import gdb-1999-05-25 snapshot
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c
SS
1/* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27#include "defs.h"
28#include "gdb_string.h"
29#include "bfd.h"
30#include "obstack.h"
31#include "symtab.h"
32#include "gdbtypes.h"
33#include "expression.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
37#include "libaout.h"
38#include "aout/aout64.h"
39#include "gdb-stabs.h"
40#include "buildsym.h"
41#include "complaints.h"
42#include "demangle.h"
43#include "language.h"
44
45#include <ctype.h>
46
47/* Ask stabsread.h to define the vars it normally declares `extern'. */
48#define EXTERN /**/
49#include "stabsread.h" /* Our own declarations */
50#undef EXTERN
51
392a587b
JM
52extern void _initialize_stabsread PARAMS ((void));
53
c906108c
SS
54/* The routines that read and process a complete stabs for a C struct or
55 C++ class pass lists of data member fields and lists of member function
56 fields in an instance of a field_info structure, as defined below.
57 This is part of some reorganization of low level C++ support and is
58 expected to eventually go away... (FIXME) */
59
60struct field_info
61{
62 struct nextfield
63 {
64 struct nextfield *next;
65
66 /* This is the raw visibility from the stab. It is not checked
67 for being one of the visibilities we recognize, so code which
68 examines this field better be able to deal. */
69 int visibility;
70
71 struct field field;
72 } *list;
73 struct next_fnfieldlist
74 {
75 struct next_fnfieldlist *next;
76 struct fn_fieldlist fn_fieldlist;
77 } *fnlist;
78};
79
80static void
81read_one_struct_field PARAMS ((struct field_info *, char **, char *,
82 struct type *, struct objfile *));
83
84static char *
85get_substring PARAMS ((char **, int));
86
87static struct type *
88dbx_alloc_type PARAMS ((int [2], struct objfile *));
89
90static long read_huge_number PARAMS ((char **, int, int *));
91
92static struct type *error_type PARAMS ((char **, struct objfile *));
93
94static void
95patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
96 struct objfile *));
97
98static void
99fix_common_block PARAMS ((struct symbol *, int));
100
101static int
102read_type_number PARAMS ((char **, int *));
103
104static struct type *
105read_range_type PARAMS ((char **, int [2], struct objfile *));
106
107static struct type *
108read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
109
110static struct type *
111read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
112
113static struct type *
114read_enum_type PARAMS ((char **, struct type *, struct objfile *));
115
116static struct type *
117rs6000_builtin_type PARAMS ((int));
118
119static int
120read_member_functions PARAMS ((struct field_info *, char **, struct type *,
121 struct objfile *));
122
123static int
124read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
125 struct objfile *));
126
127static int
128read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
129 struct objfile *));
130
131static int
132read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135static int
136attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
137
138static int
139attach_fields_to_type PARAMS ((struct field_info *, struct type *,
140 struct objfile *));
141
142static struct type *
143read_struct_type PARAMS ((char **, struct type *, struct objfile *));
144
145static struct type *
146read_array_type PARAMS ((char **, struct type *, struct objfile *));
147
148static struct type **
149read_args PARAMS ((char **, int, struct objfile *));
150
151static int
152read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
153 struct objfile *));
154
155/* new functions added for cfront support */
156
157static int
158copy_cfront_struct_fields PARAMS ((struct field_info *, struct type *,
159 struct objfile *));
160
161static char *
162get_cfront_method_physname PARAMS ((char *));
163
164static int
165read_cfront_baseclasses PARAMS ((struct field_info *, char **,
166 struct type *, struct objfile *));
167
168static int
169read_cfront_static_fields PARAMS ((struct field_info *, char**,
170 struct type *, struct objfile *));
171static int
172read_cfront_member_functions PARAMS ((struct field_info *, char **,
173 struct type *, struct objfile *));
174
175/* end new functions added for cfront support */
176
177static void
178add_live_range PARAMS ((struct objfile *, struct symbol *,
179 CORE_ADDR, CORE_ADDR));
180
181static int
182resolve_live_range PARAMS ((struct objfile *, struct symbol *, char *));
183
184static int
185process_reference PARAMS ((char **string));
186
187static CORE_ADDR
188ref_search_value PARAMS ((int refnum));
189
190static int
191resolve_symbol_reference PARAMS ((struct objfile *, struct symbol *, char *));
192
193static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
194static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
195
196/* Define this as 1 if a pcc declaration of a char or short argument
197 gives the correct address. Otherwise assume pcc gives the
198 address of the corresponding int, which is not the same on a
199 big-endian machine. */
200
7a292a7a 201#if !defined (BELIEVE_PCC_PROMOTION)
c906108c
SS
202#define BELIEVE_PCC_PROMOTION 0
203#endif
7a292a7a
SS
204#if !defined (BELIEVE_PCC_PROMOTION_TYPE)
205#define BELIEVE_PCC_PROMOTION_TYPE 0
206#endif
c906108c
SS
207
208static struct complaint invalid_cpp_abbrev_complaint =
209 {"invalid C++ abbreviation `%s'", 0, 0};
210
211static struct complaint invalid_cpp_type_complaint =
212 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
213
214static struct complaint member_fn_complaint =
215 {"member function type missing, got '%c'", 0, 0};
216
217static struct complaint const_vol_complaint =
218 {"const/volatile indicator missing, got '%c'", 0, 0};
219
220static struct complaint error_type_complaint =
221 {"debug info mismatch between compiler and debugger", 0, 0};
222
223static struct complaint invalid_member_complaint =
224 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
225
226static struct complaint range_type_base_complaint =
227 {"base type %d of range type is not defined", 0, 0};
228
229static struct complaint reg_value_complaint =
230 {"register number %d too large (max %d) in symbol %s", 0, 0};
231
232static struct complaint vtbl_notfound_complaint =
233 {"virtual function table pointer not found when defining class `%s'", 0, 0};
234
235static struct complaint unrecognized_cplus_name_complaint =
236 {"Unknown C++ symbol name `%s'", 0, 0};
237
238static struct complaint rs6000_builtin_complaint =
239 {"Unknown builtin type %d", 0, 0};
240
241static struct complaint unresolved_sym_chain_complaint =
242 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
243
244static struct complaint stabs_general_complaint =
245 {"%s", 0, 0};
246
247static struct complaint lrs_general_complaint =
248 {"%s", 0, 0};
249
250/* Make a list of forward references which haven't been defined. */
251
252static struct type **undef_types;
253static int undef_types_allocated;
254static int undef_types_length;
255static struct symbol *current_symbol = NULL;
256
257/* Check for and handle cretinous stabs symbol name continuation! */
258#define STABS_CONTINUE(pp,objfile) \
259 do { \
260 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
261 *(pp) = next_symbol_text (objfile); \
262 } while (0)
263\f
264/* FIXME: These probably should be our own types (like rs6000_builtin_type
265 has its own types) rather than builtin_type_*. */
266static struct type **os9k_type_vector[] = {
267 0,
268 &builtin_type_int,
269 &builtin_type_char,
270 &builtin_type_long,
271 &builtin_type_short,
272 &builtin_type_unsigned_char,
273 &builtin_type_unsigned_short,
274 &builtin_type_unsigned_long,
275 &builtin_type_unsigned_int,
276 &builtin_type_float,
277 &builtin_type_double,
278 &builtin_type_void,
279 &builtin_type_long_double
280};
281
282static void os9k_init_type_vector PARAMS ((struct type **));
283
284static void
285os9k_init_type_vector(tv)
286 struct type **tv;
287{
288 int i;
289 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
290 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
291}
292
293/* Look up a dbx type-number pair. Return the address of the slot
294 where the type for that number-pair is stored.
295 The number-pair is in TYPENUMS.
296
297 This can be used for finding the type associated with that pair
298 or for associating a new type with the pair. */
299
300struct type **
301dbx_lookup_type (typenums)
302 int typenums[2];
303{
304 register int filenum = typenums[0];
305 register int index = typenums[1];
306 unsigned old_len;
307 register int real_filenum;
308 register struct header_file *f;
309 int f_orig_length;
310
311 if (filenum == -1) /* -1,-1 is for temporary types. */
312 return 0;
313
314 if (filenum < 0 || filenum >= n_this_object_header_files)
315 {
316 static struct complaint msg = {"\
317Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
318 0, 0};
319 complain (&msg, filenum, index, symnum);
320 goto error_return;
321 }
322
323 if (filenum == 0)
324 {
325 if (index < 0)
326 {
327 /* Caller wants address of address of type. We think
328 that negative (rs6k builtin) types will never appear as
329 "lvalues", (nor should they), so we stuff the real type
330 pointer into a temp, and return its address. If referenced,
331 this will do the right thing. */
332 static struct type *temp_type;
333
334 temp_type = rs6000_builtin_type(index);
335 return &temp_type;
336 }
337
338 /* Type is defined outside of header files.
339 Find it in this object file's type vector. */
340 if (index >= type_vector_length)
341 {
342 old_len = type_vector_length;
343 if (old_len == 0)
344 {
345 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
346 type_vector = (struct type **)
347 xmalloc (type_vector_length * sizeof (struct type *));
348 }
349 while (index >= type_vector_length)
350 {
351 type_vector_length *= 2;
352 }
353 type_vector = (struct type **)
354 xrealloc ((char *) type_vector,
355 (type_vector_length * sizeof (struct type *)));
356 memset (&type_vector[old_len], 0,
357 (type_vector_length - old_len) * sizeof (struct type *));
358
359 if (os9k_stabs)
360 /* Deal with OS9000 fundamental types. */
361 os9k_init_type_vector (type_vector);
362 }
363 return (&type_vector[index]);
364 }
365 else
366 {
367 real_filenum = this_object_header_files[filenum];
368
369 if (real_filenum >= N_HEADER_FILES (current_objfile))
370 {
371 struct type *temp_type;
372 struct type **temp_type_p;
373
374 warning ("GDB internal error: bad real_filenum");
375
376 error_return:
377 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
378 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
379 *temp_type_p = temp_type;
380 return temp_type_p;
381 }
382
383 f = HEADER_FILES (current_objfile) + real_filenum;
384
385 f_orig_length = f->length;
386 if (index >= f_orig_length)
387 {
388 while (index >= f->length)
389 {
390 f->length *= 2;
391 }
392 f->vector = (struct type **)
393 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
394 memset (&f->vector[f_orig_length], 0,
395 (f->length - f_orig_length) * sizeof (struct type *));
396 }
397 return (&f->vector[index]);
398 }
399}
400
401/* Make sure there is a type allocated for type numbers TYPENUMS
402 and return the type object.
403 This can create an empty (zeroed) type object.
404 TYPENUMS may be (-1, -1) to return a new type object that is not
405 put into the type vector, and so may not be referred to by number. */
406
407static struct type *
408dbx_alloc_type (typenums, objfile)
409 int typenums[2];
410 struct objfile *objfile;
411{
412 register struct type **type_addr;
413
414 if (typenums[0] == -1)
415 {
416 return (alloc_type (objfile));
417 }
418
419 type_addr = dbx_lookup_type (typenums);
420
421 /* If we are referring to a type not known at all yet,
422 allocate an empty type for it.
423 We will fill it in later if we find out how. */
424 if (*type_addr == 0)
425 {
426 *type_addr = alloc_type (objfile);
427 }
428
429 return (*type_addr);
430}
431
432/* for all the stabs in a given stab vector, build appropriate types
433 and fix their symbols in given symbol vector. */
434
435static void
436patch_block_stabs (symbols, stabs, objfile)
437 struct pending *symbols;
438 struct pending_stabs *stabs;
439 struct objfile *objfile;
440{
441 int ii;
442 char *name;
443 char *pp;
444 struct symbol *sym;
445
446 if (stabs)
447 {
448
449 /* for all the stab entries, find their corresponding symbols and
450 patch their types! */
451
452 for (ii = 0; ii < stabs->count; ++ii)
453 {
454 name = stabs->stab[ii];
455 pp = (char*) strchr (name, ':');
456 while (pp[1] == ':')
457 {
458 pp += 2;
459 pp = (char *)strchr(pp, ':');
460 }
461 sym = find_symbol_in_list (symbols, name, pp-name);
462 if (!sym)
463 {
464 /* FIXME-maybe: it would be nice if we noticed whether
465 the variable was defined *anywhere*, not just whether
466 it is defined in this compilation unit. But neither
467 xlc or GCC seem to need such a definition, and until
468 we do psymtabs (so that the minimal symbols from all
469 compilation units are available now), I'm not sure
470 how to get the information. */
471
472 /* On xcoff, if a global is defined and never referenced,
473 ld will remove it from the executable. There is then
474 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
475 sym = (struct symbol *)
476 obstack_alloc (&objfile->symbol_obstack,
477 sizeof (struct symbol));
478
479 memset (sym, 0, sizeof (struct symbol));
480 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
481 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
482 SYMBOL_NAME (sym) =
483 obsavestring (name, pp - name, &objfile->symbol_obstack);
484 pp += 2;
485 if (*(pp-1) == 'F' || *(pp-1) == 'f')
486 {
487 /* I don't think the linker does this with functions,
488 so as far as I know this is never executed.
489 But it doesn't hurt to check. */
490 SYMBOL_TYPE (sym) =
491 lookup_function_type (read_type (&pp, objfile));
492 }
493 else
494 {
495 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
496 }
497 add_symbol_to_list (sym, &global_symbols);
498 }
499 else
500 {
501 pp += 2;
502 if (*(pp-1) == 'F' || *(pp-1) == 'f')
503 {
504 SYMBOL_TYPE (sym) =
505 lookup_function_type (read_type (&pp, objfile));
506 }
507 else
508 {
509 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
510 }
511 }
512 }
513 }
514}
515
516\f
517/* Read a number by which a type is referred to in dbx data,
518 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
519 Just a single number N is equivalent to (0,N).
520 Return the two numbers by storing them in the vector TYPENUMS.
521 TYPENUMS will then be used as an argument to dbx_lookup_type.
522
523 Returns 0 for success, -1 for error. */
524
525static int
526read_type_number (pp, typenums)
527 register char **pp;
528 register int *typenums;
529{
530 int nbits;
531 if (**pp == '(')
532 {
533 (*pp)++;
534 typenums[0] = read_huge_number (pp, ',', &nbits);
535 if (nbits != 0) return -1;
536 typenums[1] = read_huge_number (pp, ')', &nbits);
537 if (nbits != 0) return -1;
538 }
539 else
540 {
541 typenums[0] = 0;
542 typenums[1] = read_huge_number (pp, 0, &nbits);
543 if (nbits != 0) return -1;
544 }
545 return 0;
546}
547
548\f
549#if !defined (REG_STRUCT_HAS_ADDR)
550#define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
551#endif
552
553#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
554#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
555#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
556#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
557
558#define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
559#define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
560
561/* This code added to support parsing of ARM/Cfront stabs strings */
562
563/* Get substring from string up to char c, advance string pointer past
564 suibstring. */
565
566static char *
567get_substring (p, c)
568 char ** p;
569 int c;
570{
571 char *str;
572 str = *p;
573 *p = strchr (*p, c);
574 if (*p)
575 {
576 **p = 0;
577 (*p)++;
578 }
579 else
580 str = 0;
581 return str;
582}
583
584/* Physname gets strcat'd onto sname in order to recreate the mangled
585 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
586 the physname look like that of g++ - take out the initial mangling
587 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
588
589static char *
590get_cfront_method_physname (fname)
591 char *fname;
592{
593 int len = 0;
594 /* FIXME would like to make this generic for g++ too, but
595 that is already handled in read_member_funcctions */
596 char * p = fname;
597
598 /* search ahead to find the start of the mangled suffix */
599 if (*p == '_' && *(p+1)=='_') /* compiler generated; probably a ctor/dtor */
600 p += 2;
601 while (p && (unsigned) ((p+1) - fname) < strlen (fname) && *(p+1) != '_')
602 p = strchr (p, '_');
603 if (!(p && *p == '_' && *(p+1) == '_'))
604 error ("Invalid mangled function name %s",fname);
605 p += 2; /* advance past '__' */
606
607 /* struct name length and name of type should come next; advance past it */
608 while (isdigit (*p))
609 {
610 len = len * 10 + (*p - '0');
611 p++;
612 }
613 p += len;
614
615 return p;
616}
617
618/* Read base classes within cfront class definition.
619 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
620 ^^^^^^^^^^^^^^^^^^
621
622 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
623 ^
624 */
625
626static int
627read_cfront_baseclasses (fip, pp, type, objfile)
628 struct field_info *fip;
629 struct objfile *objfile;
630 char ** pp;
631 struct type *type;
632{
633 static struct complaint msg_unknown = {"\
634 Unsupported token in stabs string %s.\n",
635 0, 0};
636 static struct complaint msg_notfound = {"\
637 Unable to find base type for %s.\n",
638 0, 0};
639 int bnum = 0;
640 char * p;
641 int i;
642 struct nextfield *new;
643
644 if (**pp == ';') /* no base classes; return */
645 {
646 ++(*pp);
647 return 1;
648 }
649
650 /* first count base classes so we can allocate space before parsing */
651 for (p = *pp; p && *p && *p != ';'; p++)
652 {
653 if (*p == ' ')
654 bnum++;
655 }
656 bnum++; /* add one more for last one */
657
658 /* now parse the base classes until we get to the start of the methods
659 (code extracted and munged from read_baseclasses) */
660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
661 TYPE_N_BASECLASSES(type) = bnum;
662
663 /* allocate space */
664 {
665 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
666 char *pointer;
667
668 pointer = (char *) TYPE_ALLOC (type, num_bytes);
669 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
670 }
671 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
672
673 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
674 {
675 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
676 make_cleanup (free, new);
677 memset (new, 0, sizeof (struct nextfield));
678 new -> next = fip -> list;
679 fip -> list = new;
680 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
681
682 STABS_CONTINUE (pp, objfile);
683
684 /* virtual? eg: v2@Bvir */
685 if (**pp=='v')
686 {
687 SET_TYPE_FIELD_VIRTUAL (type, i);
688 ++(*pp);
689 }
690
691 /* access? eg: 2@Bvir */
692 /* Note: protected inheritance not supported in cfront */
693 switch (*(*pp)++)
694 {
695 case CFRONT_VISIBILITY_PRIVATE:
696 new -> visibility = VISIBILITY_PRIVATE;
697 break;
698 case CFRONT_VISIBILITY_PUBLIC:
699 new -> visibility = VISIBILITY_PUBLIC;
700 break;
701 default:
702 /* Bad visibility format. Complain and treat it as
703 public. */
704 {
705 static struct complaint msg = {
706 "Unknown visibility `%c' for baseclass", 0, 0};
707 complain (&msg, new -> visibility);
708 new -> visibility = VISIBILITY_PUBLIC;
709 }
710 }
711
712 /* "@" comes next - eg: @Bvir */
713 if (**pp!='@')
714 {
715 complain (&msg_unknown, *pp);
716 return 1;
717 }
718 ++(*pp);
719
720
721 /* Set the bit offset of the portion of the object corresponding
722 to this baseclass. Always zero in the absence of
723 multiple inheritance. */
724 /* Unable to read bit position from stabs;
725 Assuming no multiple inheritance for now FIXME! */
726 /* We may have read this in the structure definition;
727 now we should fixup the members to be the actual base classes */
728 FIELD_BITPOS (new->field) = 0;
729
730 /* Get the base class name and type */
731 {
732 char * bname; /* base class name */
733 struct symbol * bsym; /* base class */
734 char * p1, * p2;
735 p1 = strchr (*pp,' ');
736 p2 = strchr (*pp,';');
737 if (p1<p2)
738 bname = get_substring (pp,' ');
739 else
740 bname = get_substring (pp,';');
741 if (!bname || !*bname)
742 {
743 complain (&msg_unknown, *pp);
744 return 1;
745 }
746 /* FIXME! attach base info to type */
747 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name*/
748 if (bsym)
749 {
750 new -> field.type = SYMBOL_TYPE(bsym);
751 new -> field.name = type_name_no_tag (new -> field.type);
752 }
753 else
754 {
755 complain (&msg_notfound, *pp);
756 return 1;
757 }
758 }
759
760 /* If more base classes to parse, loop again.
