&
2968 FIELD_BITPOS (fip->list->field) % 8 == 0)
2969 {
2970 FIELD_BITSIZE (fip->list->field) = 0;
2971 }
2972 }
2973}
2974
2975
2976/* Read struct or class data fields. They have the form:
2977
c5aa993b 2978 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2979
2980 At the end, we see a semicolon instead of a field.
2981
2982 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2983 a static field.
2984
2985 The optional VISIBILITY is one of:
2986
c5aa993b
JM
2987 '/0' (VISIBILITY_PRIVATE)
2988 '/1' (VISIBILITY_PROTECTED)
2989 '/2' (VISIBILITY_PUBLIC)
2990 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2991
2992 or nothing, for C style fields with public visibility.
2993
2994 Returns 1 for success, 0 for failure. */
2995
2996static int
a121b7c1 2997read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
fba45db2 2998 struct objfile *objfile)
c906108c 2999{
a121b7c1 3000 const char *p;
fe978cb0 3001 struct nextfield *newobj;
c906108c
SS
3002
3003 /* We better set p right now, in case there are no fields at all... */
3004
3005 p = *pp;
3006
3007 /* Read each data member type until we find the terminating ';' at the end of
3008 the data member list, or break for some other reason such as finding the
c378eb4e 3009 start of the member function list. */
fedbd091 3010 /* Stab string for structure/union does not end with two ';' in
c378eb4e 3011 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 3012
fedbd091 3013 while (**pp != ';' && **pp != '\0')
c906108c 3014 {
c906108c
SS
3015 STABS_CONTINUE (pp, objfile);
3016 /* Get space to record the next field's data. */
8d749320 3017 newobj = XCNEW (struct nextfield);
fe978cb0 3018 make_cleanup (xfree, newobj);
8d749320 3019
fe978cb0
PA
3020 newobj->next = fip->list;
3021 fip->list = newobj;
c906108c
SS
3022
3023 /* Get the field name. */
3024 p = *pp;
3025
3026 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3027 unless the CPLUS_MARKER is followed by an underscore, in
3028 which case it is just the name of an anonymous type, which we
3029 should handle like any other type name. */
c906108c
SS
3030
3031 if (is_cplus_marker (p[0]) && p[1] != '_')
3032 {
3033 if (!read_cpp_abbrev (fip, pp, type, objfile))
3034 return 0;
3035 continue;
3036 }
3037
3038 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3039 values. Data members are delimited by a single ':', while member
3040 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3041 functions (if any), terminate scan loop and return. */
c906108c 3042
c5aa993b 3043 while (*p != ':' && *p != '\0')
c906108c
SS
3044 {
3045 p++;
3046 }
3047 if (*p == '\0')
3048 return 0;
3049
3050 /* Check to see if we have hit the member functions yet. */
3051 if (p[1] == ':')
3052 {
3053 break;
3054 }
3055 read_one_struct_field (fip, pp, p, type, objfile);
3056 }
3057 if (p[0] == ':' && p[1] == ':')
3058 {
1b831c93
AC
3059 /* (the deleted) chill the list of fields: the last entry (at
3060 the head) is a partially constructed entry which we now
c378eb4e 3061 scrub. */
c5aa993b 3062 fip->list = fip->list->next;
c906108c
SS
3063 }
3064 return 1;
3065}
9846de1b 3066/* *INDENT-OFF* */
c906108c
SS
3067/* The stabs for C++ derived classes contain baseclass information which
3068 is marked by a '!' character after the total size. This function is
3069 called when we encounter the baseclass marker, and slurps up all the
3070 baseclass information.
3071
3072 Immediately following the '!' marker is the number of base classes that
3073 the class is derived from, followed by information for each base class.
3074 For each base class, there are two visibility specifiers, a bit offset
3075 to the base class information within the derived class, a reference to
3076 the type for the base class, and a terminating semicolon.
3077
3078 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3079 ^^ ^ ^ ^ ^ ^ ^
3080 Baseclass information marker __________________|| | | | | | |
3081 Number of baseclasses __________________________| | | | | | |
3082 Visibility specifiers (2) ________________________| | | | | |
3083 Offset in bits from start of class _________________| | | | |
3084 Type number for base class ___________________________| | | |
3085 Visibility specifiers (2) _______________________________| | |
3086 Offset in bits from start of class ________________________| |
3087 Type number of base class ____________________________________|
3088
3089 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3090/* *INDENT-ON* */
c906108c 3091
c5aa993b
JM
3092
3093
c906108c 3094static int
a121b7c1 3095read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
fba45db2 3096 struct objfile *objfile)
c906108c
SS
3097{
3098 int i;
fe978cb0 3099 struct nextfield *newobj;
c906108c
SS
3100
3101 if (**pp != '!')
3102 {
3103 return 1;
3104 }
3105 else
3106 {
c378eb4e 3107 /* Skip the '!' baseclass information marker. */
c906108c
SS
3108 (*pp)++;
3109 }
3110
3111 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3112 {
3113 int nbits;
433759f7 3114
94e10a22 3115 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3116 if (nbits != 0)
3117 return 0;
3118 }
3119
3120#if 0
3121 /* Some stupid compilers have trouble with the following, so break
3122 it up into simpler expressions. */
3123 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3124 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3125#else
3126 {
3127 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3128 char *pointer;
3129
3130 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3131 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3132 }
3133#endif /* 0 */
3134
3135 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3136
3137 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3138 {
8d749320 3139 newobj = XCNEW (struct nextfield);
fe978cb0 3140 make_cleanup (xfree, newobj);
8d749320 3141
fe978cb0
PA
3142 newobj->next = fip->list;
3143 fip->list = newobj;
3144 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3145 field! */
c906108c
SS
3146
3147 STABS_CONTINUE (pp, objfile);
3148 switch (**pp)
3149 {
c5aa993b 3150 case '0':
c378eb4e 3151 /* Nothing to do. */
c5aa993b
JM
3152 break;
3153 case '1':
3154 SET_TYPE_FIELD_VIRTUAL (type, i);
3155 break;
3156 default:
3157 /* Unknown character. Complain and treat it as non-virtual. */
3158 {
b98664d3 3159 complaint (_("Unknown virtual character `%c' for baseclass"),
3e43a32a 3160 **pp);
c5aa993b 3161 }
c906108c
SS
3162 }
3163 ++(*pp);
3164
fe978cb0
PA
3165 newobj->visibility = *(*pp)++;
3166 switch (newobj->visibility)
c906108c 3167 {
c5aa993b
JM
3168 case VISIBILITY_PRIVATE:
3169 case VISIBILITY_PROTECTED:
3170 case VISIBILITY_PUBLIC:
3171 break;
3172 default:
3173 /* Bad visibility format. Complain and treat it as
3174 public. */
3175 {
b98664d3 3176 complaint (_("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3177 newobj->visibility);
3178 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3179 }
c906108c
SS
3180 }
3181
3182 {
3183 int nbits;
c5aa993b 3184
c906108c
SS
3185 /* The remaining value is the bit offset of the portion of the object
3186 corresponding to this baseclass. Always zero in the absence of
3187 multiple inheritance. */
3188
fe978cb0 3189 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3190 if (nbits != 0)
3191 return 0;
3192 }
3193
3194 /* The last piece of baseclass information is the type of the
c5aa993b 3195 base class. Read it, and remember it's type name as this
c378eb4e 3196 field's name. */
c906108c 3197
fe978cb0 3198 newobj->field.type = read_type (pp, objfile);
a737d952 3199 newobj->field.name = TYPE_NAME (newobj->field.type);
c906108c 3200
c378eb4e 3201 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3202 if (**pp == ';')
3203 (*pp)++;
3204 else
3205 return 0;
3206 }
3207 return 1;
3208}
3209
3210/* The tail end of stabs for C++ classes that contain a virtual function
3211 pointer contains a tilde, a %, and a type number.
