Remove TYPE_NOSIGN "char" hack
[deliverable/binutils-gdb.git] / gdb / stabsread.c
CommitLineData
c906108c 1/* Support routines for decoding "stabs" debugging information format.
cf5b2f1b 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20/* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
c378eb4e 24 Avoid placing any object file format specific code in this file. */
c906108c
SS
25
26#include "defs.h"
c906108c 27#include "bfd.h"
04ea0df1 28#include "gdb_obstack.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "symfile.h"
33#include "objfiles.h"
3e43a32a 34#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
c906108c
SS
35#include "libaout.h"
36#include "aout/aout64.h"
37#include "gdb-stabs.h"
38#include "buildsym.h"
39#include "complaints.h"
40#include "demangle.h"
50f182aa 41#include "gdb-demangle.h"
c906108c 42#include "language.h"
d16aafd8 43#include "doublest.h"
de17c821
DJ
44#include "cp-abi.h"
45#include "cp-support.h"
c906108c
SS
46#include <ctype.h>
47
48/* Ask stabsread.h to define the vars it normally declares `extern'. */
c5aa993b
JM
49#define EXTERN
50/**/
c906108c
SS
51#include "stabsread.h" /* Our own declarations */
52#undef EXTERN
53
a14ed312 54extern void _initialize_stabsread (void);
392a587b 55
52059ffd
TT
56struct nextfield
57{
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66};
67
68struct next_fnfieldlist
69{
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72};
73
c906108c
SS
74/* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
c378eb4e 78 expected to eventually go away... (FIXME) */
c906108c
SS
79
80struct field_info
c5aa993b 81 {
52059ffd
TT
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
c5aa993b 84 };
c906108c
SS
85
86static void
a14ed312
KB
87read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
c906108c 89
a14ed312 90static struct type *dbx_alloc_type (int[2], struct objfile *);
c906108c 91
94e10a22 92static long read_huge_number (char **, int, int *, int);
c906108c 93
a14ed312 94static struct type *error_type (char **, struct objfile *);
c906108c
SS
95
96static void
a14ed312
KB
97patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
c906108c 99
46cb6474 100static void fix_common_block (struct symbol *, CORE_ADDR);
c906108c 101
a14ed312 102static int read_type_number (char **, int *);
c906108c 103
a7a48797
EZ
104static struct type *read_type (char **, struct objfile *);
105
94e10a22 106static struct type *read_range_type (char **, int[2], int, struct objfile *);
c906108c 107
a14ed312 108static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
c906108c 109
a14ed312
KB
110static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
c906108c 112
a14ed312 113static struct type *read_enum_type (char **, struct type *, struct objfile *);
c906108c 114
46bf5051 115static struct type *rs6000_builtin_type (int, struct objfile *);
c906108c
SS
116
117static int
a14ed312
KB
118read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
c906108c
SS
120
121static int
a14ed312
KB
122read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
c906108c
SS
124
125static int
a14ed312
KB
126read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
c906108c
SS
128
129static int
a14ed312
KB
130read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
c906108c 132
a14ed312 133static int attach_fn_fields_to_type (struct field_info *, struct type *);
c906108c 134
570b8f7c
AC
135static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
c906108c 137
a14ed312 138static struct type *read_struct_type (char **, struct type *,
2ae1c2d2 139 enum type_code,
a14ed312 140 struct objfile *);
c906108c 141
a14ed312
KB
142static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
c906108c 144
ad2f7632 145static struct field *read_args (char **, int, struct objfile *, int *, int *);
c906108c 146
bf362611 147static void add_undefined_type (struct type *, int[2]);
a7a48797 148
c906108c 149static int
a14ed312
KB
150read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
c906108c 152
7e1d63ec
AF
153static char *find_name_end (char *name);
154
a14ed312 155static int process_reference (char **string);
c906108c 156
a14ed312 157void stabsread_clear_cache (void);
7be570e7 158
8343f86c
DJ
159static const char vptr_name[] = "_vptr$";
160static const char vb_name[] = "_vb$";
c906108c 161
23136709
KB
162static void
163invalid_cpp_abbrev_complaint (const char *arg1)
164{
e2e0b3e5 165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
23136709 166}
c906108c 167
23136709 168static void
49b0b195 169reg_value_complaint (int regnum, int num_regs, const char *sym)
23136709
KB
170{
171 complaint (&symfile_complaints,
0fde2c53 172 _("bad register number %d (max %d) in symbol %s"),
49b0b195 173 regnum, num_regs - 1, sym);
23136709 174}
c906108c 175
23136709
KB
176static void
177stabs_general_complaint (const char *arg1)
178{
179 complaint (&symfile_complaints, "%s", arg1);
180}
c906108c 181
c906108c
SS
182/* Make a list of forward references which haven't been defined. */
183
184static struct type **undef_types;
185static int undef_types_allocated;
186static int undef_types_length;
187static struct symbol *current_symbol = NULL;
188
bf362611
JB
189/* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
c378eb4e 191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
bf362611
JB
192 and type (0,2) is defined only later. */
193
194struct nat
195{
196 int typenums[2];
197 struct type *type;
198};
199static struct nat *noname_undefs;
200static int noname_undefs_allocated;
201static int noname_undefs_length;
202
c906108c
SS
203/* Check for and handle cretinous stabs symbol name continuation! */
204#define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
fc474241
DE
209
210/* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216static struct type **type_vector;
217
218/* Number of elements allocated for type_vector currently. */
219
220static int type_vector_length;
221
222/* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225#define INITIAL_TYPE_VECTOR_LENGTH 160
c906108c 226\f
c906108c
SS
227
228/* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
a7a48797 235static struct type **
46bf5051 236dbx_lookup_type (int typenums[2], struct objfile *objfile)
c906108c 237{
52f0bd74
AC
238 int filenum = typenums[0];
239 int index = typenums[1];
c906108c 240 unsigned old_len;
52f0bd74
AC
241 int real_filenum;
242 struct header_file *f;
c906108c
SS
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
23136709 250 complaint (&symfile_complaints,
3e43a32a
MS
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
23136709 253 filenum, index, symnum);
c906108c
SS
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
46bf5051 268 temp_type = rs6000_builtin_type (index, objfile);
c906108c
SS
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
c5aa993b 273 Find it in this object file's type vector. */
c906108c
SS
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
8d749320 280 type_vector = XNEWVEC (struct type *, type_vector_length);
c906108c
SS
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
c906108c
SS
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
46bf5051 298 if (real_filenum >= N_HEADER_FILES (objfile))
c906108c 299 {
46bf5051 300 static struct type *temp_type;
c906108c 301
8a3fe4f8 302 warning (_("GDB internal error: bad real_filenum"));
c906108c
SS
303
304 error_return:
46bf5051
UW
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
c906108c
SS
307 }
308
46bf5051 309 f = HEADER_FILES (objfile) + real_filenum;
c906108c
SS
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325}
326
327/* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
c378eb4e 331 put into the type vector, and so may not be referred to by number. */
c906108c
SS
332
333static struct type *
35a2f538 334dbx_alloc_type (int typenums[2], struct objfile *objfile)
c906108c 335{
52f0bd74 336 struct type **type_addr;
c906108c
SS
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
46bf5051 343 type_addr = dbx_lookup_type (typenums, objfile);
c906108c
SS
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354}
355
356/* for all the stabs in a given stab vector, build appropriate types
c378eb4e 357 and fix their symbols in given symbol vector. */
c906108c
SS
358
359static void
fba45db2
KB
360patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
c906108c
SS
362{
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
c906108c 370 /* for all the stab entries, find their corresponding symbols and
c378eb4e 371 patch their types! */
c5aa993b 372
c906108c
SS
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
c5aa993b 376 pp = (char *) strchr (name, ':');
8fb822e0 377 gdb_assert (pp); /* Must find a ':' or game's over. */
c906108c
SS
378 while (pp[1] == ':')
379 {
c5aa993b
JM
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
c906108c 382 }
c5aa993b 383 sym = find_symbol_in_list (symbols, name, pp - name);
c906108c
SS
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
c5aa993b
JM
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
c906108c
SS
393
394 /* On xcoff, if a global is defined and never referenced,
c5aa993b
JM
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
e623cf5d 397 sym = allocate_symbol (objfile);
176620f1 398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
3567439c 400 SYMBOL_SET_LINKAGE_NAME
224c3ddb
SM
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
c906108c 403 pp += 2;
c5aa993b 404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
c5aa993b 421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
c906108c
SS
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433}
c906108c 434\f
c5aa993b 435
c906108c
SS
436/* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444static int
aa1ee363 445read_type_number (char **pp, int *typenums)
c906108c
SS
446{
447 int nbits;
433759f7 448
c906108c
SS
449 if (**pp == '(')
450 {
451 (*pp)++;
94e10a22 452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
c5aa993b
JM
453 if (nbits != 0)
454 return -1;
94e10a22 455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
c5aa993b
JM
456 if (nbits != 0)
457 return -1;
c906108c
SS
458 }
459 else
460 {
461 typenums[0] = 0;
94e10a22 462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
c5aa993b
JM
463 if (nbits != 0)
464 return -1;
c906108c
SS
465 }
466 return 0;
467}
c906108c 468\f
c5aa993b 469
c906108c
SS
470#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
c906108c 475/* Structure for storing pointers to reference definitions for fast lookup
c378eb4e 476 during "process_later". */
c906108c
SS
477
478struct ref_map
479{
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483};
484
485#define MAX_CHUNK_REFS 100
486#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
c5aa993b 489static struct ref_map *ref_map;
c906108c 490
c378eb4e 491/* Ptr to free cell in chunk's linked list. */
c5aa993b 492static int ref_count = 0;
c906108c 493
c378eb4e 494/* Number of chunks malloced. */
c906108c
SS
495static int ref_chunk = 0;
496
7be570e7 497/* This file maintains a cache of stabs aliases found in the symbol
c378eb4e
MS
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
7be570e7 500void
fba45db2 501stabsread_clear_cache (void)
7be570e7
JM
502{
503 ref_count = 0;
504 ref_chunk = 0;
505}
506
c906108c
SS
507/* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
c378eb4e
MS
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
c906108c 511void
fba45db2 512ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
c906108c
SS
513{
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
c5aa993b 520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
c906108c 521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
433759f7 522
c906108c
SS
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
433759f7
MS
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
c906108c
SS
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532}
533
534/* Return defined sym for the reference REFNUM. */
535struct symbol *
fba45db2 536ref_search (int refnum)
c906108c
SS
537{
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541}
542
c906108c
SS
543/* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
c5aa993b 546static int
fba45db2 547process_reference (char **string)
c906108c
SS
548{
549 char *p;
550 int refnum = 0;
551
c5aa993b
JM
552 if (**string != '#')
553 return 0;
554
c906108c
SS
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
c378eb4e 558 /* Read number as reference id. */
c906108c
SS
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566}
567
568/* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571int
fba45db2 572symbol_reference_defined (char **string)
c906108c
SS
573{
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
c378eb4e 579 /* Defining symbols end in '='. */
c5aa993b 580 if (*p == '=')
c906108c 581 {
c378eb4e 582 /* Symbol is being defined here. */
c906108c
SS
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
c378eb4e 588 /* Must be a reference. Either the symbol has already been defined,
c906108c
SS
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593}
594
768a979c
UW
595static int
596stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597{
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
0fde2c53
DE
600 if (regno < 0
601 || regno >= (gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch)))
768a979c
UW
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
c378eb4e 609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
768a979c
UW
610 }
611
612 return regno;
613}
614
615static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617};
618
f1e6e072
TT
619/* The "aclass" indices for computed symbols. */
620
621static int stab_register_index;
622static int stab_regparm_index;
623
c906108c 624struct symbol *
fba45db2
KB
625define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
c906108c 627{
5e2b427d 628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 629 struct symbol *sym;
7e1d63ec 630 char *p = (char *) find_name_end (string);
c906108c
SS
631 int deftype;
632 int synonym = 0;
52f0bd74 633 int i;
71c25dea 634 char *new_name = NULL;
c906108c
SS
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
c378eb4e
MS
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
c906108c
SS
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
c378eb4e 647 /* Ignore old-style symbols from cc -go. */
c906108c
SS
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
c5aa993b
JM
653 p += 2;
654 p = strchr (p, ':');
681c238c
MS
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
c906108c
SS
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
e623cf5d 667 current_symbol = sym = allocate_symbol (objfile);
c906108c 668
c906108c
SS
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
c5aa993b
JM
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
c906108c
SS
674 }
675 else
676 {
c5aa993b 677 SYMBOL_LINE (sym) = 0; /* unknown */
c906108c
SS
678 }
679
025ac414
PM
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
c906108c
SS
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
c5aa993b 688 case 't':
1c9e8358 689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
c5aa993b 690 break;
c906108c 691
c5aa993b 692 case 'v': /* $vtbl_ptr_type */
c5aa993b 693 goto normal;
c906108c 694
c5aa993b 695 case 'e':
1c9e8358 696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
c5aa993b 697 break;
c906108c 698
c5aa993b
JM
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
c906108c 702
c5aa993b
JM
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
5e2b427d 705 if (gdbarch_static_transform_name_p (gdbarch))
149ad273 706 goto normal;
c378eb4e 707 /* ... fall through ... */
c906108c 708
c5aa993b 709 default:
e2e0b3e5 710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
23136709 711 string);
c378eb4e 712 goto normal; /* Do *something* with it. */
c906108c
SS
713 }
714 }
c906108c
SS
715 else
716 {
717 normal:
df8a16a1 718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
71c25dea 719 {
224c3ddb 720 char *name = (char *) alloca (p - string + 1);
433759f7 721
71c25dea
TT
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
71c25dea
TT
725 }
726 if (new_name != NULL)
727 {
04a679b8 728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
71c25dea
TT
729 xfree (new_name);
730 }
731 else
04a679b8 732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
45c58896
SW
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
a10964d1 735 cp_scan_for_anonymous_namespaces (sym, objfile);
45c58896 736
c906108c
SS
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741#if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750#else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752#endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
c5aa993b
JM
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
c906108c
SS
766 if (*p != '=')
767 {
f1e6e072 768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
176620f1 770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
4e38b386 780 gdb_byte *dbl_valu;
6ccb9162 781 struct type *dbl_type;
c906108c
SS
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
46bf5051 787 dbl_type = objfile_type (objfile)->builtin_double;
224c3ddb
SM
788 dbl_valu
789 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
6ccb9162
UW
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
c906108c 794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
f1e6e072 795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
c906108c
SS
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
46bf5051 807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
c906108c 808 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
810 }
811 break;
ec8a089a
PM
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
f1e6e072 817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
ec8a089a
PM
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
f1e6e072 831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
f1e6e072 856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
ec8a089a
PM
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
3e43a32a 865 range_type
0c9c3474
SA
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
ec8a089a
PM
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
224c3ddb
SM
872 string_value
873 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
ec8a089a
PM
874 memcpy (string_value, string_local, ind + 1);
875 p++;
876
877 SYMBOL_VALUE_BYTES (sym) = string_value;
f1e6e072 878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
ec8a089a
PM
879 }
880 break;
881
c906108c
SS
882 case 'e':
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
887 {
f1e6e072 888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
890
891 if (*p != ',')
892 {
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 break;
895 }
896 ++p;
897
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
903 however. */
904 SYMBOL_VALUE (sym) = atoi (p);
905 }
906 break;
907 default:
908 {
f1e6e072 909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c
SS
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 }
912 }
176620f1 913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
914 add_symbol_to_list (sym, &file_symbols);
915 return sym;
916
917 case 'C':
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
176620f1 921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
924 break;
925
926 case 'f':
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
933
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
c5aa993b
JM
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
c906108c
SS
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
940
1e698235
DJ
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
876cecd0 947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
c906108c 948
c378eb4e 949 /* fall into process_prototype_types. */
c906108c
SS
950
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
953 if (*p == ';')
954 {
955 struct type *ftype = SYMBOL_TYPE (sym);
956 int nsemi = 0;
957 int nparams = 0;
958 char *p1 = p;
959
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
962 while (*p1)
963 {
964 if (*p1++ == ';')
965 nsemi++;
966 }
967
c378eb4e 968 /* Allocate parameter information fields and fill them in. */
c906108c
SS
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
971 while (*p++ == ';')
972 {
973 struct type *ptype;
974
975 /* A type number of zero indicates the start of varargs.
c5aa993b 976 FIXME: GDB currently ignores vararg functions. */
c906108c
SS
977 if (p[0] == '0' && p[1] == '\0')
978 break;
979 ptype = read_type (&p, objfile);
980
981 /* The Sun compilers mark integer arguments, which should
c5aa993b 982 be promoted to the width of the calling conventions, with
c378eb4e 983 a type which references itself. This type is turned into
c5aa993b 984 a TYPE_CODE_VOID type by read_type, and we have to turn
5e2b427d
UW
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
c906108c 987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
46bf5051 988 ptype = objfile_type (objfile)->builtin_int;
8176bb6d
DJ
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
c906108c
SS
991 }
992 TYPE_NFIELDS (ftype) = nparams;
876cecd0 993 TYPE_PROTOTYPED (ftype) = 1;
c906108c
SS
994 }
995 break;
996
997 case 'F':
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
176620f1 1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1004
1005 case 'G':
1006 /* For a class G (global) symbol, it appears that the
c5aa993b
JM
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
c906108c 1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
176620f1 1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1013 /* Don't add symbol references to global_sym_chain.
c5aa993b
JM
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
3567439c 1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
c906108c 1018 {
3567439c 1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c5aa993b
JM
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
c906108c
SS
1022 }
1023 add_symbol_to_list (sym, &global_symbols);
1024 break;
1025
1026 /* This case is faked by a conditional above,
c5aa993b
JM
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
c906108c
SS
1029 case 's':
1030 case 'l':
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1033 SYMBOL_VALUE (sym) = valu;
176620f1 1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1035 add_symbol_to_list (sym, &local_symbols);
1036 break;
1037
1038 case 'p':
1039 if (*p == 'F')
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1043 {
1044 p++;
1045 SYMBOL_TYPE (sym)
1046 = lookup_pointer_type
c5aa993b 1047 (lookup_function_type (read_type (&p, objfile)));
c906108c
SS
1048 }
1049 else
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1051
f1e6e072 1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
c906108c 1053 SYMBOL_VALUE (sym) = valu;
176620f1 1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2a2d4dc3 1055 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c
SS
1056 add_symbol_to_list (sym, &local_symbols);
1057
5e2b427d 1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
c906108c
SS
1059 {
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1062 break;
1063 }
1064
1065 /* If it's gcc-compiled, if it says `short', believe it. */
f73e88f9 1066 if (processing_gcc_compilation
5e2b427d 1067 || gdbarch_believe_pcc_promotion (gdbarch))
c906108c
SS
1068 break;
1069
5e2b427d 1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
7a292a7a 1071 {
8ee56bcf
AC
1072 /* If PCC says a parameter is a short or a char, it is
1073 really an int. */
5e2b427d
UW
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
8ee56bcf 1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
7a292a7a 1077 {
8ee56bcf
AC
1078 SYMBOL_TYPE (sym) =
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
46bf5051
UW
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
7a292a7a 1082 }
8ee56bcf 1083 break;
7a292a7a 1084 }
c906108c
SS
1085
1086 case 'P':
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1090 if (type == N_FUN)
1091 {
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1094 }
c5aa993b 1095 /*FALLTHROUGH */
c906108c
SS
1096
1097 case 'R':
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
2a2d4dc3 1101 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1102 SYMBOL_VALUE (sym) = valu;
176620f1 1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'r':
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
768a979c 1111 SYMBOL_VALUE (sym) = valu;
176620f1 1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1113 if (within_function)
1114 {
192cb3d4
MK
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1122 the stack.