761 We ate the last ' ' or ';' in get_substring,
762 so on exit we will have skipped the trailing ';' */
763 /* if invalid, return 0; add code to detect - FIXME! */
764 }
765 return 1;
766}
767
768/* read cfront member functions.
769 pp points to string starting with list of functions
770 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
771 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
772 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
773 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
774*/
775
776static int
777read_cfront_member_functions (fip, pp, type, objfile)
778 struct field_info *fip;
779 char **pp;
780 struct type *type;
781 struct objfile *objfile;
782{
783 /* This code extracted from read_member_functions
784 so as to do the similar thing for our funcs */
785
786 int nfn_fields = 0;
787 int length = 0;
788 /* Total number of member functions defined in this class. If the class
789 defines two `f' functions, and one `g' function, then this will have
790 the value 3. */
791 int total_length = 0;
792 int i;
793 struct next_fnfield
794 {
795 struct next_fnfield *next;
796 struct fn_field fn_field;
797 } *sublist;
798 struct type *look_ahead_type;
799 struct next_fnfieldlist *new_fnlist;
800 struct next_fnfield *new_sublist;
801 char *main_fn_name;
802 char * fname;
803 struct symbol * ref_func = 0;
804
805 /* Process each list until we find the end of the member functions.
806 eg: p = "__ct__1AFv foo__1AFv ;;;" */
807
808 STABS_CONTINUE (pp, objfile); /* handle \\ */
809
810 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
811 {
812 int is_static = 0;
813 int sublist_count = 0;
814 char * pname;
815 if (fname[0] == '*') /* static member */
816 {
817 is_static=1;
818 sublist_count++;
819 fname++;
820 }
821 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
822 if (!ref_func)
823 {
824 static struct complaint msg = {"\
825 Unable to find function symbol for %s\n",
826 0, 0};
827 complain (&msg, fname);
828 continue;
829 }
830 sublist = NULL;
831 look_ahead_type = NULL;
832 length = 0;
833
834 new_fnlist = (struct next_fnfieldlist *)
835 xmalloc (sizeof (struct next_fnfieldlist));
836 make_cleanup (free, new_fnlist);
837 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
838
839 /* The following is code to work around cfront generated stabs.
840 The stabs contains full mangled name for each field.
841 We try to demangle the name and extract the field name out of it. */
842 {
843 char *dem, *dem_p, *dem_args;
844 int dem_len;
845 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
846 if (dem != NULL)
847 {
848 dem_p = strrchr (dem, ':');
849 if (dem_p != 0 && *(dem_p-1) == ':')
850 dem_p++;
851 /* get rid of args */
852 dem_args = strchr (dem_p, '(');
853 if (dem_args == NULL)
854 dem_len = strlen (dem_p);
855 else
856 dem_len = dem_args - dem_p;
857 main_fn_name =
858 obsavestring (dem_p, dem_len, &objfile -> type_obstack);
859 }
860 else
861 {
862 main_fn_name =
863 obsavestring (fname, strlen (fname), &objfile -> type_obstack);
864 }
865 } /* end of code for cfront work around */
866
867 new_fnlist -> fn_fieldlist.name = main_fn_name;
868
869 /*-------------------------------------------------*/
870 /* Set up the sublists
871 Sublists are stuff like args, static, visibility, etc.
872 so in ARM, we have to set that info some other way.
873 Multiple sublists happen if overloading
874 eg: foo::26=##1;:;2A.;
875 In g++, we'd loop here thru all the sublists... */
876
877 new_sublist =
878 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
879 make_cleanup (free, new_sublist);
880 memset (new_sublist, 0, sizeof (struct next_fnfield));
881
882 /* eat 1; from :;2A.; */
883 new_sublist -> fn_field.type = SYMBOL_TYPE(ref_func); /* normally takes a read_type */
884 /* Make this type look like a method stub for gdb */
885 TYPE_FLAGS (new_sublist -> fn_field.type) |= TYPE_FLAG_STUB;
886 TYPE_CODE (new_sublist -> fn_field.type) = TYPE_CODE_METHOD;
887
888 /* If this is just a stub, then we don't have the real name here. */
889 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
890 {
891 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
892 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
893 new_sublist -> fn_field.is_stub = 1;
894 }
895
896 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
897 physname gets strcat'd in order to recreate the onto mangled name */
898 pname = get_cfront_method_physname (fname);
899 new_sublist -> fn_field.physname = savestring (pname, strlen (pname));
900
901
902 /* Set this member function's visibility fields.
903 Unable to distinguish access from stabs definition!
904 Assuming public for now. FIXME!
905 (for private, set new_sublist->fn_field.is_private = 1,
906 for public, set new_sublist->fn_field.is_protected = 1) */
907
908 /* Unable to distinguish const/volatile from stabs definition!
909 Assuming normal for now. FIXME! */
910
911 new_sublist -> fn_field.is_const = 0;
912 new_sublist -> fn_field.is_volatile = 0; /* volatile not implemented in cfront */
913
914 /* Set virtual/static function info
915 How to get vtable offsets ?
916 Assuming normal for now FIXME!!
917 For vtables, figure out from whence this virtual function came.
918 It may belong to virtual function table of
919 one of its baseclasses.
920 set:
921 new_sublist -> fn_field.voffset = vtable offset,
922 new_sublist -> fn_field.fcontext = look_ahead_type;
923 where look_ahead_type is type of baseclass */
924 if (is_static)
925 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
926 else /* normal member function. */
927 new_sublist -> fn_field.voffset = 0;
928 new_sublist -> fn_field.fcontext = 0;
929
930
931 /* Prepare new sublist */
932 new_sublist -> next = sublist;
933 sublist = new_sublist;
934 length++;
935
936 /* In g++, we loop thu sublists - now we set from functions. */
937 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
938 obstack_alloc (&objfile -> type_obstack,
939 sizeof (struct fn_field) * length);
940 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
941 sizeof (struct fn_field) * length);
942 for (i = length; (i--, sublist); sublist = sublist -> next)
943 {
944 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
945 }
946
947 new_fnlist -> fn_fieldlist.length = length;
948 new_fnlist -> next = fip -> fnlist;
949 fip -> fnlist = new_fnlist;
950 nfn_fields++;
951 total_length += length;
952 STABS_CONTINUE (pp, objfile); /* handle \\ */
953 } /* end of loop */
954
955 if (nfn_fields)
956 {
957 /* type should already have space */
958 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
959 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
960 memset (TYPE_FN_FIELDLISTS (type), 0,
961 sizeof (struct fn_fieldlist) * nfn_fields);
962 TYPE_NFN_FIELDS (type) = nfn_fields;
963 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
964 }
965
966 /* end of scope for reading member func */
967
968 /* eg: ";;" */
969
970 /* Skip trailing ';' and bump count of number of fields seen */
971 if (**pp == ';')
972 (*pp)++;
973 else
974 return 0;
975 return 1;
976}
977
978/* This routine fixes up partial cfront types that were created
979 while parsing the stabs. The main need for this function is
980 to add information such as methods to classes.
981 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
982int
983resolve_cfront_continuation (objfile, sym, p)
984 struct objfile * objfile;
985 struct symbol * sym;
986 char * p;
987{
988 struct symbol * ref_sym=0;
989 char * sname;
990 /* snarfed from read_struct_type */
991 struct field_info fi;
992 struct type *type;
993 struct cleanup *back_to;
994
995 /* Need to make sure that fi isn't gunna conflict with struct
996 in case struct already had some fnfs */
997 fi.list = NULL;
998 fi.fnlist = NULL;
999 back_to = make_cleanup (null_cleanup, 0);
1000
1001 /* We only accept structs, classes and unions at the moment.
1002 Other continuation types include t (typedef), r (long dbl), ...
1003 We may want to add support for them as well;
1004 right now they are handled by duplicating the symbol information
1005 into the type information (see define_symbol) */
1006 if (*p != 's' /* structs */
1007 && *p != 'c' /* class */
1008 && *p != 'u') /* union */
1009 return 0; /* only handle C++ types */
1010 p++;
1011
1012 /* Get symbol typs name and validate
1013 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
1014 sname = get_substring (&p, ';');
1015 if (!sname || strcmp (sname, SYMBOL_NAME(sym)))
1016 error ("Internal error: base symbol type name does not match\n");
1017
1018 /* Find symbol's internal gdb reference using demangled_name.
1019 This is the real sym that we want;
1020 sym was a temp hack to make debugger happy */
1021 ref_sym = lookup_symbol (SYMBOL_NAME(sym), 0, STRUCT_NAMESPACE, 0, 0);
1022 type = SYMBOL_TYPE(ref_sym);
1023
1024
1025 /* Now read the baseclasses, if any, read the regular C struct or C++
1026 class member fields, attach the fields to the type, read the C++
1027 member functions, attach them to the type, and then read any tilde
1028 field (baseclass specifier for the class holding the main vtable). */
1029
1030 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1031 /* g++ does this next, but cfront already did this:
1032 || !read_struct_fields (&fi, &p, type, objfile) */
1033 || !copy_cfront_struct_fields (&fi, type, objfile)
1034 || !read_cfront_member_functions (&fi, &p, type, objfile)
1035 || !read_cfront_static_fields (&fi, &p, type, objfile)
1036 || !attach_fields_to_type (&fi, type, objfile)
1037 || !attach_fn_fields_to_type (&fi, type)
1038 /* g++ does this next, but cfront doesn't seem to have this:
1039 || !read_tilde_fields (&fi, &p, type, objfile) */
1040 )
1041 {
1042 type = error_type (&p, objfile);
1043 }
1044
1045 do_cleanups (back_to);
1046 return 0;
1047}
1048/* End of code added to support parsing of ARM/Cfront stabs strings */
1049
1050
1051/* This routine fixes up symbol references/aliases to point to the original
1052 symbol definition. Returns 0 on failure, non-zero on success. */
1053
1054static int
1055resolve_symbol_reference (objfile, sym, p)
1056 struct objfile *objfile;
1057 struct symbol *sym;
1058 char *p;
1059{
1060 int refnum;
1061 struct symbol *ref_sym=0;
1062 struct alias_list *alias;
1063
1064 /* If this is not a symbol reference return now. */
1065 if (*p != '#')
1066 return 0;
1067
1068 /* Use "#<num>" as the name; we'll fix the name later.
1069 We stored the original symbol name as "#<id>=<name>"
1070 so we can now search for "#<id>" to resolving the reference.
1071 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1072
1073 /*---------------------------------------------------------*/
1074 /* Get the reference id number, and
1075 advance p past the names so we can parse the rest.
1076 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1077 /*---------------------------------------------------------*/
1078
1079 /* This gets reference name from string. sym may not have a name. */
1080
1081 /* Get the reference number associated with the reference id in the
1082 gdb stab string. From that reference number, get the main/primary
1083 symbol for this alias. */
1084 refnum = process_reference (&p);
1085 ref_sym = ref_search (refnum);
1086 if (!ref_sym)
1087 {
1088 complain (&lrs_general_complaint, "symbol for reference not found");
1089 return 0;
1090 }
1091
1092 /* Parse the stab of the referencing symbol
1093 now that we have the referenced symbol.
1094 Add it as a new symbol and a link back to the referenced symbol.
1095 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1096
1097
1098 /* If the stab symbol table and string contain:
1099 RSYM 0 5 00000000 868 #15=z:r(0,1)
1100 LBRAC 0 0 00000000 899 #5=
1101 SLINE 0 16 00000003 923 #6=
1102 Then the same symbols can be later referenced by:
1103 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1104 This is used in live range splitting to:
1105 1) specify that a symbol (#15) is actually just a new storage
1106 class for a symbol (#15=z) which was previously defined.
1107 2) specify that the beginning and ending ranges for a symbol
1108 (#15) are the values of the beginning (#5) and ending (#6)
1109 symbols. */
1110
1111 /* Read number as reference id.
1112 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1113 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1114 in case of "l(0,0)"? */
1115
1116 /*--------------------------------------------------*/
1117 /* Add this symbol to the reference list. */
1118 /*--------------------------------------------------*/
1119
1120 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1121 sizeof (struct alias_list));
1122 if (!alias)
1123 {
1124 complain (&lrs_general_complaint, "Unable to allocate alias list memory");
1125 return 0;
1126 }
1127
1128 alias->next = 0;
1129 alias->sym = sym;
1130
1131 if (!SYMBOL_ALIASES (ref_sym))
1132 {
1133 SYMBOL_ALIASES (ref_sym) = alias;
1134 }
1135 else
1136 {
1137 struct alias_list *temp;
1138
1139 /* Get to the end of the list. */
1140 for (temp = SYMBOL_ALIASES (ref_sym);
1141 temp->next;
1142 temp = temp->next)
1143 ;
1144 temp->next = alias;
1145 }
1146
1147 /* Want to fix up name so that other functions (eg. valops)
1148 will correctly print the name.
1149 Don't add_symbol_to_list so that lookup_symbol won't find it.
1150 nope... needed for fixups. */
1151 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1152
1153 /* Done! */
1154 return 1;
1155}
1156
1157/* Structure for storing pointers to reference definitions for fast lookup
1158 during "process_later". */
1159
1160struct ref_map
1161{
1162 char *stabs;
1163 CORE_ADDR value;
1164 struct symbol *sym;
1165};
1166
1167#define MAX_CHUNK_REFS 100
1168#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1169#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1170
1171static struct ref_map *ref_map;
1172
1173/* Ptr to free cell in chunk's linked list. */
1174static int ref_count = 0;
1175
1176/* Number of chunks malloced. */
1177static int ref_chunk = 0;
1178
1179/* Create array of pointers mapping refids to symbols and stab strings.
1180 Add pointers to reference definition symbols and/or their values as we
1181 find them, using their reference numbers as our index.
1182 These will be used later when we resolve references. */
1183void
1184ref_add (refnum, sym, stabs, value)
1185 int refnum;
1186 struct symbol *sym;
1187 char *stabs;
1188 CORE_ADDR value;
1189{
1190 if (ref_count == 0)
1191 ref_chunk = 0;
1192 if (refnum >= ref_count)
1193 ref_count = refnum + 1;
1194 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1195 {
1196 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1197 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1198 ref_map = (struct ref_map *)
1199 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1200 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1201 ref_chunk += new_chunks;
1202 }
1203 ref_map[refnum].stabs = stabs;
1204 ref_map[refnum].sym = sym;
1205 ref_map[refnum].value = value;
1206}
1207
1208/* Return defined sym for the reference REFNUM. */
1209struct symbol *
1210ref_search (refnum)
1211 int refnum;
1212{
1213 if (refnum < 0 || refnum > ref_count)
1214 return 0;
1215 return ref_map[refnum].sym;
1216}
1217
1218/* Return value for the reference REFNUM. */
1219
1220static CORE_ADDR
1221ref_search_value (refnum)
1222 int refnum;
1223{
1224 if (refnum < 0 || refnum > ref_count)
1225 return 0;
1226 return ref_map[refnum].value;
1227}
1228
1229/* Parse a reference id in STRING and return the resulting
1230 reference number. Move STRING beyond the reference id. */
1231
1232static int
1233process_reference (string)
1234 char **string;
1235{
1236 char *p;
1237 int refnum = 0;
1238
1239 if (**string != '#')
1240 return 0;
1241
1242 /* Advance beyond the initial '#'. */
1243 p = *string + 1;
1244
1245 /* Read number as reference id. */
1246 while (*p && isdigit (*p))
1247 {
1248 refnum = refnum * 10 + *p - '0';
1249 p++;
1250 }
1251 *string = p;
1252 return refnum;
1253}
1254
1255/* If STRING defines a reference, store away a pointer to the reference
1256 definition for later use. Return the reference number. */
1257
1258int
1259symbol_reference_defined (string)
1260 char **string;
1261{
1262 char *p = *string;
1263 int refnum = 0;
1264
1265 refnum = process_reference (&p);
1266
1267 /* Defining symbols end in '=' */
1268 if (*p == '=')
1269 {
1270 /* Symbol is being defined here. */
1271 *string = p + 1;
1272 return refnum;
1273 }
1274 else
1275 {
1276 /* Must be a reference. Either the symbol has already been defined,
1277 or this is a forward reference to it. */
1278 *string = p;
1279 return -1;
1280 }
1281}
1282
1283/* ARGSUSED */
1284struct symbol *
1285define_symbol (valu, string, desc, type, objfile)
1286 CORE_ADDR valu;
1287 char *string;
1288 int desc;
1289 int type;
1290 struct objfile *objfile;
1291{
1292 register struct symbol *sym;
1293 char *p = (char *) strchr (string, ':');
1294 int deftype;
1295 int synonym = 0;
1296 register int i;
1297
1298 /* We would like to eliminate nameless symbols, but keep their types.
1299 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1300 to type 2, but, should not create a symbol to address that type. Since
1301 the symbol will be nameless, there is no way any user can refer to it. */
1302
1303 int nameless;
1304
1305 /* Ignore syms with empty names. */
1306 if (string[0] == 0)
1307 return 0;
1308
1309 /* Ignore old-style symbols from cc -go */
1310 if (p == 0)
1311 return 0;
1312
1313 while (p[1] == ':')
1314 {
1315 p += 2;
1316 p = strchr (p, ':');
1317 }
1318
1319 /* If a nameless stab entry, all we need is the type, not the symbol.