3212 The type number refers to the base class (possibly this class itself) which
3213 contains the vtable pointer for the current class.
3214
3215 This function is called when we have parsed all the method declarations,
3216 so we can look for the vptr base class info. */
3217
3218static int
a121b7c1 3219read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
fba45db2 3220 struct objfile *objfile)
c906108c 3221{
a121b7c1 3222 const char *p;
c906108c
SS
3223
3224 STABS_CONTINUE (pp, objfile);
3225
c378eb4e 3226 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3227 if (**pp == ';')
3228 {
3229 (*pp)++;
3230 }
3231
3232 if (**pp == '~')
3233 {
3234 (*pp)++;
3235
3236 if (**pp == '=' || **pp == '+' || **pp == '-')
3237 {
3238 /* Obsolete flags that used to indicate the presence
c378eb4e 3239 of constructors and/or destructors. */
c906108c
SS
3240 (*pp)++;
3241 }
3242
3243 /* Read either a '%' or the final ';'. */
3244 if (*(*pp)++ == '%')
3245 {
3246 /* The next number is the type number of the base class
3247 (possibly our own class) which supplies the vtable for
3248 this class. Parse it out, and search that class to find
3249 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3250 and TYPE_VPTR_FIELDNO. */
3251
3252 struct type *t;
3253 int i;
3254
3255 t = read_type (pp, objfile);
3256 p = (*pp)++;
3257 while (*p != '\0' && *p != ';')
3258 {
3259 p++;
3260 }
3261 if (*p == '\0')
3262 {
3263 /* Premature end of symbol. */
3264 return 0;
3265 }
c5aa993b 3266
ae6ae975 3267 set_type_vptr_basetype (type, t);
c378eb4e 3268 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3269 {
3270 for (i = TYPE_NFIELDS (t) - 1;
3271 i >= TYPE_N_BASECLASSES (t);
3272 --i)
3273 {
0d5cff50 3274 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3275
8343f86c 3276 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3277 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3278 {
ae6ae975 3279 set_type_vptr_fieldno (type, i);
c906108c
SS
3280 goto gotit;
3281 }
3282 }
3283 /* Virtual function table field not found. */
b98664d3 3284 complaint (_("virtual function table pointer "
3e43a32a 3285 "not found when defining class `%s'"),
23136709 3286 TYPE_NAME (type));
c906108c
SS
3287 return 0;
3288 }
3289 else
3290 {
ae6ae975 3291 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3292 }
3293
c5aa993b 3294 gotit:
c906108c
SS
3295 *pp = p + 1;
3296 }
3297 }
3298 return 1;
3299}
3300
3301static int
aa1ee363 3302attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3303{
52f0bd74 3304 int n;
c906108c
SS
3305
3306 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3307 fip->fnlist != NULL;
3308 fip->fnlist = fip->fnlist->next)
c906108c 3309 {
c378eb4e 3310 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3311 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3312 }
3313 return 1;
3314}
3315
c906108c
SS
3316/* Create the vector of fields, and record how big it is.
3317 We need this info to record proper virtual function table information
3318 for this class's virtual functions. */
3319
3320static int
aa1ee363 3321attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3322 struct objfile *objfile)
c906108c 3323{
52f0bd74
AC
3324 int nfields = 0;
3325 int non_public_fields = 0;
3326 struct nextfield *scan;
c906108c
SS
3327
3328 /* Count up the number of fields that we have, as well as taking note of
3329 whether or not there are any non-public fields, which requires us to
3330 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3331 bitfields. */
c906108c 3332
c5aa993b 3333 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3334 {
3335 nfields++;
c5aa993b 3336 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3337 {
3338 non_public_fields++;
3339 }
3340 }
3341
3342 /* Now we know how many fields there are, and whether or not there are any
3343 non-public fields. Record the field count, allocate space for the
c378eb4e 3344 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3345
3346 TYPE_NFIELDS (type) = nfields;
3347 TYPE_FIELDS (type) = (struct field *)
3348 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3349 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3350
3351 if (non_public_fields)
3352 {
3353 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3354
3355 TYPE_FIELD_PRIVATE_BITS (type) =
3356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3357 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3358
3359 TYPE_FIELD_PROTECTED_BITS (type) =
3360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3362
3363 TYPE_FIELD_IGNORE_BITS (type) =
3364 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3365 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3366 }
3367
c378eb4e
MS
3368 /* Copy the saved-up fields into the field vector. Start from the
3369 head of the list, adding to the tail of the field array, so that
3370 they end up in the same order in the array in which they were
3371 added to the list. */
c906108c
SS
3372
3373 while (nfields-- > 0)
3374 {
c5aa993b
JM
3375 TYPE_FIELD (type, nfields) = fip->list->field;
3376 switch (fip->list->visibility)
c906108c 3377 {
c5aa993b
JM
3378 case VISIBILITY_PRIVATE:
3379 SET_TYPE_FIELD_PRIVATE (type, nfields);
3380 break;
c906108c 3381
c5aa993b
JM
3382 case VISIBILITY_PROTECTED:
3383 SET_TYPE_FIELD_PROTECTED (type, nfields);
3384 break;
c906108c 3385
c5aa993b
JM
3386 case VISIBILITY_IGNORE:
3387 SET_TYPE_FIELD_IGNORE (type, nfields);
3388 break;
c906108c 3389
c5aa993b
JM
3390 case VISIBILITY_PUBLIC:
3391 break;
c906108c 3392
c5aa993b
JM
3393 default:
3394 /* Unknown visibility. Complain and treat it as public. */
3395 {
b98664d3 3396 complaint (_("Unknown visibility `%c' for field"),
23136709 3397 fip->list->visibility);
c5aa993b
JM
3398 }
3399 break;
c906108c 3400 }
c5aa993b 3401 fip->list = fip->list->next;
c906108c
SS
3402 }
3403 return 1;
3404}
3405
2ae1c2d2 3406
2ae1c2d2
JB
3407/* Complain that the compiler has emitted more than one definition for the
3408 structure type TYPE. */
3409static void
3410complain_about_struct_wipeout (struct type *type)
3411{
0d5cff50
DE
3412 const char *name = "";
3413 const char *kind = "";
2ae1c2d2 3414
e86ca25f 3415 if (TYPE_NAME (type))
2ae1c2d2 3416 {
e86ca25f 3417 name = TYPE_NAME (type);
2ae1c2d2
JB
3418 switch (TYPE_CODE (type))
3419 {
3420 case TYPE_CODE_STRUCT: kind = "struct "; break;
3421 case TYPE_CODE_UNION: kind = "union "; break;
3422 case TYPE_CODE_ENUM: kind = "enum "; break;
3423 default: kind = "";
3424 }
3425 }
2ae1c2d2
JB
3426 else
3427 {
3428 name = "<unknown>";
3429 kind = "";
3430 }
3431
b98664d3 3432 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3433}
3434
621791b8
PM
3435/* Set the length for all variants of a same main_type, which are
3436 connected in the closed chain.