1123
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1128 etc.).
c906108c
SS
1129
1130 Note that this code illegally combines
c5aa993b 1131 main(argc) struct foo argc; { register struct foo argc; }
c906108c
SS
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1134
1135 if (local_symbols
1136 && local_symbols->nsyms > 0
5e2b427d 1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
c906108c
SS
1138 {
1139 struct symbol *prev_sym;
433759f7 1140
c906108c
SS
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
3567439c
DJ
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 1146 {
f1e6e072 1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
c906108c
SS
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1152 sym = prev_sym;
1153 break;
1154 }
1155 }
c5aa993b 1156 add_symbol_to_list (sym, &local_symbols);
c906108c
SS
1157 }
1158 else
c5aa993b 1159 add_symbol_to_list (sym, &file_symbols);
c906108c
SS
1160 break;
1161
1162 case 'S':
c378eb4e 1163 /* Static symbol at top level of file. */
c906108c 1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1171 {
3b7344d5 1172 struct bound_minimal_symbol msym;
433759f7 1173
3e43a32a
MS
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1175 NULL, objfile);
3b7344d5 1176 if (msym.minsym != NULL)
c5aa993b 1177 {
0d5cff50 1178 const char *new_name = gdbarch_static_transform_name
3567439c 1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1180
3567439c 1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1182 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1183 }
1184 }
176620f1 1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1186 add_symbol_to_list (sym, &file_symbols);
1187 break;
1188
1189 case 't':
52eea4ce
JB
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
c378eb4e 1192 and thus 't' is in fact equivalent to 'Tt'.
52eea4ce
JB
1193
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1200
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1205
e2cd42dd 1206 /* Typedef */
c906108c
SS
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1208
1209 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1210 did not use `sym'. Return without further processing. */
c5aa993b
JM
1211 if (nameless)
1212 return NULL;
c906108c 1213
f1e6e072 1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1215 SYMBOL_VALUE (sym) = valu;
176620f1 1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c 1217 /* C++ vagaries: we may have a type which is derived from
c5aa993b
JM
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
c906108c
SS
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1225 {
1226 int j;
433759f7 1227
c906108c
SS
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1232 }
1233
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1235 {
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
c378eb4e 1238 Some gdb code depends on that specific name. */
c906108c
SS
1239 extern const char vtbl_ptr_name[];
1240
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
3567439c 1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
c906108c
SS
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1244 {
1245 /* If we are giving a name to a type such as "pointer to
c5aa993b
JM
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1257 case).
1258
1259 Sigh.
1260
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
c378eb4e
MS
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
49d97c60 1265 problem: with the following code gdb would tell that
c378eb4e
MS
1266 the type for name1 is caddr_t, and func is char().
1267
49d97c60
EZ
1268 typedef char *caddr_t;
1269 char *name2;
1270 struct x
1271 {
c378eb4e 1272 char *name1;
49d97c60
EZ
1273 } xx;
1274 char *func()
1275 {
1276 }
1277 main () {}
1278 */
1279
c378eb4e 1280 /* Pascal accepts names for pointer types. */
49d97c60
EZ
1281 if (current_subfile->language == language_pascal)
1282 {
3567439c 1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
49d97c60 1284 }
c906108c
SS
1285 }
1286 else
3567439c 1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
c906108c
SS
1288 }
1289
1290 add_symbol_to_list (sym, &file_symbols);
52eea4ce
JB
1291
1292 if (synonym)
1293 {
1294 /* Create the STRUCT_DOMAIN clone. */
e623cf5d 1295 struct symbol *struct_sym = allocate_symbol (objfile);
52eea4ce
JB
1296
1297 *struct_sym = *sym;
f1e6e072 1298 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
52eea4ce
JB
1299 SYMBOL_VALUE (struct_sym) = valu;
1300 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1302 TYPE_NAME (SYMBOL_TYPE (sym))
1303 = obconcat (&objfile->objfile_obstack,
1304 SYMBOL_LINKAGE_NAME (sym),
1305 (char *) NULL);
52eea4ce
JB
1306 add_symbol_to_list (struct_sym, &file_symbols);
1307 }
1308
c906108c
SS
1309 break;
1310
1311 case 'T':
1312 /* Struct, union, or enum tag. For GNU C++, this can be be followed
c5aa993b 1313 by 't' which means we are typedef'ing it as well. */
c906108c
SS
1314 synonym = *p == 't';
1315
1316 if (synonym)
1317 p++;
c906108c
SS
1318
1319 SYMBOL_TYPE (sym) = read_type (&p, objfile);
25caa7a8 1320
c906108c 1321 /* For a nameless type, we don't want a create a symbol, thus we
c378eb4e 1322 did not use `sym'. Return without further processing. */
c5aa993b
JM
1323 if (nameless)
1324 return NULL;
c906108c 1325
f1e6e072 1326 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
c906108c 1327 SYMBOL_VALUE (sym) = valu;
176620f1 1328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 1329 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1330 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 = obconcat (&objfile->objfile_obstack,
1332 SYMBOL_LINKAGE_NAME (sym),
1333 (char *) NULL);
c906108c
SS
1334 add_symbol_to_list (sym, &file_symbols);
1335
1336 if (synonym)
1337 {
c378eb4e 1338 /* Clone the sym and then modify it. */
e623cf5d 1339 struct symbol *typedef_sym = allocate_symbol (objfile);
433759f7 1340
c906108c 1341 *typedef_sym = *sym;
f1e6e072 1342 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
c906108c 1343 SYMBOL_VALUE (typedef_sym) = valu;
176620f1 1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
c906108c 1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
3e43a32a
MS
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
c906108c
SS
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
c378eb4e 1355 /* Static symbol of local scope. */
c906108c 1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
c906108c 1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
5e2b427d
UW
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
3567439c
DJ
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
c5aa993b 1363 {
3b7344d5 1364 struct bound_minimal_symbol msym;
433759f7
MS
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
3b7344d5 1368 if (msym.minsym != NULL)
c5aa993b 1369 {
0d5cff50 1370 const char *new_name = gdbarch_static_transform_name
3567439c 1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
433759f7 1372
3567439c 1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
77e371c0 1374 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
1375 }
1376 }
176620f1 1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1384 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
2a2d4dc3 1385 SYMBOL_IS_ARGUMENT (sym) = 1;
c906108c 1386 SYMBOL_VALUE (sym) = valu;
176620f1 1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1394 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
2a2d4dc3 1395 SYMBOL_IS_ARGUMENT (sym) = 1;
768a979c 1396 SYMBOL_VALUE (sym) = valu;
176620f1 1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1398 add_symbol_to_list (sym, &local_symbols);
1399 break;
1400
1401 case 'X':
1402 /* This is used by Sun FORTRAN for "function result value".
c5aa993b
JM
1403 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1404 that Pascal uses it too, but when I tried it Pascal used
1405 "x:3" (local symbol) instead. */
c906108c 1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
f1e6e072 1407 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
c906108c 1408 SYMBOL_VALUE (sym) = valu;
176620f1 1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1410 add_symbol_to_list (sym, &local_symbols);
1411 break;
c906108c
SS
1412
1413 default:
1414 SYMBOL_TYPE (sym) = error_type (&p, objfile);
f1e6e072 1415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
c906108c 1416 SYMBOL_VALUE (sym) = 0;
176620f1 1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1418 add_symbol_to_list (sym, &file_symbols);
1419 break;
1420 }
1421
192cb3d4
MK
1422 /* Some systems pass variables of certain types by reference instead
1423 of by value, i.e. they will pass the address of a structure (in a
1424 register or on the stack) instead of the structure itself. */
c906108c 1425
5e2b427d 1426 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
2a2d4dc3 1427 && SYMBOL_IS_ARGUMENT (sym))
c906108c 1428 {
2a2d4dc3 1429 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
192cb3d4 1430 variables passed in a register). */
2a2d4dc3 1431 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
f1e6e072 1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
192cb3d4
MK
1433 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1434 and subsequent arguments on SPARC, for example). */
1435 else if (SYMBOL_CLASS (sym) == LOC_ARG)
f1e6e072 1436 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
c906108c
SS
1437 }
1438
c906108c
SS
1439 return sym;
1440}
1441
c906108c
SS
1442/* Skip rest of this symbol and return an error type.
1443
1444 General notes on error recovery: error_type always skips to the
1445 end of the symbol (modulo cretinous dbx symbol name continuation).
1446 Thus code like this:
1447
1448 if (*(*pp)++ != ';')
c5aa993b 1449 return error_type (pp, objfile);
c906108c
SS
1450
1451 is wrong because if *pp starts out pointing at '\0' (typically as the
1452 result of an earlier error), it will be incremented to point to the
1453 start of the next symbol, which might produce strange results, at least
1454 if you run off the end of the string table. Instead use
1455
1456 if (**pp != ';')
c5aa993b 1457 return error_type (pp, objfile);
c906108c
SS
1458 ++*pp;
1459
1460 or
1461
1462 if (**pp != ';')
c5aa993b 1463 foo = error_type (pp, objfile);
c906108c 1464 else
c5aa993b 1465 ++*pp;
c906108c
SS
1466
1467 And in case it isn't obvious, the point of all this hair is so the compiler
1468 can define new types and new syntaxes, and old versions of the
1469 debugger will be able to read the new symbol tables. */
1470
1471static struct type *
fba45db2 1472error_type (char **pp, struct objfile *objfile)
c906108c 1473{
3e43a32a
MS
1474 complaint (&symfile_complaints,
1475 _("couldn't parse type; debugger out of date?"));
c906108c
SS
1476 while (1)
1477 {
1478 /* Skip to end of symbol. */
1479 while (**pp != '\0')
1480 {
1481 (*pp)++;
1482 }
1483
1484 /* Check for and handle cretinous dbx symbol name continuation! */
1485 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1486 {
1487 *pp = next_symbol_text (objfile);
1488 }
1489 else
1490 {
1491 break;
1492 }
1493 }
46bf5051 1494 return objfile_type (objfile)->builtin_error;
c906108c 1495}
c906108c 1496\f
c5aa993b 1497
c906108c
SS
1498/* Read type information or a type definition; return the type. Even
1499 though this routine accepts either type information or a type
1500 definition, the distinction is relevant--some parts of stabsread.c
1501 assume that type information starts with a digit, '-', or '(' in
1502 deciding whether to call read_type. */
1503
a7a48797 1504static struct type *
aa1ee363 1505read_type (char **pp, struct objfile *objfile)
c906108c 1506{
52f0bd74 1507 struct type *type = 0;
c906108c
SS
1508 struct type *type1;
1509 int typenums[2];
1510 char type_descriptor;
1511
1512 /* Size in bits of type if specified by a type attribute, or -1 if
1513 there is no size attribute. */
1514 int type_size = -1;
1515
c378eb4e 1516 /* Used to distinguish string and bitstring from char-array and set. */
c906108c
SS
1517 int is_string = 0;
1518
c378eb4e 1519 /* Used to distinguish vector from array. */
e2cd42dd
MS
1520 int is_vector = 0;
1521
c906108c
SS
1522 /* Read type number if present. The type number may be omitted.
1523 for instance in a two-dimensional array declared with type
1524 "ar1;1;10;ar1;1;10;4". */
1525 if ((**pp >= '0' && **pp <= '9')
1526 || **pp == '('
1527 || **pp == '-')
1528 {
1529 if (read_type_number (pp, typenums) != 0)
1530 return error_type (pp, objfile);
c5aa993b 1531
c906108c 1532 if (**pp != '=')
8cfe231d
JB
1533 {
1534 /* Type is not being defined here. Either it already
1535 exists, or this is a forward reference to it.
1536 dbx_alloc_type handles both cases. */
1537 type = dbx_alloc_type (typenums, objfile);
1538
1539 /* If this is a forward reference, arrange to complain if it
1540 doesn't get patched up by the time we're done
1541 reading. */
1542 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
bf362611 1543 add_undefined_type (type, typenums);
8cfe231d
JB
1544
1545 return type;
1546 }
c906108c
SS
1547
1548 /* Type is being defined here. */
1549 /* Skip the '='.
c5aa993b
JM
1550 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1551 (*pp) += 2;
c906108c
SS
1552 }
1553 else
1554 {
1555 /* 'typenums=' not present, type is anonymous. Read and return
c5aa993b 1556 the definition, but don't put it in the type vector. */
c906108c
SS
1557 typenums[0] = typenums[1] = -1;
1558 (*pp)++;
1559 }
1560
c5aa993b 1561again:
c906108c
SS
1562 type_descriptor = (*pp)[-1];
1563 switch (type_descriptor)
1564 {
1565 case 'x':
1566 {
1567 enum type_code code;
1568
1569 /* Used to index through file_symbols. */
1570 struct pending *ppt;
1571 int i;
c5aa993b 1572
c906108c
SS
1573 /* Name including "struct", etc. */
1574 char *type_name;
c5aa993b 1575
c906108c
SS
1576 {
1577 char *from, *to, *p, *q1, *q2;
c5aa993b 1578
c906108c
SS
1579 /* Set the type code according to the following letter. */
1580 switch ((*pp)[0])
1581 {
1582 case 's':
1583 code = TYPE_CODE_STRUCT;
1584 break;
1585 case 'u':
1586 code = TYPE_CODE_UNION;
1587 break;
1588 case 'e':
1589 code = TYPE_CODE_ENUM;
1590 break;
1591 default:
1592 {
1593 /* Complain and keep going, so compilers can invent new
1594 cross-reference types. */
23136709 1595 complaint (&symfile_complaints,
3e43a32a
MS
1596 _("Unrecognized cross-reference type `%c'"),
1597 (*pp)[0]);
c906108c
SS
1598 code = TYPE_CODE_STRUCT;
1599 break;
1600 }
1601 }
c5aa993b 1602
c906108c
SS
1603 q1 = strchr (*pp, '<');
1604 p = strchr (*pp, ':');
1605 if (p == NULL)
1606 return error_type (pp, objfile);
1607 if (q1 && p > q1 && p[1] == ':')
1608 {
1609 int nesting_level = 0;
433759f7 1610
c906108c
SS
1611 for (q2 = q1; *q2; q2++)
1612 {
1613 if (*q2 == '<')
1614 nesting_level++;
1615 else if (*q2 == '>')
1616 nesting_level--;
1617 else if (*q2 == ':' && nesting_level == 0)
1618 break;
1619 }
1620 p = q2;
1621 if (*p != ':')
1622 return error_type (pp, objfile);
1623 }
71c25dea
TT
1624 type_name = NULL;
1625 if (current_subfile->language == language_cplus)
1626 {
224c3ddb 1627 char *new_name, *name = (char *) alloca (p - *pp + 1);
433759f7 1628
71c25dea
TT
1629 memcpy (name, *pp, p - *pp);
1630 name[p - *pp] = '\0';
1631 new_name = cp_canonicalize_string (name);
1632 if (new_name != NULL)
1633 {
224c3ddb
SM
1634 type_name
1635 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1636 new_name, strlen (new_name));
71c25dea
TT
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
3e43a32a
MS
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
71c25dea
TT
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
c5aa993b 1651
c906108c
SS
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
71c25dea 1654 *pp = p + 1;
c906108c
SS
1655 }
1656
149d821b
JB
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
c906108c
SS
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c 1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3567439c 1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
c906108c 1670 {
b99607ea 1671 obstack_free (&objfile->objfile_obstack, type_name);
c906108c 1672 type = SYMBOL_TYPE (sym);
149d821b 1673 if (typenums[0] != -1)
46bf5051 1674 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
c5aa993b 1687 INIT_CPLUS_SPECIFIC (type);
876cecd0 1688 TYPE_STUB (type) = 1;
c906108c 1689
bf362611 1690 add_undefined_type (type, typenums);
c906108c
SS
1691 return type;
1692 }
1693
c5aa993b 1694 case '-': /* RS/6000 built-in type */
c906108c
SS
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
c378eb4e 1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
c906108c
SS
1710
1711 /* Allocate and enter the typedef type first.