1320 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1321 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1322
1323 current_symbol = sym = (struct symbol *)
1324 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1325 memset (sym, 0, sizeof (struct symbol));
1326
1327 switch (type & N_TYPE)
1328 {
1329 case N_TEXT:
1330 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
1331 break;
1332 case N_DATA:
1333 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
1334 break;
1335 case N_BSS:
1336 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
1337 break;
1338 }
1339
1340 if (processing_gcc_compilation)
1341 {
1342 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1343 number of bytes occupied by a type or object, which we ignore. */
1344 SYMBOL_LINE(sym) = desc;
1345 }
1346 else
1347 {
1348 SYMBOL_LINE(sym) = 0; /* unknown */
1349 }
1350
1351 if (is_cplus_marker (string[0]))
1352 {
1353 /* Special GNU C++ names. */
1354 switch (string[1])
1355 {
1356 case 't':
1357 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1358 &objfile -> symbol_obstack);
1359 break;
1360
1361 case 'v': /* $vtbl_ptr_type */
1362 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1363 goto normal;
1364
1365 case 'e':
1366 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1367 &objfile -> symbol_obstack);
1368 break;
1369
1370 case '_':
1371 /* This was an anonymous type that was never fixed up. */
1372 goto normal;
1373
1374#ifdef STATIC_TRANSFORM_NAME
1375 case 'X':
1376 /* SunPRO (3.0 at least) static variable encoding. */
1377 goto normal;
1378#endif
1379
1380 default:
1381 complain (&unrecognized_cplus_name_complaint, string);
1382 goto normal; /* Do *something* with it */
1383 }
1384 }
1385 else if (string[0] == '#')
1386 {
1387 /* Special GNU C extension for referencing symbols. */
1388 char *s;
1389 int refnum, nlen;
1390
1391 /* If STRING defines a new reference id, then add it to the
1392 reference map. Else it must be referring to a previously
1393 defined symbol, so add it to the alias list of the previously
1394 defined symbol. */
1395 s = string;
1396 refnum = symbol_reference_defined (&s);
1397 if (refnum >= 0)
1398 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1399 else
1400 if (!resolve_symbol_reference (objfile, sym, string))
1401 return NULL;
1402
1403 /* S..P contains the name of the symbol. We need to store
1404 the correct name into SYMBOL_NAME. */
1405 nlen = p - s;
1406 if (refnum >= 0)
1407 {
1408 if (nlen > 0)
1409 {
1410 SYMBOL_NAME (sym) = (char *)
1411 obstack_alloc (&objfile -> symbol_obstack, nlen);
1412 strncpy (SYMBOL_NAME (sym), s, nlen);
1413 SYMBOL_NAME (sym)[nlen] = '\0';
1414 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1415 }
1416 else
1417 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1418 Get error if leave name 0. So give it something. */
1419 {
1420 nlen = p - string;
1421 SYMBOL_NAME (sym) = (char *)
1422 obstack_alloc (&objfile -> symbol_obstack, nlen);
1423 strncpy (SYMBOL_NAME (sym), string, nlen);
1424 SYMBOL_NAME (sym)[nlen] = '\0';
1425 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1426 }
1427 }
1428 /* Advance STRING beyond the reference id. */
1429 string = s;
1430 }
1431 else
1432 {
1433 normal:
1434 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
1435 SYMBOL_NAME (sym) = (char *)
1436 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
1437 /* Open-coded memcpy--saves function call time. */
1438 /* FIXME: Does it really? Try replacing with simple strcpy and
1439 try it on an executable with a large symbol table. */
1440 /* FIXME: considering that gcc can open code memcpy anyway, I
1441 doubt it. xoxorich. */
1442 {
1443 register char *p1 = string;
1444 register char *p2 = SYMBOL_NAME (sym);
1445 while (p1 != p)
1446 {
1447 *p2++ = *p1++;
1448 }
1449 *p2++ = '\0';
1450 }
1451
1452 /* If this symbol is from a C++ compilation, then attempt to cache the
1453 demangled form for future reference. This is a typical time versus
1454 space tradeoff, that was decided in favor of time because it sped up
1455 C++ symbol lookups by a factor of about 20. */
1456
1457 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1458 }
1459 p++;
1460
1461 /* Determine the type of name being defined. */
1462#if 0
1463 /* Getting GDB to correctly skip the symbol on an undefined symbol
1464 descriptor and not ever dump core is a very dodgy proposition if
1465 we do things this way. I say the acorn RISC machine can just
1466 fix their compiler. */
1467 /* The Acorn RISC machine's compiler can put out locals that don't
1468 start with "234=" or "(3,4)=", so assume anything other than the
1469 deftypes we know how to handle is a local. */
1470 if (!strchr ("cfFGpPrStTvVXCR", *p))
1471#else
1472 if (isdigit (*p) || *p == '(' || *p == '-')
1473#endif
1474 deftype = 'l';
1475 else
1476 deftype = *p++;
1477
1478 switch (deftype)
1479 {
1480 case 'c':
1481 /* c is a special case, not followed by a type-number.
1482 SYMBOL:c=iVALUE for an integer constant symbol.
1483 SYMBOL:c=rVALUE for a floating constant symbol.
1484 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1485 e.g. "b:c=e6,0" for "const b = blob1"
1486 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1487 if (*p != '=')
1488 {
1489 SYMBOL_CLASS (sym) = LOC_CONST;
1490 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1491 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1492 add_symbol_to_list (sym, &file_symbols);
1493 return sym;
1494 }
1495 ++p;
1496 switch (*p++)
1497 {
1498 case 'r':
1499 {
1500 double d = atof (p);
1501 char *dbl_valu;
1502
1503 /* FIXME-if-picky-about-floating-accuracy: Should be using
1504 target arithmetic to get the value. real.c in GCC
1505 probably has the necessary code. */
1506
1507 /* FIXME: lookup_fundamental_type is a hack. We should be
1508 creating a type especially for the type of float constants.
1509 Problem is, what type should it be?
1510
1511 Also, what should the name of this type be? Should we
1512 be using 'S' constants (see stabs.texinfo) instead? */
1513
1514 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1515 FT_DBL_PREC_FLOAT);
1516 dbl_valu = (char *)
1517 obstack_alloc (&objfile -> symbol_obstack,
1518 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1519 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
1520 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1521 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1522 }
1523 break;
1524 case 'i':
1525 {
1526 /* Defining integer constants this way is kind of silly,
1527 since 'e' constants allows the compiler to give not
1528 only the value, but the type as well. C has at least
1529 int, long, unsigned int, and long long as constant
1530 types; other languages probably should have at least
1531 unsigned as well as signed constants. */
1532
1533 /* We just need one int constant type for all objfiles.
1534 It doesn't depend on languages or anything (arguably its
1535 name should be a language-specific name for a type of
1536 that size, but I'm inclined to say that if the compiler
1537 wants a nice name for the type, it can use 'e'). */
1538 static struct type *int_const_type;
1539
1540 /* Yes, this is as long as a *host* int. That is because we
1541 use atoi. */
1542 if (int_const_type == NULL)
1543 int_const_type =
1544 init_type (TYPE_CODE_INT,
1545 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1546 "integer constant",
1547 (struct objfile *)NULL);
1548 SYMBOL_TYPE (sym) = int_const_type;
1549 SYMBOL_VALUE (sym) = atoi (p);
1550 SYMBOL_CLASS (sym) = LOC_CONST;
1551 }
1552 break;
1553 case 'e':
1554 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1555 can be represented as integral.
1556 e.g. "b:c=e6,0" for "const b = blob1"
1557 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1558 {
1559 SYMBOL_CLASS (sym) = LOC_CONST;
1560 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1561
1562 if (*p != ',')
1563 {
1564 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1565 break;
1566 }
1567 ++p;
1568
1569 /* If the value is too big to fit in an int (perhaps because
1570 it is unsigned), or something like that, we silently get
1571 a bogus value. The type and everything else about it is
1572 correct. Ideally, we should be using whatever we have
1573 available for parsing unsigned and long long values,
1574 however. */
1575 SYMBOL_VALUE (sym) = atoi (p);
1576 }
1577 break;
1578 default:
1579 {
1580 SYMBOL_CLASS (sym) = LOC_CONST;
1581 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1582 }
1583 }
1584 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1585 add_symbol_to_list (sym, &file_symbols);
1586 return sym;
1587
1588 case 'C':
1589 /* The name of a caught exception. */
1590 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1591 SYMBOL_CLASS (sym) = LOC_LABEL;
1592 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1593 SYMBOL_VALUE_ADDRESS (sym) = valu;
1594 add_symbol_to_list (sym, &local_symbols);
1595 break;
1596
1597 case 'f':
1598 /* A static function definition. */
1599 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1600 SYMBOL_CLASS (sym) = LOC_BLOCK;
1601 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1602 add_symbol_to_list (sym, &file_symbols);
1603 /* fall into process_function_types. */
1604
1605 process_function_types:
1606 /* Function result types are described as the result type in stabs.
1607 We need to convert this to the function-returning-type-X type
1608 in GDB. E.g. "int" is converted to "function returning int". */
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1610 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1611
1612 /* All functions in C++ have prototypes. */
1613 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1614 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1615
1616 /* fall into process_prototype_types */
1617
1618 process_prototype_types:
1619 /* Sun acc puts declared types of arguments here. */
1620 if (*p == ';')
1621 {
1622 struct type *ftype = SYMBOL_TYPE (sym);
1623 int nsemi = 0;
1624 int nparams = 0;
1625 char *p1 = p;
1626
1627 /* Obtain a worst case guess for the number of arguments
1628 by counting the semicolons. */
1629 while (*p1)
1630 {
1631 if (*p1++ == ';')
1632 nsemi++;
1633 }
1634
1635 /* Allocate parameter information fields and fill them in. */
1636 TYPE_FIELDS (ftype) = (struct field *)
1637 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1638 while (*p++ == ';')
1639 {
1640 struct type *ptype;
1641
1642 /* A type number of zero indicates the start of varargs.
1643 FIXME: GDB currently ignores vararg functions. */
1644 if (p[0] == '0' && p[1] == '\0')
1645 break;
1646 ptype = read_type (&p, objfile);
1647
1648 /* The Sun compilers mark integer arguments, which should
1649 be promoted to the width of the calling conventions, with
1650 a type which references itself. This type is turned into
1651 a TYPE_CODE_VOID type by read_type, and we have to turn
1652 it back into builtin_type_int here.
1653 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1654 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1655 ptype = builtin_type_int;
1656 TYPE_FIELD_TYPE (ftype, nparams++) = ptype;
1657 }
1658 TYPE_NFIELDS (ftype) = nparams;
1659 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1660 }
1661 break;
1662
1663 case 'F':
1664 /* A global function definition. */
1665 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1666 SYMBOL_CLASS (sym) = LOC_BLOCK;
1667 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1668 add_symbol_to_list (sym, &global_symbols);
1669 goto process_function_types;
1670
1671 case 'G':
1672 /* For a class G (global) symbol, it appears that the
1673 value is not correct. It is necessary to search for the
1674 corresponding linker definition to find the value.
1675 These definitions appear at the end of the namelist. */
1676 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1677 SYMBOL_CLASS (sym) = LOC_STATIC;
1678 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1679 /* Don't add symbol references to global_sym_chain.
1680 Symbol references don't have valid names and wont't match up with
1681 minimal symbols when the global_sym_chain is relocated.
1682 We'll fixup symbol references when we fixup the defining symbol. */
1683 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1684 {
1685 i = hashname (SYMBOL_NAME (sym));
1686 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1687 global_sym_chain[i] = sym;
1688 }
1689 add_symbol_to_list (sym, &global_symbols);
1690 break;
1691
1692 /* This case is faked by a conditional above,
1693 when there is no code letter in the dbx data.
1694 Dbx data never actually contains 'l'. */
1695 case 's':
1696 case 'l':
1697 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1698 SYMBOL_CLASS (sym) = LOC_LOCAL;
1699 SYMBOL_VALUE (sym) = valu;
1700 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1701 add_symbol_to_list (sym, &local_symbols);
1702 break;
1703
1704 case 'p':
1705 if (*p == 'F')
1706 /* pF is a two-letter code that means a function parameter in Fortran.
1707 The type-number specifies the type of the return value.
1708 Translate it into a pointer-to-function type. */
1709 {
1710 p++;
1711 SYMBOL_TYPE (sym)
1712 = lookup_pointer_type
1713 (lookup_function_type (read_type (&p, objfile)));
1714 }
1715 else
1716 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1717
1718 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1719 can also be a LOC_LOCAL_ARG depending on symbol type. */
1720#ifndef DBX_PARM_SYMBOL_CLASS
1721#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1722#endif
1723
1724 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1725 SYMBOL_VALUE (sym) = valu;
1726 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1727 add_symbol_to_list (sym, &local_symbols);
1728
1729 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
1730 {
1731 /* On little-endian machines, this crud is never necessary,
1732 and, if the extra bytes contain garbage, is harmful. */
1733 break;
1734 }
1735
1736 /* If it's gcc-compiled, if it says `short', believe it. */
1737 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1738 break;
1739
7a292a7a
SS
1740 if (!BELIEVE_PCC_PROMOTION)
1741 {
1742 /* This is the signed type which arguments get promoted to. */
1743 static struct type *pcc_promotion_type;
1744 /* This is the unsigned type which arguments get promoted to. */
1745 static struct type *pcc_unsigned_promotion_type;
1746
1747 /* Call it "int" because this is mainly C lossage. */
1748 if (pcc_promotion_type == NULL)
1749 pcc_promotion_type =
1750 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1751 0, "int", NULL);
1752
1753 if (pcc_unsigned_promotion_type == NULL)
1754 pcc_unsigned_promotion_type =
1755 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1756 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1757
1758 if (BELIEVE_PCC_PROMOTION_TYPE)
1759 {
1760 /* This is defined on machines (e.g. sparc) where we
1761 should believe the type of a PCC 'short' argument,
1762 but shouldn't believe the address (the address is the
1763 address of the corresponding int).
1764
1765 My guess is that this correction, as opposed to
1766 changing the parameter to an 'int' (as done below,
1767 for PCC on most machines), is the right thing to do
1768 on all machines, but I don't want to risk breaking
1769 something that already works. On most PCC machines,
1770 the sparc problem doesn't come up because the calling
1771 function has to zero the top bytes (not knowing
1772 whether the called function wants an int or a short),
1773 so there is little practical difference between an
1774 int and a short (except perhaps what happens when the
1775 GDB user types "print short_arg = 0x10000;").
1776
1777 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1778 compiler actually produces the correct address (we
1779 don't need to fix it up). I made this code adapt so
1780 that it will offset the symbol if it was pointing at
1781 an int-aligned location and not otherwise. This way
1782 you can use the same gdb for 4.0.x and 4.1 systems.
1783
1784 If the parameter is shorter than an int, and is
1785 integral (e.g. char, short, or unsigned equivalent),
1786 and is claimed to be passed on an integer boundary,
1787 don't believe it! Offset the parameter's address to
1788 the tail-end of that integer. */
1789
1790 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1791 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1792 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1793 {
1794 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1795 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1796 }
1797 break;
1798 }
1799 else
1800 {
1801 /* If PCC says a parameter is a short or a char,
1802 it is really an int. */
1803 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1804 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1805 {
1806 SYMBOL_TYPE (sym) =
1807 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1808 ? pcc_unsigned_promotion_type
1809 : pcc_promotion_type;
1810 }
1811 break;
1812 }
1813 }
c906108c
SS
1814
1815 case 'P':
1816 /* acc seems to use P to declare the prototypes of functions that
1817 are referenced by this file. gdb is not prepared to deal
1818 with this extra information. FIXME, it ought to. */
1819 if (type == N_FUN)
1820 {
1821 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1822 goto process_prototype_types;
1823 }
1824 /*FALLTHROUGH*/
1825
1826 case 'R':
1827 /* Parameter which is in a register. */
1828 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1829 SYMBOL_CLASS (sym) = LOC_REGPARM;
1830 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1831 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1832 {
1833 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1834 SYMBOL_SOURCE_NAME (sym));
1835 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1836 }
1837 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1838 add_symbol_to_list (sym, &local_symbols);
1839 break;
1840
1841 case 'r':
1842 /* Register variable (either global or local). */
1843 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1844 SYMBOL_CLASS (sym) = LOC_REGISTER;
1845 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1846 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1847 {
1848 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1849 SYMBOL_SOURCE_NAME (sym));
1850 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1851 }
1852 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1853 if (within_function)
1854 {
1855 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1856 name to represent an argument passed in a register.
1857 GCC uses 'P' for the same case. So if we find such a symbol pair
1858 we combine it into one 'P' symbol. For Sun cc we need to do this
1859 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1860 the 'p' symbol even if it never saves the argument onto the stack.
1861
1862 On most machines, we want to preserve both symbols, so that
1863 we can still get information about what is going on with the
1864 stack (VAX for computing args_printed, using stack slots instead
1865 of saved registers in backtraces, etc.).
1866
1867 Note that this code illegally combines
1868 main(argc) struct foo argc; { register struct foo argc; }
1869 but this case is considered pathological and causes a warning
1870 from a decent compiler. */
1871
1872 if (local_symbols
1873 && local_symbols->nsyms > 0
1874#ifndef USE_REGISTER_NOT_ARG
1875 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1876 SYMBOL_TYPE (sym))
1877 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1878 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1879 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1880 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1881#endif
1882 )
1883 {
1884 struct symbol *prev_sym;
1885 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1886 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1887 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1888 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1889 {
1890 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1891 /* Use the type from the LOC_REGISTER; that is the type
1892 that is actually in that register. */
1893 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1894 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1895 sym = prev_sym;
1896 break;
1897 }
1898 }
1899 add_symbol_to_list (sym, &local_symbols);
1900 }
1901 else
1902 add_symbol_to_list (sym, &file_symbols);
1903 break;
1904
1905 case 'S':
1906 /* Static symbol at top level of file */
1907 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1908 SYMBOL_CLASS (sym) = LOC_STATIC;
1909 SYMBOL_VALUE_ADDRESS (sym) = valu;
1910#ifdef STATIC_TRANSFORM_NAME
1911 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1912 {
1913 struct minimal_symbol *msym;
1914 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1915 if (msym != NULL)
1916 {
1917 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1918 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1919 }
1920 }
1921#endif
1922 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1923 add_symbol_to_list (sym, &file_symbols);
1924 break;
1925
1926 case 't':
1927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1928
1929 /* For a nameless type, we don't want a create a symbol, thus we
1930 did not use `sym'. Return without further processing. */
1931 if (nameless) return NULL;
1932
1933 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1934 SYMBOL_VALUE (sym) = valu;
1935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1936 /* C++ vagaries: we may have a type which is derived from
1937 a base type which did not have its name defined when the
1938 derived class was output. We fill in the derived class's
1939 base part member's name here in that case. */
1940 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1941 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1942 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1943 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1944 {
1945 int j;
1946 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1947 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1948 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1949 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1950 }
1951
1952 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1953 {
1954 /* gcc-2.6 or later (when using -fvtable-thunks)
1955 emits a unique named type for a vtable entry.