3437
3438 This is something that needs to be done when a type is defined *after*
3439 some cross references to this type have already been read. Consider
3440 for instance the following scenario where we have the following two
3441 stabs entries:
3442
3443 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3444 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3445
3446 A stubbed version of type dummy is created while processing the first
3447 stabs entry. The length of that type is initially set to zero, since
3448 it is unknown at this point. Also, a "constant" variation of type
3449 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3450 the stabs line).
3451
3452 The second stabs entry allows us to replace the stubbed definition
3453 with the real definition. However, we still need to adjust the length
3454 of the "constant" variation of that type, as its length was left
3455 untouched during the main type replacement... */
3456
3457static void
9e69f3b6 3458set_length_in_type_chain (struct type *type)
621791b8
PM
3459{
3460 struct type *ntype = TYPE_CHAIN (type);
3461
3462 while (ntype != type)
3463 {
3464 if (TYPE_LENGTH(ntype) == 0)
3465 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3466 else
3467 complain_about_struct_wipeout (ntype);
3468 ntype = TYPE_CHAIN (ntype);
3469 }
3470}
2ae1c2d2 3471
c906108c
SS
3472/* Read the description of a structure (or union type) and return an object
3473 describing the type.
3474
3475 PP points to a character pointer that points to the next unconsumed token
b021a221 3476 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3477 *PP will point to "4a:1,0,32;;".
3478
3479 TYPE points to an incomplete type that needs to be filled in.
3480
3481 OBJFILE points to the current objfile from which the stabs information is
3482 being read. (Note that it is redundant in that TYPE also contains a pointer
3483 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3484 */
c906108c
SS
3485
3486static struct type *
a121b7c1 3487read_struct_type (const char **pp, struct type *type, enum type_code type_code,
2ae1c2d2 3488 struct objfile *objfile)
c906108c
SS
3489{
3490 struct cleanup *back_to;
3491 struct field_info fi;
3492
3493 fi.list = NULL;
3494 fi.fnlist = NULL;
3495
2ae1c2d2
JB
3496 /* When describing struct/union/class types in stabs, G++ always drops
3497 all qualifications from the name. So if you've got:
3498 struct A { ... struct B { ... }; ... };
3499 then G++ will emit stabs for `struct A::B' that call it simply
3500 `struct B'. Obviously, if you've got a real top-level definition for
3501 `struct B', or other nested definitions, this is going to cause
3502 problems.
3503
3504 Obviously, GDB can't fix this by itself, but it can at least avoid
3505 scribbling on existing structure type objects when new definitions
3506 appear. */
3507 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3508 || TYPE_STUB (type)))
3509 {
3510 complain_about_struct_wipeout (type);
3511
3512 /* It's probably best to return the type unchanged. */
3513 return type;
3514 }
3515
c906108c
SS
3516 back_to = make_cleanup (null_cleanup, 0);
3517
3518 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3519 TYPE_CODE (type) = type_code;
876cecd0 3520 TYPE_STUB (type) = 0;
c906108c
SS
3521
3522 /* First comes the total size in bytes. */
3523
3524 {
3525 int nbits;
433759f7 3526
94e10a22 3527 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3528 if (nbits != 0)
73b8d9da
TT
3529 {
3530 do_cleanups (back_to);
3531 return error_type (pp, objfile);
3532 }
621791b8 3533 set_length_in_type_chain (type);
c906108c
SS
3534 }
3535
3536 /* Now read the baseclasses, if any, read the regular C struct or C++
3537 class member fields, attach the fields to the type, read the C++
3538 member functions, attach them to the type, and then read any tilde
3e43a32a 3539 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3540
3541 if (!read_baseclasses (&fi, pp, type, objfile)
3542 || !read_struct_fields (&fi, pp, type, objfile)
3543 || !attach_fields_to_type (&fi, type, objfile)
3544 || !read_member_functions (&fi, pp, type, objfile)
3545 || !attach_fn_fields_to_type (&fi, type)
3546 || !read_tilde_fields (&fi, pp, type, objfile))
3547 {
3548 type = error_type (pp, objfile);
3549 }
3550
3551 do_cleanups (back_to);
3552 return (type);
3553}
3554
3555/* Read a definition of an array type,
3556 and create and return a suitable type object.
3557 Also creates a range type which represents the bounds of that
3558 array. */
3559
3560static struct type *
a121b7c1 3561read_array_type (const char **pp, struct type *type,
fba45db2 3562 struct objfile *objfile)
c906108c
SS
3563{
3564 struct type *index_type, *element_type, *range_type;
3565 int lower, upper;
3566 int adjustable = 0;
3567 int nbits;
3568
3569 /* Format of an array type:
3570 "ar<index type>;lower;upper;<array_contents_type>".
3571 OS9000: "arlower,upper;<array_contents_type>".
3572
3573 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3574 for these, produce a type like float[][]. */
3575
c906108c
SS
3576 {
3577 index_type = read_type (pp, objfile);
3578 if (**pp != ';')
3579 /* Improper format of array type decl. */
3580 return error_type (pp, objfile);
3581 ++*pp;
3582 }
3583
3584 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3585 {
3586 (*pp)++;
3587 adjustable = 1;
3588 }
94e10a22 3589 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3590
c906108c
SS
3591 if (nbits != 0)
3592 return error_type (pp, objfile);
3593
3594 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3595 {
3596 (*pp)++;
3597 adjustable = 1;
3598 }
94e10a22 3599 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3600 if (nbits != 0)
3601 return error_type (pp, objfile);
c5aa993b 3602
c906108c
SS
3603 element_type = read_type (pp, objfile);
3604
3605 if (adjustable)
3606 {
3607 lower = 0;
3608 upper = -1;
3609 }
3610
3611 range_type =
0c9c3474 3612 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3613 type = create_array_type (type, element_type, range_type);
3614
3615 return type;
3616}
3617
3618
3619/* Read a definition of an enumeration type,
3620 and create and return a suitable type object.
3621 Also defines the symbols that represent the values of the type. */
3622
3623static struct type *
a121b7c1 3624read_enum_type (const char **pp, struct type *type,
fba45db2 3625 struct objfile *objfile)
c906108c 3626{
5e2b427d 3627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 3628 const char *p;
c906108c 3629 char *name;
52f0bd74
AC
3630 long n;
3631 struct symbol *sym;
c906108c
SS
3632 int nsyms = 0;
3633 struct pending **symlist;
3634 struct pending *osyms, *syms;
3635 int o_nsyms;
3636 int nbits;
3637 int unsigned_enum = 1;
3638
3639#if 0
3640 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3641 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3642 to do? For now, force all enum values to file scope. */
3643 if (within_function)
3644 symlist = &local_symbols;
3645 else
3646#endif
3647 symlist = &file_symbols;
3648 osyms = *symlist;
3649 o_nsyms = osyms ? osyms->nsyms : 0;
3650
c906108c
SS
3651 /* The aix4 compiler emits an extra field before the enum members;
3652 my guess is it's a type of some sort. Just ignore it. */
3653 if (**pp == '-')
3654 {
3655 /* Skip over the type. */
3656 while (**pp != ':')
c5aa993b 3657 (*pp)++;
c906108c
SS
3658
3659 /* Skip over the colon. */
3660 (*pp)++;
3661 }
3662
3663 /* Read the value-names and their values.