c378eb4e 1712 This handles recursive types. */
c906108c
SS
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
c5aa993b
JM
1715 {
1716 struct type *xtype = read_type (pp, objfile);
433759f7 1717
c906108c
SS
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
dd6bda65
DJ
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
13a393b0
JB
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
dd6bda65 1749 replace_type (type, xtype);
c906108c
SS
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
876cecd0 1755 TYPE_TARGET_STUB (type) = 1;
c906108c
SS
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
c5aa993b
JM
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
c906108c 1767
e2cd42dd 1768 case '*': /* Pointer to another type */
c906108c 1769 type1 = read_type (pp, objfile);
46bf5051 1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1771 break;
1772
c5aa993b 1773 case '&': /* Reference to another type */
c906108c 1774 type1 = read_type (pp, objfile);
46bf5051 1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1776 break;
1777
c5aa993b 1778 case 'f': /* Function returning another type */
c906108c 1779 type1 = read_type (pp, objfile);
0c8b41f1 1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
c906108c
SS
1781 break;
1782
da966255
JB
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
46bf5051 1803 = make_function_type (return_type,
0c8b41f1 1804 dbx_lookup_type (typenums, objfile));
da966255
JB
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
8d749320 1814 struct type_list *newobj = XALLOCA (struct type_list);
fe978cb0
PA
1815 newobj->type = arg_type;
1816 newobj->next = arg_types;
1817 arg_types = newobj;
da966255
JB
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
23136709 1824 complaint (&symfile_complaints,
3e43a32a
MS
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
23136709 1827 type_start);
da966255
JB
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
876cecd0 1852 TYPE_PROTOTYPED (func_type) = 1;
da966255
JB
1853
1854 type = func_type;
1855 break;
1856 }
1857
c5aa993b 1858 case 'k': /* Const qualifier on some type (Sun) */
c906108c 1859 type = read_type (pp, objfile);
d7242108 1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
46bf5051 1861 dbx_lookup_type (typenums, objfile));
c906108c
SS
1862 break;
1863
c5aa993b 1864 case 'B': /* Volatile qual on some type (Sun) */
c906108c 1865 type = read_type (pp, objfile);
d7242108 1866 type = make_cv_type (TYPE_CONST (type), 1, type,
46bf5051 1867 dbx_lookup_type (typenums, objfile));
c906108c
SS
1868 break;
1869
1870 case '@':
c5aa993b
JM
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
c906108c
SS
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
0d5de010 1885 smash_to_memberptr_type (type, domain, memtype);
c906108c 1886 }
c5aa993b
JM
1887 else
1888 /* type attribute */
c906108c
SS
1889 {
1890 char *attr = *pp;
433759f7 1891
c906108c
SS
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
c5aa993b 1898 ++ * pp; /* Skip the semicolon. */
c906108c
SS
1899
1900 switch (*attr)
1901 {
e2cd42dd 1902 case 's': /* Size attribute */
c906108c
SS
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
e2cd42dd 1908 case 'S': /* String attribute */
c378eb4e 1909 /* FIXME: check to see if following type is array? */
c906108c
SS
1910 is_string = 1;
1911 break;
1912
e2cd42dd 1913 case 'V': /* Vector attribute */
c378eb4e 1914 /* FIXME: check to see if following type is array? */
e2cd42dd
MS
1915 is_vector = 1;
1916 break;
1917
c906108c
SS
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
c5aa993b 1920 can invent new ones. */
c906108c
SS
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
c5aa993b 1928 case '#': /* Method (class & fn) type */
c906108c
SS
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
23136709 1937 complaint (&symfile_complaints,
3e43a32a
MS
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
23136709 1940 symnum);
c906108c
SS
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
46bf5051 1943 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
ad2f7632
DJ
1949 struct field *args;
1950 int nargs, varargs;
c906108c
SS
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
ad2f7632 1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
0a029df5
DJ
1960 if (args == NULL)
1961 return error_type (pp, objfile);
c906108c 1962 type = dbx_alloc_type (typenums, objfile);
ad2f7632
DJ
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
c906108c
SS
1965 }
1966 break;
1967
c5aa993b 1968 case 'r': /* Range type */
94e10a22 1969 type = read_range_type (pp, typenums, type_size, objfile);
c906108c 1970 if (typenums[0] != -1)
46bf5051 1971 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1972 break;
1973
1974 case 'b':
c906108c
SS
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
46bf5051 1979 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1980 }
1981 break;
1982
c5aa993b 1983 case 'R': /* Sun ACC builtin float type */
c906108c
SS
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
46bf5051 1986 *dbx_lookup_type (typenums, objfile) = type;
c906108c 1987 break;
c5aa993b
JM
1988
1989 case 'e': /* Enumeration type */
c906108c
SS
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
46bf5051 1993 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
1994 break;
1995
c5aa993b
JM
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
2ae1c2d2
JB
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
c906108c 2013
c5aa993b 2014 case 'a': /* Array type */
c906108c
SS
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
c5aa993b 2018
c906108c
SS
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
e2cd42dd 2023 if (is_vector)
ea37ba09 2024 make_vector_type (type);
c906108c
SS
2025 break;
2026
6b1755ce 2027 case 'S': /* Set type */
c906108c 2028 type1 = read_type (pp, objfile);
c5aa993b 2029 type = create_set_type ((struct type *) NULL, type1);
c906108c 2030 if (typenums[0] != -1)
46bf5051 2031 *dbx_lookup_type (typenums, objfile) = type;
c906108c
SS
2032 break;
2033
2034 default:
c378eb4e
MS
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
c906108c
SS
2037 return error_type (pp, objfile);
2038 }
2039
2040 if (type == 0)
2041 {
8a3fe4f8 2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
c906108c
SS
2043 return error_type (pp, objfile);
2044 }
2045
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049
2050 return type;
2051}
2052\f
2053/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
c378eb4e 2054 Return the proper type node for a given builtin type number. */
c906108c 2055
46bf5051
UW
2056static const struct objfile_data *rs6000_builtin_type_data;
2057
c906108c 2058static struct type *
46bf5051 2059rs6000_builtin_type (int typenum, struct objfile *objfile)
c906108c 2060{
19ba03f4
SM
2061 struct type **negative_types
2062 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
46bf5051 2063
c906108c
SS
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065#define NUMBER_RECOGNIZED 34
c906108c
SS
2066 struct type *rettype = NULL;
2067
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069 {
e2e0b3e5 2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
46bf5051 2071 return objfile_type (objfile)->builtin_error;
c906108c 2072 }
46bf5051
UW
2073
2074 if (!negative_types)
2075 {
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080 }
2081
c906108c
SS
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2084
2085#if TARGET_CHAR_BIT != 8
c5aa993b 2086#error This code wrong for TARGET_CHAR_BIT not 8
c906108c
SS
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2090 TARGET_CHAR_BIT. */
2091#endif
2092
2093 switch (-typenum)
2094 {
2095 case 1:
2096 /* The size of this and all the other types are fixed, defined
c5aa993b
JM
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
19f392bc 2101 rettype = init_integer_type (objfile, 32, 0, "int");
c906108c
SS
2102 break;
2103 case 2:
19f392bc 2104 rettype = init_integer_type (objfile, 8, 0, "char");
c413c448 2105 TYPE_NOSIGN (rettype) = 1;
c906108c
SS
2106 break;
2107 case 3:
19f392bc 2108 rettype = init_integer_type (objfile, 16, 0, "short");
c906108c
SS
2109 break;
2110 case 4:
19f392bc 2111 rettype = init_integer_type (objfile, 32, 0, "long");
c906108c
SS
2112 break;
2113 case 5:
19f392bc 2114 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
c906108c
SS
2115 break;
2116 case 6:
19f392bc 2117 rettype = init_integer_type (objfile, 8, 0, "signed char");
c906108c
SS
2118 break;
2119 case 7:
19f392bc 2120 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
c906108c
SS
2121 break;
2122 case 8:
19f392bc 2123 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
c906108c
SS
2124 break;
2125 case 9:
19f392bc 2126 rettype = init_integer_type (objfile, 32, 1, "unsigned");
89acf84d 2127 break;
c906108c 2128 case 10:
19f392bc 2129 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
c906108c
SS
2130 break;
2131 case 11:
19f392bc 2132 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
c906108c
SS
2133 break;
2134 case 12:
2135 /* IEEE single precision (32 bit). */
19f392bc 2136 rettype = init_float_type (objfile, 32, "float", NULL);
c906108c
SS
2137 break;
2138 case 13:
2139 /* IEEE double precision (64 bit). */
19f392bc 2140 rettype = init_float_type (objfile, 64, "double", NULL);
c906108c
SS
2141 break;
2142 case 14:
2143 /* This is an IEEE double on the RS/6000, and different machines with
c5aa993b
JM
2144 different sizes for "long double" should use different negative
2145 type numbers. See stabs.texinfo. */
19f392bc 2146 rettype = init_float_type (objfile, 64, "long double", NULL);
c906108c
SS
2147 break;
2148 case 15:
19f392bc 2149 rettype = init_integer_type (objfile, 32, 0, "integer");
c906108c
SS
2150 break;
2151 case 16:
19f392bc 2152 rettype = init_boolean_type (objfile, 32, 1, "boolean");
c906108c
SS
2153 break;
2154 case 17:
19f392bc 2155 rettype = init_float_type (objfile, 32, "short real", NULL);
c906108c
SS
2156 break;
2157 case 18:
19f392bc 2158 rettype = init_float_type (objfile, 64, "real", NULL);
c906108c
SS
2159 break;
2160 case 19:
19f392bc 2161 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
c906108c
SS
2162 break;
2163 case 20:
19f392bc 2164 rettype = init_character_type (objfile, 8, 1, "character");
c906108c
SS
2165 break;
2166 case 21:
19f392bc 2167 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
c906108c
SS
2168 break;
2169 case 22:
19f392bc 2170 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
c906108c
SS
2171 break;
2172 case 23:
19f392bc 2173 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
c906108c
SS
2174 break;
2175 case 24:
19f392bc 2176 rettype = init_boolean_type (objfile, 32, 1, "logical");
c906108c
SS
2177 break;
2178 case 25:
2179 /* Complex type consisting of two IEEE single precision values. */
19f392bc
UW
2180 rettype = init_complex_type (objfile, "complex",
2181 rs6000_builtin_type (12, objfile));
c906108c
SS
2182 break;
2183 case 26:
2184 /* Complex type consisting of two IEEE double precision values. */
19f392bc
UW
2185 rettype = init_complex_type (objfile, "double complex",
2186 rs6000_builtin_type (13, objfile));
c906108c
SS
2187 break;
2188 case 27:
19f392bc 2189 rettype = init_integer_type (objfile, 8, 0, "integer*1");
c906108c
SS
2190 break;
2191 case 28:
19f392bc 2192 rettype = init_integer_type (objfile, 16, 0, "integer*2");
c906108c
SS
2193 break;
2194 case 29:
19f392bc 2195 rettype = init_integer_type (objfile, 32, 0, "integer*4");
c906108c
SS
2196 break;
2197 case 30:
19f392bc 2198 rettype = init_character_type (objfile, 16, 0, "wchar");
c906108c
SS
2199 break;
2200 case 31:
19f392bc 2201 rettype = init_integer_type (objfile, 64, 0, "long long");
c906108c
SS
2202 break;
2203 case 32:
19f392bc 2204 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
c906108c
SS
2205 break;
2206 case 33:
19f392bc 2207 rettype = init_integer_type (objfile, 64, 1, "logical*8");
c906108c
SS
2208 break;
2209 case 34:
19f392bc 2210 rettype = init_integer_type (objfile, 64, 0, "integer*8");
c906108c
SS
2211 break;
2212 }
2213 negative_types[-typenum] = rettype;
2214 return rettype;
2215}
2216\f
2217/* This page contains subroutines of read_type. */
2218
0d5cff50
DE
2219/* Wrapper around method_name_from_physname to flag a complaint
2220 if there is an error. */
de17c821 2221
0d5cff50
DE
2222static char *
2223stabs_method_name_from_physname (const char *physname)
de17c821
DJ
2224{
2225 char *method_name;
2226
2227 method_name = method_name_from_physname (physname);
2228
2229 if (method_name == NULL)
c263362b
DJ
2230 {
2231 complaint (&symfile_complaints,
e2e0b3e5 2232 _("Method has bad physname %s\n"), physname);
0d5cff50 2233 return NULL;
c263362b 2234 }
de17c821 2235
0d5cff50 2236 return method_name;
de17c821
DJ
2237}
2238
c906108c
SS
2239/* Read member function stabs info for C++ classes. The form of each member
2240 function data is:
2241
c5aa993b 2242 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
c906108c
SS
2243
2244 An example with two member functions is:
2245
c5aa993b 2246 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
c906108c
SS
2247
2248 For the case of overloaded operators, the format is op$::*.funcs, where
2249 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2250 name (such as `+=') and `.' marks the end of the operator name.
2251
2252 Returns 1 for success, 0 for failure. */
2253
2254static int
fba45db2
KB
2255read_member_functions (struct field_info *fip, char **pp, struct type *type,
2256 struct objfile *objfile)
c906108c
SS
2257{
2258 int nfn_fields = 0;
2259 int length = 0;
c906108c
SS
2260 int i;
2261 struct next_fnfield
2262 {
2263 struct next_fnfield *next;
2264 struct fn_field fn_field;
c5aa993b
JM
2265 }
2266 *sublist;
c906108c
SS
2267 struct type *look_ahead_type;
2268 struct next_fnfieldlist *new_fnlist;
2269 struct next_fnfield *new_sublist;
2270 char *main_fn_name;
52f0bd74 2271 char *p;
c5aa993b 2272
c906108c 2273 /* Process each list until we find something that is not a member function
c378eb4e 2274 or find the end of the functions. */
c906108c
SS
2275
2276 while (**pp != ';')
2277 {
2278 /* We should be positioned at the start of the function name.
c5aa993b 2279 Scan forward to find the first ':' and if it is not the
c378eb4e 2280 first of a "::" delimiter, then this is not a member function. */
c906108c
SS
2281 p = *pp;
2282 while (*p != ':')
2283 {
2284 p++;
2285 }
2286 if (p[1] != ':')
2287 {
2288 break;
2289 }
2290
2291 sublist = NULL;
2292 look_ahead_type = NULL;
2293 length = 0;
c5aa993b 2294
8d749320 2295 new_fnlist = XCNEW (struct next_fnfieldlist);
b8c9b27d 2296 make_cleanup (xfree, new_fnlist);
c5aa993b 2297
c906108c
SS
2298 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2299 {
2300 /* This is a completely wierd case. In order to stuff in the
2301 names that might contain colons (the usual name delimiter),
2302 Mike Tiemann defined a different name format which is
2303 signalled if the identifier is "op$". In that case, the
2304 format is "op$::XXXX." where XXXX is the name. This is
2305 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2306 /* This lets the user type "break operator+".
2307 We could just put in "+" as the name, but that wouldn't
2308 work for "*". */
8343f86c 2309 static char opname[32] = "op$";
c906108c 2310 char *o = opname + 3;
c5aa993b 2311
c906108c
SS
2312 /* Skip past '::'. */
2313 *pp = p + 2;
2314
2315 STABS_CONTINUE (pp, objfile);
2316 p = *pp;
2317 while (*p != '.')