1956 Some gdb code depends on that specific name. */
1957 extern const char vtbl_ptr_name[];
1958
1959 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1960 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1961 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1962 {
1963 /* If we are giving a name to a type such as "pointer to
1964 foo" or "function returning foo", we better not set
1965 the TYPE_NAME. If the program contains "typedef char
1966 *caddr_t;", we don't want all variables of type char
1967 * to print as caddr_t. This is not just a
1968 consequence of GDB's type management; PCC and GCC (at
1969 least through version 2.4) both output variables of
1970 either type char * or caddr_t with the type number
1971 defined in the 't' symbol for caddr_t. If a future
1972 compiler cleans this up it GDB is not ready for it
1973 yet, but if it becomes ready we somehow need to
1974 disable this check (without breaking the PCC/GCC2.4
1975 case).
1976
1977 Sigh.
1978
1979 Fortunately, this check seems not to be necessary
1980 for anything except pointers or functions. */
1981 }
1982 else
1983 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1984 }
1985
1986 add_symbol_to_list (sym, &file_symbols);
1987 break;
1988
1989 case 'T':
1990 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1991 by 't' which means we are typedef'ing it as well. */
1992 synonym = *p == 't';
1993
1994 if (synonym)
1995 p++;
1996 /* The semantics of C++ state that "struct foo { ... }" also defines
1997 a typedef for "foo". Unfortunately, cfront never makes the typedef
1998 when translating C++ into C. We make the typedef here so that
1999 "ptype foo" works as expected for cfront translated code. */
2000 else if (current_subfile->language == language_cplus)
2001 synonym = 1;
2002
2003 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2004
2005 /* For a nameless type, we don't want a create a symbol, thus we
2006 did not use `sym'. Return without further processing. */
2007 if (nameless) return NULL;
2008
2009 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2010 SYMBOL_VALUE (sym) = valu;
2011 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2012 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2013 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2014 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
2015 add_symbol_to_list (sym, &file_symbols);
2016
2017 if (synonym)
2018 {
2019 /* Clone the sym and then modify it. */
2020 register struct symbol *typedef_sym = (struct symbol *)
2021 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2022 *typedef_sym = *sym;
2023 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2024 SYMBOL_VALUE (typedef_sym) = valu;
2025 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2026 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2027 TYPE_NAME (SYMBOL_TYPE (sym))
2028 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
2029 add_symbol_to_list (typedef_sym, &file_symbols);
2030 }
2031 break;
2032
2033 case 'V':
2034 /* Static symbol of local scope */
2035 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2036 SYMBOL_CLASS (sym) = LOC_STATIC;
2037 SYMBOL_VALUE_ADDRESS (sym) = valu;
2038#ifdef STATIC_TRANSFORM_NAME
2039 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2040 {
2041 struct minimal_symbol *msym;
2042 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2043 if (msym != NULL)
2044 {
2045 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2046 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2047 }
2048 }
2049#endif
2050 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2051 if (os9k_stabs)
2052 add_symbol_to_list (sym, &global_symbols);
2053 else
2054 add_symbol_to_list (sym, &local_symbols);
2055 break;
2056
2057 case 'v':
2058 /* Reference parameter */
2059 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2060 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2061 SYMBOL_VALUE (sym) = valu;
2062 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2063 add_symbol_to_list (sym, &local_symbols);
2064 break;
2065
2066 case 'a':
2067 /* Reference parameter which is in a register. */
2068 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2069 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2070 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2071 if (SYMBOL_VALUE (sym) >= NUM_REGS)
2072 {
2073 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
2074 SYMBOL_SOURCE_NAME (sym));
2075 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2076 }
2077 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2078 add_symbol_to_list (sym, &local_symbols);
2079 break;
2080
2081 case 'X':
2082 /* This is used by Sun FORTRAN for "function result value".
2083 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2084 that Pascal uses it too, but when I tried it Pascal used
2085 "x:3" (local symbol) instead. */
2086 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2087 SYMBOL_CLASS (sym) = LOC_LOCAL;
2088 SYMBOL_VALUE (sym) = valu;
2089 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2090 add_symbol_to_list (sym, &local_symbols);
2091 break;
2092
2093 /* New code added to support cfront stabs strings.
2094 Note: case 'P' already handled above */
2095 case 'Z':
2096 /* Cfront type continuation coming up!
2097 Find the original definition and add to it.
2098 We'll have to do this for the typedef too,
2099 since we cloned the symbol to define a type in read_type.
2100 Stabs info examples:
2101 __1C :Ztl
2102 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2103 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2104 where C is the name of the class.
2105 Unfortunately, we can't lookup the original symbol yet 'cuz
2106 we haven't finished reading all the symbols.
2107 Instead, we save it for processing later */
2108 process_later (sym, p, resolve_cfront_continuation);
2109 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2110 SYMBOL_CLASS (sym) = LOC_CONST;
2111 SYMBOL_VALUE (sym) = 0;
2112 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2113 /* Don't add to list - we'll delete it later when
2114 we add the continuation to the real sym */
2115 return sym;
2116 /* End of new code added to support cfront stabs strings */
2117
2118 default:
2119 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2120 SYMBOL_CLASS (sym) = LOC_CONST;
2121 SYMBOL_VALUE (sym) = 0;
2122 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2123 add_symbol_to_list (sym, &file_symbols);
2124 break;
2125 }
2126
2127 /* When passing structures to a function, some systems sometimes pass
2128 the address in a register, not the structure itself. */
2129
2130 if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2131 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2132 {
2133 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2134
2135 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2136 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2137 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2138 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2139 {
2140 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2141 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2142 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2143 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2144 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2145 and subsequent arguments on the sparc, for example). */
2146 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2147 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2148 }
2149 }
2150
2151 /* Is there more to parse? For example LRS/alias information? */
2152 while (*p && *p == ';')
2153 {
2154 p++;
7a292a7a 2155 if (*p && p[0] == 'l' && p[1] == '(')
c906108c
SS
2156 {
2157 /* GNU extensions for live range splitting may be appended to
2158 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2159
2160 /* Resolve the live range and add it to SYM's live range list. */
2161 if (!resolve_live_range (objfile, sym, p))
2162 return NULL;
2163
2164 /* Find end of live range info. */
2165 p = strchr (p, ')');
2166 if (!*p || *p != ')')
2167 {
2168 complain (&lrs_general_complaint, "live range format not recognized");
2169 return NULL;
2170 }
2171 p++;
2172 }
2173 }
2174 return sym;
2175}
2176
2177/* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2178 non-zero on success, zero otherwise. */
2179
2180static int
2181resolve_live_range (objfile, sym, p)
2182 struct objfile *objfile;
2183 struct symbol *sym;
2184 char *p;
2185{
2186 int refnum;
2187 CORE_ADDR start, end;
2188
2189 /* Sanity check the beginning of the stabs string. */
2190 if (!*p || *p != 'l')
2191 {
2192 complain (&lrs_general_complaint, "live range string 1");
2193 return 0;
2194 }
2195 p++;
2196
2197 if (!*p || *p != '(')
2198 {
2199 complain (&lrs_general_complaint, "live range string 2");
2200 return 0;
2201 }
2202 p++;
2203
2204 /* Get starting value of range and advance P past the reference id.
2205
2206 ?!? In theory, the process_reference should never fail, but we should
2207 catch that case just in case the compiler scrogged the stabs. */
2208 refnum = process_reference (&p);
2209 start = ref_search_value (refnum);
2210 if (!start)
2211 {
2212 complain (&lrs_general_complaint, "Live range symbol not found 1");
2213 return 0;
2214 }
2215
2216 if (!*p || *p != ',')
2217 {
2218 complain (&lrs_general_complaint, "live range string 3");
2219 return 0;
2220 }
2221 p++;
2222
2223 /* Get ending value of range and advance P past the reference id.
2224
2225 ?!? In theory, the process_reference should never fail, but we should
2226 catch that case just in case the compiler scrogged the stabs. */
2227 refnum = process_reference (&p);
2228 end = ref_search_value (refnum);
2229 if (!end)
2230 {
2231 complain (&lrs_general_complaint, "Live range symbol not found 2");
2232 return 0;
2233 }
2234
2235 if (!*p || *p != ')')
2236 {
2237 complain (&lrs_general_complaint, "live range string 4");
2238 return 0;
2239 }
2240
2241 /* Now that we know the bounds of the range, add it to the
2242 symbol. */
2243 add_live_range (objfile, sym, start, end);
2244
2245 return 1;
2246}
2247
2248/* Add a new live range defined by START and END to the symbol SYM
2249 in objfile OBJFILE. */
2250
2251static void
2252add_live_range (objfile, sym, start, end)
2253 struct objfile *objfile;
2254 struct symbol *sym;
2255 CORE_ADDR start, end;
2256{
2257 struct range_list *r, *rs;
2258
2259 if (start >= end)
2260 {
2261 complain (&lrs_general_complaint, "end of live range follows start");
2262 return;
2263 }
2264
2265 /* Alloc new live range structure. */
2266 r = (struct range_list *)
2267 obstack_alloc (&objfile->type_obstack,
2268 sizeof (struct range_list));
2269 r->start = start;
2270 r->end = end;
2271 r->next = 0;
2272
2273 /* Append this range to the symbol's range list. */
2274 if (!SYMBOL_RANGES (sym))
2275 SYMBOL_RANGES (sym) = r;
2276 else
2277 {
2278 /* Get the last range for the symbol. */
2279 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2280 ;
2281 rs->next = r;
2282 }
2283}
2284
2285\f
2286/* Skip rest of this symbol and return an error type.
2287
2288 General notes on error recovery: error_type always skips to the
2289 end of the symbol (modulo cretinous dbx symbol name continuation).
2290 Thus code like this:
2291
2292 if (*(*pp)++ != ';')
2293 return error_type (pp, objfile);
2294
2295 is wrong because if *pp starts out pointing at '\0' (typically as the
2296 result of an earlier error), it will be incremented to point to the
2297 start of the next symbol, which might produce strange results, at least
2298 if you run off the end of the string table. Instead use
2299
2300 if (**pp != ';')
2301 return error_type (pp, objfile);
2302 ++*pp;
2303
2304 or
2305
2306 if (**pp != ';')
2307 foo = error_type (pp, objfile);
2308 else
2309 ++*pp;
2310
2311 And in case it isn't obvious, the point of all this hair is so the compiler
2312 can define new types and new syntaxes, and old versions of the
2313 debugger will be able to read the new symbol tables. */
2314
2315static struct type *
2316error_type (pp, objfile)
2317 char **pp;
2318 struct objfile *objfile;
2319{
2320 complain (&error_type_complaint);
2321 while (1)
2322 {
2323 /* Skip to end of symbol. */
2324 while (**pp != '\0')
2325 {
2326 (*pp)++;
2327 }
2328
2329 /* Check for and handle cretinous dbx symbol name continuation! */
2330 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2331 {
2332 *pp = next_symbol_text (objfile);
2333 }
2334 else
2335 {
2336 break;
2337 }
2338 }
2339 return (builtin_type_error);
2340}
2341
2342\f
2343/* Read type information or a type definition; return the type. Even
2344 though this routine accepts either type information or a type
2345 definition, the distinction is relevant--some parts of stabsread.c
2346 assume that type information starts with a digit, '-', or '(' in
2347 deciding whether to call read_type. */
2348
2349struct type *
2350read_type (pp, objfile)
2351 register char **pp;
2352 struct objfile *objfile;
2353{
2354 register struct type *type = 0;
2355 struct type *type1;
2356 int typenums[2];
2357 char type_descriptor;
2358
2359 /* Size in bits of type if specified by a type attribute, or -1 if
2360 there is no size attribute. */
2361 int type_size = -1;
2362
2363 /* Used to distinguish string and bitstring from char-array and set. */
2364 int is_string = 0;
2365
2366 /* Read type number if present. The type number may be omitted.
2367 for instance in a two-dimensional array declared with type
2368 "ar1;1;10;ar1;1;10;4". */
2369 if ((**pp >= '0' && **pp <= '9')
2370 || **pp == '('
2371 || **pp == '-')
2372 {
2373 if (read_type_number (pp, typenums) != 0)
2374 return error_type (pp, objfile);
2375
2376 /* Type is not being defined here. Either it already exists,
2377 or this is a forward reference to it. dbx_alloc_type handles
2378 both cases. */
2379 if (**pp != '=')
2380 return dbx_alloc_type (typenums, objfile);
2381
2382 /* Type is being defined here. */
2383 /* Skip the '='.
2384 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2385 (*pp)+=2;
2386 }
2387 else
2388 {
2389 /* 'typenums=' not present, type is anonymous. Read and return
2390 the definition, but don't put it in the type vector. */
2391 typenums[0] = typenums[1] = -1;
2392 (*pp)++;
2393 }
2394
2395 again:
2396 type_descriptor = (*pp)[-1];
2397 switch (type_descriptor)
2398 {
2399 case 'x':
2400 {
2401 enum type_code code;
2402
2403 /* Used to index through file_symbols. */
2404 struct pending *ppt;
2405 int i;
2406
2407 /* Name including "struct", etc. */
2408 char *type_name;
2409
2410 {
2411 char *from, *to, *p, *q1, *q2;
2412
2413 /* Set the type code according to the following letter. */
2414 switch ((*pp)[0])
2415 {
2416 case 's':
2417 code = TYPE_CODE_STRUCT;
2418 break;
2419 case 'u':
2420 code = TYPE_CODE_UNION;
2421 break;
2422 case 'e':
2423 code = TYPE_CODE_ENUM;
2424 break;
2425 default:
2426 {
2427 /* Complain and keep going, so compilers can invent new
2428 cross-reference types. */
2429 static struct complaint msg =
2430 {"Unrecognized cross-reference type `%c'", 0, 0};
2431 complain (&msg, (*pp)[0]);
2432 code = TYPE_CODE_STRUCT;
2433 break;
2434 }
2435 }
2436
2437 q1 = strchr (*pp, '<');
2438 p = strchr (*pp, ':');
2439 if (p == NULL)
2440 return error_type (pp, objfile);
2441 if (q1 && p > q1 && p[1] == ':')
2442 {
2443 int nesting_level = 0;
2444 for (q2 = q1; *q2; q2++)
2445 {
2446 if (*q2 == '<')
2447 nesting_level++;
2448 else if (*q2 == '>')
2449 nesting_level--;
2450 else if (*q2 == ':' && nesting_level == 0)
2451 break;
2452 }
2453 p = q2;
2454 if (*p != ':')
2455 return error_type (pp, objfile);
2456 }
2457 to = type_name =
2458 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2459
2460 /* Copy the name. */
2461 from = *pp + 1;
2462 while (from < p)
2463 *to++ = *from++;
2464 *to = '\0';
2465
2466 /* Set the pointer ahead of the name which we just read, and
2467 the colon. */
2468 *pp = from + 1;
2469 }
2470
2471 /* Now check to see whether the type has already been
2472 declared. This was written for arrays of cross-referenced
2473 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2474 sure it is not necessary anymore. But it might be a good
2475 idea, to save a little memory. */
2476
2477 for (ppt = file_symbols; ppt; ppt = ppt->next)
2478 for (i = 0; i < ppt->nsyms; i++)
2479 {
2480 struct symbol *sym = ppt->symbol[i];
2481
2482 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2483 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2484 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2485 && STREQ (SYMBOL_NAME (sym), type_name))
2486 {
2487 obstack_free (&objfile -> type_obstack, type_name);
2488 type = SYMBOL_TYPE (sym);
2489 return type;
2490 }
2491 }
2492
2493 /* Didn't find the type to which this refers, so we must
2494 be dealing with a forward reference. Allocate a type
2495 structure for it, and keep track of it so we can
2496 fill in the rest of the fields when we get the full
2497 type. */
2498 type = dbx_alloc_type (typenums, objfile);
2499 TYPE_CODE (type) = code;
2500 TYPE_TAG_NAME (type) = type_name;
2501 INIT_CPLUS_SPECIFIC(type);
2502 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2503
2504 add_undefined_type (type);
2505 return type;
2506 }
2507
2508 case '-': /* RS/6000 built-in type */
2509 case '0':
2510 case '1':
2511 case '2':
2512 case '3':
2513 case '4':
2514 case '5':
2515 case '6':
2516 case '7':
2517 case '8':
2518 case '9':
2519 case '(':
2520 (*pp)--;
2521
2522 /* We deal with something like t(1,2)=(3,4)=... which
2523 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2524
2525 /* Allocate and enter the typedef type first.
2526 This handles recursive types. */
2527 type = dbx_alloc_type (typenums, objfile);
2528 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2529 { struct type *xtype = read_type (pp, objfile);
2530 if (type == xtype)
2531 {
2532 /* It's being defined as itself. That means it is "void". */
2533 TYPE_CODE (type) = TYPE_CODE_VOID;
2534 TYPE_LENGTH (type) = 1;
2535 }
2536 else if (type_size >= 0 || is_string)
2537 {
2538 *type = *xtype;
2539 TYPE_NAME (type) = NULL;
2540 TYPE_TAG_NAME (type) = NULL;
2541 }
2542 else
2543 {
2544 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2545 TYPE_TARGET_TYPE (type) = xtype;
2546 }
2547 }
2548 break;
2549
2550 /* In the following types, we must be sure to overwrite any existing
2551 type that the typenums refer to, rather than allocating a new one
2552 and making the typenums point to the new one. This is because there
2553 may already be pointers to the existing type (if it had been
2554 forward-referenced), and we must change it to a pointer, function,
2555 reference, or whatever, *in-place*. */
2556
2557 case '*':
2558 type1 = read_type (pp, objfile);
2559 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2560 break;
2561
2562 case '&': /* Reference to another type */
2563 type1 = read_type (pp, objfile);
2564 type = make_reference_type (type1, dbx_lookup_type (typenums));
2565 break;
2566
2567 case 'f': /* Function returning another type */
2568 if (os9k_stabs && **pp == '(')
2569 {
2570 /* Function prototype; parse it.