3664 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3665 A semicolon or comma instead of a NAME means the end. */
3666 while (**pp && **pp != ';' && **pp != ',')
3667 {
3668 STABS_CONTINUE (pp, objfile);
3669 p = *pp;
c5aa993b
JM
3670 while (*p != ':')
3671 p++;
224c3ddb 3672 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3673 *pp = p + 1;
94e10a22 3674 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3675 if (nbits != 0)
3676 return error_type (pp, objfile);
3677
e623cf5d 3678 sym = allocate_symbol (objfile);
3567439c 3679 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3681 &objfile->objfile_obstack);
f1e6e072 3682 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3683 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3684 SYMBOL_VALUE (sym) = n;
3685 if (n < 0)
3686 unsigned_enum = 0;
3687 add_symbol_to_list (sym, symlist);
3688 nsyms++;
3689 }
3690
3691 if (**pp == ';')
3692 (*pp)++; /* Skip the semicolon. */
3693
3694 /* Now fill in the fields of the type-structure. */
3695
5e2b427d 3696 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3697 set_length_in_type_chain (type);
c906108c 3698 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3699 TYPE_STUB (type) = 0;
c906108c 3700 if (unsigned_enum)
876cecd0 3701 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3702 TYPE_NFIELDS (type) = nsyms;
3703 TYPE_FIELDS (type) = (struct field *)
3704 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3705 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3706
3707 /* Find the symbols for the values and put them into the type.
3708 The symbols can be found in the symlist that we put them on
3709 to cause them to be defined. osyms contains the old value
3710 of that symlist; everything up to there was defined by us. */
3711 /* Note that we preserve the order of the enum constants, so
3712 that in something like "enum {FOO, LAST_THING=FOO}" we print
3713 FOO, not LAST_THING. */
3714
3715 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3716 {
3717 int last = syms == osyms ? o_nsyms : 0;
3718 int j = syms->nsyms;
433759f7 3719
c906108c
SS
3720 for (; --j >= last; --n)
3721 {
3722 struct symbol *xsym = syms->symbol[j];
433759f7 3723
c906108c 3724 SYMBOL_TYPE (xsym) = type;
3567439c 3725 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3726 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3727 TYPE_FIELD_BITSIZE (type, n) = 0;
3728 }
3729 if (syms == osyms)
3730 break;
3731 }
3732
3733 return type;
3734}
3735
3736/* Sun's ACC uses a somewhat saner method for specifying the builtin
3737 typedefs in every file (for int, long, etc):
3738
c5aa993b
JM
3739 type = b <signed> <width> <format type>; <offset>; <nbits>
3740 signed = u or s.
3741 optional format type = c or b for char or boolean.
3742 offset = offset from high order bit to start bit of type.
3743 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3744
3745 The width/offset stuff appears to be for small objects stored in
3746 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3747 FIXME. */
3748
3749static struct type *
a121b7c1 3750read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3751{
3752 int type_bits;
3753 int nbits;
19f392bc
UW
3754 int unsigned_type;
3755 int boolean_type = 0;
c906108c
SS
3756
3757 switch (**pp)
3758 {
c5aa993b 3759 case 's':
19f392bc 3760 unsigned_type = 0;
c5aa993b
JM
3761 break;
3762 case 'u':
19f392bc 3763 unsigned_type = 1;
c5aa993b
JM
3764 break;
3765 default:
3766 return error_type (pp, objfile);
c906108c
SS
3767 }
3768 (*pp)++;
3769
3770 /* For some odd reason, all forms of char put a c here. This is strange
3771 because no other type has this honor. We can safely ignore this because
3772 we actually determine 'char'acterness by the number of bits specified in
3773 the descriptor.
3774 Boolean forms, e.g Fortran logical*X, put a b here. */
3775
3776 if (**pp == 'c')
3777 (*pp)++;
3778 else if (**pp == 'b')
3779 {
19f392bc 3780 boolean_type = 1;
c906108c
SS
3781 (*pp)++;
3782 }
3783
3784 /* The first number appears to be the number of bytes occupied
3785 by this type, except that unsigned short is 4 instead of 2.
3786 Since this information is redundant with the third number,
3787 we will ignore it. */
94e10a22 3788 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3789 if (nbits != 0)
3790 return error_type (pp, objfile);
3791
c378eb4e 3792 /* The second number is always 0, so ignore it too. */
94e10a22 3793 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3794 if (nbits != 0)
3795 return error_type (pp, objfile);
3796
c378eb4e 3797 /* The third number is the number of bits for this type. */
94e10a22 3798 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3799 if (nbits != 0)
3800 return error_type (pp, objfile);
3801 /* The type *should* end with a semicolon. If it are embedded
3802 in a larger type the semicolon may be the only way to know where
3803 the type ends. If this type is at the end of the stabstring we
3804 can deal with the omitted semicolon (but we don't have to like
3805 it). Don't bother to complain(), Sun's compiler omits the semicolon
3806 for "void". */
3807 if (**pp == ';')
3808 ++(*pp);
3809
3810 if (type_bits == 0)
19f392bc 3811 {
77b7c781
UW
3812 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3813 TARGET_CHAR_BIT, NULL);
19f392bc
UW
3814 if (unsigned_type)
3815 TYPE_UNSIGNED (type) = 1;
3816 return type;
3817 }
3818
3819 if (boolean_type)
3820 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
c906108c 3821 else
19f392bc 3822 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
c906108c
SS
3823}
3824
3825static struct type *
a121b7c1
PA
3826read_sun_floating_type (const char **pp, int typenums[2],
3827 struct objfile *objfile)
c906108c
SS
3828{
3829 int nbits;
3830 int details;
3831 int nbytes;
f65ca430 3832 struct type *rettype;
c906108c
SS
3833
3834 /* The first number has more details about the type, for example
3835 FN_COMPLEX. */
94e10a22 3836 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3837 if (nbits != 0)
3838 return error_type (pp, objfile);
3839
c378eb4e 3840 /* The second number is the number of bytes occupied by this type. */
94e10a22 3841 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3842 if (nbits != 0)
3843 return error_type (pp, objfile);
3844
19f392bc
UW
3845 nbits = nbytes * TARGET_CHAR_BIT;
3846
c906108c
SS
3847 if (details == NF_COMPLEX || details == NF_COMPLEX16
3848 || details == NF_COMPLEX32)
f65ca430 3849 {
9b790ce7 3850 rettype = dbx_init_float_type (objfile, nbits / 2);
19f392bc 3851 return init_complex_type (objfile, NULL, rettype);
f65ca430 3852 }
c906108c 3853
9b790ce7 3854 return dbx_init_float_type (objfile, nbits);
c906108c
SS
3855}
3856
3857/* Read a number from the string pointed to by *PP.
3858 The value of *PP is advanced over the number.
3859 If END is nonzero, the character that ends the
3860 number must match END, or an error happens;
3861 and that character is skipped if it does match.