2318 {
2319 *o++ = *p++;
2320 }
2321 main_fn_name = savestring (opname, o - opname);
2322 /* Skip past '.' */
2323 *pp = p + 1;
2324 }
2325 else
2326 {
2327 main_fn_name = savestring (*pp, p - *pp);
2328 /* Skip past '::'. */
2329 *pp = p + 2;
2330 }
c5aa993b
JM
2331 new_fnlist->fn_fieldlist.name = main_fn_name;
2332
c906108c
SS
2333 do
2334 {
8d749320 2335 new_sublist = XCNEW (struct next_fnfield);
b8c9b27d 2336 make_cleanup (xfree, new_sublist);
c5aa993b 2337
c906108c
SS
2338 /* Check for and handle cretinous dbx symbol name continuation! */
2339 if (look_ahead_type == NULL)
2340 {
c378eb4e 2341 /* Normal case. */
c906108c 2342 STABS_CONTINUE (pp, objfile);
c5aa993b
JM
2343
2344 new_sublist->fn_field.type = read_type (pp, objfile);
c906108c
SS
2345 if (**pp != ':')
2346 {
2347 /* Invalid symtab info for member function. */
2348 return 0;
2349 }
2350 }
2351 else
2352 {
2353 /* g++ version 1 kludge */
c5aa993b 2354 new_sublist->fn_field.type = look_ahead_type;
c906108c
SS
2355 look_ahead_type = NULL;
2356 }
c5aa993b 2357
c906108c
SS
2358 (*pp)++;
2359 p = *pp;
2360 while (*p != ';')
2361 {
2362 p++;
2363 }
c5aa993b 2364
09e2d7c7
DE
2365 /* These are methods, not functions. */
2366 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2367 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2368 else
2369 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2370 == TYPE_CODE_METHOD);
c906108c 2371
09e2d7c7 2372 /* If this is just a stub, then we don't have the real name here. */
74a9bb82 2373 if (TYPE_STUB (new_sublist->fn_field.type))
c906108c 2374 {
4bfb94b8 2375 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
09e2d7c7 2376 set_type_self_type (new_sublist->fn_field.type, type);
c5aa993b 2377 new_sublist->fn_field.is_stub = 1;
c906108c 2378 }
09e2d7c7 2379
c5aa993b 2380 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
c906108c 2381 *pp = p + 1;
c5aa993b 2382
c906108c
SS
2383 /* Set this member function's visibility fields. */
2384 switch (*(*pp)++)
2385 {
c5aa993b
JM
2386 case VISIBILITY_PRIVATE:
2387 new_sublist->fn_field.is_private = 1;
2388 break;
2389 case VISIBILITY_PROTECTED:
2390 new_sublist->fn_field.is_protected = 1;
2391 break;
c906108c 2392 }
c5aa993b 2393
c906108c
SS
2394 STABS_CONTINUE (pp, objfile);
2395 switch (**pp)
2396 {
c378eb4e 2397 case 'A': /* Normal functions. */
c5aa993b
JM
2398 new_sublist->fn_field.is_const = 0;
2399 new_sublist->fn_field.is_volatile = 0;
2400 (*pp)++;
2401 break;
c378eb4e 2402 case 'B': /* `const' member functions. */
c5aa993b
JM
2403 new_sublist->fn_field.is_const = 1;
2404 new_sublist->fn_field.is_volatile = 0;
2405 (*pp)++;
2406 break;
c378eb4e 2407 case 'C': /* `volatile' member function. */
c5aa993b
JM
2408 new_sublist->fn_field.is_const = 0;
2409 new_sublist->fn_field.is_volatile = 1;
2410 (*pp)++;
2411 break;
c378eb4e 2412 case 'D': /* `const volatile' member function. */
c5aa993b
JM
2413 new_sublist->fn_field.is_const = 1;
2414 new_sublist->fn_field.is_volatile = 1;
2415 (*pp)++;
2416 break;
3e43a32a 2417 case '*': /* File compiled with g++ version 1 --
c378eb4e 2418 no info. */
c5aa993b
JM
2419 case '?':
2420 case '.':
2421 break;
2422 default:
23136709 2423 complaint (&symfile_complaints,
3e43a32a
MS
2424 _("const/volatile indicator missing, got '%c'"),
2425 **pp);
c5aa993b 2426 break;
c906108c 2427 }
c5aa993b 2428
c906108c
SS
2429 switch (*(*pp)++)
2430 {
c5aa993b 2431 case '*':
c906108c
SS
2432 {
2433 int nbits;
c5aa993b 2434 /* virtual member function, followed by index.
c906108c
SS
2435 The sign bit is set to distinguish pointers-to-methods
2436 from virtual function indicies. Since the array is
2437 in words, the quantity must be shifted left by 1
2438 on 16 bit machine, and by 2 on 32 bit machine, forcing
2439 the sign bit out, and usable as a valid index into
2440 the array. Remove the sign bit here. */
c5aa993b 2441 new_sublist->fn_field.voffset =
94e10a22 2442 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
c906108c
SS
2443 if (nbits != 0)
2444 return 0;
c5aa993b 2445
c906108c
SS
2446 STABS_CONTINUE (pp, objfile);
2447 if (**pp == ';' || **pp == '\0')
2448 {
2449 /* Must be g++ version 1. */
c5aa993b 2450 new_sublist->fn_field.fcontext = 0;
c906108c
SS
2451 }
2452 else
2453 {
2454 /* Figure out from whence this virtual function came.
2455 It may belong to virtual function table of
2456 one of its baseclasses. */
2457 look_ahead_type = read_type (pp, objfile);
2458 if (**pp == ':')
2459 {
c378eb4e 2460 /* g++ version 1 overloaded methods. */
c906108c
SS
2461 }
2462 else
2463 {
c5aa993b 2464 new_sublist->fn_field.fcontext = look_ahead_type;
c906108c
SS
2465 if (**pp != ';')
2466 {
2467 return 0;
2468 }
2469 else
2470 {
2471 ++*pp;
2472 }
2473 look_ahead_type = NULL;
2474 }
2475 }
2476 break;
2477 }
c5aa993b
JM
2478 case '?':
2479 /* static member function. */
4ea09c10
PS
2480 {
2481 int slen = strlen (main_fn_name);
2482
2483 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2484
2485 /* For static member functions, we can't tell if they
2486 are stubbed, as they are put out as functions, and not as
2487 methods.
2488 GCC v2 emits the fully mangled name if
2489 dbxout.c:flag_minimal_debug is not set, so we have to
2490 detect a fully mangled physname here and set is_stub
2491 accordingly. Fully mangled physnames in v2 start with
2492 the member function name, followed by two underscores.
2493 GCC v3 currently always emits stubbed member functions,
2494 but with fully mangled physnames, which start with _Z. */
2495 if (!(strncmp (new_sublist->fn_field.physname,
2496 main_fn_name, slen) == 0
2497 && new_sublist->fn_field.physname[slen] == '_'
2498 && new_sublist->fn_field.physname[slen + 1] == '_'))
2499 {
2500 new_sublist->fn_field.is_stub = 1;
2501 }
2502 break;
2503 }
c5aa993b
JM
2504
2505 default:
2506 /* error */
23136709 2507 complaint (&symfile_complaints,
3e43a32a
MS
2508 _("member function type missing, got '%c'"),
2509 (*pp)[-1]);
c5aa993b
JM
2510 /* Fall through into normal member function. */
2511
2512 case '.':
2513 /* normal member function. */
2514 new_sublist->fn_field.voffset = 0;
2515 new_sublist->fn_field.fcontext = 0;
2516 break;
c906108c 2517 }
c5aa993b
JM
2518
2519 new_sublist->next = sublist;
c906108c
SS
2520 sublist = new_sublist;
2521 length++;
2522 STABS_CONTINUE (pp, objfile);
2523 }
2524 while (**pp != ';' && **pp != '\0');
c5aa993b 2525
c906108c 2526 (*pp)++;
0c867556 2527 STABS_CONTINUE (pp, objfile);
c5aa993b 2528
0c867556
PS
2529 /* Skip GCC 3.X member functions which are duplicates of the callable
2530 constructor/destructor. */
6cbbcdfe
KS
2531 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2532 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
0c867556 2533 || strcmp (main_fn_name, "__deleting_dtor") == 0)
c906108c 2534 {
0c867556 2535 xfree (main_fn_name);
c906108c 2536 }
0c867556
PS
2537 else
2538 {
de17c821
DJ
2539 int has_stub = 0;
2540 int has_destructor = 0, has_other = 0;
2541 int is_v3 = 0;
2542 struct next_fnfield *tmp_sublist;
2543
2544 /* Various versions of GCC emit various mostly-useless
2545 strings in the name field for special member functions.
2546
2547 For stub methods, we need to defer correcting the name
2548 until we are ready to unstub the method, because the current
2549 name string is used by gdb_mangle_name. The only stub methods
2550 of concern here are GNU v2 operators; other methods have their
2551 names correct (see caveat below).
2552
2553 For non-stub methods, in GNU v3, we have a complete physname.
2554 Therefore we can safely correct the name now. This primarily
2555 affects constructors and destructors, whose name will be
2556 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2557 operators will also have incorrect names; for instance,
2558 "operator int" will be named "operator i" (i.e. the type is
2559 mangled).
2560
2561 For non-stub methods in GNU v2, we have no easy way to
2562 know if we have a complete physname or not. For most
2563 methods the result depends on the platform (if CPLUS_MARKER
2564 can be `$' or `.', it will use minimal debug information, or
2565 otherwise the full physname will be included).
2566
2567 Rather than dealing with this, we take a different approach.
2568 For v3 mangled names, we can use the full physname; for v2,
2569 we use cplus_demangle_opname (which is actually v2 specific),
2570 because the only interesting names are all operators - once again
2571 barring the caveat below. Skip this process if any method in the
2572 group is a stub, to prevent our fouling up the workings of
2573 gdb_mangle_name.
2574
2575 The caveat: GCC 2.95.x (and earlier?) put constructors and
2576 destructors in the same method group. We need to split this
2577 into two groups, because they should have different names.
2578 So for each method group we check whether it contains both
2579 routines whose physname appears to be a destructor (the physnames
2580 for and destructors are always provided, due to quirks in v2
2581 mangling) and routines whose physname does not appear to be a
2582 destructor. If so then we break up the list into two halves.
2583 Even if the constructors and destructors aren't in the same group
2584 the destructor will still lack the leading tilde, so that also
2585 needs to be fixed.
2586
2587 So, to summarize what we expect and handle here:
2588
2589 Given Given Real Real Action
2590 method name physname physname method name
2591
2592 __opi [none] __opi__3Foo operator int opname
3e43a32a
MS
2593 [now or later]
2594 Foo _._3Foo _._3Foo ~Foo separate and
de17c821
DJ
2595 rename
2596 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2597 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2598 */
2599
2600 tmp_sublist = sublist;
2601 while (tmp_sublist != NULL)
2602 {
2603 if (tmp_sublist->fn_field.is_stub)
2604 has_stub = 1;
2605 if (tmp_sublist->fn_field.physname[0] == '_'
2606 && tmp_sublist->fn_field.physname[1] == 'Z')
2607 is_v3 = 1;
2608
2609 if (is_destructor_name (tmp_sublist->fn_field.physname))
2610 has_destructor++;
2611 else
2612 has_other++;
2613
2614 tmp_sublist = tmp_sublist->next;
2615 }
2616
2617 if (has_destructor && has_other)
2618 {
2619 struct next_fnfieldlist *destr_fnlist;
2620 struct next_fnfield *last_sublist;
2621
2622 /* Create a new fn_fieldlist for the destructors. */
2623
8d749320 2624 destr_fnlist = XCNEW (struct next_fnfieldlist);
de17c821 2625 make_cleanup (xfree, destr_fnlist);
8d749320 2626
de17c821 2627 destr_fnlist->fn_fieldlist.name
48cb83fd
JK
2628 = obconcat (&objfile->objfile_obstack, "~",
2629 new_fnlist->fn_fieldlist.name, (char *) NULL);
de17c821 2630
8d749320
SM
2631 destr_fnlist->fn_fieldlist.fn_fields =
2632 XOBNEWVEC (&objfile->objfile_obstack,
2633 struct fn_field, has_destructor);
de17c821
DJ
2634 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2635 sizeof (struct fn_field) * has_destructor);
2636 tmp_sublist = sublist;
2637 last_sublist = NULL;
2638 i = 0;
2639 while (tmp_sublist != NULL)
2640 {
2641 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2642 {
2643 tmp_sublist = tmp_sublist->next;
2644 continue;
2645 }
2646
2647 destr_fnlist->fn_fieldlist.fn_fields[i++]
2648 = tmp_sublist->fn_field;
2649 if (last_sublist)
2650 last_sublist->next = tmp_sublist->next;
2651 else
2652 sublist = tmp_sublist->next;
2653 last_sublist = tmp_sublist;
2654 tmp_sublist = tmp_sublist->next;
2655 }
2656
2657 destr_fnlist->fn_fieldlist.length = has_destructor;
2658 destr_fnlist->next = fip->fnlist;
2659 fip->fnlist = destr_fnlist;
2660 nfn_fields++;
de17c821
DJ
2661 length -= has_destructor;
2662 }
2663 else if (is_v3)
2664 {
2665 /* v3 mangling prevents the use of abbreviated physnames,
2666 so we can do this here. There are stubbed methods in v3
2667 only:
2668 - in -gstabs instead of -gstabs+
2669 - or for static methods, which are output as a function type
2670 instead of a method type. */
0d5cff50
DE
2671 char *new_method_name =
2672 stabs_method_name_from_physname (sublist->fn_field.physname);
de17c821 2673
0d5cff50
DE
2674 if (new_method_name != NULL
2675 && strcmp (new_method_name,
2676 new_fnlist->fn_fieldlist.name) != 0)
2677 {
2678 new_fnlist->fn_fieldlist.name = new_method_name;
2679 xfree (main_fn_name);
2680 }
2681 else
2682 xfree (new_method_name);
de17c821
DJ
2683 }
2684 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2685 {
1754f103 2686 new_fnlist->fn_fieldlist.name =
0d5cff50
DE
2687 obconcat (&objfile->objfile_obstack,
2688 "~", main_fn_name, (char *)NULL);
de17c821
DJ
2689 xfree (main_fn_name);
2690 }
2691 else if (!has_stub)
2692 {
2693 char dem_opname[256];
2694 int ret;
433759f7 2695
de17c821
DJ
2696 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2697 dem_opname, DMGL_ANSI);
2698 if (!ret)
2699 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2700 dem_opname, 0);
2701 if (ret)
2702 new_fnlist->fn_fieldlist.name
224c3ddb
SM
2703 = ((const char *)
2704 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2705 strlen (dem_opname)));
0d5cff50 2706 xfree (main_fn_name);
de17c821
DJ
2707 }
2708
0c867556 2709 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
b99607ea 2710 obstack_alloc (&objfile->objfile_obstack,
0c867556
PS
2711 sizeof (struct fn_field) * length);
2712 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2713 sizeof (struct fn_field) * length);
2714 for (i = length; (i--, sublist); sublist = sublist->next)
2715 {
2716 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2717 }
c5aa993b 2718
0c867556
PS
2719 new_fnlist->fn_fieldlist.length = length;
2720 new_fnlist->next = fip->fnlist;
2721 fip->fnlist = new_fnlist;
2722 nfn_fields++;
0c867556 2723 }
c906108c
SS
2724 }
2725
2726 if (nfn_fields)
2727 {
2728 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2729 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2730 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2731 memset (TYPE_FN_FIELDLISTS (type), 0,
2732 sizeof (struct fn_fieldlist) * nfn_fields);
2733 TYPE_NFN_FIELDS (type) = nfn_fields;
c906108c
SS
2734 }
2735
2736 return 1;
2737}
2738
2739/* Special GNU C++ name.
2740
2741 Returns 1 for success, 0 for failure. "failure" means that we can't
2742 keep parsing and it's time for error_type(). */
2743
2744static int
fba45db2
KB
2745read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2746 struct objfile *objfile)
c906108c 2747{
52f0bd74 2748 char *p;
0d5cff50 2749 const char *name;
c906108c
SS
2750 char cpp_abbrev;
2751 struct type *context;
2752
2753 p = *pp;
2754 if (*++p == 'v')
2755 {
2756 name = NULL;
2757 cpp_abbrev = *++p;
2758
2759 *pp = p + 1;
2760
2761 /* At this point, *pp points to something like "22:23=*22...",
c5aa993b
JM
2762 where the type number before the ':' is the "context" and
2763 everything after is a regular type definition. Lookup the
c378eb4e 2764 type, find it's name, and construct the field name. */
c906108c
SS
2765
2766 context = read_type (pp, objfile);
2767
2768 switch (cpp_abbrev)
2769 {
c5aa993b 2770 case 'f': /* $vf -- a virtual function table pointer */
c2bd2ed9
JB
2771 name = type_name_no_tag (context);
2772 if (name == NULL)
433759f7
MS
2773 {
2774 name = "";
2775 }
48cb83fd
JK
2776 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2777 vptr_name, name, (char *) NULL);
c5aa993b 2778 break;
c906108c 2779
c5aa993b
JM
2780 case 'b': /* $vb -- a virtual bsomethingorother */
2781 name = type_name_no_tag (context);
2782 if (name == NULL)
2783 {
23136709 2784 complaint (&symfile_complaints,
3e43a32a
MS
2785 _("C++ abbreviated type name "
2786 "unknown at symtab pos %d"),
23136709 2787 symnum);
c5aa993b
JM
2788 name = "FOO";
2789 }
48cb83fd
JK
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2791 name, (char *) NULL);
c5aa993b 2792 break;
c906108c 2793
c5aa993b 2794 default:
23136709 2795 invalid_cpp_abbrev_complaint (*pp);
48cb83fd
JK
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2797 "INVALID_CPLUSPLUS_ABBREV",
2798 (char *) NULL);
c5aa993b 2799 break;
c906108c
SS
2800 }
2801
2802 /* At this point, *pp points to the ':'. Skip it and read the
c378eb4e 2803 field type. */
c906108c
SS
2804
2805 p = ++(*pp);
2806 if (p[-1] != ':')
2807 {
23136709 2808 invalid_cpp_abbrev_complaint (*pp);
c906108c
SS
2809 return 0;
2810 }
2811 fip->list->field.type = read_type (pp, objfile);
2812 if (**pp == ',')
c5aa993b 2813 (*pp)++; /* Skip the comma. */
c906108c
SS
2814 else
2815 return 0;
2816
2817 {
2818 int nbits;
433759f7 2819
f41f5e61
PA
2820 SET_FIELD_BITPOS (fip->list->field,
2821 read_huge_number (pp, ';', &nbits, 0));
c906108c
SS
2822 if (nbits != 0)
2823 return 0;
2824 }
2825 /* This field is unpacked. */
2826 FIELD_BITSIZE (fip->list->field) = 0;
2827 fip->list->visibility = VISIBILITY_PRIVATE;
2828 }
2829 else
2830 {
23136709 2831 invalid_cpp_abbrev_complaint (*pp);
c906108c 2832 /* We have no idea what syntax an unrecognized abbrev would have, so
c5aa993b
JM
2833 better return 0. If we returned 1, we would need to at least advance
2834 *pp to avoid an infinite loop. */
c906108c
SS
2835 return 0;
2836 }
2837 return 1;
2838}
2839
2840static void
fba45db2
KB
2841read_one_struct_field (struct field_info *fip, char **pp, char *p,
2842 struct type *type, struct objfile *objfile)
c906108c 2843{
5e2b427d
UW
2844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2845
224c3ddb
SM
2846 fip->list->field.name
2847 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c
SS
2848 *pp = p + 1;
2849
c378eb4e 2850 /* This means we have a visibility for a field coming. */
c906108c
SS
2851 if (**pp == '/')
2852 {
2853 (*pp)++;
c5aa993b 2854 fip->list->visibility = *(*pp)++;
c906108c
SS
2855 }
2856 else
2857 {
2858 /* normal dbx-style format, no explicit visibility */
c5aa993b 2859 fip->list->visibility = VISIBILITY_PUBLIC;
c906108c
SS
2860 }
2861
c5aa993b 2862 fip->list->field.type = read_type (pp, objfile);
c906108c
SS
2863 if (**pp == ':')
2864 {
2865 p = ++(*pp);
2866#if 0
c378eb4e 2867 /* Possible future hook for nested types. */
c906108c
SS
2868 if (**pp == '!')