2571 We must conditionalize this on os9k_stabs because otherwise
2572 it could be confused with a Sun-style (1,3) typenumber
2573 (I think). */
2574 struct type *t;
2575 ++*pp;
2576 while (**pp != ')')
2577 {
2578 t = read_type (pp, objfile);
2579 if (**pp == ',') ++*pp;
2580 }
2581 }
2582 type1 = read_type (pp, objfile);
2583 type = make_function_type (type1, dbx_lookup_type (typenums));
2584 break;
2585
2586 case 'k': /* Const qualifier on some type (Sun) */
2587 case 'c': /* Const qualifier on some type (OS9000) */
2588 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2589 only accept 'c' in the os9k_stabs case. */
2590 if (type_descriptor == 'c' && !os9k_stabs)
2591 return error_type (pp, objfile);
2592 type = read_type (pp, objfile);
2593 /* FIXME! For now, we ignore const and volatile qualifiers. */
2594 break;
2595
2596 case 'B': /* Volatile qual on some type (Sun) */
2597 case 'i': /* Volatile qual on some type (OS9000) */
2598 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2599 only accept 'i' in the os9k_stabs case. */
2600 if (type_descriptor == 'i' && !os9k_stabs)
2601 return error_type (pp, objfile);
2602 type = read_type (pp, objfile);
2603 /* FIXME! For now, we ignore const and volatile qualifiers. */
2604 break;
2605
2606 case '@':
2607 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2608 { /* Member (class & variable) type */
2609 /* FIXME -- we should be doing smash_to_XXX types here. */
2610
2611 struct type *domain = read_type (pp, objfile);
2612 struct type *memtype;
2613
2614 if (**pp != ',')
2615 /* Invalid member type data format. */
2616 return error_type (pp, objfile);
2617 ++*pp;
2618
2619 memtype = read_type (pp, objfile);
2620 type = dbx_alloc_type (typenums, objfile);
2621 smash_to_member_type (type, domain, memtype);
2622 }
2623 else /* type attribute */
2624 {
2625 char *attr = *pp;
2626 /* Skip to the semicolon. */
2627 while (**pp != ';' && **pp != '\0')
2628 ++(*pp);
2629 if (**pp == '\0')
2630 return error_type (pp, objfile);
2631 else
2632 ++*pp; /* Skip the semicolon. */
2633
2634 switch (*attr)
2635 {
2636 case 's':
2637 type_size = atoi (attr + 1);
2638 if (type_size <= 0)
2639 type_size = -1;
2640 break;
2641
2642 case 'S':
2643 is_string = 1;
2644 break;
2645
2646 default:
2647 /* Ignore unrecognized type attributes, so future compilers
2648 can invent new ones. */
2649 break;
2650 }
2651 ++*pp;
2652 goto again;
2653 }
2654 break;
2655
2656 case '#': /* Method (class & fn) type */
2657 if ((*pp)[0] == '#')
2658 {
2659 /* We'll get the parameter types from the name. */
2660 struct type *return_type;
2661
2662 (*pp)++;
2663 return_type = read_type (pp, objfile);
2664 if (*(*pp)++ != ';')
2665 complain (&invalid_member_complaint, symnum);
2666 type = allocate_stub_method (return_type);
2667 if (typenums[0] != -1)
2668 *dbx_lookup_type (typenums) = type;
2669 }
2670 else
2671 {
2672 struct type *domain = read_type (pp, objfile);
2673 struct type *return_type;
2674 struct type **args;
2675
2676 if (**pp != ',')
2677 /* Invalid member type data format. */
2678 return error_type (pp, objfile);
2679 else
2680 ++(*pp);
2681
2682 return_type = read_type (pp, objfile);
2683 args = read_args (pp, ';', objfile);
2684 type = dbx_alloc_type (typenums, objfile);
2685 smash_to_method_type (type, domain, return_type, args);
2686 }
2687 break;
2688
2689 case 'r': /* Range type */
2690 type = read_range_type (pp, typenums, objfile);
2691 if (typenums[0] != -1)
2692 *dbx_lookup_type (typenums) = type;
2693 break;
2694
2695 case 'b':
2696 if (os9k_stabs)
2697 /* Const and volatile qualified type. */
2698 type = read_type (pp, objfile);
2699 else
2700 {
2701 /* Sun ACC builtin int type */
2702 type = read_sun_builtin_type (pp, typenums, objfile);
2703 if (typenums[0] != -1)
2704 *dbx_lookup_type (typenums) = type;
2705 }
2706 break;
2707
2708 case 'R': /* Sun ACC builtin float type */
2709 type = read_sun_floating_type (pp, typenums, objfile);
2710 if (typenums[0] != -1)
2711 *dbx_lookup_type (typenums) = type;
2712 break;
2713
2714 case 'e': /* Enumeration type */
2715 type = dbx_alloc_type (typenums, objfile);
2716 type = read_enum_type (pp, type, objfile);
2717 if (typenums[0] != -1)
2718 *dbx_lookup_type (typenums) = type;
2719 break;
2720
2721 case 's': /* Struct type */
2722 case 'u': /* Union type */
2723 type = dbx_alloc_type (typenums, objfile);
2724 switch (type_descriptor)
2725 {
2726 case 's':
2727 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2728 break;
2729 case 'u':
2730 TYPE_CODE (type) = TYPE_CODE_UNION;
2731 break;
2732 }
2733 type = read_struct_type (pp, type, objfile);
2734 break;
2735
2736 case 'a': /* Array type */
2737 if (**pp != 'r')
2738 return error_type (pp, objfile);
2739 ++*pp;
2740
2741 type = dbx_alloc_type (typenums, objfile);
2742 type = read_array_type (pp, type, objfile);
2743 if (is_string)
2744 TYPE_CODE (type) = TYPE_CODE_STRING;
2745 break;
2746
2747 case 'S':
2748 type1 = read_type (pp, objfile);
2749 type = create_set_type ((struct type*) NULL, type1);
2750 if (is_string)
2751 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2752 if (typenums[0] != -1)
2753 *dbx_lookup_type (typenums) = type;
2754 break;
2755
2756 default:
2757 --*pp; /* Go back to the symbol in error */
2758 /* Particularly important if it was \0! */
2759 return error_type (pp, objfile);
2760 }
2761
2762 if (type == 0)
2763 {
2764 warning ("GDB internal error, type is NULL in stabsread.c\n");
2765 return error_type (pp, objfile);
2766 }
2767
2768 /* Size specified in a type attribute overrides any other size. */
2769 if (type_size != -1)
2770 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2771
2772 return type;
2773}
2774\f
2775/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2776 Return the proper type node for a given builtin type number. */
2777
2778static struct type *
2779rs6000_builtin_type (typenum)
2780 int typenum;
2781{
2782 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2783#define NUMBER_RECOGNIZED 34
2784 /* This includes an empty slot for type number -0. */
2785 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2786 struct type *rettype = NULL;
2787
2788 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2789 {
2790 complain (&rs6000_builtin_complaint, typenum);
2791 return builtin_type_error;
2792 }
2793 if (negative_types[-typenum] != NULL)
2794 return negative_types[-typenum];
2795
2796#if TARGET_CHAR_BIT != 8
2797 #error This code wrong for TARGET_CHAR_BIT not 8
2798 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2799 that if that ever becomes not true, the correct fix will be to
2800 make the size in the struct type to be in bits, not in units of
2801 TARGET_CHAR_BIT. */
2802#endif
2803
2804 switch (-typenum)
2805 {
2806 case 1:
2807 /* The size of this and all the other types are fixed, defined
2808 by the debugging format. If there is a type called "int" which
2809 is other than 32 bits, then it should use a new negative type
2810 number (or avoid negative type numbers for that case).
2811 See stabs.texinfo. */
2812 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2813 break;
2814 case 2:
2815 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2816 break;
2817 case 3:
2818 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2819 break;
2820 case 4:
2821 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2822 break;
2823 case 5:
2824 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2825 "unsigned char", NULL);
2826 break;
2827 case 6:
2828 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2829 break;
2830 case 7:
2831 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2832 "unsigned short", NULL);
2833 break;
2834 case 8:
2835 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2836 "unsigned int", NULL);
2837 break;
2838 case 9:
2839 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2840 "unsigned", NULL);
2841 case 10:
2842 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2843 "unsigned long", NULL);
2844 break;
2845 case 11:
2846 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2847 break;
2848 case 12:
2849 /* IEEE single precision (32 bit). */
2850 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2851 break;
2852 case 13:
2853 /* IEEE double precision (64 bit). */
2854 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2855 break;
2856 case 14:
2857 /* This is an IEEE double on the RS/6000, and different machines with
2858 different sizes for "long double" should use different negative
2859 type numbers. See stabs.texinfo. */
2860 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2861 break;
2862 case 15:
2863 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2864 break;
2865 case 16:
2866 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2867 "boolean", NULL);
2868 break;
2869 case 17:
2870 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2871 break;
2872 case 18:
2873 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2874 break;
2875 case 19:
2876 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2877 break;
2878 case 20:
2879 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2880 "character", NULL);
2881 break;
2882 case 21:
2883 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2884 "logical*1", NULL);
2885 break;
2886 case 22:
2887 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2888 "logical*2", NULL);
2889 break;
2890 case 23:
2891 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2892 "logical*4", NULL);
2893 break;
2894 case 24:
2895 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2896 "logical", NULL);
2897 break;
2898 case 25:
2899 /* Complex type consisting of two IEEE single precision values. */
2900 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2901 break;
2902 case 26:
2903 /* Complex type consisting of two IEEE double precision values. */
2904 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2905 break;
2906 case 27:
2907 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2908 break;
2909 case 28:
2910 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2911 break;
2912 case 29:
2913 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2914 break;
2915 case 30:
2916 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2917 break;
2918 case 31:
2919 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2920 break;
2921 case 32:
2922 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2923 "unsigned long long", NULL);
2924 break;
2925 case 33:
2926 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2927 "logical*8", NULL);
2928 break;
2929 case 34:
2930 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2931 break;
2932 }
2933 negative_types[-typenum] = rettype;
2934 return rettype;
2935}
2936\f
2937/* This page contains subroutines of read_type. */
2938
2939/* Read member function stabs info for C++ classes. The form of each member
2940 function data is:
2941
2942 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2943
2944 An example with two member functions is:
2945
2946 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2947
2948 For the case of overloaded operators, the format is op$::*.funcs, where
2949 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2950 name (such as `+=') and `.' marks the end of the operator name.
2951
2952 Returns 1 for success, 0 for failure. */
2953
2954static int
2955read_member_functions (fip, pp, type, objfile)
2956 struct field_info *fip;
2957 char **pp;
2958 struct type *type;
2959 struct objfile *objfile;
2960{
2961 int nfn_fields = 0;
2962 int length = 0;
2963 /* Total number of member functions defined in this class. If the class
2964 defines two `f' functions, and one `g' function, then this will have
2965 the value 3. */
2966 int total_length = 0;
2967 int i;
2968 struct next_fnfield
2969 {
2970 struct next_fnfield *next;
2971 struct fn_field fn_field;
2972 } *sublist;
2973 struct type *look_ahead_type;
2974 struct next_fnfieldlist *new_fnlist;
2975 struct next_fnfield *new_sublist;
2976 char *main_fn_name;
2977 register char *p;
2978
2979 /* Process each list until we find something that is not a member function
2980 or find the end of the functions. */
2981
2982 while (**pp != ';')
2983 {
2984 /* We should be positioned at the start of the function name.
2985 Scan forward to find the first ':' and if it is not the
2986 first of a "::" delimiter, then this is not a member function. */
2987 p = *pp;
2988 while (*p != ':')
2989 {
2990 p++;
2991 }
2992 if (p[1] != ':')
2993 {
2994 break;
2995 }
2996
2997 sublist = NULL;
2998 look_ahead_type = NULL;
2999 length = 0;
3000
3001 new_fnlist = (struct next_fnfieldlist *)
3002 xmalloc (sizeof (struct next_fnfieldlist));
3003 make_cleanup (free, new_fnlist);
3004 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
3005
3006 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3007 {
3008 /* This is a completely wierd case. In order to stuff in the
3009 names that might contain colons (the usual name delimiter),
3010 Mike Tiemann defined a different name format which is
3011 signalled if the identifier is "op$". In that case, the
3012 format is "op$::XXXX." where XXXX is the name. This is
3013 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3014 /* This lets the user type "break operator+".
3015 We could just put in "+" as the name, but that wouldn't
3016 work for "*". */
3017 static char opname[32] = {'o', 'p', CPLUS_MARKER};
3018 char *o = opname + 3;
3019
3020 /* Skip past '::'. */
3021 *pp = p + 2;
3022
3023 STABS_CONTINUE (pp, objfile);
3024 p = *pp;
3025 while (*p != '.')
3026 {
3027 *o++ = *p++;
3028 }
3029 main_fn_name = savestring (opname, o - opname);
3030 /* Skip past '.' */
3031 *pp = p + 1;
3032 }
3033 else
3034 {
3035 main_fn_name = savestring (*pp, p - *pp);
3036 /* Skip past '::'. */
3037 *pp = p + 2;
3038 }
3039 new_fnlist -> fn_fieldlist.name = main_fn_name;
3040
3041 do
3042 {
3043 new_sublist =
3044 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3045 make_cleanup (free, new_sublist);
3046 memset (new_sublist, 0, sizeof (struct next_fnfield));
3047
3048 /* Check for and handle cretinous dbx symbol name continuation! */
3049 if (look_ahead_type == NULL)
3050 {
3051 /* Normal case. */
3052 STABS_CONTINUE (pp, objfile);
3053
3054 new_sublist -> fn_field.type = read_type (pp, objfile);
3055 if (**pp != ':')
3056 {
3057 /* Invalid symtab info for member function. */
3058 return 0;
3059 }
3060 }
3061 else
3062 {
3063 /* g++ version 1 kludge */
3064 new_sublist -> fn_field.type = look_ahead_type;
3065 look_ahead_type = NULL;
3066 }
3067
3068 (*pp)++;
3069 p = *pp;
3070 while (*p != ';')
3071 {
3072 p++;
3073 }
3074
3075 /* If this is just a stub, then we don't have the real name here. */
3076
3077 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
3078 {
3079 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
3080 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
3081 new_sublist -> fn_field.is_stub = 1;
3082 }
3083 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
3084 *pp = p + 1;
3085
3086 /* Set this member function's visibility fields. */
3087 switch (*(*pp)++)
3088 {
3089 case VISIBILITY_PRIVATE:
3090 new_sublist -> fn_field.is_private = 1;
3091 break;
3092 case VISIBILITY_PROTECTED:
3093 new_sublist -> fn_field.is_protected = 1;
3094 break;
3095 }
3096
3097 STABS_CONTINUE (pp, objfile);
3098 switch (**pp)
3099 {
3100 case 'A': /* Normal functions. */
3101 new_sublist -> fn_field.is_const = 0;
3102 new_sublist -> fn_field.is_volatile = 0;
3103 (*pp)++;
3104 break;
3105 case 'B': /* `const' member functions. */
3106 new_sublist -> fn_field.is_const = 1;
3107 new_sublist -> fn_field.is_volatile = 0;
3108 (*pp)++;
3109 break;
3110 case 'C': /* `volatile' member function. */
3111 new_sublist -> fn_field.is_const = 0;
3112 new_sublist -> fn_field.is_volatile = 1;
3113 (*pp)++;
3114 break;
3115 case 'D': /* `const volatile' member function. */
3116 new_sublist -> fn_field.is_const = 1;
3117 new_sublist -> fn_field.is_volatile = 1;
3118 (*pp)++;
3119 break;
3120 case '*': /* File compiled with g++ version 1 -- no info */
3121 case '?':
3122 case '.':
3123 break;
3124 default:
3125 complain (&const_vol_complaint, **pp);
3126 break;
3127 }
3128
3129 switch (*(*pp)++)
3130 {
3131 case '*':
3132 {
3133 int nbits;
3134 /* virtual member function, followed by index.
3135 The sign bit is set to distinguish pointers-to-methods
3136 from virtual function indicies. Since the array is
3137 in words, the quantity must be shifted left by 1
3138 on 16 bit machine, and by 2 on 32 bit machine, forcing
3139 the sign bit out, and usable as a valid index into
3140 the array. Remove the sign bit here. */
3141 new_sublist -> fn_field.voffset =
3142 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3143 if (nbits != 0)
3144 return 0;
3145
3146 STABS_CONTINUE (pp, objfile);
3147 if (**pp == ';' || **pp == '\0')
3148 {
3149 /* Must be g++ version 1. */
3150 new_sublist -> fn_field.fcontext = 0;
3151 }
3152 else
3153 {
3154 /* Figure out from whence this virtual function came.
3155 It may belong to virtual function table of
3156 one of its baseclasses. */
3157 look_ahead_type = read_type (pp, objfile);
3158 if (**pp == ':')
3159 {
3160 /* g++ version 1 overloaded methods. */
3161 }
3162 else
3163 {
3164 new_sublist -> fn_field.fcontext = look_ahead_type;
3165 if (**pp != ';')
3166 {
3167 return 0;
3168 }
3169 else
3170 {
3171 ++*pp;
3172 }
3173 look_ahead_type = NULL;
3174 }
3175 }
3176 break;
3177 }
3178 case '?':
3179 /* static member function. */
3180 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
3181 if (strncmp (new_sublist -> fn_field.physname,
3182 main_fn_name, strlen (main_fn_name)))
3183 {
3184 new_sublist -> fn_field.is_stub = 1;
3185 }
3186 break;
3187
3188 default:
3189 /* error */
3190 complain (&member_fn_complaint, (*pp)[-1]);
3191 /* Fall through into normal member function. */
3192
3193 case '.':
3194 /* normal member function. */
3195 new_sublist -> fn_field.voffset = 0;
3196 new_sublist -> fn_field.fcontext = 0;
3197 break;
3198 }
3199
3200 new_sublist -> next = sublist;
3201 sublist = new_sublist;
3202 length++;
3203 STABS_CONTINUE (pp, objfile);
3204 }
3205 while (**pp != ';' && **pp != '\0');
3206
3207 (*pp)++;
3208
3209 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
3210 obstack_alloc (&objfile -> type_obstack,
3211 sizeof (struct fn_field) * length);
3212 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
3213 sizeof (struct fn_field) * length);
3214 for (i = length; (i--, sublist); sublist = sublist -> next)
3215 {
3216 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
3217 }
3218
3219 new_fnlist -> fn_fieldlist.length = length;
3220 new_fnlist -> next = fip -> fnlist;
3221 fip -> fnlist = new_fnlist;
3222 nfn_fields++;
3223 total_length += length;
3224 STABS_CONTINUE (pp, objfile);
3225 }
3226
3227 if (nfn_fields)
3228 {
3229 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3230 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3231 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3232 memset (TYPE_FN_FIELDLISTS (type), 0,
3233 sizeof (struct fn_fieldlist) * nfn_fields);
3234 TYPE_NFN_FIELDS (type) = nfn_fields;
3235 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3236 }
3237
3238 return 1;
3239}
3240
3241/* Special GNU C++ name.