3862 If END is zero, *PP is left pointing to that character.
3863
94e10a22
JG
3864 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3865 the number is represented in an octal representation, assume that
3866 it is represented in a 2's complement representation with a size of
3867 TWOS_COMPLEMENT_BITS.
3868
c906108c
SS
3869 If the number fits in a long, set *BITS to 0 and return the value.
3870 If not, set *BITS to be the number of bits in the number and return 0.
3871
3872 If encounter garbage, set *BITS to -1 and return 0. */
3873
c2d11a7d 3874static long
a121b7c1
PA
3875read_huge_number (const char **pp, int end, int *bits,
3876 int twos_complement_bits)
c906108c 3877{
a121b7c1 3878 const char *p = *pp;
c906108c 3879 int sign = 1;
51e9e0d4 3880 int sign_bit = 0;
c2d11a7d 3881 long n = 0;
c906108c
SS
3882 int radix = 10;
3883 char overflow = 0;
3884 int nbits = 0;
3885 int c;
c2d11a7d 3886 long upper_limit;
a2699720 3887 int twos_complement_representation = 0;
c5aa993b 3888
c906108c
SS
3889 if (*p == '-')
3890 {
3891 sign = -1;
3892 p++;
3893 }
3894
3895 /* Leading zero means octal. GCC uses this to output values larger
3896 than an int (because that would be hard in decimal). */
3897 if (*p == '0')
3898 {
3899 radix = 8;
3900 p++;
3901 }
3902
a2699720
PA
3903 /* Skip extra zeros. */
3904 while (*p == '0')
3905 p++;
3906
3907 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3908 {
3909 /* Octal, possibly signed. Check if we have enough chars for a
3910 negative number. */
3911
3912 size_t len;
a121b7c1 3913 const char *p1 = p;
433759f7 3914
a2699720
PA
3915 while ((c = *p1) >= '0' && c < '8')
3916 p1++;
3917
3918 len = p1 - p;
3919 if (len > twos_complement_bits / 3
3e43a32a
MS
3920 || (twos_complement_bits % 3 == 0
3921 && len == twos_complement_bits / 3))
a2699720
PA
3922 {
3923 /* Ok, we have enough characters for a signed value, check
3924 for signness by testing if the sign bit is set. */
3925 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3926 c = *p - '0';
3927 if (c & (1 << sign_bit))
3928 {
3929 /* Definitely signed. */
3930 twos_complement_representation = 1;
3931 sign = -1;
3932 }
3933 }
3934 }
3935
1b831c93 3936 upper_limit = LONG_MAX / radix;
c906108c
SS
3937
3938 while ((c = *p++) >= '0' && c < ('0' + radix))
3939 {
3940 if (n <= upper_limit)
94e10a22
JG
3941 {
3942 if (twos_complement_representation)
3943 {
a2699720
PA
3944 /* Octal, signed, twos complement representation. In
3945 this case, n is the corresponding absolute value. */
3946 if (n == 0)
3947 {
3948 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3949
a2699720
PA
3950 n = -sn;
3951 }
94e10a22
JG
3952 else
3953 {
a2699720
PA
3954 n *= radix;
3955 n -= c - '0';
94e10a22 3956 }
94e10a22
JG
3957 }
3958 else
3959 {
3960 /* unsigned representation */
3961 n *= radix;
c378eb4e 3962 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3963 }
3964 }
c906108c 3965 else
94e10a22 3966 overflow = 1;
c5aa993b 3967
c906108c 3968 /* This depends on large values being output in octal, which is
c378eb4e 3969 what GCC does. */
c906108c
SS
3970 if (radix == 8)
3971 {
3972 if (nbits == 0)
3973 {
3974 if (c == '0')
3975 /* Ignore leading zeroes. */
3976 ;
3977 else if (c == '1')
3978 nbits = 1;
3979 else if (c == '2' || c == '3')
3980 nbits = 2;
3981 else
3982 nbits = 3;
3983 }
3984 else
3985 nbits += 3;
3986 }
3987 }
3988 if (end)
3989 {
3990 if (c && c != end)
3991 {
3992 if (bits != NULL)
3993 *bits = -1;
3994 return 0;
3995 }
3996 }
3997 else
3998 --p;
3999
a2699720
PA
4000 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4001 {
4002 /* We were supposed to parse a number with maximum
4003 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4004 if (bits != NULL)
4005 *bits = -1;
4006 return 0;
4007 }
4008
c906108c
SS
4009 *pp = p;
4010 if (overflow)
4011 {
4012 if (nbits == 0)
4013 {
4014 /* Large decimal constants are an error (because it is hard to
4015 count how many bits are in them). */
4016 if (bits != NULL)
4017 *bits = -1;
4018 return 0;
4019 }
c5aa993b 4020
c906108c 4021 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4022 the number of bits. Two's complement represention octals
4023 can't have a '-' in front. */
4024 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4025 ++nbits;
4026 if (bits)
4027 *bits = nbits;
4028 }
4029 else
4030 {
4031 if (bits)
4032 *bits = 0;
a2699720 4033 return n * sign;
c906108c
SS
4034 }
4035 /* It's *BITS which has the interesting information. */
4036 return 0;
4037}
4038
4039static struct type *
a121b7c1 4040read_range_type (const char **pp, int typenums[2], int type_size,
94e10a22 4041 struct objfile *objfile)
c906108c 4042{
5e2b427d 4043 struct gdbarch *gdbarch = get_objfile_arch (objfile);
a121b7c1 4044 const char *orig_pp = *pp;
c906108c 4045 int rangenums[2];
c2d11a7d 4046 long n2, n3;
c906108c
SS
4047 int n2bits, n3bits;
4048 int self_subrange;
4049 struct type *result_type;
4050 struct type *index_type = NULL;
4051
4052 /* First comes a type we are a subrange of.
4053 In C it is usually 0, 1 or the type being defined. */
4054 if (read_type_number (pp, rangenums) != 0)
4055 return error_type (pp, objfile);
4056 self_subrange = (rangenums[0] == typenums[0] &&
4057 rangenums[1] == typenums[1]);
4058
4059 if (**pp == '=')
4060 {
4061 *pp = orig_pp;
4062 index_type = read_type (pp, objfile);
4063 }
4064
4065 /* A semicolon should now follow; skip it. */
4066 if (**pp == ';')
4067 (*pp)++;
4068
4069 /* The remaining two operands are usually lower and upper bounds
4070 of the range. But in some special cases they mean something else. */
94e10a22
JG
4071 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4072 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4073
4074 if (n2bits == -1 || n3bits == -1)
4075 return error_type (pp, objfile);
4076
4077 if (index_type)
4078 goto handle_true_range;
4079
4080 /* If limits are huge, must be large integral type. */
4081 if (n2bits != 0 || n3bits != 0)
4082 {
4083 char got_signed = 0;
4084 char got_unsigned = 0;
4085 /* Number of bits in the type. */
4086 int nbits = 0;
4087
94e10a22 4088 /* If a type size attribute has been specified, the bounds of
c378eb4e 4089 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4090 more bits than the upper bound, then the type is signed. */
4091 if (n2bits <= type_size && n3bits <= type_size)
4092 {
4093 if (n2bits == type_size && n2bits > n3bits)
4094 got_signed = 1;
4095 else
4096 got_unsigned = 1;
4097 nbits = type_size;
4098 }
c906108c 4099 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4100 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4101 {
4102 got_unsigned = 1;
4103 nbits = n3bits;
4104 }
4105 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4106 integral type. Take care of the case where <large number> doesn't
4107 fit in a long but <large number>-1 does. */
c906108c
SS
4108 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4109 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4110 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4111 && n3 == LONG_MAX))
c906108c
SS
4112 {
4113 got_signed = 1;
4114 nbits = n2bits;
4115 }
4116
4117 if (got_signed || got_unsigned)
19f392bc 4118 return init_integer_type (objfile, nbits, got_unsigned, NULL);
c906108c
SS
4119 else
4120 return error_type (pp, objfile);
4121 }
4122
4123 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4124 if (self_subrange && n2 == 0 && n3 == 0)
77b7c781 4125 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
c906108c
SS
4126
4127 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4128 is the width in bytes.
4129
4130 Fortran programs appear to use this for complex types also. To
4131 distinguish between floats and complex, g77 (and others?) seem
4132 to use self-subranges for the complexes, and subranges of int for
4133 the floats.