2869 {
c5aa993b 2870 fip->list->field.bitpos = (long) -2; /* nested type */
c906108c
SS
2871 p = ++(*pp);
2872 }
c5aa993b
JM
2873 else
2874 ...;
c906108c 2875#endif
c5aa993b 2876 while (*p != ';')
c906108c
SS
2877 {
2878 p++;
2879 }
2880 /* Static class member. */
2881 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2882 *pp = p + 1;
2883 return;
2884 }
2885 else if (**pp != ',')
2886 {
2887 /* Bad structure-type format. */
23136709 2888 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2889 return;
2890 }
2891
2892 (*pp)++; /* Skip the comma. */
2893
2894 {
2895 int nbits;
433759f7 2896
f41f5e61
PA
2897 SET_FIELD_BITPOS (fip->list->field,
2898 read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
2899 if (nbits != 0)
2900 {
23136709 2901 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2902 return;
2903 }
94e10a22 2904 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
2905 if (nbits != 0)
2906 {
23136709 2907 stabs_general_complaint ("bad structure-type format");
c906108c
SS
2908 return;
2909 }
2910 }
2911
2912 if (FIELD_BITPOS (fip->list->field) == 0
2913 && FIELD_BITSIZE (fip->list->field) == 0)
2914 {
2915 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
c5aa993b
JM
2916 it is a field which has been optimized out. The correct stab for
2917 this case is to use VISIBILITY_IGNORE, but that is a recent
2918 invention. (2) It is a 0-size array. For example
e2e0b3e5 2919 union { int num; char str[0]; } foo. Printing _("<no value>" for
c5aa993b
JM
2920 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2921 will continue to work, and a 0-size array as a whole doesn't
2922 have any contents to print.
2923
2924 I suspect this probably could also happen with gcc -gstabs (not
2925 -gstabs+) for static fields, and perhaps other C++ extensions.
2926 Hopefully few people use -gstabs with gdb, since it is intended
2927 for dbx compatibility. */
c906108c
SS
2928
2929 /* Ignore this field. */
c5aa993b 2930 fip->list->visibility = VISIBILITY_IGNORE;
c906108c
SS
2931 }
2932 else
2933 {
2934 /* Detect an unpacked field and mark it as such.
c5aa993b
JM
2935 dbx gives a bit size for all fields.
2936 Note that forward refs cannot be packed,
2937 and treat enums as if they had the width of ints. */
c906108c
SS
2938
2939 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2940
2941 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2942 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2943 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2944 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2945 {
2946 FIELD_BITSIZE (fip->list->field) = 0;
2947 }
c5aa993b 2948 if ((FIELD_BITSIZE (fip->list->field)
c906108c
SS
2949 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2950 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
9a76efb6 2951 && FIELD_BITSIZE (fip->list->field)
5e2b427d 2952 == gdbarch_int_bit (gdbarch))
c5aa993b 2953 )
c906108c
SS
2954 &&
2955 FIELD_BITPOS (fip->list->field) % 8 == 0)
2956 {
2957 FIELD_BITSIZE (fip->list->field) = 0;
2958 }
2959 }
2960}
2961
2962
2963/* Read struct or class data fields. They have the form:
2964
c5aa993b 2965 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
c906108c
SS
2966
2967 At the end, we see a semicolon instead of a field.
2968
2969 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2970 a static field.
2971
2972 The optional VISIBILITY is one of:
2973
c5aa993b
JM
2974 '/0' (VISIBILITY_PRIVATE)
2975 '/1' (VISIBILITY_PROTECTED)
2976 '/2' (VISIBILITY_PUBLIC)
2977 '/9' (VISIBILITY_IGNORE)
c906108c
SS
2978
2979 or nothing, for C style fields with public visibility.
2980
2981 Returns 1 for success, 0 for failure. */
2982
2983static int
fba45db2
KB
2984read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2985 struct objfile *objfile)
c906108c 2986{
52f0bd74 2987 char *p;
fe978cb0 2988 struct nextfield *newobj;
c906108c
SS
2989
2990 /* We better set p right now, in case there are no fields at all... */
2991
2992 p = *pp;
2993
2994 /* Read each data member type until we find the terminating ';' at the end of
2995 the data member list, or break for some other reason such as finding the
c378eb4e 2996 start of the member function list. */
fedbd091 2997 /* Stab string for structure/union does not end with two ';' in
c378eb4e 2998 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
c906108c 2999
fedbd091 3000 while (**pp != ';' && **pp != '\0')
c906108c 3001 {
c906108c
SS
3002 STABS_CONTINUE (pp, objfile);
3003 /* Get space to record the next field's data. */
8d749320 3004 newobj = XCNEW (struct nextfield);
fe978cb0 3005 make_cleanup (xfree, newobj);
8d749320 3006
fe978cb0
PA
3007 newobj->next = fip->list;
3008 fip->list = newobj;
c906108c
SS
3009
3010 /* Get the field name. */
3011 p = *pp;
3012
3013 /* If is starts with CPLUS_MARKER it is a special abbreviation,
c5aa993b
JM
3014 unless the CPLUS_MARKER is followed by an underscore, in
3015 which case it is just the name of an anonymous type, which we
3016 should handle like any other type name. */
c906108c
SS
3017
3018 if (is_cplus_marker (p[0]) && p[1] != '_')
3019 {
3020 if (!read_cpp_abbrev (fip, pp, type, objfile))
3021 return 0;
3022 continue;
3023 }
3024
3025 /* Look for the ':' that separates the field name from the field
c5aa993b
JM
3026 values. Data members are delimited by a single ':', while member
3027 functions are delimited by a pair of ':'s. When we hit the member
c378eb4e 3028 functions (if any), terminate scan loop and return. */
c906108c 3029
c5aa993b 3030 while (*p != ':' && *p != '\0')
c906108c
SS
3031 {
3032 p++;
3033 }
3034 if (*p == '\0')
3035 return 0;
3036
3037 /* Check to see if we have hit the member functions yet. */
3038 if (p[1] == ':')
3039 {
3040 break;
3041 }
3042 read_one_struct_field (fip, pp, p, type, objfile);
3043 }
3044 if (p[0] == ':' && p[1] == ':')
3045 {
1b831c93
AC
3046 /* (the deleted) chill the list of fields: the last entry (at
3047 the head) is a partially constructed entry which we now
c378eb4e 3048 scrub. */
c5aa993b 3049 fip->list = fip->list->next;
c906108c
SS
3050 }
3051 return 1;
3052}
9846de1b 3053/* *INDENT-OFF* */
c906108c
SS
3054/* The stabs for C++ derived classes contain baseclass information which
3055 is marked by a '!' character after the total size. This function is
3056 called when we encounter the baseclass marker, and slurps up all the
3057 baseclass information.
3058
3059 Immediately following the '!' marker is the number of base classes that
3060 the class is derived from, followed by information for each base class.
3061 For each base class, there are two visibility specifiers, a bit offset
3062 to the base class information within the derived class, a reference to
3063 the type for the base class, and a terminating semicolon.
3064
3065 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3066 ^^ ^ ^ ^ ^ ^ ^
3067 Baseclass information marker __________________|| | | | | | |
3068 Number of baseclasses __________________________| | | | | | |
3069 Visibility specifiers (2) ________________________| | | | | |
3070 Offset in bits from start of class _________________| | | | |
3071 Type number for base class ___________________________| | | |
3072 Visibility specifiers (2) _______________________________| | |
3073 Offset in bits from start of class ________________________| |
3074 Type number of base class ____________________________________|
3075
3076 Return 1 for success, 0 for (error-type-inducing) failure. */
9846de1b 3077/* *INDENT-ON* */
c906108c 3078
c5aa993b
JM
3079
3080
c906108c 3081static int
fba45db2
KB
3082read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3083 struct objfile *objfile)
c906108c
SS
3084{
3085 int i;
fe978cb0 3086 struct nextfield *newobj;
c906108c
SS
3087
3088 if (**pp != '!')
3089 {
3090 return 1;
3091 }
3092 else
3093 {
c378eb4e 3094 /* Skip the '!' baseclass information marker. */
c906108c
SS
3095 (*pp)++;
3096 }
3097
3098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3099 {
3100 int nbits;
433759f7 3101
94e10a22 3102 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3103 if (nbits != 0)
3104 return 0;
3105 }
3106
3107#if 0
3108 /* Some stupid compilers have trouble with the following, so break
3109 it up into simpler expressions. */
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3111 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3112#else
3113 {
3114 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3115 char *pointer;
3116
3117 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3119 }
3120#endif /* 0 */
3121
3122 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3123
3124 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3125 {
8d749320 3126 newobj = XCNEW (struct nextfield);
fe978cb0 3127 make_cleanup (xfree, newobj);
8d749320 3128
fe978cb0
PA
3129 newobj->next = fip->list;
3130 fip->list = newobj;
3131 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
c378eb4e 3132 field! */
c906108c
SS
3133
3134 STABS_CONTINUE (pp, objfile);
3135 switch (**pp)
3136 {
c5aa993b 3137 case '0':
c378eb4e 3138 /* Nothing to do. */
c5aa993b
JM
3139 break;
3140 case '1':
3141 SET_TYPE_FIELD_VIRTUAL (type, i);
3142 break;
3143 default:
3144 /* Unknown character. Complain and treat it as non-virtual. */
3145 {
23136709 3146 complaint (&symfile_complaints,
3e43a32a
MS
3147 _("Unknown virtual character `%c' for baseclass"),
3148 **pp);
c5aa993b 3149 }
c906108c
SS
3150 }
3151 ++(*pp);
3152
fe978cb0
PA
3153 newobj->visibility = *(*pp)++;
3154 switch (newobj->visibility)
c906108c 3155 {
c5aa993b
JM
3156 case VISIBILITY_PRIVATE:
3157 case VISIBILITY_PROTECTED:
3158 case VISIBILITY_PUBLIC:
3159 break;
3160 default:
3161 /* Bad visibility format. Complain and treat it as
3162 public. */
3163 {
23136709 3164 complaint (&symfile_complaints,
e2e0b3e5 3165 _("Unknown visibility `%c' for baseclass"),
fe978cb0
PA
3166 newobj->visibility);
3167 newobj->visibility = VISIBILITY_PUBLIC;
c5aa993b 3168 }
c906108c
SS
3169 }
3170
3171 {
3172 int nbits;
c5aa993b 3173
c906108c
SS
3174 /* The remaining value is the bit offset of the portion of the object
3175 corresponding to this baseclass. Always zero in the absence of
3176 multiple inheritance. */
3177
fe978cb0 3178 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
c906108c
SS
3179 if (nbits != 0)
3180 return 0;
3181 }
3182
3183 /* The last piece of baseclass information is the type of the
c5aa993b 3184 base class. Read it, and remember it's type name as this
c378eb4e 3185 field's name. */
c906108c 3186
fe978cb0
PA
3187 newobj->field.type = read_type (pp, objfile);
3188 newobj->field.name = type_name_no_tag (newobj->field.type);
c906108c 3189
c378eb4e 3190 /* Skip trailing ';' and bump count of number of fields seen. */
c906108c
SS
3191 if (**pp == ';')
3192 (*pp)++;
3193 else
3194 return 0;
3195 }
3196 return 1;
3197}
3198
3199/* The tail end of stabs for C++ classes that contain a virtual function
3200 pointer contains a tilde, a %, and a type number.
3201 The type number refers to the base class (possibly this class itself) which
3202 contains the vtable pointer for the current class.
3203
3204 This function is called when we have parsed all the method declarations,
3205 so we can look for the vptr base class info. */
3206
3207static int
fba45db2
KB
3208read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3209 struct objfile *objfile)
c906108c 3210{
52f0bd74 3211 char *p;
c906108c
SS
3212
3213 STABS_CONTINUE (pp, objfile);
3214
c378eb4e 3215 /* If we are positioned at a ';', then skip it. */
c906108c
SS
3216 if (**pp == ';')
3217 {
3218 (*pp)++;
3219 }
3220
3221 if (**pp == '~')
3222 {
3223 (*pp)++;
3224
3225 if (**pp == '=' || **pp == '+' || **pp == '-')
3226 {
3227 /* Obsolete flags that used to indicate the presence
c378eb4e 3228 of constructors and/or destructors. */
c906108c
SS
3229 (*pp)++;
3230 }
3231
3232 /* Read either a '%' or the final ';'. */
3233 if (*(*pp)++ == '%')
3234 {
3235 /* The next number is the type number of the base class
3236 (possibly our own class) which supplies the vtable for
3237 this class. Parse it out, and search that class to find
3238 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3239 and TYPE_VPTR_FIELDNO. */
3240
3241 struct type *t;
3242 int i;
3243
3244 t = read_type (pp, objfile);
3245 p = (*pp)++;
3246 while (*p != '\0' && *p != ';')
3247 {
3248 p++;
3249 }
3250 if (*p == '\0')
3251 {
3252 /* Premature end of symbol. */
3253 return 0;
3254 }
c5aa993b 3255
ae6ae975 3256 set_type_vptr_basetype (type, t);
c378eb4e 3257 if (type == t) /* Our own class provides vtbl ptr. */
c906108c
SS
3258 {
3259 for (i = TYPE_NFIELDS (t) - 1;
3260 i >= TYPE_N_BASECLASSES (t);
3261 --i)
3262 {
0d5cff50 3263 const char *name = TYPE_FIELD_NAME (t, i);
433759f7 3264
8343f86c 3265 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
74451869 3266 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
c906108c 3267 {
ae6ae975 3268 set_type_vptr_fieldno (type, i);
c906108c
SS
3269 goto gotit;
3270 }
3271 }
3272 /* Virtual function table field not found. */
23136709 3273 complaint (&symfile_complaints,
3e43a32a
MS
3274 _("virtual function table pointer "
3275 "not found when defining class `%s'"),
23136709 3276 TYPE_NAME (type));
c906108c
SS
3277 return 0;
3278 }
3279 else
3280 {
ae6ae975 3281 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
3282 }
3283
c5aa993b 3284 gotit:
c906108c
SS
3285 *pp = p + 1;
3286 }
3287 }
3288 return 1;
3289}
3290
3291static int
aa1ee363 3292attach_fn_fields_to_type (struct field_info *fip, struct type *type)
c906108c 3293{
52f0bd74 3294 int n;
c906108c
SS
3295
3296 for (n = TYPE_NFN_FIELDS (type);
c5aa993b
JM
3297 fip->fnlist != NULL;
3298 fip->fnlist = fip->fnlist->next)
c906108c 3299 {
c378eb4e 3300 --n; /* Circumvent Sun3 compiler bug. */
c5aa993b 3301 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
c906108c
SS
3302 }
3303 return 1;
3304}
3305
c906108c
SS
3306/* Create the vector of fields, and record how big it is.