3242
3243 Returns 1 for success, 0 for failure. "failure" means that we can't
3244 keep parsing and it's time for error_type(). */
3245
3246static int
3247read_cpp_abbrev (fip, pp, type, objfile)
3248 struct field_info *fip;
3249 char **pp;
3250 struct type *type;
3251 struct objfile *objfile;
3252{
3253 register char *p;
3254 char *name;
3255 char cpp_abbrev;
3256 struct type *context;
3257
3258 p = *pp;
3259 if (*++p == 'v')
3260 {
3261 name = NULL;
3262 cpp_abbrev = *++p;
3263
3264 *pp = p + 1;
3265
3266 /* At this point, *pp points to something like "22:23=*22...",
3267 where the type number before the ':' is the "context" and
3268 everything after is a regular type definition. Lookup the
3269 type, find it's name, and construct the field name. */
3270
3271 context = read_type (pp, objfile);
3272
3273 switch (cpp_abbrev)
3274 {
3275 case 'f': /* $vf -- a virtual function table pointer */
3276 fip->list->field.name =
3277 obconcat (&objfile->type_obstack, vptr_name, "", "");
3278 break;
3279
3280 case 'b': /* $vb -- a virtual bsomethingorother */
3281 name = type_name_no_tag (context);
3282 if (name == NULL)
3283 {
3284 complain (&invalid_cpp_type_complaint, symnum);
3285 name = "FOO";
3286 }
3287 fip->list->field.name =
3288 obconcat (&objfile->type_obstack, vb_name, name, "");
3289 break;
3290
3291 default:
3292 complain (&invalid_cpp_abbrev_complaint, *pp);
3293 fip->list->field.name =
3294 obconcat (&objfile->type_obstack,
3295 "INVALID_CPLUSPLUS_ABBREV", "", "");
3296 break;
3297 }
3298
3299 /* At this point, *pp points to the ':'. Skip it and read the
3300 field type. */
3301
3302 p = ++(*pp);
3303 if (p[-1] != ':')
3304 {
3305 complain (&invalid_cpp_abbrev_complaint, *pp);
3306 return 0;
3307 }
3308 fip->list->field.type = read_type (pp, objfile);
3309 if (**pp == ',')
3310 (*pp)++; /* Skip the comma. */
3311 else
3312 return 0;
3313
3314 {
3315 int nbits;
3316 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3317 if (nbits != 0)
3318 return 0;
3319 }
3320 /* This field is unpacked. */
3321 FIELD_BITSIZE (fip->list->field) = 0;
3322 fip->list->visibility = VISIBILITY_PRIVATE;
3323 }
3324 else
3325 {
3326 complain (&invalid_cpp_abbrev_complaint, *pp);
3327 /* We have no idea what syntax an unrecognized abbrev would have, so
3328 better return 0. If we returned 1, we would need to at least advance
3329 *pp to avoid an infinite loop. */
3330 return 0;
3331 }
3332 return 1;
3333}
3334
3335static void
3336read_one_struct_field (fip, pp, p, type, objfile)
3337 struct field_info *fip;
3338 char **pp;
3339 char *p;
3340 struct type *type;
3341 struct objfile *objfile;
3342{
3343 /* The following is code to work around cfront generated stabs.
3344 The stabs contains full mangled name for each field.
3345 We try to demangle the name and extract the field name out of it.
3346 */
3347 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3348 {
3349 char save_p;
3350 char *dem, *dem_p;
3351 save_p = *p;
3352 *p = '\0';
3353 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3354 if (dem != NULL)
3355 {
3356 dem_p = strrchr (dem, ':');
3357 if (dem_p != 0 && *(dem_p-1)==':')
3358 dem_p++;
3359 FIELD_NAME (fip->list->field) =
3360 obsavestring (dem_p, strlen (dem_p), &objfile -> type_obstack);
3361 }
3362 else
3363 {
3364 FIELD_NAME (fip->list->field) =
3365 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
3366 }
3367 *p = save_p;
3368 }
3369 /* end of code for cfront work around */
3370
3371 else
3372 fip -> list -> field.name =
3373 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
3374 *pp = p + 1;
3375
3376 /* This means we have a visibility for a field coming. */
3377 if (**pp == '/')
3378 {
3379 (*pp)++;
3380 fip -> list -> visibility = *(*pp)++;
3381 }
3382 else
3383 {
3384 /* normal dbx-style format, no explicit visibility */
3385 fip -> list -> visibility = VISIBILITY_PUBLIC;
3386 }
3387
3388 fip -> list -> field.type = read_type (pp, objfile);
3389 if (**pp == ':')
3390 {
3391 p = ++(*pp);
3392#if 0
3393 /* Possible future hook for nested types. */
3394 if (**pp == '!')
3395 {
3396 fip -> list -> field.bitpos = (long)-2; /* nested type */
3397 p = ++(*pp);
3398 }
3399 else ...;
3400#endif
3401 while (*p != ';')
3402 {
3403 p++;
3404 }
3405 /* Static class member. */
3406 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3407 *pp = p + 1;
3408 return;
3409 }
3410 else if (**pp != ',')
3411 {
3412 /* Bad structure-type format. */
3413 complain (&stabs_general_complaint, "bad structure-type format");
3414 return;
3415 }
3416
3417 (*pp)++; /* Skip the comma. */
3418
3419 {
3420 int nbits;
3421 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3422 if (nbits != 0)
3423 {
3424 complain (&stabs_general_complaint, "bad structure-type format");
3425 return;
3426 }
3427 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3428 if (nbits != 0)
3429 {
3430 complain (&stabs_general_complaint, "bad structure-type format");
3431 return;
3432 }
3433 }
3434
3435 if (FIELD_BITPOS (fip->list->field) == 0
3436 && FIELD_BITSIZE (fip->list->field) == 0)
3437 {
3438 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3439 it is a field which has been optimized out. The correct stab for
3440 this case is to use VISIBILITY_IGNORE, but that is a recent
3441 invention. (2) It is a 0-size array. For example
3442 union { int num; char str[0]; } foo. Printing "<no value>" for
3443 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3444 will continue to work, and a 0-size array as a whole doesn't
3445 have any contents to print.
3446
3447 I suspect this probably could also happen with gcc -gstabs (not
3448 -gstabs+) for static fields, and perhaps other C++ extensions.
3449 Hopefully few people use -gstabs with gdb, since it is intended
3450 for dbx compatibility. */
3451
3452 /* Ignore this field. */
3453 fip -> list-> visibility = VISIBILITY_IGNORE;
3454 }
3455 else
3456 {
3457 /* Detect an unpacked field and mark it as such.
3458 dbx gives a bit size for all fields.
3459 Note that forward refs cannot be packed,
3460 and treat enums as if they had the width of ints. */
3461
3462 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3463
3464 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3465 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3466 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3467 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3468 {
3469 FIELD_BITSIZE (fip->list->field) = 0;
3470 }
3471 if ((FIELD_BITSIZE (fip->list->field)
3472 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3473 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3474 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT )
3475 )
3476 &&
3477 FIELD_BITPOS (fip->list->field) % 8 == 0)
3478 {
3479 FIELD_BITSIZE (fip->list->field) = 0;
3480 }
3481 }
3482}
3483
3484
3485/* Read struct or class data fields. They have the form:
3486
3487 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3488
3489 At the end, we see a semicolon instead of a field.
3490
3491 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3492 a static field.
3493
3494 The optional VISIBILITY is one of:
3495
3496 '/0' (VISIBILITY_PRIVATE)
3497 '/1' (VISIBILITY_PROTECTED)
3498 '/2' (VISIBILITY_PUBLIC)
3499 '/9' (VISIBILITY_IGNORE)
3500
3501 or nothing, for C style fields with public visibility.
3502
3503 Returns 1 for success, 0 for failure. */
3504
3505static int
3506read_struct_fields (fip, pp, type, objfile)
3507 struct field_info *fip;
3508 char **pp;
3509 struct type *type;
3510 struct objfile *objfile;
3511{
3512 register char *p;
3513 struct nextfield *new;
3514
3515 /* We better set p right now, in case there are no fields at all... */
3516
3517 p = *pp;
3518
3519 /* Read each data member type until we find the terminating ';' at the end of
3520 the data member list, or break for some other reason such as finding the
3521 start of the member function list. */
3522
3523 while (**pp != ';')
3524 {
3525 if (os9k_stabs && **pp == ',') break;
3526 STABS_CONTINUE (pp, objfile);
3527 /* Get space to record the next field's data. */
3528 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3529 make_cleanup (free, new);
3530 memset (new, 0, sizeof (struct nextfield));
3531 new -> next = fip -> list;
3532 fip -> list = new;
3533
3534 /* Get the field name. */
3535 p = *pp;
3536
3537 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3538 unless the CPLUS_MARKER is followed by an underscore, in
3539 which case it is just the name of an anonymous type, which we
3540 should handle like any other type name. */
3541
3542 if (is_cplus_marker (p[0]) && p[1] != '_')
3543 {
3544 if (!read_cpp_abbrev (fip, pp, type, objfile))
3545 return 0;
3546 continue;
3547 }
3548
3549 /* Look for the ':' that separates the field name from the field
3550 values. Data members are delimited by a single ':', while member
3551 functions are delimited by a pair of ':'s. When we hit the member
3552 functions (if any), terminate scan loop and return. */
3553
3554 while (*p != ':' && *p != '\0')
3555 {
3556 p++;
3557 }
3558 if (*p == '\0')
3559 return 0;
3560
3561 /* Check to see if we have hit the member functions yet. */
3562 if (p[1] == ':')
3563 {
3564 break;
3565 }
3566 read_one_struct_field (fip, pp, p, type, objfile);
3567 }
3568 if (p[0] == ':' && p[1] == ':')
3569 {
3570 /* chill the list of fields: the last entry (at the head) is a
3571 partially constructed entry which we now scrub. */
3572 fip -> list = fip -> list -> next;
3573 }
3574 return 1;
3575}
3576
3577/* The stabs for C++ derived classes contain baseclass information which
3578 is marked by a '!' character after the total size. This function is
3579 called when we encounter the baseclass marker, and slurps up all the
3580 baseclass information.
3581
3582 Immediately following the '!' marker is the number of base classes that
3583 the class is derived from, followed by information for each base class.
3584 For each base class, there are two visibility specifiers, a bit offset
3585 to the base class information within the derived class, a reference to
3586 the type for the base class, and a terminating semicolon.
3587
3588 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3589 ^^ ^ ^ ^ ^ ^ ^
3590 Baseclass information marker __________________|| | | | | | |
3591 Number of baseclasses __________________________| | | | | | |
3592 Visibility specifiers (2) ________________________| | | | | |
3593 Offset in bits from start of class _________________| | | | |
3594 Type number for base class ___________________________| | | |
3595 Visibility specifiers (2) _______________________________| | |
3596 Offset in bits from start of class ________________________| |
3597 Type number of base class ____________________________________|
3598
3599 Return 1 for success, 0 for (error-type-inducing) failure. */
3600
3601static int
3602read_baseclasses (fip, pp, type, objfile)
3603 struct field_info *fip;
3604 char **pp;
3605 struct type *type;
3606 struct objfile *objfile;
3607{
3608 int i;
3609 struct nextfield *new;
3610
3611 if (**pp != '!')
3612 {
3613 return 1;
3614 }
3615 else
3616 {
3617 /* Skip the '!' baseclass information marker. */
3618 (*pp)++;
3619 }
3620
3621 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3622 {
3623 int nbits;
3624 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3625 if (nbits != 0)
3626 return 0;
3627 }
3628
3629#if 0
3630 /* Some stupid compilers have trouble with the following, so break
3631 it up into simpler expressions. */
3632 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3633 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3634#else
3635 {
3636 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3637 char *pointer;
3638
3639 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3640 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3641 }
3642#endif /* 0 */
3643
3644 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3645
3646 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3647 {
3648 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3649 make_cleanup (free, new);
3650 memset (new, 0, sizeof (struct nextfield));
3651 new -> next = fip -> list;
3652 fip -> list = new;
3653 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3654
3655 STABS_CONTINUE (pp, objfile);
3656 switch (**pp)
3657 {
3658 case '0':
3659 /* Nothing to do. */
3660 break;
3661 case '1':
3662 SET_TYPE_FIELD_VIRTUAL (type, i);
3663 break;
3664 default:
3665 /* Unknown character. Complain and treat it as non-virtual. */
3666 {
3667 static struct complaint msg = {
3668 "Unknown virtual character `%c' for baseclass", 0, 0};
3669 complain (&msg, **pp);
3670 }
3671 }
3672 ++(*pp);
3673
3674 new -> visibility = *(*pp)++;
3675 switch (new -> visibility)
3676 {
3677 case VISIBILITY_PRIVATE:
3678 case VISIBILITY_PROTECTED:
3679 case VISIBILITY_PUBLIC:
3680 break;
3681 default:
3682 /* Bad visibility format. Complain and treat it as
3683 public. */
3684 {
3685 static struct complaint msg = {
3686 "Unknown visibility `%c' for baseclass", 0, 0};
3687 complain (&msg, new -> visibility);
3688 new -> visibility = VISIBILITY_PUBLIC;
3689 }
3690 }
3691
3692 {
3693 int nbits;
3694
3695 /* The remaining value is the bit offset of the portion of the object
3696 corresponding to this baseclass. Always zero in the absence of
3697 multiple inheritance. */
3698
3699 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3700 if (nbits != 0)
3701 return 0;
3702 }
3703
3704 /* The last piece of baseclass information is the type of the
3705 base class. Read it, and remember it's type name as this
3706 field's name. */
3707
3708 new -> field.type = read_type (pp, objfile);
3709 new -> field.name = type_name_no_tag (new -> field.type);
3710
3711 /* skip trailing ';' and bump count of number of fields seen */
3712 if (**pp == ';')
3713 (*pp)++;
3714 else
3715 return 0;
3716 }
3717 return 1;
3718}
3719
3720/* The tail end of stabs for C++ classes that contain a virtual function
3721 pointer contains a tilde, a %, and a type number.
3722 The type number refers to the base class (possibly this class itself) which
3723 contains the vtable pointer for the current class.
3724
3725 This function is called when we have parsed all the method declarations,
3726 so we can look for the vptr base class info. */
3727
3728static int
3729read_tilde_fields (fip, pp, type, objfile)
3730 struct field_info *fip;
3731 char **pp;
3732 struct type *type;
3733 struct objfile *objfile;
3734{
3735 register char *p;
3736
3737 STABS_CONTINUE (pp, objfile);
3738
3739 /* If we are positioned at a ';', then skip it. */
3740 if (**pp == ';')
3741 {
3742 (*pp)++;
3743 }
3744
3745 if (**pp == '~')
3746 {
3747 (*pp)++;
3748
3749 if (**pp == '=' || **pp == '+' || **pp == '-')
3750 {
3751 /* Obsolete flags that used to indicate the presence
3752 of constructors and/or destructors. */
3753 (*pp)++;
3754 }
3755
3756 /* Read either a '%' or the final ';'. */
3757 if (*(*pp)++ == '%')
3758 {
3759 /* The next number is the type number of the base class
3760 (possibly our own class) which supplies the vtable for
3761 this class. Parse it out, and search that class to find
3762 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3763 and TYPE_VPTR_FIELDNO. */
3764
3765 struct type *t;
3766 int i;
3767
3768 t = read_type (pp, objfile);
3769 p = (*pp)++;
3770 while (*p != '\0' && *p != ';')
3771 {
3772 p++;
3773 }
3774 if (*p == '\0')
3775 {
3776 /* Premature end of symbol. */
3777 return 0;
3778 }
3779
3780 TYPE_VPTR_BASETYPE (type) = t;
3781 if (type == t) /* Our own class provides vtbl ptr */
3782 {
3783 for (i = TYPE_NFIELDS (t) - 1;
3784 i >= TYPE_N_BASECLASSES (t);
3785 --i)
3786 {
3787 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3788 sizeof (vptr_name) - 1))
3789 {
3790 TYPE_VPTR_FIELDNO (type) = i;
3791 goto gotit;
3792 }
3793 }
3794 /* Virtual function table field not found. */
3795 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3796 return 0;
3797 }
3798 else
3799 {
3800 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3801 }
3802
3803 gotit:
3804 *pp = p + 1;
3805 }
3806 }
3807 return 1;
3808}
3809
3810static int
3811attach_fn_fields_to_type (fip, type)
3812 struct field_info *fip;
3813 register struct type *type;
3814{
3815 register int n;
3816
3817 for (n = TYPE_NFN_FIELDS (type);
3818 fip -> fnlist != NULL;
3819 fip -> fnlist = fip -> fnlist -> next)
3820 {
3821 --n; /* Circumvent Sun3 compiler bug */
3822 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
3823 }
3824 return 1;
3825}
3826
3827/* read cfront class static data.
3828 pp points to string starting with the list of static data
3829 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3830 ^^^^^^^^
3831
3832 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3833 ^
3834 */
3835
3836static int
3837read_cfront_static_fields (fip, pp, type, objfile)
3838 struct field_info *fip;
3839 char **pp;
3840 struct type *type;
3841 struct objfile *objfile;
3842{
3843 struct nextfield * new;
3844 struct type *stype;
3845 char * sname;
3846 struct symbol * ref_static=0;
3847
3848 if (**pp==';') /* no static data; return */
3849 {
3850 ++(*pp);
3851 return 1;
3852 }
3853
3854 /* Process each field in the list until we find the terminating ";" */
3855
3856 /* eg: p = "as__1A ;;;" */
3857 STABS_CONTINUE (pp, objfile); /* handle \\ */
3858 while (**pp!=';' && (sname = get_substring (pp, ' '), sname))
3859 {
3860 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name*/
3861 if (!ref_static)
3862 {
3863 static struct complaint msg = {"\
3864 Unable to find symbol for static data field %s\n",
3865 0, 0};
3866 complain (&msg, sname);
3867 continue;
3868 }
3869 stype = SYMBOL_TYPE(ref_static);
3870
3871 /* allocate a new fip */
3872 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3873 make_cleanup (free, new);
3874 memset (new, 0, sizeof (struct nextfield));
3875 new -> next = fip -> list;
3876 fip -> list = new;
3877
3878 /* set visibility */
3879 /* FIXME! no way to tell visibility from stabs??? */
3880 new -> visibility = VISIBILITY_PUBLIC;
3881
3882 /* set field info into fip */
3883 fip -> list -> field.type = stype;
3884
3885 /* set bitpos & bitsize */
3886 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
3887
3888 /* set name field */
3889 /* The following is code to work around cfront generated stabs.
3890 The stabs contains full mangled name for each field.
3891 We try to demangle the name and extract the field name out of it.
3892 */
3893 if (ARM_DEMANGLING)
3894 {
3895 char *dem, *dem_p;
3896 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
3897 if (dem != NULL)
3898 {
3899 dem_p = strrchr (dem, ':');
3900 if (dem_p != 0 && *(dem_p-1)==':')
3901 dem_p++;
3902 fip->list->field.name =
3903 obsavestring (dem_p, strlen (dem_p), &objfile -> type_obstack);
3904 }
3905 else
3906 {
3907 fip->list->field.name =
3908 obsavestring (sname, strlen (sname), &objfile -> type_obstack);
3909 }
3910 } /* end of code for cfront work around */
3911 } /* loop again for next static field */
3912 return 1;
3913}
3914
3915/* Copy structure fields to fip so attach_fields_to_type will work.