4134
4135 Also note that for complexes, g77 sets n2 to the size of one of
4136 the member floats, not the whole complex beast. My guess is that
c378eb4e 4137 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4138
4139 if (n3 == 0 && n2 > 0)
4140 {
1300f5dd 4141 struct type *float_type
9b790ce7 4142 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
1300f5dd 4143
c906108c 4144 if (self_subrange)
19f392bc 4145 return init_complex_type (objfile, NULL, float_type);
c906108c 4146 else
1300f5dd 4147 return float_type;
c906108c
SS
4148 }
4149
a2699720 4150 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4151
4152 else if (n2 == 0 && n3 == -1)
4153 {
a2699720 4154 int bits = type_size;
433759f7 4155
a2699720
PA
4156 if (bits <= 0)
4157 {
4158 /* We don't know its size. It is unsigned int or unsigned
4159 long. GCC 2.3.3 uses this for long long too, but that is
4160 just a GDB 3.5 compatibility hack. */
5e2b427d 4161 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4162 }
4163
19f392bc 4164 return init_integer_type (objfile, bits, 1, NULL);
c906108c
SS
4165 }
4166
4167 /* Special case: char is defined (Who knows why) as a subrange of
4168 itself with range 0-127. */
4169 else if (self_subrange && n2 == 0 && n3 == 127)
19f392bc 4170 {
77b7c781
UW
4171 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4172 0, NULL);
19f392bc
UW
4173 TYPE_NOSIGN (type) = 1;
4174 return type;
4175 }
c906108c
SS
4176 /* We used to do this only for subrange of self or subrange of int. */
4177 else if (n2 == 0)
4178 {
a0b3c4fd
JM
4179 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4180 "unsigned long", and we already checked for that,
4181 so don't need to test for it here. */
4182
c906108c
SS
4183 if (n3 < 0)
4184 /* n3 actually gives the size. */
19f392bc 4185 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
c906108c 4186
7be570e7 4187 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4188 unsigned n-byte integer. But do require n to be a power of
4189 two; we don't want 3- and 5-byte integers flying around. */
4190 {
4191 int bytes;
4192 unsigned long bits;
4193
4194 bits = n3;
4195 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4196 bits >>= 8;
4197 if (bits == 0
4198 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
19f392bc 4199 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
a0b3c4fd 4200 }
c906108c
SS
4201 }
4202 /* I think this is for Convex "long long". Since I don't know whether
4203 Convex sets self_subrange, I also accept that particular size regardless
4204 of self_subrange. */
4205 else if (n3 == 0 && n2 < 0
4206 && (self_subrange
9a76efb6 4207 || n2 == -gdbarch_long_long_bit
5e2b427d 4208 (gdbarch) / TARGET_CHAR_BIT))
19f392bc 4209 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
c5aa993b 4210 else if (n2 == -n3 - 1)
c906108c
SS
4211 {
4212 if (n3 == 0x7f)
19f392bc 4213 return init_integer_type (objfile, 8, 0, NULL);
c906108c 4214 if (n3 == 0x7fff)
19f392bc 4215 return init_integer_type (objfile, 16, 0, NULL);
c906108c 4216 if (n3 == 0x7fffffff)
19f392bc 4217 return init_integer_type (objfile, 32, 0, NULL);
c906108c
SS
4218 }
4219
4220 /* We have a real range type on our hands. Allocate space and
4221 return a real pointer. */
c5aa993b 4222handle_true_range:
c906108c
SS
4223
4224 if (self_subrange)
46bf5051 4225 index_type = objfile_type (objfile)->builtin_int;
c906108c 4226 else
46bf5051 4227 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4228 if (index_type == NULL)
4229 {
4230 /* Does this actually ever happen? Is that why we are worrying
4231 about dealing with it rather than just calling error_type? */
4232
b98664d3 4233 complaint (_("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4234
46bf5051 4235 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4236 }
4237
0c9c3474
SA
4238 result_type
4239 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4240 return (result_type);
4241}
4242
4243/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4244 and terminated with END. Return the list of types read in, or NULL
4245 if there is an error. */
c906108c 4246
ad2f7632 4247static struct field *
a121b7c1 4248read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
ad2f7632 4249 int *varargsp)
c906108c
SS
4250{
4251 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4252 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4253 int n = 0, i;
4254 struct field *rval;
c906108c
SS
4255
4256 while (**pp != end)
4257 {
4258 if (**pp != ',')
4259 /* Invalid argument list: no ','. */
0a029df5 4260 return NULL;
c906108c
SS
4261 (*pp)++;
4262 STABS_CONTINUE (pp, objfile);
4263 types[n++] = read_type (pp, objfile);
4264 }
c378eb4e 4265 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4266
d24d8548
JK
4267 if (n == 0)
4268 {
4269 /* We should read at least the THIS parameter here. Some broken stabs
4270 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4271 have been present ";-16,(0,43)" reference instead. This way the
4272 excessive ";" marker prematurely stops the parameters parsing. */
4273
b98664d3 4274 complaint (_("Invalid (empty) method arguments"));
d24d8548
JK
4275 *varargsp = 0;
4276 }
4277 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4278 *varargsp = 1;
c906108c
SS
4279 else
4280 {
ad2f7632
DJ
4281 n--;
4282 *varargsp = 0;
c906108c 4283 }
ad2f7632 4284
8d749320 4285 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4286 for (i = 0; i < n; i++)
4287 rval[i].type = types[i];
4288 *nargsp = n;
c906108c
SS
4289 return rval;
4290}
4291\f
4292/* Common block handling. */
4293
4294/* List of symbols declared since the last BCOMM. This list is a tail
4295 of local_symbols. When ECOMM is seen, the symbols on the list
4296 are noted so their proper addresses can be filled in later,
4297 using the common block base address gotten from the assembler
4298 stabs. */
4299
4300static struct pending *common_block;
4301static int common_block_i;
4302
4303/* Name of the current common block. We get it from the BCOMM instead of the
4304 ECOMM to match IBM documentation (even though IBM puts the name both places
4305 like everyone else). */
4306static char *common_block_name;
4307
4308/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4309 to remain after this function returns. */
4310
4311void
a121b7c1 4312common_block_start (const char *name, struct objfile *objfile)
c906108c
SS
4313{
4314 if (common_block_name != NULL)
4315 {
b98664d3 4316 complaint (_("Invalid symbol data: common block within common block"));
c906108c
SS
4317 }
4318 common_block = local_symbols;
4319 common_block_i = local_symbols ? local_symbols->nsyms : 0;
224c3ddb
SM
4320 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4321 strlen (name));
c906108c
SS
4322}
4323
4324/* Process a N_ECOMM symbol. */
4325
4326void
fba45db2 4327common_block_end (struct objfile *objfile)
c906108c
SS
4328{
4329 /* Symbols declared since the BCOMM are to have the common block
4330 start address added in when we know it. common_block and
4331 common_block_i point to the first symbol after the BCOMM in
4332 the local_symbols list; copy the list and hang it off the
4333 symbol for the common block name for later fixup. */
4334 int i;
4335 struct symbol *sym;
fe978cb0 4336 struct pending *newobj = 0;
c906108c
SS
4337 struct pending *next;
4338 int j;
4339
4340 if (common_block_name == NULL)
4341 {
b98664d3 4342 complaint (_("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4343 return;
4344 }
4345
e623cf5d 4346 sym = allocate_symbol (objfile);
c378eb4e 4347 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4348 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4349 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4350
4351 /* Now we copy all the symbols which have been defined since the BCOMM. */
4352
4353 /* Copy all the struct pendings before common_block. */
4354 for (next = local_symbols;
4355 next != NULL && next != common_block;
4356 next = next->next)
4357 {
4358 for (j = 0; j < next->nsyms; j++)
fe978cb0 4359 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4360 }
4361
4362 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4363 NULL, it means copy all the local symbols (which we already did
4364 above). */
4365
4366 if (common_block != NULL)
4367 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4368 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4369
fe978cb0 4370 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4371
4372 /* Should we be putting local_symbols back to what it was?