3307 We need this info to record proper virtual function table information
3308 for this class's virtual functions. */
3309
3310static int
aa1ee363 3311attach_fields_to_type (struct field_info *fip, struct type *type,
fba45db2 3312 struct objfile *objfile)
c906108c 3313{
52f0bd74
AC
3314 int nfields = 0;
3315 int non_public_fields = 0;
3316 struct nextfield *scan;
c906108c
SS
3317
3318 /* Count up the number of fields that we have, as well as taking note of
3319 whether or not there are any non-public fields, which requires us to
3320 allocate and build the private_field_bits and protected_field_bits
c378eb4e 3321 bitfields. */
c906108c 3322
c5aa993b 3323 for (scan = fip->list; scan != NULL; scan = scan->next)
c906108c
SS
3324 {
3325 nfields++;
c5aa993b 3326 if (scan->visibility != VISIBILITY_PUBLIC)
c906108c
SS
3327 {
3328 non_public_fields++;
3329 }
3330 }
3331
3332 /* Now we know how many fields there are, and whether or not there are any
3333 non-public fields. Record the field count, allocate space for the
c378eb4e 3334 array of fields, and create blank visibility bitfields if necessary. */
c906108c
SS
3335
3336 TYPE_NFIELDS (type) = nfields;
3337 TYPE_FIELDS (type) = (struct field *)
3338 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3339 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3340
3341 if (non_public_fields)
3342 {
3343 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3344
3345 TYPE_FIELD_PRIVATE_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3348
3349 TYPE_FIELD_PROTECTED_BITS (type) =
3350 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3351 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3352
3353 TYPE_FIELD_IGNORE_BITS (type) =
3354 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3355 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3356 }
3357
c378eb4e
MS
3358 /* Copy the saved-up fields into the field vector. Start from the
3359 head of the list, adding to the tail of the field array, so that
3360 they end up in the same order in the array in which they were
3361 added to the list. */
c906108c
SS
3362
3363 while (nfields-- > 0)
3364 {
c5aa993b
JM
3365 TYPE_FIELD (type, nfields) = fip->list->field;
3366 switch (fip->list->visibility)
c906108c 3367 {
c5aa993b
JM
3368 case VISIBILITY_PRIVATE:
3369 SET_TYPE_FIELD_PRIVATE (type, nfields);
3370 break;
c906108c 3371
c5aa993b
JM
3372 case VISIBILITY_PROTECTED:
3373 SET_TYPE_FIELD_PROTECTED (type, nfields);
3374 break;
c906108c 3375
c5aa993b
JM
3376 case VISIBILITY_IGNORE:
3377 SET_TYPE_FIELD_IGNORE (type, nfields);
3378 break;
c906108c 3379
c5aa993b
JM
3380 case VISIBILITY_PUBLIC:
3381 break;
c906108c 3382
c5aa993b
JM
3383 default:
3384 /* Unknown visibility. Complain and treat it as public. */
3385 {
3e43a32a
MS
3386 complaint (&symfile_complaints,
3387 _("Unknown visibility `%c' for field"),
23136709 3388 fip->list->visibility);
c5aa993b
JM
3389 }
3390 break;
c906108c 3391 }
c5aa993b 3392 fip->list = fip->list->next;
c906108c
SS
3393 }
3394 return 1;
3395}
3396
2ae1c2d2 3397
2ae1c2d2
JB
3398/* Complain that the compiler has emitted more than one definition for the
3399 structure type TYPE. */
3400static void
3401complain_about_struct_wipeout (struct type *type)
3402{
0d5cff50
DE
3403 const char *name = "";
3404 const char *kind = "";
2ae1c2d2
JB
3405
3406 if (TYPE_TAG_NAME (type))
3407 {
3408 name = TYPE_TAG_NAME (type);
3409 switch (TYPE_CODE (type))
3410 {
3411 case TYPE_CODE_STRUCT: kind = "struct "; break;
3412 case TYPE_CODE_UNION: kind = "union "; break;
3413 case TYPE_CODE_ENUM: kind = "enum "; break;
3414 default: kind = "";
3415 }
3416 }
3417 else if (TYPE_NAME (type))
3418 {
3419 name = TYPE_NAME (type);
3420 kind = "";
3421 }
3422 else
3423 {
3424 name = "<unknown>";
3425 kind = "";
3426 }
3427
23136709 3428 complaint (&symfile_complaints,
e2e0b3e5 3429 _("struct/union type gets multiply defined: %s%s"), kind, name);
2ae1c2d2
JB
3430}
3431
621791b8
PM
3432/* Set the length for all variants of a same main_type, which are
3433 connected in the closed chain.
3434
3435 This is something that needs to be done when a type is defined *after*
3436 some cross references to this type have already been read. Consider
3437 for instance the following scenario where we have the following two
3438 stabs entries:
3439
3440 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3441 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3442
3443 A stubbed version of type dummy is created while processing the first
3444 stabs entry. The length of that type is initially set to zero, since
3445 it is unknown at this point. Also, a "constant" variation of type
3446 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3447 the stabs line).
3448
3449 The second stabs entry allows us to replace the stubbed definition
3450 with the real definition. However, we still need to adjust the length
3451 of the "constant" variation of that type, as its length was left
3452 untouched during the main type replacement... */
3453
3454static void
9e69f3b6 3455set_length_in_type_chain (struct type *type)
621791b8
PM
3456{
3457 struct type *ntype = TYPE_CHAIN (type);
3458
3459 while (ntype != type)
3460 {
3461 if (TYPE_LENGTH(ntype) == 0)
3462 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3463 else
3464 complain_about_struct_wipeout (ntype);
3465 ntype = TYPE_CHAIN (ntype);
3466 }
3467}
2ae1c2d2 3468
c906108c
SS
3469/* Read the description of a structure (or union type) and return an object
3470 describing the type.
3471
3472 PP points to a character pointer that points to the next unconsumed token
b021a221 3473 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
c906108c
SS
3474 *PP will point to "4a:1,0,32;;".
3475
3476 TYPE points to an incomplete type that needs to be filled in.
3477
3478 OBJFILE points to the current objfile from which the stabs information is
3479 being read. (Note that it is redundant in that TYPE also contains a pointer
3480 to this same objfile, so it might be a good idea to eliminate it. FIXME).
c5aa993b 3481 */
c906108c
SS
3482
3483static struct type *
2ae1c2d2
JB
3484read_struct_type (char **pp, struct type *type, enum type_code type_code,
3485 struct objfile *objfile)
c906108c
SS
3486{
3487 struct cleanup *back_to;
3488 struct field_info fi;
3489
3490 fi.list = NULL;
3491 fi.fnlist = NULL;
3492
2ae1c2d2
JB
3493 /* When describing struct/union/class types in stabs, G++ always drops
3494 all qualifications from the name. So if you've got:
3495 struct A { ... struct B { ... }; ... };
3496 then G++ will emit stabs for `struct A::B' that call it simply
3497 `struct B'. Obviously, if you've got a real top-level definition for
3498 `struct B', or other nested definitions, this is going to cause
3499 problems.
3500
3501 Obviously, GDB can't fix this by itself, but it can at least avoid
3502 scribbling on existing structure type objects when new definitions
3503 appear. */
3504 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3505 || TYPE_STUB (type)))
3506 {
3507 complain_about_struct_wipeout (type);
3508
3509 /* It's probably best to return the type unchanged. */
3510 return type;
3511 }
3512
c906108c
SS
3513 back_to = make_cleanup (null_cleanup, 0);
3514
3515 INIT_CPLUS_SPECIFIC (type);
2ae1c2d2 3516 TYPE_CODE (type) = type_code;
876cecd0 3517 TYPE_STUB (type) = 0;
c906108c
SS
3518
3519 /* First comes the total size in bytes. */
3520
3521 {
3522 int nbits;
433759f7 3523
94e10a22 3524 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
c906108c 3525 if (nbits != 0)
73b8d9da
TT
3526 {
3527 do_cleanups (back_to);
3528 return error_type (pp, objfile);
3529 }
621791b8 3530 set_length_in_type_chain (type);
c906108c
SS
3531 }
3532
3533 /* Now read the baseclasses, if any, read the regular C struct or C++
3534 class member fields, attach the fields to the type, read the C++
3535 member functions, attach them to the type, and then read any tilde
3e43a32a 3536 field (baseclass specifier for the class holding the main vtable). */
c906108c
SS
3537
3538 if (!read_baseclasses (&fi, pp, type, objfile)
3539 || !read_struct_fields (&fi, pp, type, objfile)
3540 || !attach_fields_to_type (&fi, type, objfile)
3541 || !read_member_functions (&fi, pp, type, objfile)
3542 || !attach_fn_fields_to_type (&fi, type)
3543 || !read_tilde_fields (&fi, pp, type, objfile))
3544 {
3545 type = error_type (pp, objfile);
3546 }
3547
3548 do_cleanups (back_to);
3549 return (type);
3550}
3551
3552/* Read a definition of an array type,
3553 and create and return a suitable type object.
3554 Also creates a range type which represents the bounds of that
3555 array. */
3556
3557static struct type *
aa1ee363 3558read_array_type (char **pp, struct type *type,
fba45db2 3559 struct objfile *objfile)
c906108c
SS
3560{
3561 struct type *index_type, *element_type, *range_type;
3562 int lower, upper;
3563 int adjustable = 0;
3564 int nbits;
3565
3566 /* Format of an array type:
3567 "ar<index type>;lower;upper;<array_contents_type>".
3568 OS9000: "arlower,upper;<array_contents_type>".
3569
3570 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3571 for these, produce a type like float[][]. */
3572
c906108c
SS
3573 {
3574 index_type = read_type (pp, objfile);
3575 if (**pp != ';')
3576 /* Improper format of array type decl. */
3577 return error_type (pp, objfile);
3578 ++*pp;
3579 }
3580
3581 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3582 {
3583 (*pp)++;
3584 adjustable = 1;
3585 }
94e10a22 3586 lower = read_huge_number (pp, ';', &nbits, 0);
cdecafbe 3587
c906108c
SS
3588 if (nbits != 0)
3589 return error_type (pp, objfile);
3590
3591 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3592 {
3593 (*pp)++;
3594 adjustable = 1;
3595 }
94e10a22 3596 upper = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
c5aa993b 3599
c906108c
SS
3600 element_type = read_type (pp, objfile);
3601
3602 if (adjustable)
3603 {
3604 lower = 0;
3605 upper = -1;
3606 }
3607
3608 range_type =
0c9c3474 3609 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
c906108c
SS
3610 type = create_array_type (type, element_type, range_type);
3611
3612 return type;
3613}
3614
3615
3616/* Read a definition of an enumeration type,
3617 and create and return a suitable type object.
3618 Also defines the symbols that represent the values of the type. */
3619
3620static struct type *
aa1ee363 3621read_enum_type (char **pp, struct type *type,
fba45db2 3622 struct objfile *objfile)
c906108c 3623{
5e2b427d 3624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 3625 char *p;
c906108c 3626 char *name;
52f0bd74
AC
3627 long n;
3628 struct symbol *sym;
c906108c
SS
3629 int nsyms = 0;
3630 struct pending **symlist;
3631 struct pending *osyms, *syms;
3632 int o_nsyms;
3633 int nbits;
3634 int unsigned_enum = 1;
3635
3636#if 0
3637 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3638 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3639 to do? For now, force all enum values to file scope. */
3640 if (within_function)
3641 symlist = &local_symbols;
3642 else
3643#endif
3644 symlist = &file_symbols;
3645 osyms = *symlist;
3646 o_nsyms = osyms ? osyms->nsyms : 0;
3647
c906108c
SS
3648 /* The aix4 compiler emits an extra field before the enum members;
3649 my guess is it's a type of some sort. Just ignore it. */
3650 if (**pp == '-')
3651 {
3652 /* Skip over the type. */
3653 while (**pp != ':')
c5aa993b 3654 (*pp)++;
c906108c
SS
3655
3656 /* Skip over the colon. */
3657 (*pp)++;
3658 }
3659
3660 /* Read the value-names and their values.
3661 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3662 A semicolon or comma instead of a NAME means the end. */
3663 while (**pp && **pp != ';' && **pp != ',')
3664 {
3665 STABS_CONTINUE (pp, objfile);
3666 p = *pp;
c5aa993b
JM
3667 while (*p != ':')
3668 p++;
224c3ddb 3669 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
c906108c 3670 *pp = p + 1;
94e10a22 3671 n = read_huge_number (pp, ',', &nbits, 0);
c906108c
SS
3672 if (nbits != 0)
3673 return error_type (pp, objfile);
3674
e623cf5d 3675 sym = allocate_symbol (objfile);
3567439c 3676 SYMBOL_SET_LINKAGE_NAME (sym, name);
f85f34ed
TT
3677 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3678 &objfile->objfile_obstack);
f1e6e072 3679 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
176620f1 3680 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3681 SYMBOL_VALUE (sym) = n;
3682 if (n < 0)
3683 unsigned_enum = 0;
3684 add_symbol_to_list (sym, symlist);
3685 nsyms++;
3686 }
3687
3688 if (**pp == ';')
3689 (*pp)++; /* Skip the semicolon. */
3690
3691 /* Now fill in the fields of the type-structure. */
3692
5e2b427d 3693 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
621791b8 3694 set_length_in_type_chain (type);
c906108c 3695 TYPE_CODE (type) = TYPE_CODE_ENUM;
876cecd0 3696 TYPE_STUB (type) = 0;
c906108c 3697 if (unsigned_enum)
876cecd0 3698 TYPE_UNSIGNED (type) = 1;
c906108c
SS
3699 TYPE_NFIELDS (type) = nsyms;
3700 TYPE_FIELDS (type) = (struct field *)
3701 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3702 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3703
3704 /* Find the symbols for the values and put them into the type.
3705 The symbols can be found in the symlist that we put them on
3706 to cause them to be defined. osyms contains the old value
3707 of that symlist; everything up to there was defined by us. */
3708 /* Note that we preserve the order of the enum constants, so
3709 that in something like "enum {FOO, LAST_THING=FOO}" we print
3710 FOO, not LAST_THING. */
3711
3712 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3713 {
3714 int last = syms == osyms ? o_nsyms : 0;
3715 int j = syms->nsyms;
433759f7 3716
c906108c
SS
3717 for (; --j >= last; --n)
3718 {
3719 struct symbol *xsym = syms->symbol[j];
433759f7 3720
c906108c 3721 SYMBOL_TYPE (xsym) = type;
3567439c 3722 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
14e75d8e 3723 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
c906108c
SS
3724 TYPE_FIELD_BITSIZE (type, n) = 0;
3725 }
3726 if (syms == osyms)
3727 break;
3728 }
3729
3730 return type;
3731}
3732
3733/* Sun's ACC uses a somewhat saner method for specifying the builtin
3734 typedefs in every file (for int, long, etc):
3735
c5aa993b
JM
3736 type = b <signed> <width> <format type>; <offset>; <nbits>
3737 signed = u or s.
3738 optional format type = c or b for char or boolean.
3739 offset = offset from high order bit to start bit of type.
3740 width is # bytes in object of this type, nbits is # bits in type.
c906108c
SS
3741
3742 The width/offset stuff appears to be for small objects stored in
3743 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3744 FIXME. */
3745
3746static struct type *
35a2f538 3747read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3748{
3749 int type_bits;
3750 int nbits;
19f392bc
UW
3751 int unsigned_type;
3752 int boolean_type = 0;
c906108c
SS
3753
3754 switch (**pp)
3755 {
c5aa993b 3756 case 's':
19f392bc 3757 unsigned_type = 0;
c5aa993b
JM
3758 break;
3759 case 'u':
19f392bc 3760 unsigned_type = 1;
c5aa993b
JM
3761 break;
3762 default:
3763 return error_type (pp, objfile);
c906108c
SS
3764 }
3765 (*pp)++;
3766
3767 /* For some odd reason, all forms of char put a c here. This is strange
3768 because no other type has this honor. We can safely ignore this because
3769 we actually determine 'char'acterness by the number of bits specified in
3770 the descriptor.
3771 Boolean forms, e.g Fortran logical*X, put a b here. */
3772
3773 if (**pp == 'c')
3774 (*pp)++;
3775 else if (**pp == 'b')
3776 {
19f392bc 3777 boolean_type = 1;
c906108c
SS
3778 (*pp)++;
3779 }
3780
3781 /* The first number appears to be the number of bytes occupied
3782 by this type, except that unsigned short is 4 instead of 2.
3783 Since this information is redundant with the third number,
3784 we will ignore it. */
94e10a22 3785 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3786 if (nbits != 0)
3787 return error_type (pp, objfile);
3788
c378eb4e 3789 /* The second number is always 0, so ignore it too. */
94e10a22 3790 read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3791 if (nbits != 0)
3792 return error_type (pp, objfile);
3793
c378eb4e 3794 /* The third number is the number of bits for this type. */
94e10a22 3795 type_bits = read_huge_number (pp, 0, &nbits, 0);
c906108c
SS
3796 if (nbits != 0)
3797 return error_type (pp, objfile);
3798 /* The type *should* end with a semicolon. If it are embedded
3799 in a larger type the semicolon may be the only way to know where
3800 the type ends. If this type is at the end of the stabstring we
3801 can deal with the omitted semicolon (but we don't have to like
3802 it). Don't bother to complain(), Sun's compiler omits the semicolon
3803 for "void". */
3804 if (**pp == ';')
3805 ++(*pp);
3806
3807 if (type_bits == 0)
19f392bc
UW
3808 {
3809 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3810 if (unsigned_type)
3811 TYPE_UNSIGNED (type) = 1;
3812 return type;
3813 }
3814
3815 if (boolean_type)
3816 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
c906108c 3817 else
19f392bc 3818 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
c906108c
SS
3819}
3820
3821static struct type *
35a2f538 3822read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
c906108c
SS
3823{
3824 int nbits;
3825 int details;
3826 int nbytes;
f65ca430 3827 struct type *rettype;
c906108c
SS
3828
3829 /* The first number has more details about the type, for example
3830 FN_COMPLEX. */
94e10a22 3831 details = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3832 if (nbits != 0)
3833 return error_type (pp, objfile);
3834
c378eb4e 3835 /* The second number is the number of bytes occupied by this type. */
94e10a22 3836 nbytes = read_huge_number (pp, ';', &nbits, 0);
c906108c
SS
3837 if (nbits != 0)
3838 return error_type (pp, objfile);
3839
19f392bc
UW
3840 nbits = nbytes * TARGET_CHAR_BIT;
3841
c906108c
SS
3842 if (details == NF_COMPLEX || details == NF_COMPLEX16
3843 || details == NF_COMPLEX32)
f65ca430 3844 {
19f392bc
UW
3845 rettype = init_float_type (objfile, nbits / 2, NULL, NULL);
3846 return init_complex_type (objfile, NULL, rettype);
f65ca430 3847 }
c906108c 3848
19f392bc 3849 return init_float_type (objfile, nbits, NULL, NULL);
c906108c
SS
3850}
3851
3852/* Read a number from the string pointed to by *PP.