3916 type has already been created with the initial instance data fields.
3917 Now we want to be able to add the other members to the class,
3918 so we want to add them back to the fip and reattach them again
3919 once we have collected all the class members. */
3920
3921static int
3922copy_cfront_struct_fields (fip, type, objfile)
3923 struct field_info *fip;
3924 struct type *type;
3925 struct objfile *objfile;
3926{
3927 int nfields = TYPE_NFIELDS(type);
3928 int i;
3929 struct nextfield * new;
3930
3931 /* Copy the fields into the list of fips and reset the types
3932 to remove the old fields */
3933
3934 for (i=0; i<nfields; i++)
3935 {
3936 /* allocate a new fip */
3937 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3938 make_cleanup (free, new);
3939 memset (new, 0, sizeof (struct nextfield));
3940 new -> next = fip -> list;
3941 fip -> list = new;
3942
3943 /* copy field info into fip */
3944 new -> field = TYPE_FIELD (type, i);
3945 /* set visibility */
3946 if (TYPE_FIELD_PROTECTED (type, i))
3947 new -> visibility = VISIBILITY_PROTECTED;
3948 else if (TYPE_FIELD_PRIVATE (type, i))
3949 new -> visibility = VISIBILITY_PRIVATE;
3950 else
3951 new -> visibility = VISIBILITY_PUBLIC;
3952 }
3953 /* Now delete the fields from the type since we will be
3954 allocing new space once we get the rest of the fields
3955 in attach_fields_to_type.
3956 The pointer TYPE_FIELDS(type) is left dangling but should
3957 be freed later by objstack_free */
3958 TYPE_FIELDS (type)=0;
3959 TYPE_NFIELDS (type) = 0;
3960
3961 return 1;
3962}
3963
3964/* Create the vector of fields, and record how big it is.
3965 We need this info to record proper virtual function table information
3966 for this class's virtual functions. */
3967
3968static int
3969attach_fields_to_type (fip, type, objfile)
3970 struct field_info *fip;
3971 register struct type *type;
3972 struct objfile *objfile;
3973{
3974 register int nfields = 0;
3975 register int non_public_fields = 0;
3976 register struct nextfield *scan;
3977
3978 /* Count up the number of fields that we have, as well as taking note of
3979 whether or not there are any non-public fields, which requires us to
3980 allocate and build the private_field_bits and protected_field_bits
3981 bitfields. */
3982
3983 for (scan = fip -> list; scan != NULL; scan = scan -> next)
3984 {
3985 nfields++;
3986 if (scan -> visibility != VISIBILITY_PUBLIC)
3987 {
3988 non_public_fields++;
3989 }
3990 }
3991
3992 /* Now we know how many fields there are, and whether or not there are any
3993 non-public fields. Record the field count, allocate space for the
3994 array of fields, and create blank visibility bitfields if necessary. */
3995
3996 TYPE_NFIELDS (type) = nfields;
3997 TYPE_FIELDS (type) = (struct field *)
3998 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3999 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4000
4001 if (non_public_fields)
4002 {
4003 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4004
4005 TYPE_FIELD_PRIVATE_BITS (type) =
4006 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4007 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4008
4009 TYPE_FIELD_PROTECTED_BITS (type) =
4010 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4011 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4012
4013 TYPE_FIELD_IGNORE_BITS (type) =
4014 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4015 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4016 }
4017
4018 /* Copy the saved-up fields into the field vector. Start from the head
4019 of the list, adding to the tail of the field array, so that they end
4020 up in the same order in the array in which they were added to the list. */
4021
4022 while (nfields-- > 0)
4023 {
4024 TYPE_FIELD (type, nfields) = fip -> list -> field;
4025 switch (fip -> list -> visibility)
4026 {
4027 case VISIBILITY_PRIVATE:
4028 SET_TYPE_FIELD_PRIVATE (type, nfields);
4029 break;
4030
4031 case VISIBILITY_PROTECTED:
4032 SET_TYPE_FIELD_PROTECTED (type, nfields);
4033 break;
4034
4035 case VISIBILITY_IGNORE:
4036 SET_TYPE_FIELD_IGNORE (type, nfields);
4037 break;
4038
4039 case VISIBILITY_PUBLIC:
4040 break;
4041
4042 default:
4043 /* Unknown visibility. Complain and treat it as public. */
4044 {
4045 static struct complaint msg = {
4046 "Unknown visibility `%c' for field", 0, 0};
4047 complain (&msg, fip -> list -> visibility);
4048 }
4049 break;
4050 }
4051 fip -> list = fip -> list -> next;
4052 }
4053 return 1;
4054}
4055
4056/* Read the description of a structure (or union type) and return an object
4057 describing the type.
4058
4059 PP points to a character pointer that points to the next unconsumed token
4060 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4061 *PP will point to "4a:1,0,32;;".
4062
4063 TYPE points to an incomplete type that needs to be filled in.
4064
4065 OBJFILE points to the current objfile from which the stabs information is
4066 being read. (Note that it is redundant in that TYPE also contains a pointer
4067 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4068 */
4069
4070static struct type *
4071read_struct_type (pp, type, objfile)
4072 char **pp;
4073 struct type *type;
4074 struct objfile *objfile;
4075{
4076 struct cleanup *back_to;
4077 struct field_info fi;
4078
4079 fi.list = NULL;
4080 fi.fnlist = NULL;
4081
4082 back_to = make_cleanup (null_cleanup, 0);
4083
4084 INIT_CPLUS_SPECIFIC (type);
4085 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4086
4087 /* First comes the total size in bytes. */
4088
4089 {
4090 int nbits;
4091 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4092 if (nbits != 0)
4093 return error_type (pp, objfile);
4094 }
4095
4096 /* Now read the baseclasses, if any, read the regular C struct or C++
4097 class member fields, attach the fields to the type, read the C++
4098 member functions, attach them to the type, and then read any tilde
4099 field (baseclass specifier for the class holding the main vtable). */
4100
4101 if (!read_baseclasses (&fi, pp, type, objfile)
4102 || !read_struct_fields (&fi, pp, type, objfile)
4103 || !attach_fields_to_type (&fi, type, objfile)
4104 || !read_member_functions (&fi, pp, type, objfile)
4105 || !attach_fn_fields_to_type (&fi, type)
4106 || !read_tilde_fields (&fi, pp, type, objfile))
4107 {
4108 type = error_type (pp, objfile);
4109 }
4110
4111 do_cleanups (back_to);
4112 return (type);
4113}
4114
4115/* Read a definition of an array type,
4116 and create and return a suitable type object.
4117 Also creates a range type which represents the bounds of that
4118 array. */
4119
4120static struct type *
4121read_array_type (pp, type, objfile)
4122 register char **pp;
4123 register struct type *type;
4124 struct objfile *objfile;
4125{
4126 struct type *index_type, *element_type, *range_type;
4127 int lower, upper;
4128 int adjustable = 0;
4129 int nbits;
4130
4131 /* Format of an array type:
4132 "ar<index type>;lower;upper;<array_contents_type>".
4133 OS9000: "arlower,upper;<array_contents_type>".
4134
4135 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4136 for these, produce a type like float[][]. */
4137
4138 if (os9k_stabs)
4139 index_type = builtin_type_int;
4140 else
4141 {
4142 index_type = read_type (pp, objfile);
4143 if (**pp != ';')
4144 /* Improper format of array type decl. */
4145 return error_type (pp, objfile);
4146 ++*pp;
4147 }
4148
4149 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4150 {
4151 (*pp)++;
4152 adjustable = 1;
4153 }
4154 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4155 if (nbits != 0)
4156 return error_type (pp, objfile);
4157
4158 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4159 {
4160 (*pp)++;
4161 adjustable = 1;
4162 }
4163 upper = read_huge_number (pp, ';', &nbits);
4164 if (nbits != 0)
4165 return error_type (pp, objfile);
4166
4167 element_type = read_type (pp, objfile);
4168
4169 if (adjustable)
4170 {
4171 lower = 0;
4172 upper = -1;
4173 }
4174
4175 range_type =
4176 create_range_type ((struct type *) NULL, index_type, lower, upper);
4177 type = create_array_type (type, element_type, range_type);
4178
4179 return type;
4180}
4181
4182
4183/* Read a definition of an enumeration type,
4184 and create and return a suitable type object.
4185 Also defines the symbols that represent the values of the type. */
4186
4187static struct type *
4188read_enum_type (pp, type, objfile)
4189 register char **pp;
4190 register struct type *type;
4191 struct objfile *objfile;
4192{
4193 register char *p;
4194 char *name;
4195 register long n;
4196 register struct symbol *sym;
4197 int nsyms = 0;
4198 struct pending **symlist;
4199 struct pending *osyms, *syms;
4200 int o_nsyms;
4201 int nbits;
4202 int unsigned_enum = 1;
4203
4204#if 0
4205 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4206 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4207 to do? For now, force all enum values to file scope. */
4208 if (within_function)
4209 symlist = &local_symbols;
4210 else
4211#endif
4212 symlist = &file_symbols;
4213 osyms = *symlist;
4214 o_nsyms = osyms ? osyms->nsyms : 0;
4215
4216 if (os9k_stabs)
4217 {
4218 /* Size. Perhaps this does not have to be conditionalized on
4219 os9k_stabs (assuming the name of an enum constant can't start
4220 with a digit). */
4221 read_huge_number (pp, 0, &nbits);
4222 if (nbits != 0)
4223 return error_type (pp, objfile);
4224 }
4225
4226 /* The aix4 compiler emits an extra field before the enum members;
4227 my guess is it's a type of some sort. Just ignore it. */
4228 if (**pp == '-')
4229 {
4230 /* Skip over the type. */
4231 while (**pp != ':')
4232 (*pp)++;
4233
4234 /* Skip over the colon. */
4235 (*pp)++;
4236 }
4237
4238 /* Read the value-names and their values.
4239 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4240 A semicolon or comma instead of a NAME means the end. */
4241 while (**pp && **pp != ';' && **pp != ',')
4242 {
4243 STABS_CONTINUE (pp, objfile);
4244 p = *pp;
4245 while (*p != ':') p++;
4246 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
4247 *pp = p + 1;
4248 n = read_huge_number (pp, ',', &nbits);
4249 if (nbits != 0)
4250 return error_type (pp, objfile);
4251
4252 sym = (struct symbol *)
4253 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
4254 memset (sym, 0, sizeof (struct symbol));
4255 SYMBOL_NAME (sym) = name;
4256 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
4257 SYMBOL_CLASS (sym) = LOC_CONST;
4258 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4259 SYMBOL_VALUE (sym) = n;
4260 if (n < 0)
4261 unsigned_enum = 0;
4262 add_symbol_to_list (sym, symlist);
4263 nsyms++;
4264 }
4265
4266 if (**pp == ';')
4267 (*pp)++; /* Skip the semicolon. */
4268
4269 /* Now fill in the fields of the type-structure. */
4270
4271 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4272 TYPE_CODE (type) = TYPE_CODE_ENUM;
4273 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4274 if (unsigned_enum)
4275 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4276 TYPE_NFIELDS (type) = nsyms;
4277 TYPE_FIELDS (type) = (struct field *)
4278 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4279 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4280
4281 /* Find the symbols for the values and put them into the type.
4282 The symbols can be found in the symlist that we put them on
4283 to cause them to be defined. osyms contains the old value
4284 of that symlist; everything up to there was defined by us. */
4285 /* Note that we preserve the order of the enum constants, so
4286 that in something like "enum {FOO, LAST_THING=FOO}" we print
4287 FOO, not LAST_THING. */
4288
4289 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4290 {
4291 int last = syms == osyms ? o_nsyms : 0;
4292 int j = syms->nsyms;
4293 for (; --j >= last; --n)
4294 {
4295 struct symbol *xsym = syms->symbol[j];
4296 SYMBOL_TYPE (xsym) = type;
4297 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4298 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4299 TYPE_FIELD_BITSIZE (type, n) = 0;
4300 }
4301 if (syms == osyms)
4302 break;
4303 }
4304
4305 return type;
4306}
4307
4308/* Sun's ACC uses a somewhat saner method for specifying the builtin
4309 typedefs in every file (for int, long, etc):
4310
4311 type = b <signed> <width> <format type>; <offset>; <nbits>
4312 signed = u or s.
4313 optional format type = c or b for char or boolean.
4314 offset = offset from high order bit to start bit of type.
4315 width is # bytes in object of this type, nbits is # bits in type.
4316
4317 The width/offset stuff appears to be for small objects stored in
4318 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4319 FIXME. */
4320
4321static struct type *
4322read_sun_builtin_type (pp, typenums, objfile)
4323 char **pp;
4324 int typenums[2];
4325 struct objfile *objfile;
4326{
4327 int type_bits;
4328 int nbits;
4329 int signed_type;
4330 enum type_code code = TYPE_CODE_INT;
4331
4332 switch (**pp)
4333 {
4334 case 's':
4335 signed_type = 1;
4336 break;
4337 case 'u':
4338 signed_type = 0;
4339 break;
4340 default:
4341 return error_type (pp, objfile);
4342 }
4343 (*pp)++;
4344
4345 /* For some odd reason, all forms of char put a c here. This is strange
4346 because no other type has this honor. We can safely ignore this because
4347 we actually determine 'char'acterness by the number of bits specified in
4348 the descriptor.
4349 Boolean forms, e.g Fortran logical*X, put a b here. */
4350
4351 if (**pp == 'c')
4352 (*pp)++;
4353 else if (**pp == 'b')
4354 {
4355 code = TYPE_CODE_BOOL;
4356 (*pp)++;
4357 }
4358
4359 /* The first number appears to be the number of bytes occupied
4360 by this type, except that unsigned short is 4 instead of 2.
4361 Since this information is redundant with the third number,
4362 we will ignore it. */
4363 read_huge_number (pp, ';', &nbits);
4364 if (nbits != 0)
4365 return error_type (pp, objfile);
4366
4367 /* The second number is always 0, so ignore it too. */
4368 read_huge_number (pp, ';', &nbits);
4369 if (nbits != 0)
4370 return error_type (pp, objfile);
4371
4372 /* The third number is the number of bits for this type. */
4373 type_bits = read_huge_number (pp, 0, &nbits);
4374 if (nbits != 0)
4375 return error_type (pp, objfile);
4376 /* The type *should* end with a semicolon. If it are embedded
4377 in a larger type the semicolon may be the only way to know where
4378 the type ends. If this type is at the end of the stabstring we
4379 can deal with the omitted semicolon (but we don't have to like
4380 it). Don't bother to complain(), Sun's compiler omits the semicolon
4381 for "void". */
4382 if (**pp == ';')
4383 ++(*pp);
4384
4385 if (type_bits == 0)
4386 return init_type (TYPE_CODE_VOID, 1,
4387 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
4388 objfile);
4389 else
4390 return init_type (code,
4391 type_bits / TARGET_CHAR_BIT,
4392 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
4393 objfile);
4394}
4395
4396static struct type *
4397read_sun_floating_type (pp, typenums, objfile)
4398 char **pp;
4399 int typenums[2];
4400 struct objfile *objfile;
4401{
4402 int nbits;
4403 int details;
4404 int nbytes;
4405
4406 /* The first number has more details about the type, for example
4407 FN_COMPLEX. */
4408 details = read_huge_number (pp, ';', &nbits);
4409 if (nbits != 0)
4410 return error_type (pp, objfile);
4411
4412 /* The second number is the number of bytes occupied by this type */
4413 nbytes = read_huge_number (pp, ';', &nbits);
4414 if (nbits != 0)
4415 return error_type (pp, objfile);
4416
4417 if (details == NF_COMPLEX || details == NF_COMPLEX16
4418 || details == NF_COMPLEX32)
4419 /* This is a type we can't handle, but we do know the size.
4420 We also will be able to give it a name. */
4421 return init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4422
4423 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4424}
4425
4426/* Read a number from the string pointed to by *PP.
4427 The value of *PP is advanced over the number.
4428 If END is nonzero, the character that ends the
4429 number must match END, or an error happens;
4430 and that character is skipped if it does match.
4431 If END is zero, *PP is left pointing to that character.
4432
4433 If the number fits in a long, set *BITS to 0 and return the value.
4434 If not, set *BITS to be the number of bits in the number and return 0.
4435
4436 If encounter garbage, set *BITS to -1 and return 0. */
4437
4438static long
4439read_huge_number (pp, end, bits)
4440 char **pp;
4441 int end;
4442 int *bits;
4443{
4444 char *p = *pp;
4445 int sign = 1;
4446 long n = 0;
4447 int radix = 10;
4448 char overflow = 0;
4449 int nbits = 0;
4450 int c;
4451 long upper_limit;
4452
4453 if (*p == '-')
4454 {
4455 sign = -1;
4456 p++;
4457 }
4458
4459 /* Leading zero means octal. GCC uses this to output values larger
4460 than an int (because that would be hard in decimal). */
4461 if (*p == '0')
4462 {
4463 radix = 8;
4464 p++;
4465 }
4466
4467 if (os9k_stabs)
4468 upper_limit = ULONG_MAX / radix;
4469 else
4470 upper_limit = LONG_MAX / radix;
4471
4472 while ((c = *p++) >= '0' && c < ('0' + radix))
4473 {
4474 if (n <= upper_limit)
4475 {
4476 n *= radix;
4477 n += c - '0'; /* FIXME this overflows anyway */
4478 }
4479 else
4480 overflow = 1;
4481
4482 /* This depends on large values being output in octal, which is
4483 what GCC does. */
4484 if (radix == 8)
4485 {
4486 if (nbits == 0)
4487 {
4488 if (c == '0')
4489 /* Ignore leading zeroes. */
4490 ;
4491 else if (c == '1')
4492 nbits = 1;
4493 else if (c == '2' || c == '3')
4494 nbits = 2;
4495 else
4496 nbits = 3;
4497 }
4498 else
4499 nbits += 3;
4500 }
4501 }
4502 if (end)
4503 {
4504 if (c && c != end)
4505 {
4506 if (bits != NULL)
4507 *bits = -1;
4508 return 0;
4509 }
4510 }
4511 else
4512 --p;
4513
4514 *pp = p;
4515 if (overflow)
4516 {
4517 if (nbits == 0)
4518 {
4519 /* Large decimal constants are an error (because it is hard to
4520 count how many bits are in them). */
4521 if (bits != NULL)
4522 *bits = -1;
4523 return 0;
4524 }
4525
4526 /* -0x7f is the same as 0x80. So deal with it by adding one to
4527 the number of bits. */
4528 if (sign == -1)
4529 ++nbits;
4530 if (bits)
4531 *bits = nbits;
4532 }
4533 else
4534 {
4535 if (bits)
4536 *bits = 0;
4537 return n * sign;
4538 }
4539 /* It's *BITS which has the interesting information. */
4540 return 0;
4541}
4542
4543static struct type *
4544read_range_type (pp, typenums, objfile)
4545 char **pp;
4546 int typenums[2];
4547 struct objfile *objfile;
4548{
4549 char *orig_pp = *pp;
4550 int rangenums[2];
4551 long n2, n3;
4552 int n2bits, n3bits;
4553 int self_subrange;
4554 struct type *result_type;
4555 struct type *index_type = NULL;
4556
4557 /* First comes a type we are a subrange of.