4373 Does it matter? */
4374
3567439c 4375 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4376 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4377 global_sym_chain[i] = sym;
4378 common_block_name = NULL;
4379}
4380
4381/* Add a common block's start address to the offset of each symbol
4382 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4383 the common block name). */
4384
4385static void
46cb6474 4386fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4387{
4388 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4389
c5aa993b 4390 for (; next; next = next->next)
c906108c 4391 {
aa1ee363 4392 int j;
433759f7 4393
c906108c
SS
4394 for (j = next->nsyms - 1; j >= 0; j--)
4395 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4396 }
4397}
c5aa993b 4398\f
c906108c
SS
4399
4400
bf362611
JB
4401/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4402 See add_undefined_type for more details. */
c906108c 4403
a7a48797 4404static void
bf362611
JB
4405add_undefined_type_noname (struct type *type, int typenums[2])
4406{
4407 struct nat nat;
4408
4409 nat.typenums[0] = typenums [0];
4410 nat.typenums[1] = typenums [1];
4411 nat.type = type;
4412
4413 if (noname_undefs_length == noname_undefs_allocated)
4414 {
4415 noname_undefs_allocated *= 2;
4416 noname_undefs = (struct nat *)
4417 xrealloc ((char *) noname_undefs,
4418 noname_undefs_allocated * sizeof (struct nat));
4419 }
4420 noname_undefs[noname_undefs_length++] = nat;
4421}
4422
4423/* Add TYPE to the UNDEF_TYPES vector.
4424 See add_undefined_type for more details. */
4425
4426static void
4427add_undefined_type_1 (struct type *type)
c906108c
SS
4428{
4429 if (undef_types_length == undef_types_allocated)
4430 {
4431 undef_types_allocated *= 2;
4432 undef_types = (struct type **)
4433 xrealloc ((char *) undef_types,
4434 undef_types_allocated * sizeof (struct type *));
4435 }
4436 undef_types[undef_types_length++] = type;
4437}
4438
bf362611
JB
4439/* What about types defined as forward references inside of a small lexical
4440 scope? */
4441/* Add a type to the list of undefined types to be checked through
4442 once this file has been read in.
4443
4444 In practice, we actually maintain two such lists: The first list
4445 (UNDEF_TYPES) is used for types whose name has been provided, and
4446 concerns forward references (eg 'xs' or 'xu' forward references);
4447 the second list (NONAME_UNDEFS) is used for types whose name is
4448 unknown at creation time, because they were referenced through
4449 their type number before the actual type was declared.
4450 This function actually adds the given type to the proper list. */
4451
4452static void
4453add_undefined_type (struct type *type, int typenums[2])
4454{
e86ca25f 4455 if (TYPE_NAME (type) == NULL)
bf362611
JB
4456 add_undefined_type_noname (type, typenums);
4457 else
4458 add_undefined_type_1 (type);
4459}
4460
4461/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4462
2c0b251b 4463static void
46bf5051 4464cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4465{
4466 int i;
4467
4468 for (i = 0; i < noname_undefs_length; i++)
4469 {
4470 struct nat nat = noname_undefs[i];
4471 struct type **type;
4472
46bf5051 4473 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4474 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4475 {
4476 /* The instance flags of the undefined type are still unset,
4477 and needs to be copied over from the reference type.
4478 Since replace_type expects them to be identical, we need
4479 to set these flags manually before hand. */
4480 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4481 replace_type (nat.type, *type);
4482 }
bf362611
JB
4483 }
4484
4485 noname_undefs_length = 0;
4486}
4487
c906108c
SS
4488/* Go through each undefined type, see if it's still undefined, and fix it
4489 up if possible. We have two kinds of undefined types:
4490
4491 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4492 Fix: update array length using the element bounds
4493 and the target type's length.
c906108c 4494 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4495 yet defined at the time a pointer to it was made.
4496 Fix: Do a full lookup on the struct/union tag. */
bf362611 4497
2c0b251b 4498static void
bf362611 4499cleanup_undefined_types_1 (void)
c906108c
SS
4500{
4501 struct type **type;
4502
9e386756
JB
4503 /* Iterate over every undefined type, and look for a symbol whose type
4504 matches our undefined type. The symbol matches if:
4505 1. It is a typedef in the STRUCT domain;
4506 2. It has the same name, and same type code;
4507 3. The instance flags are identical.
4508
4509 It is important to check the instance flags, because we have seen
4510 examples where the debug info contained definitions such as:
4511
4512 "foo_t:t30=B31=xefoo_t:"
4513
4514 In this case, we have created an undefined type named "foo_t" whose
4515 instance flags is null (when processing "xefoo_t"), and then created
4516 another type with the same name, but with different instance flags
4517 ('B' means volatile). I think that the definition above is wrong,
4518 since the same type cannot be volatile and non-volatile at the same
4519 time, but we need to be able to cope with it when it happens. The
4520 approach taken here is to treat these two types as different. */
4521
c906108c
SS
4522 for (type = undef_types; type < undef_types + undef_types_length; type++)
4523 {
4524 switch (TYPE_CODE (*type))
4525 {
4526
c5aa993b
JM
4527 case TYPE_CODE_STRUCT:
4528 case TYPE_CODE_UNION:
4529 case TYPE_CODE_ENUM:
c906108c
SS
4530 {
4531 /* Check if it has been defined since. Need to do this here
4532 as well as in check_typedef to deal with the (legitimate in
4533 C though not C++) case of several types with the same name
4534 in different source files. */
74a9bb82 4535 if (TYPE_STUB (*type))
c906108c
SS
4536 {
4537 struct pending *ppt;
4538 int i;
c378eb4e 4539 /* Name of the type, without "struct" or "union". */
e86ca25f 4540 const char *type_name = TYPE_NAME (*type);
c906108c 4541
fe978cb0 4542 if (type_name == NULL)
c906108c 4543 {
b98664d3 4544 complaint (_("need a type name"));
c906108c
SS
4545 break;
4546 }
4547 for (ppt = file_symbols; ppt; ppt = ppt->next)
4548 {
4549 for (i = 0; i < ppt->nsyms; i++)
4550 {
4551 struct symbol *sym = ppt->symbol[i];
c5aa993b 4552
c906108c 4553 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4554 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4555 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4556 TYPE_CODE (*type))
9e386756
JB
4557 && (TYPE_INSTANCE_FLAGS (*type) ==
4558 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4559 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4560 type_name) == 0)
13a393b0 4561 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4562 }
4563 }
4564 }
4565 }
4566 break;
4567
4568 default:
4569 {
b98664d3 4570 complaint (_("forward-referenced types left unresolved, "
e2e0b3e5 4571 "type code %d."),
23136709 4572 TYPE_CODE (*type));
c906108c
SS
4573 }
4574 break;
4575 }
4576 }
4577
4578 undef_types_length = 0;
4579}
4580
bf362611
JB
4581/* Try to fix all the undefined types we ecountered while processing
4582 this unit. */
4583
4584void
0a0edcd5 4585cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4586{
4587 cleanup_undefined_types_1 ();
46bf5051 4588 cleanup_undefined_types_noname (objfile);
bf362611
JB
4589}
4590
c906108c
SS
4591/* Scan through all of the global symbols defined in the object file,
4592 assigning values to the debugging symbols that need to be assigned
4593 to. Get these symbols from the minimal symbol table. */
4594
4595void
fba45db2 4596scan_file_globals (struct objfile *objfile)
c906108c
SS
4597{
4598 int hash;
4599 struct minimal_symbol *msymbol;
507836c0 4600 struct symbol *sym, *prev;
c906108c
SS
4601 struct objfile *resolve_objfile;
4602
4603 /* SVR4 based linkers copy referenced global symbols from shared
4604 libraries to the main executable.