3853 The value of *PP is advanced over the number.
3854 If END is nonzero, the character that ends the
3855 number must match END, or an error happens;
3856 and that character is skipped if it does match.
3857 If END is zero, *PP is left pointing to that character.
3858
94e10a22
JG
3859 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3860 the number is represented in an octal representation, assume that
3861 it is represented in a 2's complement representation with a size of
3862 TWOS_COMPLEMENT_BITS.
3863
c906108c
SS
3864 If the number fits in a long, set *BITS to 0 and return the value.
3865 If not, set *BITS to be the number of bits in the number and return 0.
3866
3867 If encounter garbage, set *BITS to -1 and return 0. */
3868
c2d11a7d 3869static long
94e10a22 3870read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
c906108c
SS
3871{
3872 char *p = *pp;
3873 int sign = 1;
51e9e0d4 3874 int sign_bit = 0;
c2d11a7d 3875 long n = 0;
c906108c
SS
3876 int radix = 10;
3877 char overflow = 0;
3878 int nbits = 0;
3879 int c;
c2d11a7d 3880 long upper_limit;
a2699720 3881 int twos_complement_representation = 0;
c5aa993b 3882
c906108c
SS
3883 if (*p == '-')
3884 {
3885 sign = -1;
3886 p++;
3887 }
3888
3889 /* Leading zero means octal. GCC uses this to output values larger
3890 than an int (because that would be hard in decimal). */
3891 if (*p == '0')
3892 {
3893 radix = 8;
3894 p++;
3895 }
3896
a2699720
PA
3897 /* Skip extra zeros. */
3898 while (*p == '0')
3899 p++;
3900
3901 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3902 {
3903 /* Octal, possibly signed. Check if we have enough chars for a
3904 negative number. */
3905
3906 size_t len;
3907 char *p1 = p;
433759f7 3908
a2699720
PA
3909 while ((c = *p1) >= '0' && c < '8')
3910 p1++;
3911
3912 len = p1 - p;
3913 if (len > twos_complement_bits / 3
3e43a32a
MS
3914 || (twos_complement_bits % 3 == 0
3915 && len == twos_complement_bits / 3))
a2699720
PA
3916 {
3917 /* Ok, we have enough characters for a signed value, check
3918 for signness by testing if the sign bit is set. */
3919 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3920 c = *p - '0';
3921 if (c & (1 << sign_bit))
3922 {
3923 /* Definitely signed. */
3924 twos_complement_representation = 1;
3925 sign = -1;
3926 }
3927 }
3928 }
3929
1b831c93 3930 upper_limit = LONG_MAX / radix;
c906108c
SS
3931
3932 while ((c = *p++) >= '0' && c < ('0' + radix))
3933 {
3934 if (n <= upper_limit)
94e10a22
JG
3935 {
3936 if (twos_complement_representation)
3937 {
a2699720
PA
3938 /* Octal, signed, twos complement representation. In
3939 this case, n is the corresponding absolute value. */
3940 if (n == 0)
3941 {
3942 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
433759f7 3943
a2699720
PA
3944 n = -sn;
3945 }
94e10a22
JG
3946 else
3947 {
a2699720
PA
3948 n *= radix;
3949 n -= c - '0';
94e10a22 3950 }
94e10a22
JG
3951 }
3952 else
3953 {
3954 /* unsigned representation */
3955 n *= radix;
c378eb4e 3956 n += c - '0'; /* FIXME this overflows anyway. */
94e10a22
JG
3957 }
3958 }
c906108c 3959 else
94e10a22 3960 overflow = 1;
c5aa993b 3961
c906108c 3962 /* This depends on large values being output in octal, which is
c378eb4e 3963 what GCC does. */
c906108c
SS
3964 if (radix == 8)
3965 {
3966 if (nbits == 0)
3967 {
3968 if (c == '0')
3969 /* Ignore leading zeroes. */
3970 ;
3971 else if (c == '1')
3972 nbits = 1;
3973 else if (c == '2' || c == '3')
3974 nbits = 2;
3975 else
3976 nbits = 3;
3977 }
3978 else
3979 nbits += 3;
3980 }
3981 }
3982 if (end)
3983 {
3984 if (c && c != end)
3985 {
3986 if (bits != NULL)
3987 *bits = -1;
3988 return 0;
3989 }
3990 }
3991 else
3992 --p;
3993
a2699720
PA
3994 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3995 {
3996 /* We were supposed to parse a number with maximum
3997 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3998 if (bits != NULL)
3999 *bits = -1;
4000 return 0;
4001 }
4002
c906108c
SS
4003 *pp = p;
4004 if (overflow)
4005 {
4006 if (nbits == 0)
4007 {
4008 /* Large decimal constants are an error (because it is hard to
4009 count how many bits are in them). */
4010 if (bits != NULL)
4011 *bits = -1;
4012 return 0;
4013 }
c5aa993b 4014
c906108c 4015 /* -0x7f is the same as 0x80. So deal with it by adding one to
a2699720
PA
4016 the number of bits. Two's complement represention octals
4017 can't have a '-' in front. */
4018 if (sign == -1 && !twos_complement_representation)
c906108c
SS
4019 ++nbits;
4020 if (bits)
4021 *bits = nbits;
4022 }
4023 else
4024 {
4025 if (bits)
4026 *bits = 0;
a2699720 4027 return n * sign;
c906108c
SS
4028 }
4029 /* It's *BITS which has the interesting information. */
4030 return 0;
4031}
4032
4033static struct type *
94e10a22
JG
4034read_range_type (char **pp, int typenums[2], int type_size,
4035 struct objfile *objfile)
c906108c 4036{
5e2b427d 4037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4038 char *orig_pp = *pp;
4039 int rangenums[2];
c2d11a7d 4040 long n2, n3;
c906108c
SS
4041 int n2bits, n3bits;
4042 int self_subrange;
4043 struct type *result_type;
4044 struct type *index_type = NULL;
4045
4046 /* First comes a type we are a subrange of.
4047 In C it is usually 0, 1 or the type being defined. */
4048 if (read_type_number (pp, rangenums) != 0)
4049 return error_type (pp, objfile);
4050 self_subrange = (rangenums[0] == typenums[0] &&
4051 rangenums[1] == typenums[1]);
4052
4053 if (**pp == '=')
4054 {
4055 *pp = orig_pp;
4056 index_type = read_type (pp, objfile);
4057 }
4058
4059 /* A semicolon should now follow; skip it. */
4060 if (**pp == ';')
4061 (*pp)++;
4062
4063 /* The remaining two operands are usually lower and upper bounds
4064 of the range. But in some special cases they mean something else. */
94e10a22
JG
4065 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4066 n3 = read_huge_number (pp, ';', &n3bits, type_size);
c906108c
SS
4067
4068 if (n2bits == -1 || n3bits == -1)
4069 return error_type (pp, objfile);
4070
4071 if (index_type)
4072 goto handle_true_range;
4073
4074 /* If limits are huge, must be large integral type. */
4075 if (n2bits != 0 || n3bits != 0)
4076 {
4077 char got_signed = 0;
4078 char got_unsigned = 0;
4079 /* Number of bits in the type. */
4080 int nbits = 0;
4081
94e10a22 4082 /* If a type size attribute has been specified, the bounds of
c378eb4e 4083 the range should fit in this size. If the lower bounds needs
94e10a22
JG
4084 more bits than the upper bound, then the type is signed. */
4085 if (n2bits <= type_size && n3bits <= type_size)
4086 {
4087 if (n2bits == type_size && n2bits > n3bits)
4088 got_signed = 1;
4089 else
4090 got_unsigned = 1;
4091 nbits = type_size;
4092 }
c906108c 4093 /* Range from 0 to <large number> is an unsigned large integral type. */
94e10a22 4094 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
c906108c
SS
4095 {
4096 got_unsigned = 1;
4097 nbits = n3bits;
4098 }
4099 /* Range from <large number> to <large number>-1 is a large signed
c5aa993b
JM
4100 integral type. Take care of the case where <large number> doesn't
4101 fit in a long but <large number>-1 does. */
c906108c
SS
4102 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4103 || (n2bits != 0 && n3bits == 0
c2d11a7d
JM
4104 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4105 && n3 == LONG_MAX))
c906108c
SS
4106 {
4107 got_signed = 1;
4108 nbits = n2bits;
4109 }
4110
4111 if (got_signed || got_unsigned)
19f392bc 4112 return init_integer_type (objfile, nbits, got_unsigned, NULL);
c906108c
SS
4113 else
4114 return error_type (pp, objfile);
4115 }
4116
4117 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4118 if (self_subrange && n2 == 0 && n3 == 0)
19f392bc 4119 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
c906108c
SS
4120
4121 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4122 is the width in bytes.
4123
4124 Fortran programs appear to use this for complex types also. To
4125 distinguish between floats and complex, g77 (and others?) seem
4126 to use self-subranges for the complexes, and subranges of int for
4127 the floats.
4128
4129 Also note that for complexes, g77 sets n2 to the size of one of
4130 the member floats, not the whole complex beast. My guess is that
c378eb4e 4131 this was to work well with pre-COMPLEX versions of gdb. */
c906108c
SS
4132
4133 if (n3 == 0 && n2 > 0)
4134 {
1300f5dd 4135 struct type *float_type
19f392bc 4136 = init_float_type (objfile, n2 * TARGET_CHAR_BIT, NULL, NULL);
1300f5dd 4137
c906108c 4138 if (self_subrange)
19f392bc 4139 return init_complex_type (objfile, NULL, float_type);
c906108c 4140 else
1300f5dd 4141 return float_type;
c906108c
SS
4142 }
4143
a2699720 4144 /* If the upper bound is -1, it must really be an unsigned integral. */
c906108c
SS
4145
4146 else if (n2 == 0 && n3 == -1)
4147 {
a2699720 4148 int bits = type_size;
433759f7 4149
a2699720
PA
4150 if (bits <= 0)
4151 {
4152 /* We don't know its size. It is unsigned int or unsigned
4153 long. GCC 2.3.3 uses this for long long too, but that is
4154 just a GDB 3.5 compatibility hack. */
5e2b427d 4155 bits = gdbarch_int_bit (gdbarch);
a2699720
PA
4156 }
4157
19f392bc 4158 return init_integer_type (objfile, bits, 1, NULL);
c906108c
SS
4159 }
4160
4161 /* Special case: char is defined (Who knows why) as a subrange of
4162 itself with range 0-127. */
4163 else if (self_subrange && n2 == 0 && n3 == 127)
19f392bc
UW
4164 {
4165 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4166 TYPE_NOSIGN (type) = 1;
4167 return type;
4168 }
c906108c
SS
4169 /* We used to do this only for subrange of self or subrange of int. */
4170 else if (n2 == 0)
4171 {
a0b3c4fd
JM
4172 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4173 "unsigned long", and we already checked for that,
4174 so don't need to test for it here. */
4175
c906108c
SS
4176 if (n3 < 0)
4177 /* n3 actually gives the size. */
19f392bc 4178 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
c906108c 4179
7be570e7 4180 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
a0b3c4fd
JM
4181 unsigned n-byte integer. But do require n to be a power of
4182 two; we don't want 3- and 5-byte integers flying around. */
4183 {
4184 int bytes;
4185 unsigned long bits;
4186
4187 bits = n3;
4188 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4189 bits >>= 8;
4190 if (bits == 0
4191 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
19f392bc 4192 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
a0b3c4fd 4193 }
c906108c
SS
4194 }
4195 /* I think this is for Convex "long long". Since I don't know whether
4196 Convex sets self_subrange, I also accept that particular size regardless
4197 of self_subrange. */
4198 else if (n3 == 0 && n2 < 0
4199 && (self_subrange
9a76efb6 4200 || n2 == -gdbarch_long_long_bit
5e2b427d 4201 (gdbarch) / TARGET_CHAR_BIT))
19f392bc 4202 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
c5aa993b 4203 else if (n2 == -n3 - 1)
c906108c
SS
4204 {
4205 if (n3 == 0x7f)
19f392bc 4206 return init_integer_type (objfile, 8, 0, NULL);
c906108c 4207 if (n3 == 0x7fff)
19f392bc 4208 return init_integer_type (objfile, 16, 0, NULL);
c906108c 4209 if (n3 == 0x7fffffff)
19f392bc 4210 return init_integer_type (objfile, 32, 0, NULL);
c906108c
SS
4211 }
4212
4213 /* We have a real range type on our hands. Allocate space and
4214 return a real pointer. */
c5aa993b 4215handle_true_range:
c906108c
SS
4216
4217 if (self_subrange)
46bf5051 4218 index_type = objfile_type (objfile)->builtin_int;
c906108c 4219 else
46bf5051 4220 index_type = *dbx_lookup_type (rangenums, objfile);
c906108c
SS
4221 if (index_type == NULL)
4222 {
4223 /* Does this actually ever happen? Is that why we are worrying
4224 about dealing with it rather than just calling error_type? */
4225
23136709 4226 complaint (&symfile_complaints,
e2e0b3e5 4227 _("base type %d of range type is not defined"), rangenums[1]);
5e2b427d 4228
46bf5051 4229 index_type = objfile_type (objfile)->builtin_int;
c906108c
SS
4230 }
4231
0c9c3474
SA
4232 result_type
4233 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
c906108c
SS
4234 return (result_type);
4235}
4236
4237/* Read in an argument list. This is a list of types, separated by commas
0a029df5
DJ
4238 and terminated with END. Return the list of types read in, or NULL
4239 if there is an error. */
c906108c 4240
ad2f7632
DJ
4241static struct field *
4242read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4243 int *varargsp)
c906108c
SS
4244{
4245 /* FIXME! Remove this arbitrary limit! */
c378eb4e 4246 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
ad2f7632
DJ
4247 int n = 0, i;
4248 struct field *rval;
c906108c
SS
4249
4250 while (**pp != end)
4251 {
4252 if (**pp != ',')
4253 /* Invalid argument list: no ','. */
0a029df5 4254 return NULL;
c906108c
SS
4255 (*pp)++;
4256 STABS_CONTINUE (pp, objfile);
4257 types[n++] = read_type (pp, objfile);
4258 }
c378eb4e 4259 (*pp)++; /* get past `end' (the ':' character). */
c906108c 4260
d24d8548
JK
4261 if (n == 0)
4262 {
4263 /* We should read at least the THIS parameter here. Some broken stabs
4264 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4265 have been present ";-16,(0,43)" reference instead. This way the
4266 excessive ";" marker prematurely stops the parameters parsing. */
4267
4268 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4269 *varargsp = 0;
4270 }
4271 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
ad2f7632 4272 *varargsp = 1;
c906108c
SS
4273 else
4274 {
ad2f7632
DJ
4275 n--;
4276 *varargsp = 0;
c906108c 4277 }
ad2f7632 4278
8d749320 4279 rval = XCNEWVEC (struct field, n);
ad2f7632
DJ
4280 for (i = 0; i < n; i++)
4281 rval[i].type = types[i];
4282 *nargsp = n;
c906108c
SS
4283 return rval;
4284}
4285\f
4286/* Common block handling. */
4287
4288/* List of symbols declared since the last BCOMM. This list is a tail
4289 of local_symbols. When ECOMM is seen, the symbols on the list
4290 are noted so their proper addresses can be filled in later,
4291 using the common block base address gotten from the assembler
4292 stabs. */
4293
4294static struct pending *common_block;
4295static int common_block_i;
4296
4297/* Name of the current common block. We get it from the BCOMM instead of the
4298 ECOMM to match IBM documentation (even though IBM puts the name both places
4299 like everyone else). */
4300static char *common_block_name;
4301
4302/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4303 to remain after this function returns. */
4304
4305void
fba45db2 4306common_block_start (char *name, struct objfile *objfile)
c906108c
SS
4307{
4308 if (common_block_name != NULL)
4309 {
23136709 4310 complaint (&symfile_complaints,
e2e0b3e5 4311 _("Invalid symbol data: common block within common block"));
c906108c
SS
4312 }
4313 common_block = local_symbols;
4314 common_block_i = local_symbols ? local_symbols->nsyms : 0;
224c3ddb
SM
4315 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4316 strlen (name));
c906108c
SS
4317}
4318
4319/* Process a N_ECOMM symbol. */
4320
4321void
fba45db2 4322common_block_end (struct objfile *objfile)
c906108c
SS
4323{
4324 /* Symbols declared since the BCOMM are to have the common block
4325 start address added in when we know it. common_block and
4326 common_block_i point to the first symbol after the BCOMM in
4327 the local_symbols list; copy the list and hang it off the
4328 symbol for the common block name for later fixup. */
4329 int i;
4330 struct symbol *sym;
fe978cb0 4331 struct pending *newobj = 0;
c906108c
SS
4332 struct pending *next;
4333 int j;
4334
4335 if (common_block_name == NULL)
4336 {
e2e0b3e5 4337 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
c906108c
SS
4338 return;
4339 }
4340
e623cf5d 4341 sym = allocate_symbol (objfile);
c378eb4e 4342 /* Note: common_block_name already saved on objfile_obstack. */
3567439c 4343 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
f1e6e072 4344 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
c906108c
SS
4345
4346 /* Now we copy all the symbols which have been defined since the BCOMM. */
4347
4348 /* Copy all the struct pendings before common_block. */
4349 for (next = local_symbols;
4350 next != NULL && next != common_block;
4351 next = next->next)
4352 {
4353 for (j = 0; j < next->nsyms; j++)
fe978cb0 4354 add_symbol_to_list (next->symbol[j], &newobj);
c906108c
SS
4355 }
4356
4357 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4358 NULL, it means copy all the local symbols (which we already did
4359 above). */
4360
4361 if (common_block != NULL)
4362 for (j = common_block_i; j < common_block->nsyms; j++)
fe978cb0 4363 add_symbol_to_list (common_block->symbol[j], &newobj);
c906108c 4364
fe978cb0 4365 SYMBOL_TYPE (sym) = (struct type *) newobj;
c906108c
SS
4366
4367 /* Should we be putting local_symbols back to what it was?