4558 In C it is usually 0, 1 or the type being defined. */
4559 if (read_type_number (pp, rangenums) != 0)
4560 return error_type (pp, objfile);
4561 self_subrange = (rangenums[0] == typenums[0] &&
4562 rangenums[1] == typenums[1]);
4563
4564 if (**pp == '=')
4565 {
4566 *pp = orig_pp;
4567 index_type = read_type (pp, objfile);
4568 }
4569
4570 /* A semicolon should now follow; skip it. */
4571 if (**pp == ';')
4572 (*pp)++;
4573
4574 /* The remaining two operands are usually lower and upper bounds
4575 of the range. But in some special cases they mean something else. */
4576 n2 = read_huge_number (pp, ';', &n2bits);
4577 n3 = read_huge_number (pp, ';', &n3bits);
4578
4579 if (n2bits == -1 || n3bits == -1)
4580 return error_type (pp, objfile);
4581
4582 if (index_type)
4583 goto handle_true_range;
4584
4585 /* If limits are huge, must be large integral type. */
4586 if (n2bits != 0 || n3bits != 0)
4587 {
4588 char got_signed = 0;
4589 char got_unsigned = 0;
4590 /* Number of bits in the type. */
4591 int nbits = 0;
4592
4593 /* Range from 0 to <large number> is an unsigned large integral type. */
4594 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4595 {
4596 got_unsigned = 1;
4597 nbits = n3bits;
4598 }
4599 /* Range from <large number> to <large number>-1 is a large signed
4600 integral type. Take care of the case where <large number> doesn't
4601 fit in a long but <large number>-1 does. */
4602 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4603 || (n2bits != 0 && n3bits == 0
4604 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4605 && n3 == LONG_MAX))
4606 {
4607 got_signed = 1;
4608 nbits = n2bits;
4609 }
4610
4611 if (got_signed || got_unsigned)
4612 {
4613 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4614 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4615 objfile);
4616 }
4617 else
4618 return error_type (pp, objfile);
4619 }
4620
4621 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4622 if (self_subrange && n2 == 0 && n3 == 0)
4623 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4624
4625 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4626 is the width in bytes.
4627
4628 Fortran programs appear to use this for complex types also. To
4629 distinguish between floats and complex, g77 (and others?) seem
4630 to use self-subranges for the complexes, and subranges of int for
4631 the floats.
4632
4633 Also note that for complexes, g77 sets n2 to the size of one of
4634 the member floats, not the whole complex beast. My guess is that
4635 this was to work well with pre-COMPLEX versions of gdb. */
4636
4637 if (n3 == 0 && n2 > 0)
4638 {
4639 if (self_subrange)
4640 {
4641 return init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4642 }
4643 else
4644 {
4645 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4646 }
4647 }
4648
4649 /* If the upper bound is -1, it must really be an unsigned int. */
4650
4651 else if (n2 == 0 && n3 == -1)
4652 {
4653 /* It is unsigned int or unsigned long. */
4654 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4655 compatibility hack. */
4656 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4657 TYPE_FLAG_UNSIGNED, NULL, objfile);
4658 }
4659
4660 /* Special case: char is defined (Who knows why) as a subrange of
4661 itself with range 0-127. */
4662 else if (self_subrange && n2 == 0 && n3 == 127)
4663 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4664
4665 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4666 && !self_subrange)
4667 goto handle_true_range;
4668
4669 /* We used to do this only for subrange of self or subrange of int. */
4670 else if (n2 == 0)
4671 {
4672 if (n3 < 0)
4673 /* n3 actually gives the size. */
4674 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
4675 NULL, objfile);
4676 if (n3 == 0xff)
4677 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
4678 if (n3 == 0xffff)
4679 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
4680
4681 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4682 "unsigned long", and we already checked for that,
4683 so don't need to test for it here. */
4684 }
4685 /* I think this is for Convex "long long". Since I don't know whether
4686 Convex sets self_subrange, I also accept that particular size regardless
4687 of self_subrange. */
4688 else if (n3 == 0 && n2 < 0
4689 && (self_subrange
4690 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4691 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
4692 else if (n2 == -n3 -1)
4693 {
4694 if (n3 == 0x7f)
4695 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4696 if (n3 == 0x7fff)
4697 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4698 if (n3 == 0x7fffffff)
4699 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4700 }
4701
4702 /* We have a real range type on our hands. Allocate space and
4703 return a real pointer. */
4704 handle_true_range:
4705
4706 if (self_subrange)
4707 index_type = builtin_type_int;
4708 else
4709 index_type = *dbx_lookup_type (rangenums);
4710 if (index_type == NULL)
4711 {
4712 /* Does this actually ever happen? Is that why we are worrying
4713 about dealing with it rather than just calling error_type? */
4714
4715 static struct type *range_type_index;
4716
4717 complain (&range_type_base_complaint, rangenums[1]);
4718 if (range_type_index == NULL)
4719 range_type_index =
4720 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4721 0, "range type index type", NULL);
4722 index_type = range_type_index;
4723 }
4724
4725 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4726 return (result_type);
4727}
4728
4729/* Read in an argument list. This is a list of types, separated by commas
4730 and terminated with END. Return the list of types read in, or (struct type
4731 **)-1 if there is an error. */
4732
4733static struct type **
4734read_args (pp, end, objfile)
4735 char **pp;
4736 int end;
4737 struct objfile *objfile;
4738{
4739 /* FIXME! Remove this arbitrary limit! */
4740 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4741 int n = 0;
4742
4743 while (**pp != end)
4744 {
4745 if (**pp != ',')
4746 /* Invalid argument list: no ','. */
4747 return (struct type **)-1;
4748 (*pp)++;
4749 STABS_CONTINUE (pp, objfile);
4750 types[n++] = read_type (pp, objfile);
4751 }
4752 (*pp)++; /* get past `end' (the ':' character) */
4753
4754 if (n == 1)
4755 {
4756 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4757 }
4758 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
4759 {
4760 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4761 memset (rval + n, 0, sizeof (struct type *));
4762 }
4763 else
4764 {
4765 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4766 }
4767 memcpy (rval, types, n * sizeof (struct type *));
4768 return rval;
4769}
4770\f
4771/* Common block handling. */
4772
4773/* List of symbols declared since the last BCOMM. This list is a tail
4774 of local_symbols. When ECOMM is seen, the symbols on the list
4775 are noted so their proper addresses can be filled in later,
4776 using the common block base address gotten from the assembler
4777 stabs. */
4778
4779static struct pending *common_block;
4780static int common_block_i;
4781
4782/* Name of the current common block. We get it from the BCOMM instead of the
4783 ECOMM to match IBM documentation (even though IBM puts the name both places
4784 like everyone else). */
4785static char *common_block_name;
4786
4787/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4788 to remain after this function returns. */
4789
4790void
4791common_block_start (name, objfile)
4792 char *name;
4793 struct objfile *objfile;
4794{
4795 if (common_block_name != NULL)
4796 {
4797 static struct complaint msg = {
4798 "Invalid symbol data: common block within common block",
4799 0, 0};
4800 complain (&msg);
4801 }
4802 common_block = local_symbols;
4803 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4804 common_block_name = obsavestring (name, strlen (name),
4805 &objfile -> symbol_obstack);
4806}
4807
4808/* Process a N_ECOMM symbol. */
4809
4810void
4811common_block_end (objfile)
4812 struct objfile *objfile;
4813{
4814 /* Symbols declared since the BCOMM are to have the common block
4815 start address added in when we know it. common_block and
4816 common_block_i point to the first symbol after the BCOMM in
4817 the local_symbols list; copy the list and hang it off the
4818 symbol for the common block name for later fixup. */
4819 int i;
4820 struct symbol *sym;
4821 struct pending *new = 0;
4822 struct pending *next;
4823 int j;
4824
4825 if (common_block_name == NULL)
4826 {
4827 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
4828 complain (&msg);
4829 return;
4830 }
4831
4832 sym = (struct symbol *)
4833 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
4834 memset (sym, 0, sizeof (struct symbol));
4835 /* Note: common_block_name already saved on symbol_obstack */
4836 SYMBOL_NAME (sym) = common_block_name;
4837 SYMBOL_CLASS (sym) = LOC_BLOCK;
4838
4839 /* Now we copy all the symbols which have been defined since the BCOMM. */
4840
4841 /* Copy all the struct pendings before common_block. */
4842 for (next = local_symbols;
4843 next != NULL && next != common_block;
4844 next = next->next)
4845 {
4846 for (j = 0; j < next->nsyms; j++)
4847 add_symbol_to_list (next->symbol[j], &new);
4848 }
4849
4850 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4851 NULL, it means copy all the local symbols (which we already did
4852 above). */
4853
4854 if (common_block != NULL)
4855 for (j = common_block_i; j < common_block->nsyms; j++)
4856 add_symbol_to_list (common_block->symbol[j], &new);
4857
4858 SYMBOL_TYPE (sym) = (struct type *) new;
4859
4860 /* Should we be putting local_symbols back to what it was?
4861 Does it matter? */
4862
4863 i = hashname (SYMBOL_NAME (sym));
4864 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4865 global_sym_chain[i] = sym;
4866 common_block_name = NULL;
4867}
4868
4869/* Add a common block's start address to the offset of each symbol
4870 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4871 the common block name). */
4872
4873static void
4874fix_common_block (sym, valu)
4875 struct symbol *sym;
4876 int valu;
4877{
4878 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4879 for ( ; next; next = next->next)
4880 {
4881 register int j;
4882 for (j = next->nsyms - 1; j >= 0; j--)
4883 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4884 }
4885}
4886
4887
4888\f
4889/* What about types defined as forward references inside of a small lexical
4890 scope? */
4891/* Add a type to the list of undefined types to be checked through
4892 once this file has been read in. */
4893
4894void
4895add_undefined_type (type)
4896 struct type *type;
4897{
4898 if (undef_types_length == undef_types_allocated)
4899 {
4900 undef_types_allocated *= 2;
4901 undef_types = (struct type **)
4902 xrealloc ((char *) undef_types,
4903 undef_types_allocated * sizeof (struct type *));
4904 }
4905 undef_types[undef_types_length++] = type;
4906}
4907
4908/* Go through each undefined type, see if it's still undefined, and fix it
4909 up if possible. We have two kinds of undefined types:
4910
4911 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4912 Fix: update array length using the element bounds
4913 and the target type's length.
4914 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4915 yet defined at the time a pointer to it was made.
4916 Fix: Do a full lookup on the struct/union tag. */
4917void
4918cleanup_undefined_types ()
4919{
4920 struct type **type;
4921
4922 for (type = undef_types; type < undef_types + undef_types_length; type++)
4923 {
4924 switch (TYPE_CODE (*type))
4925 {
4926
4927 case TYPE_CODE_STRUCT:
4928 case TYPE_CODE_UNION:
4929 case TYPE_CODE_ENUM:
4930 {
4931 /* Check if it has been defined since. Need to do this here
4932 as well as in check_typedef to deal with the (legitimate in
4933 C though not C++) case of several types with the same name
4934 in different source files. */
4935 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
4936 {
4937 struct pending *ppt;
4938 int i;
4939 /* Name of the type, without "struct" or "union" */
4940 char *typename = TYPE_TAG_NAME (*type);
4941
4942 if (typename == NULL)
4943 {
4944 static struct complaint msg = {"need a type name", 0, 0};
4945 complain (&msg);
4946 break;
4947 }
4948 for (ppt = file_symbols; ppt; ppt = ppt->next)
4949 {
4950 for (i = 0; i < ppt->nsyms; i++)
4951 {
4952 struct symbol *sym = ppt->symbol[i];
4953
4954 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4955 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
4956 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4957 TYPE_CODE (*type))
4958 && STREQ (SYMBOL_NAME (sym), typename))
4959 {
4960 memcpy (*type, SYMBOL_TYPE (sym),
4961 sizeof (struct type));
4962 }
4963 }
4964 }
4965 }
4966 }
4967 break;
4968
4969 default:
4970 {
4971 static struct complaint msg = {"\
4972GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
4973 complain (&msg, TYPE_CODE (*type));
4974 }
4975 break;
4976 }
4977 }
4978
4979 undef_types_length = 0;
4980}
4981
4982/* Scan through all of the global symbols defined in the object file,
4983 assigning values to the debugging symbols that need to be assigned
4984 to. Get these symbols from the minimal symbol table. */
4985
4986void
4987scan_file_globals (objfile)
4988 struct objfile *objfile;
4989{
4990 int hash;
4991 struct minimal_symbol *msymbol;
4992 struct symbol *sym, *prev, *rsym;
4993 struct objfile *resolve_objfile;
4994
4995 /* SVR4 based linkers copy referenced global symbols from shared
4996 libraries to the main executable.
4997 If we are scanning the symbols for a shared library, try to resolve
4998 them from the minimal symbols of the main executable first. */
4999
5000 if (symfile_objfile && objfile != symfile_objfile)
5001 resolve_objfile = symfile_objfile;
5002 else
5003 resolve_objfile = objfile;
5004
5005 while (1)
5006 {
5007 /* Avoid expensive loop through all minimal symbols if there are
5008 no unresolved symbols. */
5009 for (hash = 0; hash < HASHSIZE; hash++)
5010 {
5011 if (global_sym_chain[hash])
5012 break;
5013 }
5014 if (hash >= HASHSIZE)
5015 return;
5016
5017 for (msymbol = resolve_objfile -> msymbols;
5018 msymbol && SYMBOL_NAME (msymbol) != NULL;
5019 msymbol++)
5020 {
5021 QUIT;
5022
5023 /* Skip static symbols. */
5024 switch (MSYMBOL_TYPE (msymbol))
5025 {
5026 case mst_file_text:
5027 case mst_file_data:
5028 case mst_file_bss:
5029 continue;
5030 default:
5031 break;
5032 }
5033
5034 prev = NULL;
5035
5036 /* Get the hash index and check all the symbols
5037 under that hash index. */
5038
5039 hash = hashname (SYMBOL_NAME (msymbol));
5040
5041 for (sym = global_sym_chain[hash]; sym;)
5042 {
5043 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5044 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5045 {
5046
5047 struct alias_list *aliases;
5048
5049 /* Splice this symbol out of the hash chain and
5050 assign the value we have to it. */
5051 if (prev)
5052 {
5053 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5054 }
5055 else
5056 {
5057 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5058 }
5059
5060 /* Check to see whether we need to fix up a common block. */
5061 /* Note: this code might be executed several times for
5062 the same symbol if there are multiple references. */
5063
5064 /* If symbol has aliases, do minimal symbol fixups for each.
5065 These live aliases/references weren't added to
5066 global_sym_chain hash but may also need to be fixed up. */
5067 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5068 symbols? Still, we wouldn't want to add_to_list. */
5069 /* Now do the same for each alias of this symbol */
5070 rsym = sym;
5071 aliases = SYMBOL_ALIASES (sym);
5072 while (rsym)
5073 {
5074 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5075 {
5076 fix_common_block (rsym,
5077 SYMBOL_VALUE_ADDRESS (msymbol));
5078 }
5079 else
5080 {
5081 SYMBOL_VALUE_ADDRESS (rsym)
5082 = SYMBOL_VALUE_ADDRESS (msymbol);
5083 }
5084 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5085 if (aliases)
5086 {
5087 rsym = aliases->sym;
5088 aliases = aliases->next;
5089 }
5090 else
5091 rsym = NULL;
5092 }
5093
5094
5095 if (prev)
5096 {
5097 sym = SYMBOL_VALUE_CHAIN (prev);
5098 }
5099 else
5100 {
5101 sym = global_sym_chain[hash];
5102 }
5103 }
5104 else
5105 {
5106 prev = sym;
5107 sym = SYMBOL_VALUE_CHAIN (sym);
5108 }
5109 }
5110 }
5111 if (resolve_objfile == objfile)
5112 break;
5113 resolve_objfile = objfile;
5114 }
5115
5116 /* Change the storage class of any remaining unresolved globals to
5117 LOC_UNRESOLVED and remove them from the chain. */
5118 for (hash = 0; hash < HASHSIZE; hash++)
5119 {
5120 sym = global_sym_chain[hash];
5121 while (sym)
5122 {
5123 prev = sym;
5124 sym = SYMBOL_VALUE_CHAIN (sym);
5125
5126 /* Change the symbol address from the misleading chain value
5127 to address zero. */
5128 SYMBOL_VALUE_ADDRESS (prev) = 0;
5129
5130 /* Complain about unresolved common block symbols. */
5131 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5132 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5133 else
5134 complain (&unresolved_sym_chain_complaint,
5135 objfile -> name, SYMBOL_NAME (prev));
5136 }
5137 }
5138 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5139}
5140
5141/* Initialize anything that needs initializing when starting to read
5142 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5143 to a psymtab. */
5144
5145void
5146stabsread_init ()
5147{
5148}
5149
5150/* Initialize anything that needs initializing when a completely new
5151 symbol file is specified (not just adding some symbols from another
5152 file, e.g. a shared library). */
5153
5154void
5155stabsread_new_init ()
5156{
5157 /* Empty the hash table of global syms looking for values. */
5158 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5159}
5160
5161/* Initialize anything that needs initializing at the same time as
5162 start_symtab() is called. */
5163
5164void start_stabs ()
5165{
5166 global_stabs = NULL; /* AIX COFF */
5167 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5168 n_this_object_header_files = 1;
5169 type_vector_length = 0;
5170 type_vector = (struct type **) 0;
5171
5172 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5173 common_block_name = NULL;
5174
5175 os9k_stabs = 0;
5176}
5177
5178/* Call after end_symtab() */
5179
5180void end_stabs ()
5181{
5182 if (type_vector)
5183 {
5184 free ((char *) type_vector);
5185 }
5186 type_vector = 0;
5187 type_vector_length = 0;
5188 previous_stab_code = 0;
5189}
5190
5191void
5192finish_global_stabs (objfile)
5193 struct objfile *objfile;
5194{
5195 if (global_stabs)
5196 {
5197 patch_block_stabs (global_symbols, global_stabs, objfile);
5198 free ((PTR) global_stabs);
5199 global_stabs = NULL;
5200 }
5201}
5202
5203/* Initializer for this module */
5204
5205void
5206_initialize_stabsread ()
5207{
5208 undef_types_allocated = 20;
5209 undef_types_length = 0;
5210 undef_types = (struct type **)
5211 xmalloc (undef_types_allocated * sizeof (struct type *));
5212}
This page took 0.217266 seconds and 4 git commands to generate.