4605 If we are scanning the symbols for a shared library, try to resolve
4606 them from the minimal symbols of the main executable first. */
4607
4608 if (symfile_objfile && objfile != symfile_objfile)
4609 resolve_objfile = symfile_objfile;
4610 else
4611 resolve_objfile = objfile;
4612
4613 while (1)
4614 {
4615 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4616 no unresolved symbols. */
c906108c
SS
4617 for (hash = 0; hash < HASHSIZE; hash++)
4618 {
4619 if (global_sym_chain[hash])
4620 break;
4621 }
4622 if (hash >= HASHSIZE)
4623 return;
4624
3567439c 4625 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4626 {
4627 QUIT;
4628
4629 /* Skip static symbols. */
4630 switch (MSYMBOL_TYPE (msymbol))
4631 {
4632 case mst_file_text:
4633 case mst_file_data:
4634 case mst_file_bss:
4635 continue;
4636 default:
4637 break;
4638 }
4639
4640 prev = NULL;
4641
4642 /* Get the hash index and check all the symbols
c378eb4e 4643 under that hash index. */
c906108c 4644
efd66ac6 4645 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4646
4647 for (sym = global_sym_chain[hash]; sym;)
4648 {
efd66ac6 4649 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4650 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4651 {
c906108c 4652 /* Splice this symbol out of the hash chain and
c378eb4e 4653 assign the value we have to it. */
c906108c
SS
4654 if (prev)
4655 {
4656 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4657 }
4658 else
4659 {
4660 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4661 }
c5aa993b 4662
c906108c
SS
4663 /* Check to see whether we need to fix up a common block. */
4664 /* Note: this code might be executed several times for
4665 the same symbol if there are multiple references. */
507836c0 4666 if (sym)
c906108c 4667 {
507836c0 4668 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4669 {
507836c0 4670 fix_common_block (sym,
77e371c0
TT
4671 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4672 msymbol));
c906108c
SS
4673 }
4674 else
4675 {
507836c0 4676 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4677 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4678 }
efd66ac6 4679 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4680 }
4681
c906108c
SS
4682 if (prev)
4683 {
4684 sym = SYMBOL_VALUE_CHAIN (prev);
4685 }
4686 else
4687 {
4688 sym = global_sym_chain[hash];
4689 }
4690 }
4691 else
4692 {
4693 prev = sym;
4694 sym = SYMBOL_VALUE_CHAIN (sym);
4695 }
4696 }
4697 }
4698 if (resolve_objfile == objfile)
4699 break;
4700 resolve_objfile = objfile;
4701 }
4702
4703 /* Change the storage class of any remaining unresolved globals to
4704 LOC_UNRESOLVED and remove them from the chain. */
4705 for (hash = 0; hash < HASHSIZE; hash++)
4706 {
4707 sym = global_sym_chain[hash];
4708 while (sym)
4709 {
4710 prev = sym;
4711 sym = SYMBOL_VALUE_CHAIN (sym);
4712
4713 /* Change the symbol address from the misleading chain value
4714 to address zero. */
4715 SYMBOL_VALUE_ADDRESS (prev) = 0;
4716
4717 /* Complain about unresolved common block symbols. */
4718 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4719 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4720 else
b98664d3 4721 complaint (_("%s: common block `%s' from "
3e43a32a 4722 "global_sym_chain unresolved"),
4262abfb 4723 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4724 }
4725 }
4726 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4727}
4728
4729/* Initialize anything that needs initializing when starting to read
4730 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4731 to a psymtab. */
4732
4733void
fba45db2 4734stabsread_init (void)
c906108c
SS
4735{
4736}
4737
4738/* Initialize anything that needs initializing when a completely new
4739 symbol file is specified (not just adding some symbols from another
4740 file, e.g. a shared library). */
4741
4742void
fba45db2 4743stabsread_new_init (void)
c906108c
SS
4744{
4745 /* Empty the hash table of global syms looking for values. */
4746 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4747}
4748
4749/* Initialize anything that needs initializing at the same time as
c378eb4e 4750 start_symtab() is called. */
c906108c 4751
c5aa993b 4752void
fba45db2 4753start_stabs (void)
c906108c
SS
4754{
4755 global_stabs = NULL; /* AIX COFF */
4756 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4757 n_this_object_header_files = 1;
4758 type_vector_length = 0;
4759 type_vector = (struct type **) 0;
4760
4761 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4762 common_block_name = NULL;
c906108c
SS
4763}
4764
c378eb4e 4765/* Call after end_symtab(). */
c906108c 4766
c5aa993b 4767void
fba45db2 4768end_stabs (void)
c906108c
SS
4769{
4770 if (type_vector)
4771 {
b8c9b27d 4772 xfree (type_vector);
c906108c
SS
4773 }
4774 type_vector = 0;
4775 type_vector_length = 0;
4776 previous_stab_code = 0;
4777}
4778
4779void
fba45db2 4780finish_global_stabs (struct objfile *objfile)
c906108c
SS
4781{
4782 if (global_stabs)
4783 {
4784 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4785 xfree (global_stabs);
c906108c
SS
4786 global_stabs = NULL;
4787 }
4788}
4789
7e1d63ec
AF
4790/* Find the end of the name, delimited by a ':', but don't match
4791 ObjC symbols which look like -[Foo bar::]:bla. */
a121b7c1
PA
4792static const char *
4793find_name_end (const char *name)
7e1d63ec 4794{
a121b7c1 4795 const char *s = name;
433759f7 4796
7e1d63ec
AF
4797 if (s[0] == '-' || *s == '+')
4798 {
4799 /* Must be an ObjC method symbol. */
4800 if (s[1] != '[')
4801 {
8a3fe4f8 4802 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4803 }
4804 s = strchr (s, ']');
4805 if (s == NULL)
4806 {
8a3fe4f8 4807 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4808 }
4809 return strchr (s, ':');
4810 }
4811 else
4812 {
4813 return strchr (s, ':');
4814 }
4815}
4816
c378eb4e 4817/* Initializer for this module. */
c906108c
SS
4818
4819void
fba45db2 4820_initialize_stabsread (void)
c906108c 4821{
46bf5051
UW
4822 rs6000_builtin_type_data = register_objfile_data ();
4823
c906108c
SS
4824 undef_types_allocated = 20;
4825 undef_types_length = 0;
8d749320 4826 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4827
4828 noname_undefs_allocated = 20;
4829 noname_undefs_length = 0;
8d749320 4830 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4831
4832 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4833 &stab_register_funcs);
4834 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4835 &stab_register_funcs);
c906108c 4836}
This page took 2.64683 seconds and 4 git commands to generate.