4368 Does it matter? */
4369
3567439c 4370 i = hashname (SYMBOL_LINKAGE_NAME (sym));
c906108c
SS
4371 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4372 global_sym_chain[i] = sym;
4373 common_block_name = NULL;
4374}
4375
4376/* Add a common block's start address to the offset of each symbol
4377 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4378 the common block name). */
4379
4380static void
46cb6474 4381fix_common_block (struct symbol *sym, CORE_ADDR valu)
c906108c
SS
4382{
4383 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
433759f7 4384
c5aa993b 4385 for (; next; next = next->next)
c906108c 4386 {
aa1ee363 4387 int j;
433759f7 4388
c906108c
SS
4389 for (j = next->nsyms - 1; j >= 0; j--)
4390 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4391 }
4392}
c5aa993b 4393\f
c906108c
SS
4394
4395
bf362611
JB
4396/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4397 See add_undefined_type for more details. */
c906108c 4398
a7a48797 4399static void
bf362611
JB
4400add_undefined_type_noname (struct type *type, int typenums[2])
4401{
4402 struct nat nat;
4403
4404 nat.typenums[0] = typenums [0];
4405 nat.typenums[1] = typenums [1];
4406 nat.type = type;
4407
4408 if (noname_undefs_length == noname_undefs_allocated)
4409 {
4410 noname_undefs_allocated *= 2;
4411 noname_undefs = (struct nat *)
4412 xrealloc ((char *) noname_undefs,
4413 noname_undefs_allocated * sizeof (struct nat));
4414 }
4415 noname_undefs[noname_undefs_length++] = nat;
4416}
4417
4418/* Add TYPE to the UNDEF_TYPES vector.
4419 See add_undefined_type for more details. */
4420
4421static void
4422add_undefined_type_1 (struct type *type)
c906108c
SS
4423{
4424 if (undef_types_length == undef_types_allocated)
4425 {
4426 undef_types_allocated *= 2;
4427 undef_types = (struct type **)
4428 xrealloc ((char *) undef_types,
4429 undef_types_allocated * sizeof (struct type *));
4430 }
4431 undef_types[undef_types_length++] = type;
4432}
4433
bf362611
JB
4434/* What about types defined as forward references inside of a small lexical
4435 scope? */
4436/* Add a type to the list of undefined types to be checked through
4437 once this file has been read in.
4438
4439 In practice, we actually maintain two such lists: The first list
4440 (UNDEF_TYPES) is used for types whose name has been provided, and
4441 concerns forward references (eg 'xs' or 'xu' forward references);
4442 the second list (NONAME_UNDEFS) is used for types whose name is
4443 unknown at creation time, because they were referenced through
4444 their type number before the actual type was declared.
4445 This function actually adds the given type to the proper list. */
4446
4447static void
4448add_undefined_type (struct type *type, int typenums[2])
4449{
4450 if (TYPE_TAG_NAME (type) == NULL)
4451 add_undefined_type_noname (type, typenums);
4452 else
4453 add_undefined_type_1 (type);
4454}
4455
4456/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4457
2c0b251b 4458static void
46bf5051 4459cleanup_undefined_types_noname (struct objfile *objfile)
bf362611
JB
4460{
4461 int i;
4462
4463 for (i = 0; i < noname_undefs_length; i++)
4464 {
4465 struct nat nat = noname_undefs[i];
4466 struct type **type;
4467
46bf5051 4468 type = dbx_lookup_type (nat.typenums, objfile);
bf362611 4469 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
56953f80
JB
4470 {
4471 /* The instance flags of the undefined type are still unset,
4472 and needs to be copied over from the reference type.
4473 Since replace_type expects them to be identical, we need
4474 to set these flags manually before hand. */
4475 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4476 replace_type (nat.type, *type);
4477 }
bf362611
JB
4478 }
4479
4480 noname_undefs_length = 0;
4481}
4482
c906108c
SS
4483/* Go through each undefined type, see if it's still undefined, and fix it
4484 up if possible. We have two kinds of undefined types:
4485
4486 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
c5aa993b
JM
4487 Fix: update array length using the element bounds
4488 and the target type's length.
c906108c 4489 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
c5aa993b
JM
4490 yet defined at the time a pointer to it was made.
4491 Fix: Do a full lookup on the struct/union tag. */
bf362611 4492
2c0b251b 4493static void
bf362611 4494cleanup_undefined_types_1 (void)
c906108c
SS
4495{
4496 struct type **type;
4497
9e386756
JB
4498 /* Iterate over every undefined type, and look for a symbol whose type
4499 matches our undefined type. The symbol matches if:
4500 1. It is a typedef in the STRUCT domain;
4501 2. It has the same name, and same type code;
4502 3. The instance flags are identical.
4503
4504 It is important to check the instance flags, because we have seen
4505 examples where the debug info contained definitions such as:
4506
4507 "foo_t:t30=B31=xefoo_t:"
4508
4509 In this case, we have created an undefined type named "foo_t" whose
4510 instance flags is null (when processing "xefoo_t"), and then created
4511 another type with the same name, but with different instance flags
4512 ('B' means volatile). I think that the definition above is wrong,
4513 since the same type cannot be volatile and non-volatile at the same
4514 time, but we need to be able to cope with it when it happens. The
4515 approach taken here is to treat these two types as different. */
4516
c906108c
SS
4517 for (type = undef_types; type < undef_types + undef_types_length; type++)
4518 {
4519 switch (TYPE_CODE (*type))
4520 {
4521
c5aa993b
JM
4522 case TYPE_CODE_STRUCT:
4523 case TYPE_CODE_UNION:
4524 case TYPE_CODE_ENUM:
c906108c
SS
4525 {
4526 /* Check if it has been defined since. Need to do this here
4527 as well as in check_typedef to deal with the (legitimate in
4528 C though not C++) case of several types with the same name
4529 in different source files. */
74a9bb82 4530 if (TYPE_STUB (*type))
c906108c
SS
4531 {
4532 struct pending *ppt;
4533 int i;
c378eb4e 4534 /* Name of the type, without "struct" or "union". */
fe978cb0 4535 const char *type_name = TYPE_TAG_NAME (*type);
c906108c 4536
fe978cb0 4537 if (type_name == NULL)
c906108c 4538 {
e2e0b3e5 4539 complaint (&symfile_complaints, _("need a type name"));
c906108c
SS
4540 break;
4541 }
4542 for (ppt = file_symbols; ppt; ppt = ppt->next)
4543 {
4544 for (i = 0; i < ppt->nsyms; i++)
4545 {
4546 struct symbol *sym = ppt->symbol[i];
c5aa993b 4547
c906108c 4548 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
176620f1 4549 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
c906108c
SS
4550 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4551 TYPE_CODE (*type))
9e386756
JB
4552 && (TYPE_INSTANCE_FLAGS (*type) ==
4553 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
3567439c 4554 && strcmp (SYMBOL_LINKAGE_NAME (sym),
fe978cb0 4555 type_name) == 0)
13a393b0 4556 replace_type (*type, SYMBOL_TYPE (sym));
c906108c
SS
4557 }
4558 }
4559 }
4560 }
4561 break;
4562
4563 default:
4564 {
23136709 4565 complaint (&symfile_complaints,
e2e0b3e5
AC
4566 _("forward-referenced types left unresolved, "
4567 "type code %d."),
23136709 4568 TYPE_CODE (*type));
c906108c
SS
4569 }
4570 break;
4571 }
4572 }
4573
4574 undef_types_length = 0;
4575}
4576
bf362611
JB
4577/* Try to fix all the undefined types we ecountered while processing
4578 this unit. */
4579
4580void
0a0edcd5 4581cleanup_undefined_stabs_types (struct objfile *objfile)
bf362611
JB
4582{
4583 cleanup_undefined_types_1 ();
46bf5051 4584 cleanup_undefined_types_noname (objfile);
bf362611
JB
4585}
4586
c906108c
SS
4587/* Scan through all of the global symbols defined in the object file,
4588 assigning values to the debugging symbols that need to be assigned
4589 to. Get these symbols from the minimal symbol table. */
4590
4591void
fba45db2 4592scan_file_globals (struct objfile *objfile)
c906108c
SS
4593{
4594 int hash;
4595 struct minimal_symbol *msymbol;
507836c0 4596 struct symbol *sym, *prev;
c906108c
SS
4597 struct objfile *resolve_objfile;
4598
4599 /* SVR4 based linkers copy referenced global symbols from shared
4600 libraries to the main executable.
4601 If we are scanning the symbols for a shared library, try to resolve
4602 them from the minimal symbols of the main executable first. */
4603
4604 if (symfile_objfile && objfile != symfile_objfile)
4605 resolve_objfile = symfile_objfile;
4606 else
4607 resolve_objfile = objfile;
4608
4609 while (1)
4610 {
4611 /* Avoid expensive loop through all minimal symbols if there are
c5aa993b 4612 no unresolved symbols. */
c906108c
SS
4613 for (hash = 0; hash < HASHSIZE; hash++)
4614 {
4615 if (global_sym_chain[hash])
4616 break;
4617 }
4618 if (hash >= HASHSIZE)
4619 return;
4620
3567439c 4621 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
c906108c
SS
4622 {
4623 QUIT;
4624
4625 /* Skip static symbols. */
4626 switch (MSYMBOL_TYPE (msymbol))
4627 {
4628 case mst_file_text:
4629 case mst_file_data:
4630 case mst_file_bss:
4631 continue;
4632 default:
4633 break;
4634 }
4635
4636 prev = NULL;
4637
4638 /* Get the hash index and check all the symbols
c378eb4e 4639 under that hash index. */
c906108c 4640
efd66ac6 4641 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
c906108c
SS
4642
4643 for (sym = global_sym_chain[hash]; sym;)
4644 {
efd66ac6 4645 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
3567439c 4646 SYMBOL_LINKAGE_NAME (sym)) == 0)
c906108c 4647 {
c906108c 4648 /* Splice this symbol out of the hash chain and
c378eb4e 4649 assign the value we have to it. */
c906108c
SS
4650 if (prev)
4651 {
4652 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4653 }
4654 else
4655 {
4656 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4657 }
c5aa993b 4658
c906108c
SS
4659 /* Check to see whether we need to fix up a common block. */
4660 /* Note: this code might be executed several times for
4661 the same symbol if there are multiple references. */
507836c0 4662 if (sym)
c906108c 4663 {
507836c0 4664 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
c906108c 4665 {
507836c0 4666 fix_common_block (sym,
77e371c0
TT
4667 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4668 msymbol));
c906108c
SS
4669 }
4670 else
4671 {
507836c0 4672 SYMBOL_VALUE_ADDRESS (sym)
77e371c0 4673 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
c906108c 4674 }
efd66ac6 4675 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
c906108c
SS
4676 }
4677
c906108c
SS
4678 if (prev)
4679 {
4680 sym = SYMBOL_VALUE_CHAIN (prev);
4681 }
4682 else
4683 {
4684 sym = global_sym_chain[hash];
4685 }
4686 }
4687 else
4688 {
4689 prev = sym;
4690 sym = SYMBOL_VALUE_CHAIN (sym);
4691 }
4692 }
4693 }
4694 if (resolve_objfile == objfile)
4695 break;
4696 resolve_objfile = objfile;
4697 }
4698
4699 /* Change the storage class of any remaining unresolved globals to
4700 LOC_UNRESOLVED and remove them from the chain. */
4701 for (hash = 0; hash < HASHSIZE; hash++)
4702 {
4703 sym = global_sym_chain[hash];
4704 while (sym)
4705 {
4706 prev = sym;
4707 sym = SYMBOL_VALUE_CHAIN (sym);
4708
4709 /* Change the symbol address from the misleading chain value
4710 to address zero. */
4711 SYMBOL_VALUE_ADDRESS (prev) = 0;
4712
4713 /* Complain about unresolved common block symbols. */
4714 if (SYMBOL_CLASS (prev) == LOC_STATIC)
f1e6e072 4715 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
c906108c 4716 else
23136709 4717 complaint (&symfile_complaints,
3e43a32a
MS
4718 _("%s: common block `%s' from "
4719 "global_sym_chain unresolved"),
4262abfb 4720 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
c906108c
SS
4721 }
4722 }
4723 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4724}
4725
4726/* Initialize anything that needs initializing when starting to read
4727 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4728 to a psymtab. */
4729
4730void
fba45db2 4731stabsread_init (void)
c906108c
SS
4732{
4733}
4734
4735/* Initialize anything that needs initializing when a completely new
4736 symbol file is specified (not just adding some symbols from another
4737 file, e.g. a shared library). */
4738
4739void
fba45db2 4740stabsread_new_init (void)
c906108c
SS
4741{
4742 /* Empty the hash table of global syms looking for values. */
4743 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4744}
4745
4746/* Initialize anything that needs initializing at the same time as
c378eb4e 4747 start_symtab() is called. */
c906108c 4748
c5aa993b 4749void
fba45db2 4750start_stabs (void)
c906108c
SS
4751{
4752 global_stabs = NULL; /* AIX COFF */
4753 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4754 n_this_object_header_files = 1;
4755 type_vector_length = 0;
4756 type_vector = (struct type **) 0;
4757
4758 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4759 common_block_name = NULL;
c906108c
SS
4760}
4761
c378eb4e 4762/* Call after end_symtab(). */
c906108c 4763
c5aa993b 4764void
fba45db2 4765end_stabs (void)
c906108c
SS
4766{
4767 if (type_vector)
4768 {
b8c9b27d 4769 xfree (type_vector);
c906108c
SS
4770 }
4771 type_vector = 0;
4772 type_vector_length = 0;
4773 previous_stab_code = 0;
4774}
4775
4776void
fba45db2 4777finish_global_stabs (struct objfile *objfile)
c906108c
SS
4778{
4779 if (global_stabs)
4780 {
4781 patch_block_stabs (global_symbols, global_stabs, objfile);
b8c9b27d 4782 xfree (global_stabs);
c906108c
SS
4783 global_stabs = NULL;
4784 }
4785}
4786
7e1d63ec
AF
4787/* Find the end of the name, delimited by a ':', but don't match
4788 ObjC symbols which look like -[Foo bar::]:bla. */
4789static char *
4790find_name_end (char *name)
4791{
4792 char *s = name;
433759f7 4793
7e1d63ec
AF
4794 if (s[0] == '-' || *s == '+')
4795 {
4796 /* Must be an ObjC method symbol. */
4797 if (s[1] != '[')
4798 {
8a3fe4f8 4799 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4800 }
4801 s = strchr (s, ']');
4802 if (s == NULL)
4803 {
8a3fe4f8 4804 error (_("invalid symbol name \"%s\""), name);
7e1d63ec
AF
4805 }
4806 return strchr (s, ':');
4807 }
4808 else
4809 {
4810 return strchr (s, ':');
4811 }
4812}
4813
c378eb4e 4814/* Initializer for this module. */
c906108c
SS
4815
4816void
fba45db2 4817_initialize_stabsread (void)
c906108c 4818{
46bf5051
UW
4819 rs6000_builtin_type_data = register_objfile_data ();
4820
c906108c
SS
4821 undef_types_allocated = 20;
4822 undef_types_length = 0;
8d749320 4823 undef_types = XNEWVEC (struct type *, undef_types_allocated);
bf362611
JB
4824
4825 noname_undefs_allocated = 20;
4826 noname_undefs_length = 0;
8d749320 4827 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
f1e6e072
TT
4828
4829 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4830 &stab_register_funcs);
4831 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4832 &stab_register_funcs);
c906108c 4833}
This page took 2.367183 seconds and 4 git commands to generate.